Indiscernibility and Identity in Probability Theory

PETER ROEPER and HUGUES LEBLANC*

TABLE OF CONSTRAINTS

ON STANDARD BOOLEAN ALGEBRAS

A1' For any A and B in $S, A \cap B=B \cap A$
$\mathbf{A 2}^{\prime} \quad$ For any A, B, and C in $S, A \cap(B \cap C)=(A \cap B) \cap C$
$\mathbf{A 3}^{\prime}$ For any A, B, and C in $S, A \cap-B=C \cap-C$ if, and only if, $A \cap B=A$
$\mathbf{A 4}^{\prime} \quad$ For any A and B in S, if $A=B$, then $-A=-B$
$\mathbf{A 5}^{\prime}$ For any A, B, and C in S, if $A=B$, then $A \cap C=B \cap C$

ON POPPER'S RELATIVE PROBABILITY FUNCTIONS

B1 For some A and B in $S, P(A, B) \neq 1$
(Existence)
B2 For any A and B in $S, 0 \leq P(A, B)$ (Nonnegativity)
B3 For any A in $S, P(A, A)=1$
(Normality)
B4 For any A and B in S, if $P(C, B) \neq 1$ for some C in S, then $P(A, B)+P(-A, B)=1$
(Addition)
B5 For any A, B, and C in $S, P(A \cap B, C)=P(A, B \cap C) \times P(B, C)$
(Multiplication)
B6 For any A, B, and C in $S, P(A \cap B, C) \leq P(B \cap A, C)$. (Commutation)
B7 For any A, B, and C in $S, P(A, B \cap C) \leq P(A, C \cap B) \quad$ (Commutation)
*The results in this paper were presented at the February 24, 1989, meeting of the Seminar on Philosophical Logic, The Graduate School of the City University of New York, at the 1989 Congrès des sociétés savantes du Canada in Quebec City, and at the 1989 Meeting of the Society for Exact Philosophy in Edmonton. Some of the research was done while Hugues Leblanc held a Summer Research Grant from Temple University.

ON RÉNYI'S RELATIVE PROBABILITY FUNCTIONS

RB8' For any B in S, if $P(A, B)=1$ for every A in S, then $B=\Lambda$
RB8 For any A and B in S, if $P(A, C)=P(B, C)$ for every C in S, then $A=B$
RB8** For any A and B in S, if $P(A, C)=P(B, C)$ for every C in S, then $P(A, C)=P(B, C)$ for every C in S and every relative probability function P of Popper's of Type II defined on S

ON KOLMOGOROV'S RELATIVE PROBABILITY FUNCTIONS
KB8' For any B in S, if $P(B, V)=0$, then $P(A, B)=1$ for every A in S
||
KB8 For any A and B in S, if $P(C, A)=P(C, B)$ for every C in S, then $P(A, C)=P(B, C)$ for every such C

ON CARNAP'S RELATIVE PROBABILITY FUNCTIONS

CB8' \quad For any A in S, if $P(A, V)=0$, then $A=\Lambda$
CB8 For any A and B in S, if $P(C, A)=P(C, B)$ for every C in S, then $A=B$
CB8** For any A and B in S, if $P(C, A)=P(C, B)$ for every C in S, then $P(C, A)=P(C, B)$ for every such C and every relative probability function P of Popper's of Type II defined on S

ON POPPER'S ABSOLUTE PROBABILITY FUNCTIONS
C1 For any A in $S, 0 \leq P(A)$
(Nonnegativity)
C2 For any A in $S, P(A \cup-A)=1$
(Normality)
C3 For any A and B in $S, P(A)=P(A \cap B)+P(A \cap-B) \quad$ (Special Addition)
C4 For any A and B in $S, P(A \cap B) \leq P(B \cap A) \quad$ (Commutation)
C5 For any A, B, and C in $S, P(A \cap(B \cap C)) \leq P((A \cap B) \cap C)$ (Association)
C6 For any A in $S, P(A) \leq P(A \cap A) \quad$ (Idempotence)
ON CARNAP'S ABSOLUTE PROBABILITY FUNCTIONS
CC7' For any A in S, if $P(A)=0$, then $A=\Lambda$
CC7 For any A and B in S, if $P(A)=P(B)=P(A \cap B)$, then $A=B$
CC7** For any A and B in S, if $P(A)=P(B)=P(A \cap B)$, then $P(A)=P(B)$ for every absolute probability function P of Popper's of Type II defined on S

1 Overview $\dagger \quad$ It is usually in connection with properties that one talks of indiscernibility, saying that A and B are indiscernible if they have the same properties. Here it is in connection with functions, more specifically, probability functions, that we talk of indiscernibility. For example, given a relative (i.e. binary) probability function P defined on a set $S,{ }^{1}$ we say that members A and B of S are
left-indiscernible under P if

$$
\begin{equation*}
P(A, C)=P(B, C) \text { for every } C \text { in } S, \tag{i}
\end{equation*}
$$

(ii)
right-indiscernible under P if

$$
P(C, A)=P(C, B) \text { for every } C \text { in } S,^{2}
$$

(iii) indiscernible tout court under P if

A and B are both left- and right-indiscernible under P.

We further say that A and B are indiscernible tout court if A and B are indiscernible under every relative probability function defined on S.

The relative probability functions considered in this paper are those of Popper in [15], Appendices ${ }^{*} \mathrm{iv}-*$ v, plus three special kinds of Popper functions respectively associated with Rényi, Kolmogorov, and Carnap. We show that under all of these functions left-indiscernibility entails right-indiscernibility (Popper's Constraint), and investigate under which of them right-indiscernibility entails leftindiscernibility, under which indiscernibility (right- or left-) entails identity, etc. That these questions arise at all may come as a surprise, to readers of Leibniz especially. And, banking on these results, we obtain for Rényi’s, Kolmogorov's, and Carnap's functions novel characteristic formulas or constraints that are phrased entirely in terms of indiscernibility under P and identity: constraints RB8, KB8, and CB8, respectively.

Rényi's functions in [16] and Carnap's in [4] are defined on sets known as Boolean algebras, while Popper's in [15] are defined on arbitrary sets. Proceeding as in [12] but more boldly, we initially take all of Popper's, Rényi's, Kolmogorov's, and Carnap's functions to be defined on Boolean algebras, and then take all of them to be defined on arbitrary sets. In the first case constraints are placed upon the sets on which the functions are defined and upon the functions themselves: constraints $\mathrm{A} 1^{\prime}-\mathrm{A} 5^{\prime}$ and $\mathrm{B} 1-\mathrm{B} 5$, respectively. Constraints $\mathrm{A} 1^{\prime}-\mathrm{A} 5^{\prime}$ are of course familiar postulates for Boolean algebras. In the second case constraints are placed upon the functions only, but there are more of them: constraints B1-B7.

Popper showed in [15] that constraints B1-B7 compel the arbitrary sets on which his functions are defined to be Boolean algebras in a special and weaker sense, i.e. Boolean algebras with respect to indiscernibility under P (Popper's Theorem). The same holds true by implication of Rényi's, Kolmogorov's, and Carnap's functions when they too are defined on arbitrary sets. However, we show that in the case of Rényi's functions constraint RB8, and in that of Car-
\dagger The constraints mentioned in this overview are tabulated for convenience's sake on the preceding two pages. They will also be found in the relevant sections of the paper.
nap's functions constraint CB8, compel those supposedly arbitrary sets to be standard Boolean algebras after all. As a result, we end up at this point with (i) six (rather than the expected eight) distinct families of relative probability functions and (ii) two distinct characterizations each of Rényi's functions and Carnap's, one characterization explicitly requiring of the sets on which these functions are defined that they be standard Boolean algebras, the other not (Sections 3-5).

We turn next to Popper's absolute (i.e., unary) probability functions in [14]. We take these too to be defined on standard Boolean algebras first, this by means of constraints $\mathrm{A} 1^{\prime}-\mathrm{A} 5^{\prime}$ and constraints $\mathrm{C} 1-\mathrm{C} 3$, and on arbitrary sets second, this by means of constraints C1-C6. The functions in question, when defined on the Boolean algebras known as fields of sets, coincide with Kolmogorov's absolute probability functions in [6]. Only one special kind of Popper function merits attention, Carnap's in [4], for which we provide a characteristic constraint phrased entirely in terms of indiscernibility under P and identity: constraint CC7. Exploiting a result in [10], we first show that when Popper's functions and Carnap's are defined on arbitrary sets, Popper's constraints C1-C6 compel the sets in question to be Boolean algebras with respect to indiscernibility under P. We further show that in the case of Carnap's functions constraint CC7 compels those supposedly arbitrary sets to be standard Boolean algebras after all. So, we end up at this point with (iii) three (rather than the expected four) distinct families of absolute probability functions and (iv) two distinct characterizations of Carnap's functions, one explicitly requiring of the sets on which the functions are defined that they be standard Boolean algebras, the other not (Section 6).

Indiscernibility under a probability function, it turns out, is a matter of symmetric difference. Readers will recall the symmetric difference $A \dot{-B}$ of members A and B of a set S as

$$
(A \cap-B) \cup(B \cap-A)
$$

hence, when A and B are themselves sets, as the set consisting of every A not a B and every B not an A. We establish that left- and right-indiscernibility under a relative probability function, and indiscernibility tout court under a relative or an absolute one, can be rendered in terms of - . The renditions, together with this theorem of Boolean algebra:

$$
A \subset B=\Lambda \text { if, and only if, } A=B
$$

will deliver constraints RB8, KB8, CB8, and CC7, i.e. our characterizations of Rényi's, Kolmogorov's, and Carnap's probability functions. They will also show Popper's Constraint (left-indiscernibility under P entails right-indiscernibility un$\operatorname{der} P$) to be a truth of quantifier logic (Sections 4 and 6).

Finally we obtain results which in effect round off Popper's probability theory. Strengthening what we call Popper's Theorem and its counterpart in Section 6 for absolute probability functions, we show that relative probability functions meeting constraints B1-B7 or absolute ones meeting constraints C1C6 are definable on a set S if, and only if, there exists an equivalence relation on S with respect to which S constitutes a nondegenerate Boolean algebra. So probability functions, definable on just the sets that are nondegenerate Boolean algebras, are yet definable on all on them. Using the notion of the least equiva-
lence relation with respect to which a set constitutes a Boolean algebra, we also isolate - and briefly consider - three new families of probability functions: two of them "the lost families" of relative functions in Section 5, if you will, and the third "the lost family" of absolute ones in Section 6. Their characteristic con-straints-RB8**, CB8**, and CC7**-are indeed akin to RB8, CB8, and CC7, but weaker; and they talk of indiscernibility tout court where RB8, CB8, and CC7 talked of identity. The functions are of particular interest when defined on sets of statements (Section 7).

2 Boolean algebras Let S be a nonempty set closed under a unary function - and a binary one $\cap,{ }^{3}$ and let \approx be an equivalence relation (i.e. a reflexive, symmetrical, and transitive relation) on S. We say that
(i) S constitutes a Boolean algebra with respect to \approx if these five constraints are met:
A1 For any A and B in $S, A \cap B \approx B \cap A$
(Commutation)
A2 For any A, B, and C in $S, A \cap(B \cap C) \approx(A \cap B) \cap C \quad$ (Association)
A3 For any A, B, and C in $S, A \cap-B \approx C \cap-C$ if,
and only if, $A \cap B \approx A \quad$ (Special Complementation)
A4 For any A and B in S, if $A \approx B$, then $-A \approx-B$
A5 For any A, B, and C in S, if $A \approx B$, then $A \cap C \approx B \cap C .{ }^{4}$
We also say that
(ii) S constitutes in particular a nondegenerate Boolean algebra with respect $t o \approx$ if $A \neq B$ for some A and B in S.

And, with S as before, we say that S constitutes a (nondegenerate) Boolean algebra tout court if there is an equivalence relation with respect to which S constitutes a (nondegenerate) Boolean algebra. ${ }^{5}$ The best known, and in all too many quarters the only known, Boolean algebras are those with respect to identity. As in Section 1, we shall often refer to them as standard Boolean algebras. But there are other Boolean algebras: in particular, the Boolean algebras with respect to indiscernibility under a probability function P which were mentioned in Section 1 and which are to play a major role in this paper. They first appeared in [15], where Popper talked of substitutional equivalence rather than indiscernibility. So there will be identity versions of A1-A5, and there will be indiscernibility ones. The former, the results of replacing ' \approx ' everywhere in A1-A5 by ' $=$ ', are the constraints $\mathrm{A} 1^{\prime}-\mathrm{A} 5^{\prime}$ mentioned in Section I. ${ }^{6}$

A Boolean algebra S often consists of sets, but it may also consist of relations, propositions, individuals, etc. When infinite, S may be of any infinite cardinality. But, when S is finite and a standard algebra, S may be of only these cardinalities: $1,2,4,16, \ldots$, i.e. 2^{n} for some n equal to or larger than $0 .{ }^{7}$ As for the two functions - and \cap, they are usually referred to as complementation and intersection, and they will be here. When S consists of sets or of relations, they may be interpreted set-theoretically; but they are open to other interpretations as well. For example, when S consists of propositions, - is normally interpreted as the negation function and \cap as the conjunction one. Importantly, when S consists of sets, - and \cap are interpreted set-theoretically, and \approx is taken
to be $=, S$ is called a field of sets. Rényi's relative probability functions in [16] and Carnap's in [4] were defined on fields of sets; and so were Kolmogorov's absolute probability functions, as noted in Section 1.

Two additional functions on S turned up in Section 1: the union function U and the symmetric difference function - . We define the first thus:

$$
A \cup B={ }_{d e f}-(-A \cap-B)
$$

This done, we may now formally define the second thus:

$$
A-B==_{\operatorname{def}}(A \cap-B) \cup(B \cap-A)
$$

the definiens being short of course for $-(-(A \cap-B) \cap-(B \cap-A))$. Two particular members of any Boolean algebra also turned up in Section 1: the null or zero element Λ and its complement, the universal or one element V . We define Λ thus:

$$
\Lambda={ }_{\operatorname{def}} A \cap-A
$$

A here some arbitrary but fixed member of S; and we then define V thus:

$$
\mathrm{V}={ }_{\operatorname{def}}-\Lambda
$$

That A is a particular member of S is no limitation: by Lemma 1(b) in the Appendix we nonetheless have $\Lambda \approx A \cap-A$ and $\mathrm{V} \approx A \cup-A$ for any A in S, so that Λ is simply an arbitrary one of the \approx-equivalent elements $A \cap-A, B \cap-B$, etc. Hence, when \approx is $=, \Lambda=A \cap-A$ and $\mathrm{V}=A \cup-A$ for any such A.

On several occasions we shall reduce certain Boolean algebras to others, more specifically, to standard ones. On each occasion a certain equivalence relation (an indiscernibility one, it so happens) will have been defined on the original algebras. Let S be one of the algebras; let \approx be the equivalence relation defined on it; for each A in S, let [A]-the so-called equivalence set of A-be the set consisting of every B in S such that $B \approx A$; let [S] be the set consisting of the equivalence sets that result; for each $[A]$ in $[S]$, let $-[A]$ be the set consisting of every B in S such that $B \approx-A$; and for each $[A]$ and $[B]$ in S, let $[A] \cap[B]$ be the set consisting of every C in S such that $C \approx A \cap B$. It is obvious that

$$
[A]=[B]
$$

is tantamount to

$$
A \approx B
$$

And, in consequence, it is easily verified that [S] constitutes a standard Boolean algebra, i.e. a Boolean algebra with respect to identity. We shall call $[S]$ the reduction of S with respect to $\approx .^{8}[S]$ is sure to be a nondegenerate algebra if S is.

The various equivalence relations on a set S with respect to which it constitutes a Boolean algebra are of course so many sets of pairs of members of S, and so is their intersection, the set consisting of the pairs of members of S that belong to all the equivalence relations with respect to which S constitutes a Boolean algebra. Significantly for our purposes in Section 7, that intersection proves to be one of the equivalence relations on S with respect to which S satisfies A1A5; and, being by definition a subset of each of them, it is known as the least
equivalence relation on S with respect to which S constitutes a Boolean algebra. For convenience's sake we shall refer to it by means of ' \approx '. When S constitutes a nondegenerate Boolean algebra, \approx^{*} proves to be one equivalence relation on S with respect to which S constitutes such an algebra. And, when S constitutes a standard one, i.e. a Boolean algebra with respect to $=, \approx *$ proves to be $=$. Note indeed that: (i) by definition every pair of members of S of the sort $\langle A, A\rangle$ belongs to every equivalence relation \approx on S, and (ii) no other pair belongs to $=$.

3 The relative probability functions of Type I For convenience's sake we call the probability functions that are defined on standard Boolean algebras functions of Type I, those that are defined on arbitrary sets functions of Type II. We study the relative ones of Type I in this section, the next, and Section 7, those of Type II in Sections 5 and 7. And, as noted in Section 1, we consider in each case four families of relative functions: Popper's, Rényi's, Kolmogorov's, and Carnap's.

Specifically, by a relative probability function of Popper's of Type I we understand any binary real-valued function P defined on a standard Boolean algebra S and meeting these five constraints, adaptations of constraints of Popper's in [15]:

B1 For some A and B in $S, P(A, B) \neq 1 \quad$ (Existence)
B2 For any A and B in $S, 0 \leq P(A, B)$
(Nonnegativity)
B3 For any A in $S, P(A, A)=1$
(Normality)
B4 For any A and B in S, if $P(C, B) \neq 1$ for some C in S, then $P(A, B)+P(-A, B)=1$
(Addition)
B5 For any A, B, and C in $S, P(A \cap B, C)=P(A, B \cap C) \times P(B, C)$
$(\text { Multiplication })^{9}$
And by a relative probability function of Rényi's, Kolmogorov's, or Carnap's of Type I we understand any relative probability function of Popper's of that type that meets this extra constraint in Rényi's case:

RB8' For any B in S, if $P(A, B)=1$ for every A in S, then $B=\Lambda$, this one in Kolmogorov's case:

KB8' For any B in S, if $P(B, V)=0$, then $P(A, B)=1$ for every A in S, and this one in Carnap's case:
CB8' For any A in S, if $P(A, V)=0$, then $A=\Lambda$.
Notes: (a) Unlike most writers we left room in Section 2 for degenerate Boolean algebras. However, constraints B1 and B3 compel the set S on which a relative probability function P is defined to have at least two members left-discernible from each other under P-hence, at least two members distinct from each other. Two such members are of course V and Λ; and, because of that, any relative probability function P is sure to have at least two distinct values: 0 and 1.
(b) Of steps in a proof taken by this consequence of $\mathrm{A} 1^{\prime}$

B6 For any A, B, and C in $S, P(A \cap B, C) \leq P(B \cap A, C)$,
or this one
B7 For any A, B, and C in $S, P(A, B \cap C) \leq P(A, C \cap B)$,
we shall say that they are taken by Commutation. B6-B7 are the two extra constraints placed on P when the function is of Type II. Any result obtained by B1B5 and Commutation will thus automatically hold of Popper's relative probability functions of Type II. ${ }^{10}$ Of the few steps taken by other consequences of $\mathrm{A} 1^{\prime}-\mathrm{A} 5^{\prime}$ we shall say that they are taken by $B A$.
(c) Assembled under Lemmas 2 and 3 in the Appendix are various facts about binary real-valued functions that meet constraints B1-B7, hence about the relative probability functions in this section and the next. We shall invoke the two lemmas repeatedly.
(d) RB8', KB8', and CB8' are the characteristic constraints for Rényi's, Kolmogorov's, and Carnap's functions that we used in [12]; the point of them is to be explained shortly. The alternative constraints RB8, KB8, and CB8 that we promised in Section 1 will be introduced in Section 4.
(e) It is common practice to say of a member B of S that it is P-normal if $P(A, B) \neq 1$ for at least one A in S, P-abnormal otherwise; and we shall occasionally say that it is of P_{v}-probability zero if $P(B, \mathrm{~V})=0$. So, according to B 1 , at least one member of S is P-normal, one such member being V by Lemma 2(k); according to $\mathrm{B} 4, P(-A, B)=1-P(A, B)$ if B is P-normal; ${ }^{11}$ according to RB8 $^{\prime}, B=\Lambda$ if B is P-abnormal; according to KB8', B is P-abnormal if of P_{V}-probability zero, and, according to CB8', $A=\Lambda$ if A is of P_{V}-probability zero.

In a way it is to division by zero not being allowed that we owe the diversity of relative probability functions on p. 7. In early texts, e.g. Kolmogorov's 1933 paper [6], absolute probability functions had pride of place, and relative ones were defined in terms of them. Given an absolute probability function P^{\prime} of the sort found in Section 6, Kolmogorov defined a relative one thus: A here an arbitrary member of the set S on which P^{\prime} is defined and B one such that $P^{\prime}(B) \neq 0$:

$$
P(A, B)=P^{\prime}(A \cap B) / P^{\prime}(B)
$$

The relative probability functions that issued deserve study, to be sure, but they are simply absolute probability functions gotten up as relative ones. And they are partial functions, a bother in practice and a shortcoming in theory.

However, Kolmogorov's partial functions can be extended to total ones, and the functions that result are the relative probability functions of p . 7. Suppose first that $P^{\prime}(B)=0$ for only one B. Then that B has to be Λ, P^{\prime} has to be what we called in Section 1 a Carnap function, and because of Lemma 3(a) we have just one choice: setting $P(A, B)$ at 1 . The resulting functions, meeting CB8', are the relative probability functions we name after Carnap (Case 1). Suppose, on the other hand, that $P^{\prime}(B)=0$ for more than one B. Then one has several choices. One may set $P(A, B)$ at 1 for every such B : the resulting functions, meeting KB8', are the relative probability functions we name (for a reason given on p. 10) after Kolmogorov (Case 2). One may also set $P(A, B)$ at 1 for B identical with Λ, but let it vary with A (subject of course to constraints $\mathrm{A} 1^{\prime}-\mathrm{A} 5^{\prime}$ and

B1-B5) for every other B such that $P^{\prime}(B)=0$: the resulting functions, meeting constraint RB8', are the relative probability functions we name after Rényi (Case 3). And, where there are at least three B 's such that $P^{\prime}(B)=0$, one may set $P(A, B)$ at 1 for B identical with Λ and for a second B such that $P^{\prime}(B)=0$, let it vary with A for a third B such that $P^{\prime}(B)=0$, and set it at 1 or let it vary with A for any other B such that $P^{\prime}(B)=0$: the resulting functions are relative probability functions that are neither Kolmogorov functions nor Rényi ones (Case 4). ${ }^{12}$

To us, of most interest among Popper's relative probability functions of Type I are those falling under Cases 3-4. Carnap's absolute probability functions match the functions under Case 1 one-to-one, and the rest of Popper's absolute probability functions match those under Case 2 one-to-one again. But the latter absolute probability functions, i.e. those that are not Carnap ones, do not match the functions under Case 3 or those under Case 4 one-to-one. P^{\prime} above, when not a Carnap function, generates at least $2^{N_{0}}$ functions that fall under Case 3 and an equal number that fall under Case 4. It is owing to this that relative probability theory outstrips absolute probability theory.

The relationships between our various families of relative probability functions are studied in [12] and can be portrayed as in Figure 1, which we borrow

Figure 1.
from [12]. Those among Popper's functions that are neither Kolmogorov nor Rényi functions lie of course outside the two inner circles; Carnap's functions lie, as indicated, at their intersection.

A word concerning our nomenclature is in order. The relative probability functions we name after Popper are his in [15] when S there happens to be a standard Boolean algebra. Those we name after Rényi are extensions of some of his in [16]. For generality's sake, Rényi defined P there on the cartesian product
$S \times S^{\prime}$ of a field of sets S and some subset or other S^{\prime} of $S-\{\Lambda\} .{ }^{13}$ A closer fit with the present Rényi functions can be had by thinking of S in [16] as a standard Boolean algebra rather than a field of sets and thinking of S^{\prime} there as a nonempty subset of S. Rényi's own functions would then be the functions we name after him plus the results of keeping one or more members of S from serving as B in $P(A, B)$. The relative probability functions we name after Carnap are straightforward extensions of his in [4]: we allow Λ to serve as B in $P(A, B) .{ }^{14}$ Consistency is preserved in either case since Λ is P-abnormal. The relative probability functions we name after Kolmogorov are not his. However, with S a standard Boolean algebra rather than a field of sets, they are-we just saw - the only extensions of Kolmogorov's relative probability functions in [6] that match one-to-one his absolute ones. So the appellation is not totally inappropriate. The functions in question will play a fascinating role here.

The constraints that Popper placed in [15] on his functions were, in effect, B1, B3-B5, and these two:
(*) For any A, B, and C in $S, P(A \cap B, C) \leq P(A, C)$
(**) For any A, B, and D in S, if $P(A, C)=P(B, C)$ for every C in S, then $P(D, A)=P(D, B)$.
$(* *)$ is the constraint we referred to on p. 3 as Popper's Constraint. It is the earliest constraint we know of to address itself to questions of (left- and right-) indiscernibility under a relative probability function. Popper shows in [15] that each of his six constraints is independent of the other five. Similarly with us, B1-B5 deliver (*) only with an assist from B6, and they deliver ($* *$) only with an assist from B6-B7. But, unlike Popper who defined his functions on arbitrary sets rather than standard Boolean algebras and who for reasons discussed in [15] and [9] shunned B6-B7 as extra constraints, we have A1', hence Commutation, and hence a proof of $(* *) .{ }^{15}$

Most of the theorems in this paper feature a probability function P and a set $S . S$ is the set on which P is defined. In this section and the next P is presumed of course to be a Popper function of Type I. However, all the theorems in this section and all but two in the next are proved using just B1-B5 and Commutation, and hence hold for functions of Type II as well. The two exceptions in Section 4 will be marked, and the steps taken by BA in each case will stand out.

Theorem 3.1 If $P(A, C)=P(B, C)$ for every C in S, then $P(C, A)=P(C, B)$ for every such C.

Proof: Suppose that $P(A, C)=P(B, C)$ for every C in S, and let C be an arbitrary member of S. Then

$$
\begin{array}{lrr}
\text { 1. } \quad P(C, A) & =P(A, C \cap A) \times P(C, A) & \text { (Lemma 2(c)) } \\
\text { 2. } & =P(B, C \cap A) \times P(C, A) & \text { (1, Hyp. on } P) \\
\text { 3. } & =P(B \cap C, A) & \text { (2, B5) } \\
\text { 4. } & =P(C \cap B, A) & \text { (3, Commutation) } \\
\text { 5. } & =P(C, B \cap A) \times P(B, A) & \text { (4, B5) } \\
\text { 6. } & =P(C, B \cap A) \times P(A, A) & \text { (5, Hyp. on } P) \\
\text { 7. } & =P(C, B \cap A) & \text { (6, B3). } \tag{4,~B5}
\end{array}
$$

7

But

$$
P(C, B)=P(C, A \cap B)
$$

by simply interchanging A and B throughout 1-7. Hence

$$
P(C, A)=P(C, B)
$$

by Commutation.
So, for every relative probability function P of Popper's of Type I, left-indiscernibility under P entails right-indiscernibility under P, and hence is tantamount to indiscernibility tout court under P. Further, members A and B of S thus prove to be indiscernible tout court if $P(A, C)=P(B, C)$ for every C in S and every relative probability function P of Popper's of Type II defined on S. The converse of Theorem 3.1 does not hold true, as we shall establish in Section 4.

We next show that each of $P(A, B)=P(B, A)=1$ and $P(A \cap B, A \cup B)=$ 1 also entails right-indiscernibility under P. The two results will prove handy. The first of them is listed in [15] as an alternative to $(* *)$; proof of it, like proof of (**), uses Commutation. We also show that A is of P_{V}-probability 0 if, and only if, $-A$ is right-indiscernible under P from V .

Theorem 3.2

(a) If $P(A, B)=P(B, A)=1$, then $P(C, A)=P(C, B)$ for every C in S;
(b) If $P(A \cap B, A \cup B)=1$, then $P(C, A)=P(C, B)$ for every C in S;
(c) $P(A, V)=0$, if, and only if, $P(C,-A)=P(C, V)$ for every C in S.

Proof: (a) Suppose that $P(A, B)=P(B, A)=1$, and suppose that A is P abnormal. Then $P(C \cap B, A)=P(B, A)=P(C, A)=1$ by definition, and hence $P(C, B \cap A)=P(C, A)$ by B5. Suppose on the other hand that A is P-normal, in which case $P(-B, A)=0$ by B 4 and the hypothesis on P. Then $P(C \cap-B, A)=0$ by Lemma 2(n), and hence $P(C \cap B, A)=P(C, A)$ by Lemma 2(f). But $P(C \cap B, A)=P(C, B \cap A)$ by B 5 and the hypothesis on P. Hence $P(C, B \cap A)=P(C, A)$ again. But $P(C, A \cap B)=P(C, B)$ by simply interchanging A and B throughout. Hence $P(C, A)=P(C, B)$ by Commutation. (b) Suppose that $P(A \cap B, A \cup B)=1$. Then $P(A, B \cap(A \cup B)) P(B, A \cup B)=1$ by B5, hence $P(A, B \cap(A \cup B))=1$ by Lemma 2(b), and hence $P(A, B)=1$ by Lemma 3(e) and Theorem 3.1. But, if $P(A \cap B, A \cup B)=1$, then $P(B \cap A, A \cup B)=1$ by Commutation. Hence $P(B, A)=1$ by the very same reasoning. Hence by (a) $P(C, A)=P(C, B)$ for every C in S. (c) Suppose first that $P(A, \mathrm{~V})=0$. Then $P(-A, \mathrm{~V})=1$ by B4 and Lemma $2(\mathrm{k})$. But $P(\mathrm{~V},-A)=1$ by Lemma 2(i). So, $P(C,-A)=P(C, \mathrm{~V})$ for every C in S by (a). Suppose next that $P(C,-A)=P(C, \mathrm{~V})$ for every C in S. Then $-A$ is P-normal by Lemma 2(k), hence $P(A,-A)=0$ by B4 and B 3 , and hence $P(A, \mathrm{~V})=0$.

Then we show that if A and B are left-indiscernible (and, hence, indiscernible tout court) under P, (a) so are $-A$ and $-B$, the indiscernibility version of A4, (b) so are $A \cap D$ and $B \cap D$, the indiscernibility version of A5, and hence (c) so are $D \cap A$ and $D \cap B$.

Theorem 3.3

(a) If $P(A, C)=P(B, C)$ for every C in S, then $P(-A, C)=P(-B, C)$ for every such C;
(b) If $P(A, C)=P(B, C)$ for every C in S, then $P(A \cap D, C)=P(B \cap D, C)$ for every C and D in S;
(c) If $P(A, C)=P(B, C)$ for every C in S, then $P(D \cap A, C)=P(D \cap B, C)$ for every C and D in S.

Proof: (a) By B4. (b) Suppose that $P(A, C)=P(B, C)$ for every C in S and let C and D be arbitrary members of S. Then $P(A, D \cap C) \times P(D, C)=$ $P(B, D \cap C) \times P(D, C)$, and hence by B5 $P(A \cap D, C)=P(B \cap D, C)$, this for every C in S. (c) By (b) and Commutation.

The results in Theorem 3.3 readily generalize. As the reader well knows, the unary Boolean function - and the binary one \cap permit definition of every Boolean function on S. Consequently,

$$
P(A, C)=P(B, C) \text { for every } C \text { in } S
$$

entails

$$
\begin{equation*}
P(f(A), C)=P(f(B), C) \text { for every } C \text { in } S \tag{1}
\end{equation*}
$$

no matter the unary Boolean function f on S, and

$$
\begin{align*}
P(f(A, D), C)= & P(f(B, D), C) \text { and } P(f(D, A), C)=P(f(D, B), C) \tag{2}\\
& f o r ~ e v e r y D \text { and every } C \text { in } S,
\end{align*}
$$

no matter the binary Boolean function f on S, etc. Hence, thanks to Popper's Constraint:

Theorem 3.4 Equivalent to

$$
P(A, C)=P(B, C) \text { for every } C \text { in } S
$$

is each of these:
(a) $P(f(A), C)=P(f(B), C)$ and $P(C, f(A))=P(C, f(B))$ for every Boolean function f on S and every C in S, and
(b) $P(f(A), g(A))=P(f(B), g(B))$ for every Boolean function f and every Boolean function g on S.

The two clauses in Theorem 3.4 bring out the full force of
Member A and member B of S are indiscernible under relative probability function P.

And the counterpart in Section 6 of clause (b), to wit:

$$
P(f(A))=P(f(B)) \text { for every Boolean function } f \text { on } S
$$

will point to the appropriate rendition there of

Our last two theorems in this section, though not explicitly dealing with indiscernibility, are lemmas to theorems in Section 4 that do. Theorem 3.5 brings together a number of equivalent formulations of P-abnormality.

Theorem 3.5 Equivalent to

B is P-abnormal

is each of these
(a) $P(A, B)=P(A, \Lambda)$ for every A in S,
(b) $P(B, A)=P(\Lambda, A)$ for every A in S,
(c) $P(-B, A)=P(V, A)$ for every A in S,
(d) $P(-B, A)=1$ for every A in S, and
(e) $P(-B, B)=1$.

Proof: (i) By Lemma 3(a) B is P-abnormal if, and only if, (a). (ii) Suppose that B is P-abnormal, and let A be an arbitrary member of S. Then $P(-B \cap A, B)=$ $P(A, B)=1$ by definition, hence $P(-B, A \cap B)=1$ by B5, hence $P(-B, B \cap A)=1$ by Commutation, hence $P(B, A)=P(-B \cap B, A)$ by B5 again, and hence (b) by the definition of Λ. (iii) (b) entails (c) by Theorem 3.3(a) and the definition of V . (iv) (c) entails (d) by Lemma 2(i). (v) (d) entails (e). (vi) (e) entails that B is P-abnormal by B3-B4.
So, P-abnormality is equivalent to left-indiscernibility under P from Λ and to $r i g h t$-indiscernibility under P from Λ.

Theorem 3.6 If B is P-abnormal, then $P(B, V)=0$.
Proof: Suppose $P(A, B)=1$ for every A in S. Then $P(-B, \mathrm{~V})=1$ by Theorem $3.5(\mathrm{~d})$, and hence $P(B, \mathrm{~V})=0$ by B4 and Lemma 2(k).
So, if B is P-abnormal, then in the idiom of p. $8 B$ is of P_{V}-probability 0 . So, when P is a Kolmogorov function, B is P-abnormal if, and only if, it is of $P_{\mathrm{V}^{-}}$ probability 0 .

4 The relative probability functions of Type I (concluded) We provide in Theorem 4.1 renditions of " A and B are left-indiscernible under P ", and in Theorem 4.2 renditions of " A and B are right-indiscernible under P ", in terms of - . Some of the renditions take after $-(A \dot{\circ})=\mathrm{V}$, others after $A \dot{-}=\Lambda$. Those in Theorem 4.2 may come as a surprise. We also provide in Theorem 4.4 renditions of " A and B or their complements in S are right-indiscernible under P " in terms of - . The renditions in Theorems 4.1-4.2 pave the way for constraints RB8, KB8, and CB8; those in Theorem 4.4 will deliver our last result in Section 6.

Theorem 4.1 Equivalent to

$$
P(A, C)=P(B, C) \text { for every } C \text { in } S
$$

is each of these:
(a) $P(-(A-B), C)=1$ for every C in S,
(b) $P(-(A \dot{\circ}), C)=P(\mathrm{~V}, C)$ for every C in S,
(c) $P(A-B, C)=P(\Lambda, C)$ for every C in S,
(d) $P(C, A-B)=1$ for every C in S, and
(e) $P(C, A-B)=P(C, \Lambda)$ for every C in S.

Proof: (a) Suppose first that $P(A, C)=P(B, C)$ for every C in S, and let C be P-normal. Then $P(A \cap-B, C)=P(B \cap-A, C)=0$ by Theorem 3.3(b) and Lemma 2(h), and hence $P(-(A-B), C)=1$ by Lemma 3(q) and B4. But $P(-(A-B), C)=1$ by definition when C is P-abnormal. So $P(-(A-B), C)=1$ for every C in S. Suppose next that $P(-(A-B), C)=1$ for every C in S, and let C be P-normal. Then $P(A \cap-B, C)=P(B \cap-A, C)=0$ by B4 and Lemma 3(q) again, hence $P(A, C)=P(A \cap B, C)$ and $P(B, C)=P(B \cap A, C)$ by Lemma 2(f), and hence $P(A, C)=P(B, C)$ by Commutation. But $P(A, C)=$ $P(B, C)$ by definition when C is P-abnormal. So $P(A, C)=P(B, C)$ for every C in S. (b) By (a) and Theorem 3.5(c). (c) By (a) and Theorem 3.5(b). (d) By (a) and Theorem 3.5(d). (e) By (a) and Theorem 3.5(a).

Note that in view of rendition (d) A and B are left-indiscernible under P just when $A \subset B$ is P-abnormal.

Theorem 4.2 Equivalent to

$$
P(C, A)=P(C, B) \text { for every } C \text { in } S
$$

is each of these:
(a) $P(-(A-B), A \cup B)=1$,
(b) $P(-(A-B), A \cup B)=P(V, A \cup B)$, and
(c) $P(A-B, A \cup B)=P(\Lambda, A \cup B)$.

Proof: (a) Suppose first that $P(C, A)=P(C, B)$ for every C in S, and let A be P-normal, in which case so is $A \cup B$ by Lemma 3(s). Then $P(A \dot{-}, A \cup B)=$ $P(-B \cap A, A \cup B)+P(-A \cap B, A \cup B)$ by Lemma 3(p) and Commutation, hence $P(A-B, A \cup B)=P(-B, A \cap(A \cup B)) \times P(A, A \cup B)+$ $P(-A, B \cap(A \cup B)) \times P(A, A \cup B)$ by B 5 , and hence $P(A \dot{ }(A, A \cup B)=$ $P(-B, A) \times P(A, A \cup B)+P(-A, B) \times P(B, A \cup B)$ by Lemmas 3(d)-(e) and Theorem 3.1. But $P(-A, B)=P(-B, A)=0$ by Lemma 3(t), the hypothesis on P, and that on A. Hence $P(A \dot{\circ}, A \cup B)=0$, and hence $P(-(A \dot{\circ})$, $A \cup B)=1$ by B4. Let A on the other hand be P-abnormal, in which case so is B by the hypothesis on P. Then $P(-A, C)=P(-B, C)=1$ for every such C by Theorem 3.5(d), hence $A \cup B$ is P-abnormal by Lemma 3(u), and hence $P(-(A-B), A \cup B)=1$ by definition. So $P(-(A \div B), A \cup B)=1$ whether or not A is P-normal. Suppose next that $P(-(A \dot{-}), A \cup B)=1$, and let $A \cup B$ be P-normal. Then $P(A \cap B, A \cup B)+P(-A \cap-B, A \cup B)=1$ by Lemmas $3(\mathrm{~g})$ and 3(r). But $P(-A \cap-B, A \cup B)=0$ by B 4 and the definition of $A \cup B$. So $P(A \cap B, A \cup B)=1$ by B4, and hence $P(C, A)=P(C, B)$ for every C in S by Theorem 3.2(b). Let $A \cup B$ on the other hand be P-abnormal. Then so are A and B by Lemma 3(s), and hence $P(C, A)=P(C, B)$ for every C in S by definition. So $P(C, A)=P(C, B)$ for every C in S whether or not $A \cup B$ is P-normal. (b) By (a) and Lemma 2(i). (c) By (b), B4, and the definition of V .

Note that, $A \cup B$ being a member of S,

$$
\text { If } P(-(A-B), C)=1 \text { for every } C \text { in } S \text {, then } P(-(A-B), A \cup B)=1
$$

is a truth of quantifier logic. But, owing to Theorem 4.1, the antecedent of the conditional is equivalent to

$$
P(A, C)=P(B, C) \text { for every } C \text { in } S
$$

and owing to Theorem 4.2 its consequent is equivalent to

$$
P(C, A)=P(C, B) \text { for every } C \text { in } S
$$

So, as remarked in Section 1, Popper's Constraint is, in the context of B1-B7, a truth of quantifier logic. Its converse, however, is not. So right-indiscernibility under P can entail left-indiscernibility under P for only certain choices of P. We shall identify them shortly.

The following theorem serves as a lemma to Theorems 4.4, 4.6, and 4.7.

Theorem 4.3.

(a) If $P(C, A)=P(C, B)$ for every C in S, then $P(A-B, \mathrm{~V})=0$;
(b) If $P(A, V) \neq 0$, then $P(C, A)=P(C, B)$ for every C in S if, and only if, $P(A-B, V)=0$.

Proof: Suppose that $P(C, A)=P(C, B)$ for every C in S, in which case $P(A, B)=$ $P(B, A)=1$ by B3; and let A first be P-normal. Then $P(-B, A \cap \mathrm{~V})=0$ by B4 and Lemma 2(j), and hence $P(A \cap-B, \mathrm{~V})=0$ by B5 and Commutation. Let A next be P-abnormal. Then $P(A, V)=0$ by Theorem 3.6, and hence $P(A \cap-B, \mathrm{~V})=0$ by Lemma 2(n). So $P(A \cap-B, \mathrm{~V})=0$ whether or not A is P-normal. But $P(B \cap-A, \mathrm{~V})=0$ by merely interchanging A and B throughout. So $P(A-B, \mathrm{~V})=0$ by Lemma 3(q). (b) Suppose that $P(A, \mathrm{~V}) \neq 0$ and $P(A-B, \mathrm{~V})=0 . P((A-B) \cap(A \cup B), \mathrm{V})=0$ by the second hypothesis and Lemma 2(n), and hence $P(A-B, A \cup B) \times P(A \cup B, \mathrm{~V})=0$ by B5 and Lemma 2(j). But $P(A \cup B, \mathrm{~V}) \neq 0$ by the first hypothesis, Lemma 3(o), and B2. So, $P(A \subset B, A \cup B)=0$, so $P(-(A \div B), A \cup B)=1$ by B4, and hence $P(C, A)=$ $P(C, B)$ for every C in S by Theorem 4.2(a). So, (b) by (a).

Now our renditions of " A and B or their complements are right-indiscernible under P ":

Theorem 4.4 Equivalent to

$$
\begin{aligned}
P(C, A) & =P(C, B) \text { for every } C \text { in } S \text { or } \\
P(C,-A) & =P(C,-B) \text { for every such } C
\end{aligned}
$$

is each of these:
(a) $P(A-B, V)=0$, and
(b) $P(C,-(A \dot{\circ}))=P(C, \mathrm{~V})$ for every C in S.

Proof: (a) Suppose first that $P(C, A)=P(C, B)$ for every C in S or $P(C,-A)=$ $P(C,-B)$ for every C in S. If $P(C, A)=P(C, B)$ for every C in S, then $P(A-B, \mathrm{~V})=0$ by Theorem 4.3(a). So, suppose $P(C,-A)=P(C,-B)$ for every C in S. Then $P(-A \dot{-}-B, \mathrm{~V})=0$ by Theorem 4.3(a), and hence $P(A-B, \mathrm{~V})=0$ by Lemma 3(f). Suppose next that $P(A-B, V)=0$. Since either $P(A, \mathrm{~V}) \neq 0$ or $P(-A, \mathrm{~V}) \neq 0$ by B4 and Lemma $2(\mathrm{k})$, either $P(C, A)=P(C, B)$ for every C in S or $P(C,-A)=P(C,-B)$ for every such C by Theorem 4.3(b). (b) By (a) and Theorem 3.2(c).

So, A and B themselves or their complements are right-indiscernible under P just when $A-B$ is of P_{v}-probability 0 .

Theorems 4.1-4.4, proved using just B1-B5 and Commutation, hold whether P is of Type I or of Type II. So does Theorem 4.6 below. In contrast, Theorems 4.5 and 4.7 are the two that hold only of functions of Type I. A reminder of that is the '(I)' attached to the call number of each.

It is when P is a relative probability function of Rényi's that left-indiscernibility (hence, indiscernibility tout court) under P entails identity. Equivalent indeed to

RB8' For any B in S, if $P(A, B)=1$ for every A in S, then $B=\Lambda$, is

RB8 For any A and B in S, if $P(A, C)=P(B, C)$ for every C in S, then $A=B$, the constraint we claimed in Section 1 to be characteristic of Rényi's functions.

Theorem 4.5(I) $\quad P$ meets constraint RB8' if, and only if, it meets constraint RB8.

Proof: Suppose first that P meets RB8', and let $P(A, C)=P(B, C)$ for every C in S. Then $P(C, A-B)=1$ for every such C by Theorem 4.1(d), hence $A-B=\Lambda$ by RB8', and hence $A=B$ by BA. So P meets RB8. Suppose next that P meets RB8, and let $P(A, B)=1$ for every A in S. Then $P(A,-B \dot{ })=1$ for every such A by Lemma 3(h) and Theorem 3.1, hence $P(-B, A)=P(\mathrm{~V}, A)$ for every such A by Theorem 4.1(d), hence $-B=\mathrm{V}$ by RB8, and hence $B=\Lambda$ by BA. So P meets RB8'.

So, Rényi's relative probability functions of Type I are those, and those only, among Popper's functions of that Type that meet constraint RB8. ${ }^{17}$

It is when P is a relative probability function of Kolmogorov's - and, contrary perhaps to expectation, only then - that right-indiscernibility under P entails left-indiscernibility (and, hence, indiscernibility tout court) under P. Equivalent indeed to

KB8' $^{\prime} \quad$ For any B in S, if $P(B, V)=0$, then $P(A, B)=1$ for every A in S, is

KB8 For any A and B in S, if $P(C, A)=P(C, B)$ for every C in S, then $P(A, C)=P(B, C)$ for every such C,
the constraint we claimed in Section 1 to be characteristic of Kolmogorov's functions.

Theorem 4.6 P meets constraint KB8' if, and only if, it meets constraint KB8.
Proof: Suppose first that P meets KB8', and let $P(C, A)=P(C, B)$ for every C in S. Then $P(A-B, V)=0$ by Theorem 4.3(a), hence $P(C, A-B)=1$ for every C in S by KB8', and hence $P(A, C)=P(B, C)$ for every such C by Theorem 4.1(d). So P meets KB8. Suppose next that P meets KB8, and let $P(B, \mathrm{~V})=0$. Then $P(A,-B)=P(A, \mathrm{~V})$ for every A in S by Theorem 3.2(c),
hence $P(-B, A)=1$ for every such A by KB8 and Lemma 2(i), and hence $P(A, B)=1$ for every such A by Theorem 3.5(d). So P meets KB8'.

So, Kolmogorov's relative probability functions of Type I are those, and those only, among Popper's functions of that type that meet constraint KB8.

Since Carnap's relative probability functions of Type I are those among Popper's that are both Kolmogorov and Rényi functions, they meet both constraints KB8 and RB8, and hence meet
CB8 For any A and B in S, if $P(C, A)=P(C, B)$ for every C in S, then $A=B$, the constraint we claimed in Section 1 to be characteristic of Carnap's functions. On the other hand, since identity implies left-indiscernibility and left-indiscernibility implies right-indiscernibility by Theorem 3.1, any function satisfying CB8 meets both KB8 and RB8. So it is when P is a Carnap function that rightindiscernibility under P entails identity. That

CB8' For any A in S, if $P(A, V)=0$, then $A=\Lambda$,
is equivalent to CB8 can also be established directly.
Theorem 4.7(I) $\quad P$ meets constraint CB8' if, and only if, it meets constraint CB8.

Proof: Suppose first that P meets CB8', and let $P(C, A)=P(C, B)$ for every C in S. Then $P(A \dot{-}, \mathrm{V})=0$ by Theorem 4.3(a), hence $A \dot{-}=\Lambda$ by CB8', and hence $A=B$ by BA. So P meets CB8. Suppose next that P meets CB8, and let $P(B, \mathrm{~V})=0$. Then $P(A,-B)=P(A, \mathrm{~V})$ for every A in S by Theorem 3.2(c), hence $-B=\mathrm{V}$ by CB8, and hence $B=\Lambda$ by BA. So P meets CB8'.

So, Carnap's relative probability functions of Type I are those, and those only, among Popper's functions of that type that meet CB8.

In summary, then, it is true of all the relative probability functions of Popper's of Type I that

$$
\text { If } \begin{aligned}
P(A, C) & =P(B, C) \text { for every } C \text { in } S \text {, then } P(C, A) \\
& =P(C, B) \text { for every such } C .
\end{aligned}
$$

And it is true of the Rényi ones, but of them only, that

$$
\text { If } P(A, C)=P(B, C) \text { for every } C \text { in } S \text {, then } A=B
$$

true of the Kolmogorov ones, but of them only, that

$$
\text { If } \begin{aligned}
P(C, A) & =P(C, B) \text { for every } C \text { in } S, \text { then } P(A, C) \\
& =P(B, C) \text { for every such } C,
\end{aligned}
$$

and true of the Carnap ones, but of them only, that

$$
\text { If } P(C, A)=P(C, B) \text { for every } C \text { in } S, \text { then } A=B
$$

We borrow from [12] examples of four relative probability functions of Popper's of Type I that illustrate the foregoing points:

Illustration 1 Let S be this 4-membered set: $\{\Lambda, a,-a, \mathrm{~V}\}$; and let $--a=a$, $-\Lambda=\mathrm{V},-\mathrm{V}=\Lambda, \mathrm{V} \cap a=a, \mathrm{~V} \cap-a=-a, a \cap-a=\Lambda \cap \mathrm{V}=\Lambda \cap a=$
$\Lambda \cap-a=\Lambda$, so that S constitutes a standard Boolean algebra. The following binary function P on S meets CB8 (and, hence, RB8 and KB8 as well):

		B			
$P(A, B)$		Λ	a	$-a$	V
A	Λ	1	0	0	0
	a	1	1	0	$1 / 2$
	$-a$	1	0	1	$1 / 2$
	V	1	1	1	1

Illustration 2 Let S be as in Illustration 1. The following binary function P meets RB8 but violates KB8 (and, hence, CB8 as well):

$P(A, B)$		B			
		Λ	a	$-a$	V
	Λ	1	0	0	0
	a	1	1	0	0
A	$-a$	1	0	1	1
	V	1	1	1	1

Illustration $3 \quad$ Let S be as in Illustration 1. The following binary function P meets KB8 but violates RB8 (and, hence CB8 as well):

		B			
$P(A, B)$		Λ	a	$-a$	V
A	Λ	1	1	0	0
	a	1	1	0	0
	$-a$	1	1	1	1
	V	1	1	1	1

Illustration 4 Let S be the set of subsets of $\{1,2,3\}$, and let - and \cap be settheoretic complementation and intersection, respectively. S is a field of sets and hence a standard Boolean algebra. The following binary function P is a relative probability function of Popper's of Type I but violates RB8 and KB8 (and, hence, CB8 as well):

	$P(A, B)$	B							
		Λ	(1)	\{2\}	\{3\}	\{2,3\}	(1,3)	\{1,2\}	V
A	Λ	1	1	0	0	0	0	0	0
	(1)	1	1	0	0	0	0	0	0
	\{2\}	1	1	1	0	0	0	1	0
	(3)	1	1	0	1	1	1	0	1
	\{2,3\}	,	1	1	1	1	1	1	1
	\{1,3\}	1	1	0	1	1	1	0	1
	\{1,2\}	1	1	1	0	0	0	1	0
	V	1	1	1	1	1	1	1	1

Rényi's relative probability functions want further comment. RB8', the constraint we initially placed on them, required that any P-abnormal member of S
be identical with Λ; hence, that any member of S indiscernible under P from Λ be identical with Λ, and by the same token that any one indiscernible under P from V be identical with V. We just showed RB8' equivalent to RB8, a constraint requiring that any member of S indiscernible under P from a given member of S-be that member Λ, V, or one other than Λ and V -be identical with it. So Rényi's functions do not allow indiscernibles in the sets on which they are defined. By contrast, those among Popper's relative probability functions of Type I that are not Rényi functions do. However, being defined on standard Boolean algebras, they allow indiscernibles in a very systematic way. Indeed, if member A and member B of S are distinct but indiscernible from each other, then $-A$ and $-B$ will not only be indiscernible from each other but distinct as well, and so will $A \cap C$ and $B \cap C$ for many a C in S. We return to this whole matter at the close of Section 5.

5 The relative probability functions of Type II By a relative probability function of Popper's of Type II we understand any binary real-valued function defined on a set closed under - and \cap, and meeting constraints B1-B5 on p. 6 plus these familiar two:

B6 For any A, B, and C in $S, P(A \cap B, C) \leq P(B \cap A, C) \quad$ (Commutation)
B7 For any A, B, and C in $S, P(A, B \cap C) \leq P(A, C \cap B) \quad$ (Commutation)
And by a relative probability function of Rényi's, Kolmogorov's, or Carnap's of Type II we understand any relative probability function of Popper's of that type that meets constraint RB8 in Rényi's case, KB8 in Kolmogorov's, and CB8 in Carnap's.

Notes: (a) Lemmas 2-3 hold of course with P a relative probability function of Popper's of Type II, and are invoked in this section as well.
(b) In the absence of $\mathrm{A} 1^{\prime}$, the indiscernibility versions B6-B7 of A 1 are independent of B1-B5 and of each other. ${ }^{18}$ But, as we shall shortly see, those of A2-A3 follow from B1-B5 together with B6-B7.
(c) In Sections 3-4, where S was presumed to be a standard Boolean algebra, we had Λ and $A \cap-A$, hence V and $A \cup-A$, identical for any A in S. Here we merely have Λ and $A \cap-A$, hence V and $A \cup-A$, indiscernible under P for any such A (see Lemmas 2(h)-(i)).

Since standard Boolean algebras are sets of a certain sort and B6-B7 hold in Section 3 by dint of $A 1^{\prime}$, any relative probability function of Type I is one of Type II. But not vice-versa, a point possibly obscured by Popper and all too often missed by his readers. ${ }^{19}$ Consider, for example, the set $\{a, b, c\}$ such that $-a=c$, $-b=-c=a, a \cap b=b \cap a=a \cap c=c \cap a=a$, and $b \cap c=c \cap b=c$. This binary function

$P(A, B)$		B		
		a	b	c
	a	1	0	0
A	b	1	1	1
	c	1	1	1

constitutes a relative probability function of Popper's of Type II. But $\{a, b, c\}$ violates A 3^{\prime} and hence does not constitute a standard Boolean algebra. Nor, in point of fact, could $\{a, b, c\}$ constitute such a Boolean algebra since it has three members. P, by the way, is a Kolmogorov function that is not a Rényi one.

Theorems 5.1-5.6 and 5.10 concern relative probability functions of Popper's of Type II, a fact which for special reasons we underscore in two cases. A function of Type I being one of Type II, as just noted, the theorems nonetheless hold for all Popper functions. On exactly which sets functions meeting constraints B1B7 can be defined was ascertained - in large part - by Popper in [15]. Theorems $5.1-5.5$, together with constraint B6 and Theorem 3.3, deliver his share of the result. The proofs of Theorems 5.1-5.3 are his in [15].
Theorem 5.1 $\quad P(A \cap(B \cap C),(A \cap B) \cap C)=1$.
Proof:

1. $P(A \cap B,(A \cap B) \cap C)=1$
2. $P(A,(A \cap B) \cap C)=1$
(Lemma 2(c))
3. $P(B,(A \cap B) \cap C)=1$
(1, Lemma 3(b))
4. $P(C,(A \cap B) \cap C)=1$
(1, Lemma 3(b))
5. $P(B \cap C,(A \cap B) \cap C)=1$
(Lemma 2(c))
6. $P(A \cap(B \cap C),(A \cap B) \cap C)=1$

Theorem 5.2 $\quad P((A \cap B) \cap C, A \cap(B \cap C))=1$.
Proof: Similar to that of Theorem 5.1.
Theorem 5.3 $\quad P(D, A \cap(B \cap C))=P(D,(A \cap B) \cap C)$ for every D in S.
Proof: By Theorems 5.1-5.2 and Theorem 3.2(a).
Theorem 5.4 $P(A \cap(B \cap C), D)=P((A \cap B) \cap C, D)$ for every D in S.
Proof:

1. $P((A \cap B) \cap C, D)=P(A \cap B, C \cap D) \times P(C, D)$

2

$$
\begin{equation*}
=P(A, B \cap(C \cap D)) \times P(B, C \cap D) \times P(C, D) \quad(1, \mathrm{~B} 5) \tag{B5}
\end{equation*}
$$

3. $\quad=P(A, B \cap(C \cap D)) \times P(B \cap C, D) \quad(2, \mathrm{~B} 5)$
4. $\quad=P(A,(B \cap C) \cap D) \times P(B \cap C, D) \quad$ (3, Theorem 5.3)
5. $\quad=P(A \cap(B \cap C), D) \quad(4, \mathrm{~B} 5)$.

Theorem 5.5 $\quad P(A \cap-B, D)=P(C \cap-C, D)$ for every D in S if, and only if, $P(A \cap B, D)=P(A, D)$ for every such D.
Proof: By Lemmas 2(f) and 2(h) when D is P-normal, by definition otherwise.
Now for what we call Popper's Theorem. Let P be a relative probability function of Popper's of Type II. Clearly, A is indiscernible under P from $A ; B$ is indiscernible under P from A if A is from B; and A is indiscernible under P from C if A is from B and B is from C. Further, by $\mathrm{B} 6 A \cap B$ is indiscernible under P from $B \cap A$; by Theorem 5.4 $A \cap(B \cap C)$ is indiscernible under P from $(A \cap B) \cap C$; by Theorem 5.5 $A \cap-B$ is indiscernible under P from $C \cap-C$ if, and only if, $A \cap B$ is from A; and by Theorem 3.3-A is indiscernible under P from $-B$, and $A \cap C$ indiscernible under P from $B \cap C$ if A is from B. Finally, as shown in Section 3, at least two members of S are sure because of B1 and B3 to be discernible under P. So:

Theorem 5.6 Let P be a relative probability function of Popper's of Type II, and S be the set on which P is defined. Then:
(a) Indiscernibility under P constitutes an equivalence relation on S;
(b) P meets the indiscernibility versions of A1-A5;
(c) At least two distinct members of S are discernible under P; and hence
(d) S constitutes a nondegenerate Boolean algebra with respect to indiscernibility under P (Popper's Theorem). ${ }^{20}$

That the sets on which Popper defines his relative probability functions constitute nondegenerate Boolean algebras is a remarkable finding. It has a number of corollaries. Note, for instance, that if the identity versions A1'-A5' of A1-A5 deliver a certain identity $A=B$, then their indiscernibility versions are sure to deliver

$$
P(A, C)=P(B, C) \text { for every } C \text { in } S
$$

this by clause (b) of Theorem 5.6. So, owing to Theorem 3.1:
Theorem 5.7 Let P be a binary real-valued function meeting constraints B1B 7 ; let S be the set on which P is defined; and suppose $A=B$ is provable by $\mathrm{A1}^{\prime}-$ A5'. Then

$$
P(A, C)=P(B, C) \text { for every } C \text { in } S
$$

and

$$
P(C, A)=P(C, B) \text { for every } C \text { in } S
$$

are consequences of $\mathrm{B} 1-\mathrm{B} 7$.
Various clauses of Lemma 3 in the Appendix are proved by appeal to this corollary.

Other corollaries of Popper's Theorem are of theoretical significance. Because of it, indiscernibility tout court in the sense of p. 11 is one more equivalence relation with respect to which the sets that Popper's relative probability functions are defined on constitute Boolean algebras. Further, suppose P is a Rényi function, and let A and B be arbitrary members of the set S on which P is defined. Since P meets constraint RB8, A will be identical with B if indiscernible under P from B. So S, a Boolean algebra with respect to indiscernibility under P by Popper's Theorem, is one with respect to identity as well. So:

Theorem 5.8 Rényi's relative probability functions of Type II are identical with those of Type I.
But Carnap's relative probability functions are Rényi ones: meeting constraint CB8, they meet constraint RB8. So:

Theorem 5.9 Carnap's relative probability functions of Type II are identical with those of Type I.

So, at this point, there is just one family of relative probability functions in Rényi's sense, and just one in Carnap's sense. But, as reported in Section 1, each family can be characterized in two different ways. In both characterizations one must require of the functions that they meet constraints B1-B5 plus whichever of constraints RB8 and CB8 is appropriate. This done, however, one may either
require as in Section 3 that the sets on which the functions are defined be standard Boolean algebras or require as in this section that the functions themselves meet the extra constraints B6-B7. Those extra constraints, remarkably, compel the sets on which the functions are defined to be standard Boolean algebras.

Here as in Sections 3-4 those among Popper's relative probability functions that are not Rényi ones allow indiscernibles, but they are less systematic about it than on pp. 18-19. For example, look back at the function displayed on pp. 18-19. Members b and c of the set $\{a, b, c\}$ on which the function is defined are indiscernible but distinct of course from each other; their complements, on the other hand, are the same. Our present concern, however, is a related but different one, i.e. noting that, where P is a Popper function that is not a Rényi one and S the set on which P is defined, one can sort the indiscernibles that P allows into equivalence sets, each set consisting of all the members of S indiscernible under P from a given one, and turn P into a relative probability function on the set consisting of those equivalence sets. That set is of course a standard Boolean algebra, and the function into which P is turned proves of course to be a Rényi one.

More formally, let P and S be as described. S is sure by Popper's Theorem to be a Boolean algebra with respect to indiscernibility under P. So let $[S]$ be what we called in Section 2 the reduction of S with respect to that equivalence relation, ${ }^{21}$ and let $[P]$ be the following binary function on [S], to be known as the reduction of P to $[S]$:

$$
[P]([A],[B])=P(A, B),
$$

where A is an arbitrary member of $[A]$ and B an arbitrary one of $[B]$. (Since for any A^{\prime} in $[A]$ and any B^{\prime} in $[B], P\left(A^{\prime}, C\right)=P(A, C)$ and $P\left(C, B^{\prime}\right)=$ $P(C, B)$ for every C in S, the choice of A and B is immaterial.) Clearly, $[P]$ is real-valued just as P is and meets constraints B1-B7 just as P does. But, importantly here, $[P]$ also meets constraint RB8. For suppose that

$$
[P]([A],[C])=[P]([B],[C]) \text { for every }[C] \text { in }[S]
$$

Then, by definition,

$$
P(A, C)=P(B, C) \text { for every } C \text { in } S
$$

and hence, as noted on p. 6,

$$
[A]=[B] .
$$

So:
Theorem 5.10 Let P be a relative probability function of Popper's of Type II that is not a Rényi one; let S be the set on which P is defined; and let $[S]$ be the reduction of S with respect to indiscernibility under P. Then the reduction $[P]$ of P to $[S]$ constitutes a Rényi function on $[S]$.

We established in Section 4 that the converse

$$
\begin{aligned}
\text { If } P(C, A) & =P(C, B) \text { for every } C \text { in } S, \\
\text { then } P(A, C) & =P(B, C) \text { for every such } C
\end{aligned}
$$

of Popper's Constraint is characteristic of Kolmogorov's relative probability functions and hence does not hold true of other relative probability functions.

A case in point is the Rényi function P on p. 18, Illustration 2: $P(C,-a)=$ $P(C, \mathrm{~V})$ for every C there, but $P(-a, a) \neq P(\mathrm{~V}, a)$. However,
$P(C, A)=P(C, B)$ for every relative probability function P
of Popper's of Type II defined on S and every C in S
entails

$$
P(A, C)=P(B, C) \text { for every such } P \text { and every such } C,
$$

as we go on to show. So members A and B of S prove to be indiscernible tout court if right-indiscernible as well as if left-indiscernible under every relative probability function of Popper's of Type II defined on $S .{ }^{22}$

Theorem $5.11 \quad P(C, A)=P(C, B)$ for every relative probability function P of Popper's of Type II defined on S and every C in S if, and only if, $P(A, C)=$ $P(B, C)$ for every such P and every such S.

Proof: Suppose P is a relative probability function of Popper's of Type II defined on S and C is a member of S such that $P(A, C) \neq P(B, C)$. Then by B6 either $P(A \cap B, C) \neq P(A, C)$ or $P(B \cap A, C) \neq P(B, C)$. So suppose first that $P(A \cap B, C) \neq P(A, C)$, in which case $P(A, C) \neq 0$ by Lemma 2(n); and let P_{C} be this function gotten from P by conditionalizing on C :

$$
P_{C}(D, E)=P(D, E \cap C)
$$

P_{C} meets B 2 by B2, B3 by Lemma 2(c), B5 by B5 and Theorem 5.3, B6 by B6, and B 7 by Theorem 5.7. As for B 1 , since $P(A, C) \neq P(B, C), P(A, C) \neq 1$ or $P(B, C) \neq 1$ or both, hence $P(A, C \cap C) \neq 1$ or $P(B, C \cap C) \neq 1$ or both by Theorem 5.7, and hence $P_{C}(A, C) \neq 1$ or $P_{C}(B, C) \neq 1$ or both. And as for B4, suppose E is P_{C}-normal. Then $E \cap C$ is P-normal by definition, hence $P(-D, E \cap C)=1-P(D, E \cap C)$ by B4, and hence $P_{C}(-D, E)=1-P_{C}(D, E)$. So P_{C} constitutes a relative probability function of Popper's of Type II, and hence in particular $P_{C}(B, B)=1$ by B3. But $P_{C}(B, A)=P(B \cap A, C) / P(A, C)$ by B5 and $P(A, C) \neq 0$, hence $P_{C}(B, A)=P(A \cap B, C) / P(A, C)$ by B6, and hence $P_{C}(B, A) \neq 1$ by the hypothesis on $P(A \cap B, C)$. So $P_{C}(B, A) \neq P_{C}(B, B)$. Suppose next that $P(B \cap A, C) \neq P(B, C)$. Then $P_{C}(A, B) \neq P_{C}(A, A)$ by interchanging A and B throughout. So there exists a relative probability function P of Popper's of Type II defined on S and a member C of S such that $P(C, A) \neq P(C, B)$. So Theorem 5.11 by Theorem 3.1.

We put this result to use in Section 7.

6 Absolute probability functions By an absolute probability function of Popper's of Type I we understand any unary real-valued function P defined on a standard Boolean algebra S and meeting these three constraints, adaptations of constraints of Popper's in [14]:

C1 For any A in $S, 0 \leq P(A)$
(Nonnegativity)
C2 For any A in $S, P(A \cup-A)=1$
(Normality)
C3 For any A and B in $S, P(A)=P(A \cap B)+P(A \cap-B)$

And by an absolute probability function of Carnap's of Type I we understand any absolute probability function of Popper's of that type that meets this extra constraint:

CC7' For any A in S, if $P(A)=0$, then $A=\Lambda$.
Notes: (a) Assembled under Lemmas 4-5 in the Appendix are various facts about unary real-valued functions that meet constraints $\mathrm{C} 1-\mathrm{C} 3$ above and $\mathrm{C} 4-$ C6 on p. 26. The latter are the extra constraints placed on P when the function is of Type II. They trivially follow from A1'-A5'. So the various clauses of Lemmas 4 and 5 hold of all absolute probability functions. In accord with our practice in Sections 4-5 we say of the last step in the proof of Theorem 6.1 that it is taken by Commutation; and of the one step in this section taken by a consequence of $\mathrm{A} 1^{\prime}-\mathrm{A} 5^{\prime}$ other then $\mathrm{C} 1-\mathrm{C} 6$, we shall say that it is taken by $B A$.
(b) CC7' is the characteristic constraint for Carnap's absolute probability functions that we used in [12]. The alternative constraint CC7 that we promised in Section 1 will be introduced on p. 25.
(c) According to Lemma 4(e)

$$
P(A \cap-A)=0
$$

So P has at least two distinct values. So S is a nondegenerate Boolean algebra.
The condition

$$
P(A, C)=P(B, C) \text { for every } C \text { in } S,
$$

which we have used to say that members A and B of S are indiscernible under the relative probability function P, proved equivalent in Section 3 to

$$
P(f(A), g(A))=P(f(B), g(B))
$$

for every Boolean function f and every Boolean function g on S.
Wanted here is a condition which would prove equivalent to

$$
P(f(A))=P(f(B)) \text { for every Boolean function } f \text { on } S \text {, }
$$

and which, as a result, we could use to say that members A and B of S are indiscernible under the absolute probability function P.

This condition:

$$
P(A)=P(B)
$$

would clearly not do. For suppose $P(A)$ equaled $1 / 2$, and let B be $-A$. Then by Lemma 4(i) $P(A)$ would equal $P(B)$. But by Lemma 4(d) $P(A \cap A)$ would equal $P(A)$ and hence $1 / 2$, while by Lemma 4(e) $P(B \cap A)$ (i.e., $P(-A \cap A)$) would equal 0 . So there would be a C in S (i.e., A itself) such that $P(A)=P(B)$ but $P(A \cap C) \neq P(B \cap C) .{ }^{24}$ However,

$$
P(A)=P(B) \text { and } P(A)=P(A \cap B)
$$

in short,

$$
P(A)=P(B)=P(A \cap B)
$$

would do, as we next show; and, along of course with $P(A)=P(B)=P(B \cap A)$, it is the simplest condition that would.

Theorems 6.1-6.3, though concerned with functions of Type I, are proved using just constraints C1-C6. So they hold of functions of Type II as well. Not so, however, Theorem 6.4.

Theorem 6.1

(a) If $P(A)=P(B)=P(A \cap B)$, then $P(-A)=P(-B)$;
(b) If $P(A)=P(B)=P(A \cap B)$, then $P(A \cap C)=P(B \cap C)$ for every C in S;
(c) If $P(A)=P(B)=P(A \cap B)$, then $P(C \cap A)=P(C \cap B)$ for every such C.

Proof: (a) By Lemma 4(i). (b) Suppose $P(A)=P(B)=P(A \cap B)$, and let C be an arbitrary member of S. Then $P(A \cap-B)=P(-A \cap B)=0$ by $C 3$ and Lemma 4(a); hence $P((A \cap C) \cap-B)=P(-A \cap(B \cap C))=0$ by Lemmas $4(\mathrm{~g})$ and 4(j) in one case and Lemmas 4(f) and 4(b) in the other; hence $P(A \cap C)=$ $P(A \cap(C \cap B))$ by C 3 and Lemma $4(\mathrm{j})$, and $P(B \cap C)=P(A \cap(C \cap B))$ by Lemmas 4(a) and 4(k); and hence $P(A \cap C)=P(B \cap C)$. (c) By (b) and Commutation.

As Theorem 3.3 generalized to Theorem 3.4, so does the foregoing theorem generalize to this (given again that - and \cap permit definition of every Boolean function on S):

Theorem 6.2 $P(A)=P(B)=P(A \cap B)$ if, and only if, $P(f(A))=P(f(B))$ for every Boolean function f on S.

Left- and right-indiscernibility under a relative probability function can be phrased in terms of symmetric difference, as we showed in Section 4. So can indiscernibility under an absolute one, our next theorem shows. Four phrasings are provided there. The first of them will deliver CC7, our new characteristic constraint for Carnap's functions. The last two are as close as one can get in probability theory to the two identities $A-B=\Lambda$ and $-(A-B)=\mathrm{V}$ in Section 1 .

Theorem 6.3 Equivalent to

$$
P(A)=P(B)=P(A \cap B)
$$

is each of these:
(a) $P(A-B)=0$,
(b) $P(-(A \dot{-}))=1$,
(c) $P(A-B)=P(\Lambda)$, and
(d) $P(-(A-B))=P(\mathrm{~V})$.

Proof: (a) By C3 and Lemma 4(a) $P(A)=P(B)=P(A \cap B)$ if, and only if, $P(A \cap-B)=P(B \cap-A)=0$; and hence by Lemma $5(\mathrm{c})$ if, and only if, $P(A \dot{\circ})=0$. (b) By (a) and Lemma 4(i). (c) By (a) and Lemma 4(e). (d) By (b) and C2.

It is when P is an absolute probability function of Carnap's that indiscernibility under P entails identity. Equivalent indeed to

CC7' For any A in S, if $P(A)=0$, then $A=\Lambda$,

CC7 For any A and B in S, if $P(A)=P(B)=P(A \cap B)$, then $A=B$,
the constraint we claimed in Section 1 to be characteristic of Carnap's functions. The theorem to that effect holds only for Popper functions of Type I. A reminder of that is the '(I)' we attach to the call number of the theorem.

Theorem 6.4(I) $\quad P$ meets constraint $C C 7^{\prime}$ if, and only if, it meets constraint CC7.

Proof: Suppose first that P meets CC7', and let $P(A)=P(B)=P(A \cap B)$, in which case $P(B)=P(B \cap A)$ by Commutation. Then $P(A-B)=0$ by Theorem 6.3(a), hence $A \dot{-}=\Lambda$ by CC7', and hence $A=B$ by BA. So P meets CC7. Suppose next that P meets CC7, and let $P(A)=0$. Then $P(A)=P(\Lambda)$ by Lemma 4(e), $P(A)=P(A \cap \Lambda)$ by Lemma 4(f), and hence $A=\Lambda$ by CC7. So P meets CC7'.
So, Carnap's absolute probability functions of Type I are those, and those only, among Popper's functions of that type that meet constraint CC7.

The following illustration yields $2^{\aleph_{0}}$ distinct absolute probability functions of Popper's of Type I, one for each choice of a nonnegative real not exceeding 1 as $r .2^{\aleph_{0}}$ of the functions will be Carnap ones, those gotten by choosing r larger than 0 . Each member of the set ($\Lambda, a,-a, \mathrm{~V}$) on which the functions are defined will then be discernible from the other three.

Illustration 5 Let S be the set $\{\Lambda, a,-a, \mathrm{~V}\}$ as in Illustration 1.

A	$P(A)$
Λ	0
a	r
$-a$	$1-r$
V	1

So much, however, for the functions of Type I. By an absolute probability function of Popper's of Type II we understand any unary real-valued function defined on a set closed under - and \cap, and meeting constraints C1-C3 on p. 23 plus these three, due to Popper in [14]:

C4 For any A and B in $S, P(A \cap B) \leq P(B \cap A) \quad$ (Commutation)
C5 For any A, B, and C in $S, P(A \cap(B \cap C)) \leq P((A \cap B) \cap C)$ (Association)
C6 For any A in $S, P(A) \leq P(A \cap A)$
(Idempotence)
And by an absolute probability function of Carnap's of Type II we understand any absolute probability function of Popper's of Type II that meets constraint CC7.

Notes: (a) Versions of C5 and C6 with ' $=$ ' in place of ' \leq ' can be gotten from C1-C6, as shown under Lemma 4 in the Appendix. We list the Idempotence constraint last because $A \cap A \approx A$ is a consequence of A3. All three of C4-C6, by the way, are independent of $\mathrm{C} 1-\mathrm{C} 3$ and of each other.
(b) When as on p. $23 S$ was a standard Boolean algebra we had Λ and $A \cap-A$, hence V and $A \cup-A$, identical for any A in S. Here we merely have them indiscernible under P for any such A (Lemma 4(e) and C3).

Since standard Boolean algebras are sets of a certain sort and C4-C6 hold by dint of $\mathrm{A} 1^{\prime}-\mathrm{A} 3^{\prime}$, any absolute probability function of Type I is one of Type II but not vice-versa. The unary function P gotten from the binary one on p. 19 by setting $P(A)$ at either $P(A, b)$ or $P(A, c)$ is an absolute probability function of Popper's of Type II that is not one of Type I:

A	$P(A)$
a	0
b	1
c	1

It is, by the way, one of those among Popper's functions that are not Carnap functions.

Borrowing from [10], we prove the analogue for absolute probability functions of Type II of Popper's Theorem for relative ones of that type.
Theorem 6.5 Let P be an absolute probability function of Popper's of Type II, and let S be the set on which P is defined. Then:
(a) Indiscernibility under P constitutes an equivalence relation on S;
(b) P meets the indiscernibility versions of A1-A5;
(c) At least two members of S are discernible under P; and hence
(d) S constitutes a nondegenerate Boolean algebra with respect to indiscernibility under P.

Proof: (a) By Lemma 4(d), C4, and Lemma 5(d), respectively,

$$
\begin{gathered}
P(A)=P(A)=P(A \cap A) \\
\text { If } P(A)=P(B)=P(A \cap B), \text { then } P(B)=P(A)=P(B \cap A)
\end{gathered}
$$

and

$$
\begin{gathered}
\text { If } P(A)=P(B)=P(A \cap B) \text { and } P(B)=P(C)=P(B \cap C), \\
\text { then } P(A)=P(C)=P(A \cap C)
\end{gathered}
$$

So indiscernibility under P is reflexive, symmetrical, and transitive. (b) By C4 and Lemma 5(l) $A \cap B$ is indiscernible under P from $B \cap A$ (Constraint A1). By Lemmas 4(b) and 5(r) $A \cap(B \cap C)$ is indiscernible under P from $(A \cap B) \cap C$ (Constraint A2). By C3 and Lemma 4(e) $P(A \cap-B)=P(C \cap-C)$ if, and only if, $P(A \cap B)=P(A)$; hence, by Lemmas 4(e)-(f) and 5(i) $P(A \cap-B)=$ $P(C \cap-C)=P((A \cap-B) \cap(C \cap-C))$ if, and only if, $P(A \cap B)=P(A)=$ $P((A \cap B) \cap A)$; and, hence, $A \cap-B$ is indiscernible under P from $C \cap-C$ if, and only if, $A \cap B$ is from A (Constraint A3). Next, suppose that $P(A)=$ $P(B)=P(A \cap B)$. Then $P(-A)=P(-B)$ by Theorem 6.1(a). But, since $P(B)=P(A \cap B)$ by the hypothesis, $P(-A \cap B)=0$ by Lemma 4(a), and hence $P(-A)=P(-A \cap-B)$ by C3. Hence $-A$ is indiscernible under P from $-B$ if A is from B (Constraint A4). Lastly, suppose that $P(A)=P(B)=P(A \cap B)$. Then $P(A \cap C)=P(B \cap C)$ by Theorem 6.1(b). But $P((A \cap C) \cap B)=$ $P(((A \cap C) \cap B) \cap C)$ by C3 and Lemma 5(s); and, since $P(A \cap-B)=0$ by C 3 and the hypothesis, $P((A \cap C) \cap-B)=0$ by Lemmas $4(\mathrm{~g})$ and $4(\mathrm{j})$. So $P(A \cap C)=P(((A \cap C) \cap B) \cap C)$ by C3 again, and hence $P(A \cap C)=$ $P((A \cap C) \cap(B \cap C))$ by Lemma 4(b). Hence $A \cap C$ is indiscernible under P from $B \cap C$ if A is from B (Constraint A5). (c) By C3 and Lemma 4(e).

So the sets on which Popper defines his absolute probability functions, like those on which he defines his relative ones, constitute nondegenerate Boolean algebras.

Theorem 6.5 has an important corollary. Suppose indeed P is a Carnap function, and let A and B be arbitrary members of the set S on which P is defined. Since P meets constraint CC7, A will be identical with B if indiscernible under P from B. So S, a Boolean algebra with respect to indiscernibility under P by Theorem 6.5, is one with respect to identity as well. So:

Theorem 6.6 Carnap's absolute probability functions of Type II are identical with those of Type I.

So, at this point, there is just one family of absolute probability functions in Carnap's sense. But, as indicated in Section 1, that family can be characterized in two different ways. In both characterizations one must require of the functions that they meet constraints C1-C3 plus constraint CC7. This done, however, one may either require that the sets on which the functions are defined be standard Boolean algebras or require that the functions themselves meet the extra constraints C4-C6. Those extra constraints, interestingly, compel the sets on which the functions are defined to be standard Boolean algebras.

Popper's absolute probability functions that are not Carnap ones allow indiscernibles, those of Type I allowing them in the systematic manner of pp. 18-19 and those of Type II in the less systematic one of p. 22. But, given any such function P that is not a Carnap one, the indiscernibles P allows can of course be gathered into equivalence sets and P made into a Carnap function on the standard Boolean algebra consisting of those sets. Instructions are as on p. 22: S being the Boolean algebra on which by clause (d) in Theorem 6.5 P is defined, and [S] being the reduction of S with respect to the equivalence relation in clause (a) of that theorem, let $[P]$ be this reduction of P to $[S]$:

$$
[P]([A])=P(A)
$$

[P] is easily verified to meet constraints C1-C6 and, importantly, constraint CC7 as well. So:

Theorem 6.7 Let P be an absolute probability function of Popper's of Type II that is not a Carnap one; let S be the set on which P is defined; and let $[S]$ be the reduction of S with respect to indiscernibility under P. Then the reduction $[P]$ of P to $[S]$ constitutes a Carnap function on $[S]$.

In view of Theorems 5.10 and 6.7 Carnap's absolute probability functions are to the absolute ones of Popper's in [14] what Rényi's relative probability functions are to the relative ones of Popper's in [15]. The foregoing also suggests a way of reducing those among Rényi's relative probability functions that are not Carnap functions to Carnap ones. Rényi functions, to be sure, do not allow indiscernibles under themselves; but, when not Carnap functions, they allow indiscernibles under their so-called restrictions to V. Indeed any Popper relative probability function that is not a Carnap one allows indiscernibles in this sense. Formally, let P be a relative probability function of Popper's; let S be the standard Boolean algebra on which it is defined; and let the restriction of P to V be
the following function, shown in [12] to be an absolute probability function of Popper's:

$$
P_{\mathrm{V}}(A)=P(A, \mathrm{~V})
$$

We shall then say that members A and B of S are indiscernible under P_{V} if

$$
P_{\mathrm{V}}(A)=P_{\mathrm{V}}(B)=P_{\mathrm{V}}(A \cap B)
$$

Owing to Theorem 6.5(a), indiscernibility under P_{V} constitutes an equivalence relation on S. And, due to Theorem 6.3,

$$
P_{\mathrm{V}}(A)=P_{\mathrm{V}}(B)=P_{\mathrm{V}}(A \cap B)
$$

is equivalent to

$$
P_{\mathrm{V}}(A-B)=0
$$

hence equivalent to

$$
P(A \div B, \mathrm{~V})=0
$$

and hence equivalent by Theorem 4.4 to

$$
\begin{aligned}
P(C, A) & =P(C, B) \text { for every } C \text { in } S \text { or } \\
P(C,-A) & =P(C,-B) \text { for every such } C .
\end{aligned}
$$

So A and B are indiscernible under P_{V} if, and only if, they themselves are right-indiscernible under P or their complements are.

Let [S] then be the reduction of S with respect to that equivalence relation ${ }^{25}$; and let $[P]$ be the following function on $[S]:$

$$
[P]([A],[B])= \begin{cases}P(A, B) & \text { if } P_{\mathrm{V}}(B) \neq 0 \\ 1 & \text { otherwise }\end{cases}
$$

Members of the same equivalence set are not necessarily indiscernible under P. Nevertheless, by Theorem 4.3(b) and Lemma 3(v), $P\left(A^{\prime}, B^{\prime}\right)=P(A, B)$ for any A^{\prime} in $[A]$ and B^{\prime} in $[B]$, when $P_{\mathrm{V}}(B) \neq 0$. So the definition of $[P]$ is sound. But $[P$] readily proves to meet constraints $\mathrm{B} 1-\mathrm{B} 7$ plus constraints CB8. Hence $[P]$ constitutes a relative probability function of Carnap's.

So, when a relative probability function P of Popper's is not a Carnap one, the indiscernibles under P_{V} that P allows can be gathered into equivalence sets and P made into a Carnap function on the standard Boolean algebra consisting of those sets. This reduction can be thought of as achieved in two steps. First, a Rényi function P^{\prime} is obtained by reduction with respect to indiscernibility under P, and then a Carnap function by reduction with respect to indiscernibility un$\operatorname{der} P_{\mathrm{V}}^{\prime}{ }^{26}$

A last, and possibly unexpected, result is in store. Heeding the precedent of the first paragraph of this paper, we could declare members A and B of a set S indiscernible tout court if A and B are indiscernible under every absolute probability function P of Popper's of Type II defined on S, i.e. if $P(A)=P(B)=$ $P(A \cap B)$ for every such P. But, even though

$$
P(A)=P(B)
$$

and

$$
P(A)=P(B)=P(A \cap B)
$$

are not equivalent, we have this:
Theorem 6.8 $\quad P(A)=P(B)=P(A \cap B)$ for every absolute probability function P of Popper's of Type II defined on S if, and only if, $P(A)=P(B)$ for every such P.

Proof: Suppose P is an absolute probability function of Popper's of Type II defined on S such that $P(A)=P(B)$ but $P(A) \neq P(A \cap B)$. Then by Lemma 4(c) $P(A \cap B)<P(A)$ and hence by C1 $P(A) \neq 0$. Now consider this function, known as the restriction of P to A :

$$
P_{A}(C)=P(C \cap A) / P(A)
$$

P_{A} constitutes an absolute probability function of Popper's of Type II since it meets (i) C1 by C1, (ii) C2 by C2, and Lemmas 4(i), 4(f), and 4(a), (iii) C3 by Lemmas 4(a)-(b) and 4(j), and (iv) C4-C6 by Theorem 6.5(a), C4, and Lemmas 4(b) and 4(d). But $P_{A}(A)=1$ by Lemma 4(d), while $P_{A}(B)<1$ by Commutation. So there exists an absolute probability function P of Popper's of Type II such that $P(A) \neq P(B)$.

So we may declare A and B indiscernible tout court if, more simply, $P(A)=$ $P(B)$ for every absolute probability function of Popper's of Type II defined on S. It follows from Theorems 6.5 and 6.8 that indiscernibility tout court in the present sense is another equivalence relation with respect to which the sets that Popper's absolute probability functions are defined on constitute Boolean algebras. And it will follow from Theorem 7.6 that indiscernibility tout court in the present sense and indiscernibility tout court in the sense of p. 11 are the same.

7 Rounding off Popper's probability theory According to Popper's Theorem any set (closed under - and \cap) on which a function meeting constraints B1-B7 can be defined constitutes a nondegenerate Boolean algebra with respect to indiscernibility, and hence a nondegenerate Boolean algebra tout court. The converse of the theorem is also true, as we proceed to show. We use to that effect what algebraists call ultra-filters, and we appeal to results about ultra-filters, proofs of which are in Sikorski [20], Chapter 1, §3 and §6.

Let S be a nondegenerate Boolean algebra with respect to some equivalence relation or other \approx. By a filter on S with respect to \approx we understand any subset S^{\prime} of S that meets these two constraints:
(i) For any A and B in $S, A \cap B$ belongs to S^{\prime} if, and only if, A and B both do;
(ii) For any A and B in S, if $A \approx B$, then A belongs to S^{\prime} if, and only if, B does.

And by an ultra-filter on S with respect to \approx we understand any filter on S with respect to \approx that meets this extra constraint:
(iii) For any A in S, exactly one of A and $-A$ belongs to S^{\prime}.

Theorem 7.1 Let S be a nondegenerate Boolean algebra with respect to \approx; let S^{\prime} be an ultrafilter on S with respect to \approx; and let P be this function on S :

$$
P(A, B)=\left\{\begin{array}{l}
0 \text { if } B \text { belongs to } S^{\prime} \text { but } A \text { does not } \\
1 \text { otherwise } .
\end{array}\right.
$$

Then P meets constraints B1-B7.
Proof: P obviously meets constraints B 2 and B 3 . As for $\mathrm{B} 1, A \cap-A$ cannot belong to S^{\prime} since by (i) both A and $-A$ would then belong to S^{\prime}, contrary to (iii); by the same token $-A \cap--A$ cannot belong to S^{\prime}, and hence $A \cup-A$ must by (iii). So $P(A \cup-A, A \cap-A)=0$ by the definition of P, and hence P meets B1. As for B4, suppose $P(C, B) \neq 1$ for some C in S. Then $P(C, B)=0$ by the definition of P, and hence B belongs to S^{\prime} by that definition. But by (iii) exactly one of A and $-A$ belongs to S^{\prime}. So either $P(A, B)=0$ and $P(-A, B)=$ 1 or $P(A, B)=1$ and $P(-A, B)=0$ by the definition of P, hence $P(-A, B)=$ $1-P(A, B)$, and hence P meets B4. The proof that P meets B5 is by cases; it hinges on the fact that by (i) $A \cap B$ belongs to S^{\prime} if, and only if, both A and B do, and $B \cap C$ does if, and only if, both B and C do. Finally, $(A \cap B) \approx$ ($B \cap A$) by A1; hence by (ii) $A \cap B$ belongs to S^{\prime} if, and only if, $B \cap A$ does; and hence $P(A \cap B, C)=P(B \cap A, C)$ by the definition of P. But $P(A, B \cap C)=$ $P(A, C \cap B)$ by the very same reasoning. So P meets B 6 and B 7 as well. ${ }^{27}$

According to the theorems in [20], any nondegenerate Boolean algebra S has at least one proper subset that constitutes a filter on S and can be extended to an ultra-filter on S. So, given Theorem 7.1:

Theorem 7.2 Binary real-valued functions meeting constraints B1-B7 are definable on all, and only, those sets that constitute nondegenerate Boolean algebras. ${ }^{28}$

To attend to the absolute case too, let S and S^{\prime} be as before, and let P^{\prime} be the V -restriction of P. Then, by virtue again of a result in [12], P^{\prime} meets constraints C1-C6. So:

Theorem 7.3 Unary real-valued functions meeting constraints C1-C6 are definable on all, and only, those sets that constitute nondegenerate Boolean algebras. ${ }^{29}$

It follows from Theorems 5.8-5.9 and 6.6 that (i) binary real-valued functions meeting B1-B7 and either of RB8 and CB8, and (ii) unary ones meeting C1C6 and CC7, are definable only on sets constituting nondegenerate standard Boolean algebras. Whether functions of that sort are definable on all sets of that sort is an open question as of this writing. We suspect that the answer to it is in the affirmative.

Rényi's and Carnap's relative probability functions of Type II and Carnap's absolute ones of that type proved in Sections 5 and 6 to be of Type I after all, hence old acquaintances. As mentioned in Section 1, however, there are probability functions that are closely related to Rényi's and Carnap's but are defined
on Boolean algebras generally rather than just standard ones. To arrive at them, we recast the account in Section 5 of the relative probability functions of Type II and that in Section 6 of the absolute ones. The new account exploits Theorems 7.2 and 7.3, according to which probability functions of Type II are definable on every nondegenerate Boolean algebra; the theorems allow us to give S top billing. It also exploits \approx^{*}, the least equivalence relation on S with respect to which S constitutes a nondegenerate Boolean algebra.

Let S be a nondegenerate Boolean algebra, and let $\approx *$ be the least equivalence relation on S with respect to which S constitutes such an algebra.

A Let P be a binary real-valued function on S. Then P constitutes
(i) a relative probability function of Popper's of Type II if it meets constraints B1-B7, and
(ii) a relative probability function of Rényi's, Kolmogorov's, or Carnap's of Type II if it constitutes a Popper one and also meets this constraint in Rényi's case:

RB8* For any A and B in S, if $P(A, C)=P(B, C)$ for every C in S, then $A \approx{ }^{*} B$,
constraint KB8 in Kolmogorov's, and this constraint in Carnap's:
CB8* For any A and B in S, if $P(C, A)=P(C, B)$ for every C in S, then $A \approx{ }^{*} B$.

B Let P be a unary real-valued function on S. Then P constitutes
(i) an absolute probability function of Popper's of Type II if it meets constraints C1-C6, and
(ii) an absolute probability function of Carnap's of Type II if it constitutes a Popper one and also meets this constraint:

CC7* For any A and B in S, if $P(A)=P(B)=P(A \cap B)$, then $A \approx{ }^{*} B$.
Equivalent of course to constraints RB8*, CB8*, and CB7* are the results RB8'*, CB8'*, and CC7'* of replacing ' $=$ ' everywhere in RB8', CB8', and CC7' by ' \approx *': the counterparts of Theorems 4.5(I), 4.7(I), and 6.4(I) guarantee that.

As before, the relative and the absolute probability functions of Type I are simply those of Type II that are defined on a standard Boolean algebra S : in that case (i) constraints B6-B7 and C4-C6 may be dropped, (ii) constraint B1 may be dropped when P is a Rényi function or a Carnap one (for the reason given in Note 17), and (iii) \approx^{*} being $=$, RB8*, CB8*, and CC7* are the same as RB8, CB8, and CC7, respectively. As for the probability functions of Type II themselves, the Popper and the Kolmogorov ones are of course the same as in Section 5, but the Rényi and the Carnap ones are new. Since $A=B$ entails $A \approx * B$, any Rényi function of Type I is one of Type II, and so is any Carnap function of Type I, relative or absolute, but not vice-versa. Displayed below are a Rényi function of Type II (that is not a Carnap one) and two Carnap ones of that type. Defined on a set of cardinality 5 , hence on a set that is not a standard Boolean algebra, the functions are not of Type I.

Illustration 6 Let S be the set $\{\Lambda, a, b,-a, \mathrm{~V}\}$, where (i) $\Lambda, a,-a$, and V are as in Illustration 1 in Section 4, but (ii) $-b=-a, a \cap b=b \cap b=\mathrm{V} \cap b=b$
and $-a \cap b=\Lambda \cap b=\Lambda . S$ is a nondegenerate Boolean algebra with respect to this equivalence relation \approx^{*}, which is the least such relation on S :

$$
A \approx * B={ }_{\operatorname{def}} A=B \text {, or } A=a \text { and } B=b, \text { or } A=b \text { and } B=a ;
$$

and the following binary function P on S meets B1-B7 and RB8*, but not CB8*:

$P(A, B)$		B				
		Λ	a	b	$-a$	V
	Λ	1	0	0	0	0
	a	1	1	1	0	0
A	b	1	1	1	0	0
	$-a$	1	0	0	1	1
	V	1	1	1	1	1

Illustration 7 Let S be the same Boolean algebra as in Illustration 6. The following binary function P on S meets B1-B7 and CB8*;

$P(A, B)$		B				
		Λ	a	b	$-a$	V
	Λ	1	0	0	0	0
	a	1	1	1	0	1/3
A	b	1	1	1	0	1/3
	$-a$	1	0	0	1	$2 / 3$
	V	1	1	1	1	1

Illustration 8 Let S again be the Boolean algebra of Illustration 6. The following unary function P on S meets C1-C6 and CC7*:

A	$P(A)$
Λ	0
a	$1 / 3$
b	$1 / 3$
$-a$	$2 / 3$
V	1

The relationships between our various families of relative probability functions can be portrayed as in Figure 2, to be compared with the one on p. 9. The areas marked I consist in all four cases of the functions that are of Type I and hence are defined on standard Boolean algebras.

When defined as on p. 32, the probability functions of Type II match some of their counterparts of Type I in a remarkable manner.

Theorem 7.4 Let S be a nondegenerate Boolean algebra, let $\approx *$ be the least equivalence relation on S with respect to which S constitutes such an algebra, and let $[S]^{*}$ be the reduction of S with respect to $\approx *$. Then:
(a) The relative probability functions of Popper's (Rényi's, Kolmogorov's, Carnap's) of Type II defined on S match one-to-one those of Popper's (Rényi's, Kolmogorov's, Carnap's) of Type I defined on [S]*;

Figure 2.
(b) The absolute probability functions of Popper's (Carnap's) of Type II defined on S match one-to-one those of Popper's (Carnap's) of Type I defined on $[S]^{*}$.
Proof: (a) $P^{\text {II }}$ being a relative probability function of Popper's of Type II, let P^{I} be this binary function on $[S]^{*}$:

$$
P^{\mathrm{I}}\left([A]^{*},[B]^{*}\right)=P^{\mathrm{II}}(A, B) ;
$$

and P^{I} being a relative probability function of Popper's of Type I defined on $[S]^{*}$, let $P^{\text {II }}$ bet his binary function on S :

$$
P^{\mathrm{II}}(A, B)=P^{\mathrm{I}}\left([A]^{*},[B]^{*}\right)
$$

a function under which A and A^{\prime} are sure to be indiscernible if $A \approx^{*} A^{\prime}$. It is easily verified that: (i) P^{I} meets constraints $\mathrm{B} 1-\mathrm{B} 5$ and hence constitutes a relative probability function of Popper's of Type I, and (ii) P^{II} meets constraints B1-B7 and hence constitutes a relative probability function of Popper's of Type II. And it is clear that the identity

$$
P^{\mathrm{I}}\left([A]^{*},[B]^{*}\right)=P^{\mathrm{II}}(A, B)
$$

establishes a one-to-one correlation between the relative probability functions of Type I on $[S]^{*}$ and those of Type II on S. So, since

$$
[A]^{*}=[B]^{*} \text { if, and only if, } A \approx * B
$$

$P^{\text {I }}$ meets constraint RB8 precisely when $P^{\text {II }}$ meets constraint RB8*, and hence P^{I} constitutes a Rényi function of Type I precisely when P^{II} constitutes one of Type II. Similarly, P^{I} meets constraint KB8 precisely when P^{II} does, and hence P^{I} constitutes a Kolmogorov function of Type I precisely when P^{II} constitutes one of Type II. Lastly, P^{I} meets constraint CB8 precisely when P^{II} meets con-
straint CB8*, and hence P^{I} constitutes a Carnap function of Type I precisely when P^{II} constitutes one of Type II.
(b) In the absolute case the one-to-one correspondence between the functions of Type I and those of Type II is established by the identity

$$
P^{\mathrm{I}}\left([A]^{*}\right)=P^{\mathrm{II}}(A)
$$

Clearly, if $A \approx^{*} A^{\prime}$, then A and A^{\prime} are indiscernible under P^{II}. It is easily verified that (i) if P^{I} meets constraints $\mathrm{C} 1-\mathrm{C} 3$, then P^{II} meets constraints $\mathrm{C} 1-\mathrm{C} 6$, and (ii) if P^{II} meets C1-C6, then P^{I} meets constraints C1-C3. And P^{I} meets constraint CC7 if, and only if, P^{II} meets constraint CC7*.
Theorem 7.4 provides the justification for defining Rényi's and Carnap's functions of Type II as we did on p. 32.

Unexpectedly perhaps, but obligingly, \approx^{*} proves to be the same equivalence relation as indiscernibility tout court in the sense of p. 11 and indiscernibility tout court in the sense of p .30.

Theorem 7.5 Let S be a standard nondegenerate Boolean algebra, and let A and B be distinct members of S. Then there exist a two-valued relative probability function P of Popper's of Type I on S and a two-valued absolute probability function P^{\prime} of Popper's of Type I on S such that A and B are discernible under both P and P^{\prime}.

Proof: Since $A \neq B$, either $A \neq A \cap B$ or $B \neq A \cap B$. So suppose that $A \neq$ $A \cap B$. Then the set $\{C:(A \cap-B) \cap C=A \cap-B\}$ constitutes a filter on S with respect to $=$, and by the second result from [20] reported on p. 31 that filter can be extended to an ultra-filter S^{\prime} on S with respect to $=$. So, definable on S^{\prime} is the two-valued relative probability function P of Popper's in Theorem 7.1, a function of Type I in this case since \approx is $=$. But A belongs to $S^{\prime},-B$ also does, and hence by clause (iii) in the definition of an ultra-filter B does not. So $P(B, A)=0$, while $P(A, A)=1$. Hence $P(A, A) \neq P(B, A)$, and hence A and B are discernible under P. As for the V-restriction P^{\prime} of P, (i) it constitutes as shown in [12] a two-valued absolute probability function of Popper's of Type I, and (ii) $P^{\prime}(B)=0$, while $P^{\prime}(A)=1$. So A and B are discernible under P^{\prime} as well as under P. But, by simply interchanging A and B throughout the argument, so are they when $B \neq A \cap A$. So A and B are discernible under both P and P^{\prime} in either case.

So:
Theorem 7.6 Let S and \approx^{*} be as in Theorem 7.4. Then:
(a) For any A and B in $S, A \approx * B$ if, and only if, $P(A, C)=P(B, C)$ for every C in S and every relative probability function P of Popper's of Type II defined on S;
(b) For any A and B in $S, A \approx{ }^{*} B$ if, and only if, $P(C, A)=P(C, B)$ for every C in S and every relative probability function P of Popper's of Type II defined on S;
(c) For any A and B in $S, A \approx * B$ if, and only if, $P(A)=P(B)$ for every absolute probability function P of Popper's of Type II defined on S.

Proof: (a) Suppose first that $A \approx * B$, and let P be an arbitrary relative probability function of Popper's of Type II defined on S. Since indiscernibility under P is by Theorem 5.6 one of the equivalence relations on S with respect to which S constitutes a Boolean algebra and since $\approx *$ is the least such equivalence relation on S, A and B are sure to be indiscernible under P. So, $P(A, C)=P(B, C)$ for every C in S and every relative probability function P of Popper's of Type II defined on S. Suppose next that $A \not \nsim^{*} B$. Then $[A]^{*} \neq[B]^{*}$ and there exists by Theorem 7.5 a two-valued relative probability function P^{I} of Type I on [$\left.S\right]^{*}$ under which $[A]^{*}$ and $[B]^{*}$ are discernible. In that case A and B are discernible under the function P^{II} of Type II that according to Theorem 7.4(a) corresponds to P^{I}. So $P(A, C) \neq P(B, C)$ for at least one C in S and at least one relative probability function P of Popper's of Type II defined on S. (b) By (a) and Theorem 5.11. (c) Suppose first that $A \approx * B$. Then by the same reasoning as under (a), but with P an absolute rather than a relative probability function of Popper's of Type II and with Theorem 6.5 substituting for Theorem 5.6, $P(A)=P(B)$ for every absolute probability function of Popper's of Type II defined on S. Suppose next that $A \not \neq^{*} B$. Then by the same reasoning as under (a), but with clause (b) of Theorem 7.4 substituting for clause (a), $P(A) \neq P(B)$ for at least one absolute probability function of Popper's of Type II defined on S.

So the following will do as characteristic constraints for the relative probability functions of Rényi's and Carnap's of Type II, and the absolute ones of Carnap's of that type:

RB8** For any A and B in S, if $P(A, C)=P(B, C)$ for every C in S, then $P(A, C)=P(B, C)$ for every such C and every relative probability function P of Popper's of Type II defined on S;
CB8** For any A and B in S, if $P(C, A)=P(C, B)$ for every C in S, then $P(C, A)=P(C, B)$ for every such C and every relative probability function P of Popper's of Type II defined on S; and
CC7** For any A and B in S, if $P(A)=P(B)=P(A \cap B)$, then $P(A)=$ $P(B)$ for every absolute probability function P of Popper's of Type II defined on S.

The three constraints are impredicative, but they are phrased entirely in terms of properties of the functions P, without explicit reference to features of the set S.

It is an immediate consequence of Theorem 7.6 that, one, indiscernibility tout court in the sense of p .11 and indiscernibility tout court in the sense of p .30 are the same, and, two, in the event that S is a standard Boolean algebra, indiscernibility tout court and identity are the same. So, to round off the remarks in Sections 4 and 6:
(i) it is when P is a relative probability function of Rényi's that left-indiscernibility under P entails indiscernibility tout court, and hence-for P of Type I-identity;
(ii) it is when P is a relative probability function of Carnap's that rightindiscernibility under P entails indiscernibility tout court, and hencefor P of Type I-identity; and
(iii) it is when P is an absolute probability function of Carnap's that indiscernibility under P entails indiscernibility tout court, and hence-for P of Type I-identity.

The extra probability functions of Type II that the account on p. 32 yielded are of particular interest, as we remarked in Section 1, when they are defined on sets of statements. For proof, let S consist of all the statements that can be compounded from given atomic ones by means of ' \sim ' and ' $\&$ '. S does not constitute a standard Boolean algebra. However, it constitutes a Boolean algebra with respect to a variety of equivalence relations, the least of which is the relation of truth-functional equivalence. So probability functions of Type II can be defined on S, the relative ones of Rényi's meeting this version of RB8**, in which F is the statement counterpart of Λ :
(i) For any statement B in S, if $P(A, B)=1$ for every statement A in S, then B is truth-functionally equivalent to $\mathrm{F},{ }^{30}$
the relative ones of Carnap's meeting this version of $\mathrm{CB}^{\prime *}$, in which T is the statement counterpart of V:
(ii) For any statement A in S, if $P(A, T)=0$, then A is truth-functionally equivalent to $\mathrm{F},{ }^{31}$
and the absolute ones of Carnap's meeting this version of $\mathrm{CC} 7^{*}$:
(iii) For any statement A in S, if $P(A)=0$, then A is truth-functionally equivalent to F .

Wittgenstein in [21] and Carnap in [2] first accord absolute probabilities to the so-called state-descriptions in S, i.e. to the statements in S of the sort

$$
\left(\ldots\left(\pm A_{1} \& \pm A_{2}\right) \& \ldots\right) \& \pm A_{n}
$$

where (a) $A_{1}, A_{2}, \ldots, A_{n}$ are in some prescribed order the first n atomic statements in S and (b) for each i from 1 through $n, \pm A_{i}$ is either A_{i} itself or $\sim A_{i}$. A being an arbitrary statement in S that is not a state-description in S and B_{1}, $B_{2}, \ldots, B_{m}(m \geq 0)$ being the various state-descriptions in S in which A holds, they then take the absolute probability of A to be 0 when $m=0$, otherwise the sum of the absolute probabilities of $B_{1}, B_{2}, \ldots, B_{m}$. Constraints featuring the state-descriptions in S and equivalent to (i)-(iii) can be had for the present functions:
(i') For any state-description A in $S, P(\sim A, A)=0$
for the relative probability functions of Rényi's of Type II;
(ii') For any state-description A in $S, P(A, T)>0$
for the relative probability functions of Carnap's of Type II; and
(iii') For any state-description A in $S, P(A)>0$
for the absolute probability functions of Carnap's of Type II.
The first of these constraints, due to Kit Fine, appears in [13] ${ }^{32}$; the other two respectively appear as C53-3 on p. 287 and T55-1 on p. 295 of [2].

Some would rather assign probabilities to propositions than to statements. Their preference is easily met. Consider $[A]^{*}$, where A is a member of the present set S, i.e. where A is a statement compounded from given atomic statements by means of ' \sim ' and ' $\&$ '. Owing to Theorem $7.6,[A]^{*}$ consists of the statements in S that are indiscernible tout court from A. Hence, owing to a theorem of probability semantics, $[A]^{*}$ consists of the statements in S that are truthfunctionally equivalent to A. Hence, under one account of a proposition, $[A]^{*}$ is the proposition expressed by A. So $[S]^{*}$ consists of the propositions expressed by the statements of S. So the unary real-valued functions defined on $[S]^{*}$ that meet constraints C1-C3 will assign probabilities to those propositions one at a time, and the binary real-valued functions defined on $[S]^{*}$ that meet constraints B1-B5 will assign them probabilities two at a time. ${ }^{33}$

Appendix Proofs of the fourteen clauses of Lemma 2 and the eleven clauses of Lemma 4 will be found in the Appendix to [12]. Clauses (c)-(l) of Lemma 3 follow by Theorem 5.7 from the Boolean identities $--A=A, A \cap(A \cup B)=A$, etc., proofs of which are left to the reader.

Lemma 1 Let S be a Boolean algebra with respect to \approx.
(a) $A \cap A \approx A$.

Proof: By A3 by taking B and C there to be A.
(b) $\Lambda \approx A \cap-A$, and $\mathrm{V} \approx A \cup-A$, for any A in S.

Proof: By (a) $A \cap A \approx A$ for any A in S. Hence by A3 $A \cap-A \approx B \cap-B \approx$ $C \cap-C \approx \ldots$. Hence (b) by the definitions of Λ and V .

Lemma 2 Let P be a binary real-valued function that meets constraints B1-B7.
(a) $0 \leq P(A, B) \leq 1$;
(b) If $P(A, B) \times P(C, D)=1$, then $P(A, B)=P(C, D)=1$;
(c) $P(A, A \cap B)=P(A, B \cap A)=1$;
(d) If A is P-normal, then $P(-A, A)=0$;
(e) If B is P-normal, then $P(A \cap-B, B)=P(-B \cap A, B)=0$;
(f) If C is P-normal, then $P(A, C)=P(A \cap B, C)+P(A \cap-B, C)$;
(g) $P(A \cap A, B)=P(A, B)$;
(h) If B is P-normal, then $P(A \cap-A, B)=P(\Lambda, B)=0$;
(i) $P(-(A \cap-A), B)=P(V, B)=1$;
(j) $P(A, \mathrm{~V} \cap B)=P(A, B \cap \mathrm{~V})=P(A, B)$;
(k) V is P-normal;
(l) If $P(B, V) \neq 0$, then $P(A, B)=P(A \cap B, V) / P(B, V)$;
(m) $P(A \cap B, C) \leq P(A, C)$ and $P(A \cap B, C) \leq P(B, C)$;
(n) If $P(A, C)=0$, then $P(A \cap B, C)=P(B \cap A, C)=0$.

Lemma 3 Let P be a binary real-valued function that meets constraints B1-B7.
(a) $P(A, B \cap-B)=P(A, \Lambda)=1$.

Proof: $P(B, B \cap-B)=P(-B, B \cap-B)=1$ by Lemma 2(c). So $P(A, B \cap-B)=$ 1 for every A in S by B4, and hence $P(A, \Lambda)=1$ by the definition of Λ.
(b) $P(A \cap B, C)=1$ if, and only if, $P(A, C)=P(B, C)=1$.

Proof: If $P(A \cap B, C)=1$, then $P(A, C)=P(B, C)=1$ by Lemmas $2(\mathrm{~m})$ and 2(a). So suppose that $P(A, C)=P(B, C)=1$, and let C be P-normal. Then $P(-B, C)=0$ by B4, hence $P(A \cap-B, C)=0$ by Lemma 2(n), hence $P(A \cap B, C)=P(A, C)$ by Lemma 2(f), and hence $P(A \cap B, C)=1$. But $P(A \cap B, C)=1$ by definition when C is P-abnormal. Hence $P(A \cap B, C)=1$ in either case.
(c) $P(--A, B)=P(A, B)$;
(d) $P(A \cap(A \cup B), C)=P(A, C)$;
(e) $P(B \cap(A \cup B), C)=P(B, C)$;
(f) $P(-A--B, C)=P(A-B, C)$;
(g) $P(-(A-B), C)=P((A \cap B) \cup(-A \cap-B), C)$;
(h) $P(-A \perp \mathrm{~V}, B)=P(A, B)$;
(i) $P(\mathrm{~V} \cup A, B)=P(\mathrm{~V}, B)$;
(j) $P((A \cap-B) \cap(B \cap-A), C)=P(\Lambda, C)$;
(k) $P((A \cap B) \cap(-A \cap-B), C)=P(\Lambda, C)$;
(l) $P((A \cup B) \cap-A, C)=P(B \cap-A, C)$;
(m) $P(A \cup B, C)=P(A, C)+P(B, C)-P(A \cap B, C)$.

Proof: By definition when C is P-abnormal. So suppose C is P-normal. Then $P(A \cup B, C)=P((A \cup B) \cap A, C)+P((A \cup B) \cap-A, C)$ by Lemma 2(f), hence $P(A \cup B, C)=P(A, C)+P((A \cup B) \cap-A, C)$ by (d) and B6, hence $P(A \cup B, C)=P(A, C)+P(B \cap-A, C)$ by (l), and hence $P(A \cup B, C)=$ $P(A, C)+P(B, C)-P(A \cap B, C)$ by Lemma 2(f).
(n) If $P(A \cap B, C)=0$, then $P(A \cup B, C)=P(A, C)+P(B, C)$.

Proof: By (m).
(o) $P(A, C) \leq P(A \cup B, C)$.

Proof: By (m) and Lemma 2(m).
(p) If C is P-normal, then $P(A-B, C)=P(A \cap-B, C)+P(B \cap-A, C)$.

Proof: If C is P-normal, then $P((A \cap-B) \cap(B \cap-A), C)=0$ by (j) and Lemma 2(h). Hence (p) by (n) and the definition of $A \dot{-}$.
(q) $P(A-B, C)=0$ if, and only if, $P(A \cap-B, C)=P(B \cap-A, C)=0$.

Proof: By (p) and B2.
(r) If C is P-normal, then $P((A \cap B) \cup(-A \cap-B), C)=P(A \cap B, C)+$ $P(-A \cap-B, C)$.
Proof: Like that of (p) but using (k) in place of (j).
(s) If A or B is P-normal, then so is $A \cup B$.

Proof: Suppose $A \cup B$ is P-abnormal. Then by definition $P(C \cap A, A \cup B)=$ $P(A, A \cup B)=1$ for every C in S, hence by B5 $P(C, A \cap(A \cup B))=1$, and
hence by (d) and Theorem $3.1 A$ is P-abnormal. But $P(C, B \cap(A \cup B))=1$ by the same reasoning. So by (e) and Theorem $3.1 B$ is P-abnormal as well.
(t) If $P(C, A)=P(C, B)$ for every C in S and A is P-normal, then $P(-A, B)=P(-B, A)=0$.
Proof: Suppose $P(C, A)=P(C, B)$ for every C in S, and suppose A is P-normal. Then B is P-normal by definition. Hence $P(-A, A)=P(-B, B)=0$ by Lemma 2(d), and hence $P(-A, B)=P(-B, A)=0$.
(u) If $P(-A, C)=P(-B, C)=1$ for every C in S, then $A \cup B$ is P-abnormal.

Proof: Suppose $P(-A, C)=P(-B, C)=1$ for every C in S. Then $P(-A$, $-B \cap(A \cup B))=P(-B, A \cup B)=1$, hence $P(-A \cap-B, A \cup B)=1$ by B5, hence $P(-(A \cup B), A \cup B)=1$ by (c) and the definition of $A \cup B$, and hence $A \cup B$ is P-abnormal by B3-B4.
(v) If $P(A-B, \mathrm{~V})=0$ and $P(C, \mathrm{~V}) \neq 0$, then $P(A, C)=P(B, C)$.

Proof: Suppose $P(A-B, \mathrm{~V})=0$ and $P(C, \mathrm{~V}) \neq 0$. Then $P(A \dot{-}, C)=0$ by B5 and Lemmas 2(n) and 2(j). Hence $P(A \cap-B, C)=P(B \cap-A, C)=0$ by (q). So $P(A, C)=P(A \cap B, C)$ and $P(B, C)=P(B \cap A, C)$ by B4. Hence $P(A, C)=P(B, C)$ by Commutation.

Lemma 4 Let P be a unary real-valued function that meets constraints C1-C6.
(a) $P(A)=P(B \cap A)+P(-B \cap A)$;
(b) $P(A \cap(B \cap C))=P((A \cap B) \cap C)$;
(c) $P(A \cap B) \leq P(A)$ and $P(A \cap B) \leq P(B)$;
(d) $P(A \cap A)=P(A)$;
(e) $P(A \cap-A)=P(\Lambda)=0$;
(f) If $P(A)=0$, then $P(A \cap B)=P(B \cap A)=0$;
(g) If $P(B \cap C)=0$, then $P((A \cap B) \cap C)=0$;
(h) $P(\Lambda \cap A)=0$;
(i) $P(-A)=1-P(A)$;
(j) $\quad P((A \cap B) \cap C)=P((B \cap A) \cap C)$;
(k) $P(A \cap(B \cap C))=P(A \cap(C \cap B))$.

Lemma 5 Let P be a unary real-valued function that meets constraints C1-C6.
(a) $P(A) \leq 1$.

Proof: $0 \leq P(-A)$ by C1. So (a) by Lemma 4(i).
(b) $P(A \cap B)=1$ if, and only if, $P(A)=P(B)=1$.

Proof: Like that of Lemma 3(b) but using Lemma 4(c), (a), Lemma 4(i), Lemma 4(f), and C3 in place of Lemmas 2(m) and 2(a), B4, and Lemmas 2(n) and 2(f).
(c) $P(A \cup B)=0$ if, and only if, $P(A)=P(B)=0$.

Proof: By (b), Lemma 4(i), and the definition of $A \cup B$.
(d) If $P(A)=P(A \cap B)$, and $P(B)=P(B \cap C)$, then $P(A)=P(A \cap C)$.

Proof: If $P(A)=P(A \cap B)$, then $P(-B \cap A)=0$ by Lemma 4(a), hence $P((-B \cap A) \cap C)=0$ by Lemma 4(f), hence $P(-B \cap(A \cap C))=0$ by Lemma 4(b), and hence $P(B \cap(A \cap C))=P(A \cap C)$ by Lemma 4(a). But, if $P(B)=$ $P(B \cap C)$, then $P(B \cap-C)=0$ by C 3 , hence $P(A \cap(B \cap-C))=0$ by Lemma 4(f), hence $P((A \cap B) \cap-C)=0$ by Lemma 4(b), hence $P((B \cap A) \cap-C)=$ 0 by Lemma $4(\mathrm{j})$, hence $P((B \cap A) \cap C)=P(B \cap A)$ by C 3 , and hence $P(B \cap$ $(A \cap C))=P(A \cap B)$ by Lemma 4(b) and C4. Hence, if $P(A)=P(A \cap B)$ and $P(B)=P(B \cap C)$, then $P(A \cap C)=P(A \cap B)$, and hence $P(A)=P(A \cap C)$.
(e) $P((A \cap B) \cap C) \leq P(B \cap C)$.

Proof: By Lemmas 4(b) and (c).
(f) $P((A \cap B) \cap C) \leq P(A \cap C)$.

Proof: By (e) and Lemma 4(j).
(g) If $P(A) \leq P(\Lambda)$, then $P(A)=0$.

Proof: By Lemma 4(e) and C1.
(h) $P((A \cap B) \cap-A)=0$.

Proof: By (f) and (g).
(i) $\quad P(A \cap B)=P((A \cap B) \cap A)$.

Proof: By C3 and (h).
(j) $P(A \cap B)=P((A \cap B) \cap B)$.

Proof: $P(B \cap A)=P((B \cap A) \cap B)$ by (i). Hence (j) by C4 and Lemma 4(j).
(k) $P(((A \cap B) \cap B) \cap-A)=0$.

Proof: By (f) and (g).
(l) $\quad P(A \cap B)=P((A \cap B) \cap(B \cap A))$.

Proof: $P(A \cap B)=P(((A \cap B) \cap B) \cap A)$ by C3 and (j)-(k). Hence (l) by Lemma 4(b).
(m) $P((A \cap(B \cap C)) \cap-A)=0$.

Proof: By (f) and (g).
(n) $P(A \cap(B \cap C))=P((A \cap(B \cap C)) \cap A)$.

Proof: By C3 and (m).
(o) $P(((A \cap(B \cap C)) \cap A) \cap-B)=0$.

Proof: By (e)-(g).
(p) $P(A \cap(B \cap C))=P((A \cap(B \cap C)) \cap(A \cap B))$.

Proof: $P(A \cap(B \cap C))=P(((A \cap(B \cap C)) \cap A) \cap B)$ by C 3 and (n) and (o). Hence (p) by Lemma 4(b).
(q) $P(((A \cap(B \cap C)) \cap(A \cap B)) \cap-C)=0$.

Proof: By (e)-(g).
(r) $\quad P(A \cap(B \cap C))=P((A \cap(B \cap C)) \cap((A \cap B) \cap C)$.

Proof: $P(A \cap(B \cap C))=P(((A \cap(B \cap C)) \cap(A \cap B)) \cap C)$ by C3 and (p) and (q). Hence (r) by Lemma 4(b).
(s) $\quad P(((A \cap C) \cap B) \cap-C)=0$.

Proof: By (e)-(g).

NOTES

1. The epithet "conditional" is used by Kolmogorov, Rényi, and others in place of "relative". It has misled some into thinking of conditional probabilities as the probabilities of conditionals, and we avoid it. So does Popper. ' $P(A, B)$ ' is commonly read 'the probability of A, given B '.
2. It is deliberately that we talk of A and B as left- and right-indiscernible under P, violating in the process the use/mention distinction. " A and B are indiscernible $q u a$ first (qua second) arguments of P " would be more correct, but it does not yield such handy substantives as "left-indiscernibility" and "right-indiscernibility".
3. All the sets considered in this paper will be closed under - and \cap.
4. A1-A3 are adaptations of postulates of Byrne's in [1], and A4 and A5 are adaptations of postulates of Rosenbloom's in [19]. Popper in [15] uses adaptations of equivalent postulates due to Huntington and featuring ' U ' in place of ' n '. See Note 23 concerning the independence of the postulates.
5. Note that any set S whatsoever that is closed under - and \cap constitutes a Boolean algebra with respect to the universal relation; but that algebra is of course a degenerate one.
6. Rosenbloom, on pp. 9 and 13-14 of [19], explicitly talks of a Boolean algebra with respect to an equivalence relation, said relation possibly, but not necessarily, the identity relation. Popper on p. 356 of [15] talks of substitutional equivalence as an equivalence relation, but goes on to define

$$
A=B
$$

as

$$
P(A, C)=P(B, C) \text { for every } C \text { in } S
$$

This has misled many, possibly Popper himself, into thinking of the sets on which his probability functions are defined as standard Boolean algebras. That they need not be. The set considered on p. 19 constitutes a Boolean algebra in Popper's sense. Yet it has three distinct members, and hence is not a standard Boolean algebra.
7. A Boolean algebra that is not degenerate is sure of course to have more than one member.
8. [S] is what is often called the quotient-algebra with respect to the ideal $\Delta=$ $\{A \in S: A \approx \Lambda\}$. Though a set of sets, $[S]$ is not, by the way, a field of sets: $-[A]$ is not the set-theoretic complement of $[A]$, nor is $[A] \cap[B]$ the set-theoretic intersection of $[A]$ and $[B]$. For proof, $[A] \cap-[A]$ is not the empty set. Identical
with $[A] \cap[-A]$, and hence with $[A \cap-A]$, it consists of every B in S such that $B \approx A \cap-A$, hence of $A \cap-A$ plus possibly other members of S.
9. Popper's own constraints concerned the functions in Section 5; they will be found on p. 332 of [15]. For more about them see Note 10.
10. Proof that B1-B7 are equivalent to Popper's own constraints in [15] will be found in [5], as will be proof that each of B1-B7 is independent of the remaining six. For more about Popper's own constraints and their independence, see p. 10.
11. It is of course to preserve consistency that a restriction is placed on B in B4. Due to B3, B5, and Lemma 2(a)

$$
P(A, \Lambda)=P(-A, \Lambda)=1,
$$

as the proof of Lemma 2(c) in [12] bears out. So, were no restriction placed on B in B4, $P(A, \Lambda)$ would equal 0 as well as 1 . But Popper requires of B that it be P normal. Rényi and Carnap require that it be distinct from Λ, a stronger restriction. Proof that Rényi's functions, as understood here, are those meeting B1-B3, B5, and this version of Complementation:

B4' For any A and B in S, if $B \neq \Lambda$ then $P(A, B)=1-P(A, B)$,
will be found in [12]. For more on Rényi's and Carnap's functions see pp. 9-10. See also [9] and [10].
12. In each case $P^{\prime}(B)$ reappears as $P(B, \mathrm{~V})$. Note that when $P^{\prime}(B) \neq 0, P(A, B)$ equals $P^{\prime}(A \cap B) / P^{\prime}(B)$ by Lemma 2(1). In that case the value of P for any A and B in S is thus determined by the values of P^{\prime} for $A \cap B$ and B.
13. In his subsequent work [17] Rényi required of S^{\prime} that $A \cup B$ belong to it if both A and B do. We cannot pursue the matter here.
14. Functions essentially like those in [4], but defined on the statements of languages with the familiar connectives ' \sim ' and ' $\&$ ', appear in the earlier [2]. We shall consider them on pp. 37-38.
15. On p. 332 of [15] Popper stated in effect that B1-B7 deliver (**), but gave no proof of it. The one we supply on pp. 9-10 first appeared in [7]. It is, to our knowledge, the earliest and the shortest proof in print of Popper's Constraint. (*) appears in the Appendix as Lemma 2(m).
16. Incidentally,

$$
P(C, A)=P(C, B) \text { for every } C \text { in } S
$$

does not entail

$$
P(C,-A)=P(C,-B) \text { for every such } C
$$

nor as a result
$P(C, f(A))=P(C, f(B))$ for every C in S and for every Boolean function f on S.
17. It follows of course from RB8 that

$$
\text { If } A \neq B \text {, then } P(A, C) \neq P(B, C) \text { for at least one } C \text { in } S \text {. }
$$

So, if like Rényi and Carnap we required of every Boolean algebra that it be nondegenerate, then at least two members of the standard Boolean algebra on which a

Rényi - and, hence, a Carnap - function P is defined would have to be discernible under P, and like Rényi and Carnap we could dispense with constraint B1.
18. See [5] for proof of that.
19. Popper talked of

$$
\{\langle A, B\rangle: P(A, C)=P(B, C) \text { for every } C \text { in } S\}
$$

in [15] not as the relation of identity but as a relation of substitutional equivalence. But, as indicated in Note 6, by abridging

$$
P(A, C)=P(B, C) \text { for every } C \text { in } S
$$

as

$$
A=B
$$

he blurred the distinction between substitutional equivalence and identity, hence that between a Boolean algebra in general and a standard one.
20. On pp. 351-352 of [15] Popper supplies a proof of Theorem 5.4 that in effect does not use B7. So an analogue of Popper's Theorem can be had with P a relative probability function meeting just B1-B6 and left-indiscernibility under P substituting for indiscernibility tout court under P. Intriguingly, Popper was weary of using (**), a constraint we dubbed in Section 3 Popper's Constraint. Right-indiscernibility under P also constitutes an equivalence relation on S, but in view of Note $16 S$ does not constitute a nondegenerate Boolean algebra with respect to it. See Note 22 for more on this matter.
21. [S] is thus the quotient-algebra with respect to the ideal $\Delta=\{A \in S: A$ is P-abnormal $\}$.
22. And right-indiscernibility as well as left-indiscernibility under every such function is one of the equivalence relations with respect to which the set on which the function is defined constitutes a Boolean algebra.
23. Popper's own constraints concerned the functions on p . 26 ; they will be found in [14]. Proof that C1-C3 and constraints C4-C6 on p. 26 are equivalent to Popper's constraints will be found in [8]. Each of C1-C3 is independent of the remaining five.
24. The illustration is from [18]. Elliott Mendelson pointed out in a letter that it shows $\mathrm{A} 5^{\prime}$ independent of $\mathrm{A} 1^{\prime}-\mathrm{A} 4^{\prime}$. As noted in [1], each of $\mathrm{A} 1^{\prime}-\mathrm{A} 3^{\prime}$ is independent of the other two. Whether $\mathrm{A} 4^{\prime}$ is independent of $\mathrm{A} 1^{\prime}-\mathrm{A} 3^{\prime}$ and $\mathrm{A} 5^{\prime}$ is still an open question, it appears.
25. [S] is thus the quotient-algebra relative to the ideal $\Delta=\left\{A \in S: A\right.$ is of P_{v}-probability 0 \}.
26. The reductions of relative probability functions of Popper's that are not Rényi ones match those functions one-to-one. Not so the reductions of Popper functions that are not Carnap ones. But, given the remarks on pp. 8-9, that was to be expected: those among Popper's absolute probability functions that are not Carnap ones do not match one-to-one the relative probability functions under Cases 3 and 4 there. Our proof that Rényi's functions reduce to Carnap ones is in answer to a question by Peter Schotch.
27. Since $\mathrm{V} \in \mathrm{S}^{\prime}, P$ meets $\mathrm{KB} 8^{\prime}$ as well, and hence is a Kolmogorov function.
28. The analogue of Popper's Theorem that we mentioned in Note 20 makes for an analogue of Theorem 7.2 with B1-B6 in place of B1-B7.
29. It should be noted that not all sets closed under - and \cap and of cardinality larger than 1 constitute nondegenerate Boolean algebras. Consider the three-membered set $\{a, b, c\}$, and let $-a=b,-b=c$, and $-c=a$. Then, however \cap be defined and whatever equivalence relation on $\{a, b, c\} \approx$ might be, $A \approx B$ is sure to hold for any A and B in S.
30. Equivalently, only statements in S that are truth-functionally equivalent to F are P-abnormal. The constraint appears as B8 in [5], where the functions meeting it are ascribed to the Carnap of [3], a text in which Carnap and Rényi are in accord.
31. Equivalently, only statements in S that are truth-functionally equivalent to F are of P_{T}-probability zero.
32. The functions meeting (i^{\prime}) are ascribed in [13] to the Carnap of [2]. They should have been ascribed to the Carnap of [3] or-as here-to Rényi.
33. This closing paragraph is in answer to a question of Nicholas Asher's.

REFERENCES

[1] Byrne, L., "Two brief formulations of Boolean algebra," Bulletin of the American Mathematical Society, vol. 52 (1946), pp. 269-272.
[2] Carnap, R., Logical Foundations of Probability, University of Chicago Press, Chicago, Illinois, 1950.
[3] Carnap, R., The Continuum of Inductive Methods, University of Chicago Press, Chicago, 1952.
[4] Carnap, R. and R. C. Jeffrey (editors), Studies in Inductive Logic and Probability, vol. 1, University of California Press, Berkeley, 1971.
[5] Harper, W. L., H. Leblanc, and B. C. van Fraassen, "On characterizing Popper and Carnap probability functions," pp. 140-152 in Essays in Epistemology and Semantics, Haven Publications, New York, 1983.
[6] Kolmogorov, A. N., "Grundbegriffe der Wahrscheinlichkeitsrechnung," Ergebnisse der Mathematik, vol. 2 (1933), pp. 1-61. Translated as Foundations of the Theory of Probability by N. Morrison, Chelsea, New York, 1950.
[7] Leblanc, H., "What price substitutivity: A note on probability theory," Philosophy of Science, vol. 48 (1981), pp. 317-322.
[8] Leblanc, H., "Popper's 1955 axiomatization of absolute probability," Pacific Philosophical Quarterly, vol. 63 (1982), pp. 133-145.
[9] Leblanc, H., "The autonomy of probability theory: Notes on Kolmogorov, Rényi, and Popper," The British Journal for the Philosophy of Science, vol. 39 (1989), pp. 167-181.
[10] Leblanc, H., "Popper's formal contributions to probability theory," pp. 341-367 in Perspectives on Psychologism, edited by M. A. Notturno, E. J. Brill, Leyden, 1989.
[11] Leblanc, H. and P. Roeper, "Absolute probability functions: A recursive and autonomous account," pp. 484-494 in The Tasks of Contemporary Philosophy, Proceedings of the 10th International Wittgenstein Symposium, Vienna, 1986.
[12] Leblanc, H. and P. Roeper, "On relativizing Kolmogorov's absolute probability functions," Notre Dame Journal of Formal Logic, vol. 30 (1989), pp. 485-512.
[13] Leblanc, H. and B. C. van Fraassen, "A note on Popper and Carnap probability functions," The Journal of Symbolic Logic, vol. 44 (1979), pp. 369-373.
[14] Popper, K., "Two autonomous axiom systems for the calculus of probabilities," The British Journal for the Philosophy of Science, vol. 6 (1955), pp. 51-57.
[15] Popper, K., The Logic of Scientific Discovery, Basic Books, New York, 1959.
[16] Rényi, A., "On a new axiomatic theory of probability," Acta Mathematica Academiae Scientiarum Hungaricae, vol. 6 (1955), pp. 286-335.
[17] Rényi, A., "Sur les espaces simples des probabilités conditionnelles," Annales de l'Institut Poincaré, N Série, Section B1, 1964, pp. 3-21.
[18] Rescher, N., "A probabilistic approach to modal logic," Modal and Many-Valued Logics, Acta Philosophica Fennica, vol. 16 (1963), pp. 215-226.
[19] Rosenbloom, P. C., The Elements of Mathematical Logic, Dover Publications, New York, 1950.
[20] Sikorski, R., Boolean Algebras, Springer-Verlag, Berlin, 1960.
[21] Wittgenstein, L., Tractatus Logico-Philosophicus, Routledge \& Kegan Paul, London, 1922.

Peter Roeper
The Australian National University
Canberra, Australia

Hugues Leblanc
Temple University
Philadelphia, Pennsylvania

