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ON RENYΓS RELATIVE PROBABILITY FUNCTIONS

RB8' For any B in S, ifP(A,B) = 1 for every A in S, then B = Λ

RB8 For any A and B in S, ifP(A, C) = P(B, C) for every C in 5, then A=B
RB8** For any A and B in S, if P(A,C) = P(B,C) for every C in S, then

P(A, C) = P(B, C) for every C in S and every relative probability function
P of Popper's of Type II defined on S

ON KOLMOGOROV'S RELATIVE PROBABILITY FUNCTIONS

KB8' For any B in S, ifP(B,V) = 0, then P{A,B) = 1 for every A in S
II

KB8 For any A and B in S9 if P(C9A) = P(QB) for every C in S, then
P(A9 C) = P(B, C) for every such C

ON CARNAP'S RELATIVE PROBABILITY FUNCTIONS

CB8' For any A in S, ifP(A,Y) = 0, then A = Λ
II

CB8 For any A and B in 5, ifP(C,A) = P(QB) for every C in 5, then A =B
CB8** For any A and B in S, if P(C,A) = P(C,B) for every C in S, then

P(C,A) = P(C,B)for every such C and every relative probability function
P of Popper's of Type II defined on S

ON POPPER'S ABSOLUTE PROBABILITY FUNCTIONS

Cl For any A in 5, 0 < P(A) (Nonnegativity)
C2 For any A in S, P(A U -A) = 1 (Normality)
C3 For any A and B in 5, P(A) = P(A ΠB) + P(An -B) (Special Addition)

C4 For any A and B in S, P(A Π B) < P(B Π A) (Commutation)
C5 For any A, B, and C in 5, P(A Π(BΠ C)) < P((A ΠB)ΠC) (Association)
C6 For any A in S, P(A) < P(A Π A) (Idempotence)

ON CARNAP'S ABSOLUTE PROBABILITY FUNCTIONS

CC7' For any A in S, ifP(A) = 0, then A ~ A
II

CC7 For any A and B in S, ifP(A) = P(B) = P(A Π B), then A=B
CC7** For any A and B in S, ifP(A) = P(B) = P(A Π B), then P(A) = P(B)

for every absolute probability function P of Popper's of Type II defined
on S
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1 Overview^ It is usually in connection with properties that one talks of in-
discernibility, saying that A and B are indiscernible if they have the same prop-
erties. Here it is in connection with functions, more specifically, probability
functions, that we talk of indiscernibility. For example, given a relative (i.e. bi-
nary) probability function P defined on a set S,ι we say that members A and B
of S are

(i) left-indiscernible under P if

P(A, C) = P(B, C) for every C in S,

(ii) right-indiscernible under P if

P(C,A) = P(C,B) for every C in S,2

(iii) indiscernible tout court under P if

A and B are both left- and right-indiscernible under P

We further say that A and B are indiscernible tout court if A and B are indis-
cernible under every relative probability function defined on S.

The relative probability functions considered in this paper are those of Pop-
per in [15], Appendices *iv-*v, plus three special kinds of Popper functions re-
spectively associated with Renyi, Kolmogorov, and Carnap. We show that under
all of these functions left-indiscernibility entails right-indiscernibility (Popper's
Constraint), and investigate under which of them right-indiscernibility entails left-
indiscernibility, under which indiscernibility (right- or left-) entails identity, etc.
That these questions arise at all may come as a surprise, to readers of Leibniz
especially. And, banking on these results, we obtain for Renyi's, Kolmogorov's,
and Carnap's functions novel characteristic formulas or constraints that are
phrased entirely in terms of indiscernibility under P and identity: constraints
RB8, KB8, and CB8, respectively.

Renyi's functions in [16] and Carnap's in [4] are defined on sets known as
Boolean algebras, while Popper's in [15] are defined on arbitrary sets. Proceeding
as in [12] but more boldly, we initially take all of Popper's, Renyi's, Kol-
mogorov's, and Carnap's functions to be defined on Boolean algebras, and then
take all of them to be defined on arbitrary sets. In the first case constraints are
placed upon the sets on which the functions are defined and upon the functions
themselves: constraints AΓ-A5' and B1-B5, respectively. Constraints AΓ-A5'
are of course familiar postulates for Boolean algebras. In the second case con-
straints are placed upon the functions only, but there are more of them: con-
straints B1-B7.

Popper showed in [15] that constraints B1-B7 compel the arbitrary sets on
which his functions are defined to be Boolean algebras in a special and weaker
sense, i.e. Boolean algebras with respect to indiscernibility under P (Popper's
Theorem). The same holds true by implication of Renyi's, Kolmogorov's, and
Carnap's functions when they too are defined on arbitrary sets. However, we
show that in the case of Renyi's functions constraint RB8, and in that of Car-

tThe constraints mentioned in this overview are tabulated for convenience's sake on the
preceding two pages. They will also be found in the relevant sections of the paper.
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nap's functions constraint CB8, compel those supposedly arbitrary sets to be
standard Boolean algebras after all. As a result, we end up at this point with
(i) six (rather than the expected eight) distinct families of relative probability func-
tions and (ii) two distinct characterizations each of Renyi's functions and Car-
nap's, one characterization explicitly requiring of the sets on which these
functions are defined that they be standard Boolean algebras, the other not (Sec-
tions 3-5).

We turn next to Popper's absolute (i.e., unary) probability functions in [14].
We take these too to be defined on standard Boolean algebras first, this by means
of constraints AΓ-A5' and constraints C1-C3, and on arbitrary sets second, this
by means of constraints C1-C6. The functions in question, when defined on the
Boolean algebras known as fields of sets, coincide with Kolmogorov's absolute
probability functions in [6]. Only one special kind of Popper function merits at-
tention, Carnap's in [4], for which we provide a characteristic constraint phrased
entirely in terms of indiscernibility under P and identity: constraint CC7. Exploit-
ing a result in [10], we first show that when Popper's functions and Carnap's are
defined on arbitrary sets, Popper's constraints C1-C6 compel the sets in ques-
tion to be Boolean algebras with respect to indiscernibility under P. We further
show that in the case of Carnap's functions constraint CC7 compels those sup-
posedly arbitrary sets to be standard Boolean algebras after all. So, we end up
at this point with (iii) three (rather than the expected four) distinct families of
absolute probability functions and (iv) two distinct characterizations of Carnap's
functions, one explicitly requiring of the sets on which the functions are defined
that they be standard Boolean algebras, the other not (Section 6).

Indiscernibility under a probability function, it turns out, is a matter of sym-
metric difference. Readers will recall the symmetric difference A - B of mem-
bers A and B of a set S as

(AΠ -B)U (BΠ-A),

hence, when A and B are themselves sets, as the set consisting of every A not a
B and every B not an A. We establish that left- and πgΛMndiscernibility under
a relative probability function, and indiscernibility tout court under a relative or
an absolute one, can be rendered in terms of —. The renditions, together with
this theorem of Boolean algebra:

A ^ B = A if and only if A = B,

will deliver constraints RB8, KB8, CB8, and CC7, i.e. our characterizations of
Renyi's, Kolmogorov's, and Carnap's probability functions. They will also show
Popper's Constraint (left-indiscernibility under P entails right-indiscernibility un-
der P) to be a truth of quantifier logic (Sections 4 and 6).

Finally we obtain results which in effect round off Popper's probability the-
ory. Strengthening what we call Popper's Theorem and its counterpart in Sec-
tion 6 for absolute probability functions, we show that relative probability
functions meeting constraints B1-B7 or absolute ones meeting constraints Cl-
C6 are definable on a set S if, and only if, there exists an equivalence relation
on S with respect to which S constitutes a nondegenerate Boolean algebra. So
probability functions, definable on just the sets that are nondegenerate Boolean
algebras, are yet definable on all on them. Using the notion of the least equiva-
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lence relation with respect to which a set constitutes a Boolean algebra, we also
isolate —and briefly consider—three new families of probability functions: two
of them "the lost families" of relative functions in Section 5, if you will, and the
third "the lost family" of absolute ones in Section 6. Their characteristic con-
straints -RB8**, CB8**, and CC7**-are indeed akin to RB8, CB8, and CC7,
but weaker; and they talk of indiscernibility tout court where RB8, CB8, and
CC7 talked of identity. The functions are of particular interest when defined on
sets of statements (Section 7).

2 Boolean algebras Let S be a nonempty set closed under a unary func-
tion — and a binary one Π,3 and let « be an equivalence relation (i.e. a reflex-
ive, symmetrical, and transitive relation) on 5. We say that

(i) S constitutes a Boolean algebra with respect to « if these five constraints
are met:

Al For any A and BinS, AΠB^BΠA (Commutation)
A2 For any A, B, and C in S, A Π (B Π C) « (A Π B) Π C (Association)
A3 For any A, B, and C in S, A Π -B « C Π -C if,

and only if,AΓ)B~A (Special Complementation)
A4 For any A and B in S, if A « B, then —A « — B
A5 For any A, B, and C in S, if A « B, then A Π C « B Π C.4

We also say that

(ii) S constitutes in particular a nondegenerate Boolean algebra with respect
to « if A Φ B for some A and B in S.

And, with S as before, we say that S constitutes a (nondegenerate) Boolean al-
gebra tout court if there is an equivalence relation with respect to which S con-
stitutes a (nondegenerate) Boolean algebra.5 The best known, and in all too
many quarters the only known, Boolean algebras are those with respect to iden-
tity. As in Section 1, we shall often refer to them as standard Boolean algebras.
But there are other Boolean algebras: in particular, the Boolean algebras with
respect to indiscernibility under a probability function P which were mentioned
in Section 1 and which are to play a major role in this paper. They first appeared
in [15], where Popper talked of substitutional equivalence rather than indiscern-
ibility. So there will be identity versions of A1-A5, and there will be indiscern-
ibility ones. The former, the results of replacing '« ' everywhere in A1-A5 by '= ' ,
are the constraints AΓ-A5' mentioned in Section I.6

A Boolean algebra S often consists of sets, but it may also consist of rela-
tions, propositions, individuals, etc. When infinite, S may be of any infinite
cardinality. But, when S is finite and a standard algebra, S may be of only these
cardinalities: 1, 2, 4, 16,..., i.e. 2n for some n equal to or larger than 0.7 As
for the two functions — and Π, they are usually referred to as complementation
and intersection, and they will be here. When S consists of sets or of relations,
they may be interpreted set-theoretically; but they are open to other interpreta-
tions as well. For example, when S consists of propositions, — is normally in-
terpreted as the negation function and Π as the conjunction one. Importantly,
when S consists of sets, - and Π are interpreted set-theoretically, and « is taken
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to be =, S is called afield of sets. Renyi's relative probability functions in [16]
and Carnap's in [4] were defined on fields of sets; and so were Kolmogorov's ab-
solute probability functions, as noted in Section 1.

Two additional functions on S turned up in Section 1: the union function U
and the symmetric difference function —. We define the first thus:

AUB=def-(-AΠ-B).

This done, we may now formally define the second thus:

A^-B =def (A Π -B) U (B Π -A),

the definiens being short of course for — (— (A Π —B) Π —(BΠ —A)). Two par-
ticular members of any Boolean algebra also turned up in Section 1: the null or
zero element Λ and its complement, the universal or one element V. We define
Λ thus:

Λ =de/A Π -A,

A here some arbitrary but fixed member of S; and we then define V thus:

V =def - A.

That A is a particular member of S is no limitation: by Lemma l(b) in the Ap-
pendix we nonetheless have Λ « A Π -A and V « A U -A for any A in 5, so
that Λ is simply an arbitrary one of the «-equivalent elements A Π —A, B Π —B,
etc. Hence, when « is =, Λ = A Π —A and Y = A U —A for any such A.

On several occasions we shall reduce certain Boolean algebras to others, more
specifically, to standard ones. On each occasion a certain equivalence relation
(an indiscernibility one, it so happens) will have been defined on the original al-
gebras. Let S be one of the algebras; let « be the equivalence relation defined
on it; for each A in S, let [A] —the so-called equivalence set of A —be the set
consisting of every B in S such that B « A let [S] be the set consisting of the
equivalence sets that result; for each [̂ 4] in [S], let —[A] be the set consisting
of every B in S such that B « -A and for each [A] and [B] in S, let [A] Π [B]
be the set consisting of every C in S such that C ̂  A Π B. It is obvious that

[A] = [B]

is tantamount to

A ~B.

And, in consequence, it is easily verified that [S] constitutes a standard Boolean
algebra, i.e. a Boolean algebra with respect to identity. We shall call [S] the
reduction ofS with respect to «.8 [S] is sure to be a nondegenerate algebra if
Sis.

The various equivalence relations on a set S with respect to which it consti-
tutes a Boolean algebra are of course so many sets of pairs of members of 5, and
so is their intersection, the set consisting of the pairs of members of S that be-
long to all the equivalence relations with respect to which S constitutes a Boolean
algebra. Significantly for our purposes in Section 7, that intersection proves to
be one of the equivalence relations on S with respect to which S satisfies Al-
A5; and, being by definition a subset of each of them, it is known as the least
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equivalence relation on S with respect to which S constitutes a Boolean algebra.
For convenience's sake we shall refer to it by means of '«*'. When S constitutes
a nondegenerate Boolean algebra, «* proves to be one equivalence relation on
S with respect to which S constitutes such an algebra. And, when S constitutes
a standard one, i.e. a Boolean algebra with respect to =, «* proves to be =. Note
indeed that: (i) by definition every pair of members of S of the sort (A, A) be-
longs to every equivalence relation « on S, and (ii) no other pair belongs to =.

3 The relative probability functions of Type I For convenience's sake we
call the probability functions that are defined on standard Boolean algebras func-
tions of Type I, those that are defined on arbitrary sets functions of Type II. We
study the relative ones of Type I in this section, the next, and Section 7, those
of Type II in Sections 5 and 7. And, as noted in Section 1, we consider in each
case four families of relative functions: Popper's, Renyi's, Kolmogorov's, and
Carnap's.

Specifically, by a relative probability function of Popper's of Type I we un-
derstand any binary real-valued function P defined on a standard Boolean al-
gebra S and meeting these five constraints, adaptations of constraints of Popper's
in [15]:

Bl For some A and B in S, P(A,B) ψ 1 {Existence)
B2 For any A and B in S, 0 < P(A9B) (Nonnegativity)
B3 For any A in S, P(AfA) = 1 (Normality)
B4 For any A and B in S, ifP(C,B) Φ 1 for some

C in 5, then P(AfB) + P(-A,B) = 1 (Addition)
B5 For any A, B, and C in S, P(A ΠB,C)= P(A,B Π C) X P(B,C)

(Multiplication)9

And by a relative probability function of Renyi's, Kolmogorov's, or Carnap's
of Type I we understand any relative probability function of Popper's of that
type that meets this extra constraint in Renyi's case:

RB8' For any B in S, ifP(A9B) = 1 for every A in S, then B = Λ,

this one in Kolmogorov's case:

KB8; For any B in S, ifP(B,Y) = 0, then P(A,B) = 1 for every A in S,

and this one in Carnap's case:

CB8' For any A in S, ifP(A,\) = 0, then A = A.

Notes: (a) Unlike most writers we left room in Section 2 for degenerate Boolean
algebras. However, constraints Bl and B3 compel the set S on which a relative
probability function P is defined to have at least two members fe/if-discernible
from each other under P—hence, at least two members distinct from each other.
Two such members are of course V and Λ; and, because of that, any relative
probability function P is sure to have at least two distinct values: 0 and 1.

(b) Of steps in a proof taken by this consequence of AΓ

B6 For any A, B9 and C in S, P(A ΠB,C)< P(B C\A,C),
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or this one

B7 For any A, B, and C in S, P(A,BΠ C) <P(A,CΠB),

we shall say that they are taken by Commutation. B6-B7 are the two extra con-
straints placed on P when the function is of Type II. Any result obtained by Bl-
B5 and Commutation will thus automatically hold of Popper's relative
probability functions of Type II. 1 0 Of the few steps taken by other consequences
of AΓ-A5' we shall say that they are taken by BA.

(c) Assembled under Lemmas 2 and 3 in the Appendix are various facts about
binary real-valued functions that meet constraints B1-B7, hence about the rel-
ative probability functions in this section and the next. We shall invoke the two
lemmas repeatedly.

(d) RB8', KB8', and CB8' are the characteristic constraints for Renyi's, Kol-
mogorov's, and Carnap's functions that we used in [12]; the point of them is to
be explained shortly. The alternative constraints RB8, KB8, and CB8 that we
promised in Section 1 will be introduced in Section 4.

(e) It is common practice to say of a member B of S that it is P-normal if
P(A9B) Φ 1 for at least one A in S, P-abnormal otherwise; and we shall occa-
sionally say that it is of Py-probability zero if P(B,Y) = 0. So, according to Bl,
at least one member of S is P-normal, one such member being V by Lemma 2(k);
according to B4, P(-A,B) = 1 - P(A,B) if B is P-normal;11 according to
RB8', B = Λ if B is P-abnormal; according to KB8', B is P-abnormal if of
Pv-probability zero, and, according to CB8', A = Λ if A is of Pv-probability
zero.

In a way it is to division by zero not being allowed that we owe the diver-
sity of relative probability functions on p. 7. In early texts, e.g. Kolmogorov's
1933 paper [6], absolute probability functions had pride of place, and relative
ones were defined in terms of them. Given an absolute probability function P'
of the sort found in Section 6, Kolmogorov defined a relative one thus: A here
an arbitrary member of the set S on which P' is defined and B one such that
P'{B) Φ0:

P(A,B) = P'(A Π B)/Pf{B).

The relative probability functions that issued deserve study, to be sure, but they
are simply absolute probability functions gotten up as relative ones. And they
are partial functions, a bother in practice and a shortcoming in theory.

However, Kolmogorov's partial functions can be extended to total ones, and
the functions that result are the relative probability functions of p. 7. Suppose
first that P'(B) = 0 for only one B. Then that B has to be Λ, P' has to be what
we called in Section 1 a Carnap function, and because of Lemma 3(a) we have
just one choice: setting P(A,B) at 1. The resulting functions, meeting CB8', are
the relative probability functions we name after Carnap (Case 1). Suppose, on
the other hand, that Pf(B) = 0 for more than one B. Then one has several
choices. One may set P(A,B) at 1 for every such B: the resulting functions, meet-
ing KB8', are the relative probability functions we name (for a reason given on
p. 10) after Kolmogorov (Case 2). One may also set P(A9B) at 1 for B identi-
cal with Λ, but let it vary with A (subject of course to constraints AΓ-A5' and
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B1-B5) for every other B such that P'(B) = 0: the resulting functions, meeting
constraint RB8', are the relative probability functions we name after Renyi
(Case 3). And, where there are at least three 2?'s such that P'(B) — 0, one may
set P(A,B) at 1 for B identical with Λ and for a second B such that P'(B) = 0,
let it vary with A for a third B such that P'(B) = 0, and set it at 1 or let it vary
with A for any other B such that P'(B) = 0: the resulting functions are relative
probability functions that are neither Kolmogorov functions nor Renyi ones
(Case 4).12

To us, of most interest among Popper's relative probability functions of
Type I are those falling under Cases 3-4. Carnap's absolute probability functions
match the functions under Case 1 one-to-one, and the rest of Popper's absolute
probability functions match those under Case 2 one-to-one again. But the lat-
ter absolute probability functions, i.e. those that are not Carnap ones, do not
match the functions under Case 3 or those under Case 4 one-to-one. P' above,
when not a Carnap function, generates at least 2X° functions that fall under
Case 3 and an equal number that fall under Case 4. It is owing to this that rel-
ative probability theory outstrips absolute probability theory.

The relationships between our various families of relative probability func-
tions are studied in [12] and can be portrayed as in Figure 1, which we borrow

Popper's functions

Kolmogorov's functions/ \ ReΊivi's functions

Carnap's functions ί f_ ] ]

\ ^ - ^ — ^ /

Figure 1.

from [12]. Those among Popper's functions that are neither Kolmogorov nor
Renyi functions lie of course outside the two inner circles; Carnap's functions
lie, as indicated, at their intersection.

A word concerning our nomenclature is in order. The relative probability
functions we name after Popper are his in [15] when S there happens to be a stan-
dard Boolean algebra. Those we name after Renyi are extensions of some of his
in [16]. For generality's sake, Renyi defined P there on the cartesian product
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S x S' of a field of sets S and some subset or other S' of S - {A}.13 A closer fit
with the present Renyi functions can be had by thinking of S in [16] as a stan-
dard Boolean algebra rather than a field of sets and thinking of S' there as a
nonempty subset of S. Renyi's own functions would then be the functions we
name after him plus the results of keeping one or more members of S from
serving as B in P(A9B). The relative probability functions we name after Car-
nap are straightforward extensions of his in [4]: we allow Λ to serve as B in
P(A,B).14 Consistency is preserved in either case since Λ is P-abnormal. The
relative probability functions we name after Kolmogorov are not his. However,
with S a standard Boolean algebra rather than a field of sets, they are—we just
saw—the only extensions of Kolmogorov's relative probability functions in [6]
that match one-to-one his absolute ones. So the appellation is not totally inap-
propriate. The functions in question will play a fascinating role here.

The constraints that Popper placed in [15] on his functions were, in effect,
Bl, B3-B5, and these two:

(*) For any A, B, and C in S9 P(A dB9C)< P(A,C)
(**) For any A, B, and D in S, ifP(A, C) = P(B9 C) for every C in S, then

P(D,A)=P(D9B).

(**) is the constraint we referred to on p. 3 as Popper's Constraint. It is the ear-
liest constraint we know of to address itself to questions of (left- and right-) in-
discernibility under a relative probability function. Popper shows in [15] that each
of his six constraints is independent of the other five. Similarly with us, B1-B5
deliver (*) only with an assist from B6, and they deliver (**) only with an as-
sist from B6-B7. But, unlike Popper who defined his functions on arbitrary sets
rather than standard Boolean algebras and who for reasons discussed in [15] and
[9] shunned B6-B7 as extra constraints, we have AΓ, hence Commutation, and
hence a proof of (**).1 5

Most of the theorems in this paper feature a probability function P and a set
S. S is the set on which P is defined. In this section and the next P is presumed
of course to be a Popper function of Type I. However, all the theorems in this
section and all but two in the next are proved using just B1-B5 and Commuta-
tion, and hence hold for functions of Type II as well. The two exceptions in Sec-
tion 4 will be marked, and the steps taken by BA in each case will stand out.

Theorem 3.1 IfP(A9C) = P(B,C)for every C in S, then P(C,A) = P(C9B)
for every such C.

Proof: Suppose that P(A9 C) = P(B9 C) for every C in S, and let C be an ar-
bitrary member of S. Then

1. P(C,A)=P(A,CΠA) xP(C9A) (Lemma 2(c))
2. =P(B9CΠA)xP(C9A) (1, Hyp. on P)
3. =P(BΠC9A) (2, B5)
4. = P(C Π B9A) (3, Commutation)
5. =P(C,B ClA) xP(B9A) (4, B5)
6. = P(C9B ΠA)x P(A9A) (5, Hyp. on P)
7. =P(C,BΠA) (6, B3).
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But

P(C9B) = P(C9A ΠB)

by simply interchanging A and B throughout 1-7. Hence

P(C9A) = P(C9B)

by Commutation.

So, for every relative probability function P of Popper's of Type I, left-indiscern-
ibility under P entails right-indiscernibility under P9 and hence is tantamount to
indiscernibility tout court under P Further, members A and B of S thus prove
to be indiscernible tout court if P(A, C) = P(B9C) for every C in S and every
relative probability function P of Popper's of Type II defined on S. The converse
of Theorem 3.1 does not hold true, as we shall establish in Section 4.

We next show that each ofP(A9B) = P(B9A) = 1 andP(A Π B,A U B) =
1 also entails right-indiscernibility under P. The two results will prove handy. The
first of them is listed in [15] as an alternative to (**); proof of it, like proof of
(**), uses Commutation. We also show that A is of Pv-probability 0 if, and
only if, —A is right-indiscernible under P from V.

Theorem 3.2
(a) IfP(A9B) =P(B,A) = 1, then P(C,A) = P(C,B) for every C in S;
(b) IfP(A Π B,A UB) = 1, then P(C9A) = P(C,B)for every C in S;
(c) P(A9 V) = 0, //, and only if, P(C,-A) = P(C,V) for every C in S.

Proof: (a) Suppose that P(A9B) = P(B,A) = 1, and suppose that A is P-
abnormal. Then P(C Π B,A) = P(B9A) = P(C9A) = 1 by definition, and
hence P(C9B Π A) = P(C9A) by B5. Suppose on the other hand that A is
P-normal, in which case P(-B9A) = 0 by B4 and the hypothesis on P Then
P(C Π -B9A) = 0 by Lemma 2(n), and hence P(C Π B9A) = P(C9A) by
Lemma 2(f). But P(C Π B9A) = P(C9B Π A) by B5 and the hypothesis on P
Hence P(C9B Π A) = P(C9A) again. But P(C9A Π B) = P(C9B) by simply
interchanging A and B throughout. Hence P(C9A) = P(C9B) by Commutation.
(b) Suppose that P(A ΠB9A U B) --= LΊhenP(A9B Π (AU B))P(B9AU B) = I
by B5, hence P(A9B Π (A U B)) = 1 by Lemma 2(b), and hence P(A9B) = 1
by Lemma 3(e) and Theorem 3.1. But, if P(A Π B9A U B) = 1, then
P(B Π A9A I) B) = l by Commutation. Hence P(B9A) = 1 by the very same
reasoning. Hence by (a) P(C9A) = P(C,B) for every C in S. (c) Suppose first
that P ( A V) = 0. Then P( -A,V) = 1 by B4 and Lemma 2(k). But P(V, -v4) = 1
by Lemma 2(i). So, P(C, -A) = P(C9V) for every C in S by (a). Suppose next
that P(C9 -A) = P(C, V) for every Cin S. Then -.4 is P-normal by Lemma 2(k),
hence P(A9 -A) = 0 by B4 and B3, and hence P(A9 V) = 0.

Then we show that if A and B are left-indiscernible (and, hence, indiscern-
ible tout court) under P9 (a) so are -^4 and -B9 the indiscernibility version of
A4, (b) so are A Π D and BΓ\D9 the indiscernibility version of A5, and hence
(c) so are D Π A and £> Π 5.
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Theorem 3.3
(a) IfP(A9C) = P(B9 C) for every C in S9 then P(-A9C) = P(-B9 C) for ev-

ery such C;
(b) IfP(A9 C) = P(B9 C) for every C in S9 then P(A ΠD9C) = P(B Π D, C) for

every C and D in S;
(c) IfP(A, C) = P(B9 C) for every C in S, then P(D Π A, C) = P(D Π B9 C) for

every C and D in S.

Proof: (a) By B4. (b) Suppose that P(AfC) = P(B,C) for every C in S and
let C and D be arbitrary members of S. Then P(A,D Π C) X P(D,C) =
P(B,DΠ C) X P(D,C), and hence by B5 P(A ΠD9C)= P(B ΠD,C), this for
every C in S. (c) By (b) and Commutation.

The results in Theorem 3.3 readily generalize. As the reader well knows, the
unary Boolean function — and the binary one Π permit definition of every
Boolean function on S. Consequently,

P(A, C) = P(B, C) for every C in S

entails

(1) P(f(A)9C) =P(f(B)9C) for every C in S9

no matter the unary Boolean function / on S, and

(2) P(f(A9D)9C)=P(f(B9D)9C) andP(f(D9A)9C) = P(f(D9B)9C)
for every D and every C in S,

no matter the binary Boolean function/ on S9 etc. Hence, thanks to Popper's
Constraint:

Theorem 3.4 Equivalent to

P(A9 C) = P(B9 C) for every C in 5,

is each of these:
(a) P(f{A),C) =P(f(B)9C) andP(CJ(A))=P(CJ(B)) for every Boolean

function f on S and every C in S9 and
(b) P{f(A),g(A)) = P(f(B)9g(B)) for every Boolean function f and every

Boolean function g on S.

The two clauses in Theorem 3.4 bring out the full force of

Member A and member B of S are indiscernible
under relative probability function P.

And the counterpart in Section 6 of clause (b), to wit:

P(f(A)) = P(f(B)) for every Boolean function f on 5,

will point to the appropriate rendition there of

Member A and member B of S are indiscernible
under absolute probability function P16
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Our last two theorems in this section, though not explicitly dealing with in-
discernibility, are lemmas to theorems in Section 4 that do. Theorem 3.5 brings
together a number of equivalent formulations of P-abnormality.

Theorem 3.5 Equivalent to

B is P-abnormal

is each of these

(a) P(A9B) = P(A9A)foreveryA in S9

(b) P(B9A) = P(A9A) for every A in S,
(c) P(-B9A) = P(V9A) for every A in S9

(d) P(-B,A) = 1 for every A in S9 and
(e) P(-B9B) = L

Proof: (i) By Lemma 3(a) B is P-abnormal if, and only if, (a), (ii) Suppose that
B is P-abnormal, and let A be an arbitrary member of S. Then P( -B Γ\A9B) =
P(A9B) = 1 by definition, henceP(-£,.4 ΠB) = 1 by B5, henceP(-£,BΠA) = 1
by Commutation, hence P(B9A) = P(-B Π B9A) by B5 again, and hence (b) by
the definition of Λ. (iii) (b) entails (c) by Theorem 3.3(a) and the definition of V.
(iv) (c) entails (d) by Lemma 2(i). (v) (d) entails (e). (vi) (e) entails that B is P-ab-
normal by B3-B4.

So, P-abnormality is equivalent to fe/ί-indiscernibility under P from Λ and to
/vgΛMndiscernibility under P from Λ.

Theorem 3.6 If B is P-abnormal9 then P(B9Y) = 0.

Proof: Suppose P(A9B) = 1 for every A in S. Then P(-B9Y) = 1 by Theorem
3.5(d), and hence P(£,V) = 0 by B4 and Lemma 2(k).

So, if B is P-abnormal, then in the idiom of p. 8 B is of Pv-probability 0. So,
when P is a Kolmogorov function, B is P-abnormal if, and only if, it is of P v -
probability 0.

4 The relative probability functions of Type I (concluded) We provide in
Theorem 4.1 renditions of UA and B are fe/Mndiscernible under P", and in The-
orem 4.2 renditions of "A and B are r/g/tf-indiscernible under P", in terms of - .
Some of the renditions take after — (A - B) = V, others after A — B = Λ. Those
in Theorem 4.2 may come as a surprise. We also provide in Theorem 4.4 rendi-
tions of "A and B or their complements in S are πgΛMndiscernible under P " in
terms of —. The renditions in Theorems 4.1-4.2 pave the way for constraints
RB8, KB8, and CB8; those in Theorem 4.4 will deliver our last result in Sec-
tion 6.

Theorem 4.1 Equivalent to

P(A9 C) = P(B9 C) for every C in S

is each of these:
(a) P(-(A •*- B)9C) = 1 for every C in S9

(b) P( - (A ^ B), C) = P(V, C) for every C in S9
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(c) P(A -*-B9C) = P(Λ,C) for every C in S,
(d) P(C,A -s- B) = 1 for every C in S, and
(e) P(C,,4 - £ ) =P(C,Λ) for every C in S.

Proof: (a) Suppose//rsί that P(yl, C) = P(B9 C) for every C in S, and let C be
P-normal. Then P(,4 Π -£,C) = P ( £ Π -A9C) = 0 by Theorem 3.3(b) and
Lemma 2(h), and hence P(-(A - £),C) = 1 by Lemma 3(q) and B4. But
P ( - (^ -»- 5), C) = 1 by definition when Cis P-abnormal. So P ( - (A -*• 5), C) = 1
for every Cin S. Suppose «exf that P(-(A -B)9C) = I for every Cin S, and
let C be P-normal. Then P(A Π - 5 , C) = P ( £ Π -Λ, C) = 0 by B4 and Lemma
3(q) again, hence P(A9C) = P(,4 Π £,C) and P(B,C) = P(B Π A,C) by
Lemma 2(f), and hence P(A,C) = P(B,C) by Commutation. But P(>1,C) =
P(.B, C) by definition when C is P-abnormal. So P(A9 C) = P(B9 C) for every
C in S. (b) By (a) and Theorem 3.5(c). (c) By (a) and Theorem 3.5(b). (d) By (a)
and Theorem 3.5(d). (e) By (a) and Theorem 3.5(a).

Note that in view of rendition (d) A and B are ̂ //-indiscernible under P just
when A — B is P-abnormal.

Theorem 4.2 Equivalent to

P(C,A) = P(C,B) for every C in S

is each of these:
{z)P(-(A^B),A\JB) = l,
(b) P(-(A ^B),A UB) =P(V,AUB),and
(c) P(A -̂  ByA UB)= P(AyA U B).

Proof: (a) Suppose first that P( C, A) = P(C, B) for every C in S, and let ̂ 4 be
P-normal, in which case so is A U B by Lemma 3(s). Then P(^4 - B9A U B) =
P f - f i n ,4,,4 U 5) + P(-A Π 5 , ^ U 5) by Lemma 3(p) and Commu-
tation, hence P(A - 5,^1 U B) = P ( - £ , ^ Π(>1U 5)) x P ( Λ Λ U ̂ ) +
P(-A9B D(AU B)) x P(A9A U 5) by B5, and hence P(A - 5,̂ 1 U B) =
P(-£,,4) x P(Λ>1 U 5) + P(->1,^) x P ( ^ , ^ U B) by Lemmas 3(d)-(e) and
Theorem 3.1. But P(-A9B) = P(-B9A) = 0 by Lemma 3(t), the hypothesis
on P, and that on A. Hence P(>1 - £,>! U 5) = 0, and hence P(-(A -«- 5) ,
v4 U 5) = 1 by B4. Let 4̂ on the other hand be P-abnormal, in which case so
is B by the hypothesis on P. Then P(-^4,C) = P(-B9C) = 1 for every such
C by Theorem 3.5(d), hence A U B is P-abnormal by Lemma 3(u), and hence
P(-(A ^B)9A UB) = 1 by definition. SoP(-(,4 - B)9A ΌB) = 1 whether
or not A is P-normal. Suppose next that P(-(v4 - B)9A Ό B) = 1, and let
AUBbeP-normal. ThenP(A ΠB9A UB) + P(-A O-B9AUB) = \ by Lem-
mas 3(g) and 3(r). But P(-A Π -£,.4 U B) = 0 by B4 and the definition of
AUB.So P(A ΠB9AUB) = 1 by B4, and hence P(C9A) = P(C9B) for ev-
ery C in S by Theorem 3.2(b). Let A U 5 on the other hand be P-abnormal. Then
so are A and B by Lemma 3(s), and hence P(C,^4) = P(C9B) for every C in
5 by definition. So P(C9A) = P(C9B) for every C in S whether or not A U B
is P-normal. (b) By (a) and Lemma 2(i). (c) By (b), B4, and the definition of V.

Note that, A U B being a member of S,

IfP(-(A ^B)9C) = 1 for every C in S9 then P(-(A - B),A\J B) = 1
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is a truth of quantifier logic. But, owing to Theorem 4.1, the antecedent of the
conditional is equivalent to

P(A, C) = P(B, C) for every C in S,

and owing to Theorem 4.2 its consequent is equivalent to

P(C,A) = P(C,B)for every C in S.

So, as remarked in Section 1, Popper's Constraint is, in the context of B1-B7,
a truth of quantifier logic. Its converse, however, is not. So πg/tf-indiscernibil-
ity under P can entail fe/Mndiscernibility under P for only certain choices of P.
We shall identify them shortly.

The following theorem serves as a lemma to Theorems 4.4, 4.6, and 4.7.

Theorem 4.3.
(a) IfP(C,A) = P(C,B) for every C in S, then P(A ^ B,V) = 0;
(b) IfP(A,V) Φ 0, then P{C,A) = P(C,B) for every C in S if and only if

P(A -£,V) = 0.

Proof: Suppose that P( C, A) = P( C, B) for every C in 5, in which case P(A, B) =
P(B,A) = 1 by B3; and let A first be P-normal. Then P(-B,A Π V) = 0 by
B4 and Lemma 2(j), and hence P(A Π -B,V) = 0 by B5 and Commutation.
Let A next be P-abnormal. Then P(A,V) = 0 by Theorem 3.6, and hence
P(AΠ -B,V) = 0 by Lemma 2(n). So P(A Π -B, V) = 0 whether or not A is
P-normal. But P(B Π -A, V) = 0 by merely interchanging A and B throughout.
So P(A -«- B,V) = 0 by Lemma 3(q). (b) Suppose that P(^4,V) Φ 0 and
P(A -- B,V) = 0. P((A +B)Ci(AU B),Y) = 0 by the second hypothesis and
Lemma 2(n), and hence P(A ^ B,A U B) x P(A U B,V) = 0 by B5 and Lemma
2(j). But P(A U £,V) * 0 by the first hypothesis, Lemma 3(o), and B2. So,
P(A -*• B,A U 5 ) = 0 , so P( - (A -*- £),y4 U 5) = 1 by B4, and hence P(C9A) =
P(C,B) for every C in S by Theorem 4.2(a). So, (b) by (a).

Now our renditions of "A and B or their complements are right-indiscern-
ible under P" :

Theorem 4.4 Equivalent to

P(C,A) = P(C,B) for every C in S or
P(C,-A) = P(C,-B)for every such C

is each of these:
(a) P(A -^B,Y)=0,and
(b) P(Q- (A - B)) = P(C,V) for every C in S.

Proof: (a) Suppose//^/that P(C9A) =P(C,B) for every CinSorP(C,-.4) =
P(C,-B) for every C in 5. If P(C,,4) = P(C,B) for every C in 5, then
P(,4 -«- B, V) = 0 by Theorem 4.3(a). So, suppose P(C,-.4) = P(C,-B) for every
C in S. Then P( -A - - 5 , V) = 0 by Theorem 4.3(a), and hence P(A - B9 V) = 0
by Lemma 3(f). Suppose #ev/ that P(A •*- B,V) = 0. Since either P(A,V) ^ 0
or P(->4,V) Φ 0 by B4 and Lemma 2(k), either P(C,,4) = P(C,B) for every C
in S or P(C,-v4) = P(C9-B) for every such Cby Theorem 4.3(b). (b) By (a) and
Theorem 3.2(c).
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So, A and B themselves or their complements are r/g/tf-indiscernible under P just
when A - B is of iVprobability 0.

Theorems 4.1-4.4, proved using just B1-B5 and Commutation, hold whether
P is of Type I or of Type II. So does Theorem 4.6 below. In contrast, Theorems
4.5 and 4.7 are the two that hold only of functions of Type I. A reminder of that
is the '(I)' attached to the call number of each.

It is when P is a relative probability function of Renyi's that fe/if-indiscern-
ibility (hence, indiscernibility tout court) under P entails identity. Equivalent in-
deed to

RB8' For any B in S, ifP(A,B) = 1 for every A in S, then B = A,

is

RB8 For any A and B in S, ifP(A, C) = P(B, C) for every C in S, then A=B,

the constraint we claimed in Section 1 to be characteristic of Renyi's functions.

Theorem 4.5(1) P meets constraint RB8' //, and only if, it meets constraint
RB8.

Proof: Suppose first that P meets RB8', and let P(A, C) = P(B, C) for every
C in 5. Then P(C,A - B) = 1 for every such C by Theorem 4.1(d), hence
A - B = A by RB8', and hence A = B by BA. So P meets RB8. Suppose next
that P meets RB8, and let P(A,B) = 1 for every A in S. Then P(A9-B -«- V) = 1
for every such A by Lemma 3(h) and Theorem 3.1, hence P( -B,A) = P(V,A)
for every such A by Theorem 4.1(d), hence -B = V by RB8, and hence B - Λ
by BA. So P meets RB8'.

So, Renyi's relative probability functions of Type I are those, and those only,
among Popper's functions of that Type that meet constraint RB8.17

It is when P is a relative probability function of Kolmogorov's — and, con-
trary perhaps to expectation, only then—that πg/tf-indiscernibility under P entails
fe/if-indiscernibility (and, hence, indiscernibility tout court) under P. Equivalent
indeed to

KB87 For any B in S, ifP(B,Y) = 0, then P(A,B) = 1 for every A in S,

is

KB8 For any A and B in S, if P(C,A) = P(C,B) for every C in S, then
P(A, C) = P(B, C) for every such C,

the constraint we claimed in Section 1 to be characteristic of Kolmogorov's func-
tions.

Theorem 4.6 P meets constraint KB8' if, and only if, it meets constraint KB8.

Proof: Suppose//^ that P meets KB8', and let P(C,A) = P(C,B) for every
C in S. Then P(A - B,V) = 0 by Theorem 4.3(a), hence P(C,A - B) = 1
for every C in S by KB8r, and hence P(A,C) = P(B,C) for every such C by
Theorem 4.1(d). So P meets KB8. Suppose next that P meets KB8, and let
P(B,V) = 0. Then P(A,-B) = P(A,V) for every A in S by Theorem 3.2(c),
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hence P( — B,A) = 1 for every such A by KB8 and Lemma 2(i), and hence
P(A,B) = 1 for every such A by Theorem 3.5(d). So P meets KB8'.

So, Kolmogorov's relative probability functions of Type I are those, and
those only, among Popper's functions of that type that meet constraint KB8.

Since Carnap's relative probability functions of Type I are those among Pop-
per's that are both Kolmogorov and Renyi functions, they meet both constraints
KB8 and RB8, and hence meet

CB8 For any A and Bin S, ifP(C,A) = P(C,B) for every C in S, thenA=B,

the constraint we claimed in Section 1 to be characteristic of Carnap's functions.
On the other hand, since identity implies /e/Mndiscernibility and /e/ϊ-indiscern-
ibility implies πg/tf-indiscernibility by Theorem 3.1, any function satisfying CB8
meets both KB8 and RB8. So it is when P is a Carnap function that right-
indiscernibility under P entails identity. That

CB8' For any A in S, ifP(A,V) = 0, then A = A,

is equivalent to CB8 can also be established directly.

Theorem 4.7(1) P meets constraint CB8' if and only if it meets constraint
CB8.

Proof: Suppose first that P meets CB8', and let P(C,A) = P(C,B) for every C
in S. Then P(A -̂ £, V) = 0 by Theorem 4.3(a), hence A - B = A by CB8', and
hence A = B by BA. So P meets CB8. Suppose next that P meets CB8, and let
P(B,V) = 0. Then P(A,-B) = P(A,V) for every A in S by Theorem 3.2(c),
hence -B = V by CB8, and hence B = Λ by BA. So P meets CB8'.

So, Carnap's relative probability functions of Type I are those, and those
only, among Popper's functions of that type that meet CB8.

In summary, then, it is true of all the relative probability functions of Pop-
per's of Type I that

IfP(A,C) = P(B,C)for every C in S, then P(C,A)
= P(C,B)for every such C.

And it is true of the Renyi ones, but of them only, that

IfP(A, C) = P(B, C) for every C in S, then A = B,

true of the Kolmogorov ones, but of them only, that

IfP(C,A) = P(C,B) for every C in S, then P(A,C)
= P(B,C) for every such C,

and true of the Carnap ones, but of them only, that

IfP(C,A) = P(C,B) for every C in S, then A = B.

We borrow from [12] examples of four relative probability functions of Pop-
per's of Type I that illustrate the foregoing points:

Illustration 1 Let S be this 4-membered set: {A,a,-a,V}; and let — a = a,
- Λ = V , - V = Λ , V Π a = a, V Π - a = - a , a n - a = A Π Y = A Π a =
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Λ Π -a = Λ, so that S constitutes a standard Boolean algebra. The following bi-
nary function P on S meets CB8 (and, hence, RB8 and KB8 as well):

B

P(A,B) A a -a V

Λ 1 0 0 0
a 1 1 0 1/2

-a 1 0 1 1 / 2
V 1 1 1 1

Illustration 2 Let S be as in Illustration 1. The following binary function P
meets RB8 but violates KB8 (and, hence, CB8 as well):

B

P(A,B) A a -a V

A 1 0 0 0
a 1 1 0 0

Λ -a 1 0 1 1
V 1 1 1 1

Illustration 3 Let S be as in Illustration 1. The following binary function P
meets KB8 but violates RB8 (and, hence CB8 as well):

B

P(A9B) A a - α V

Λ 1 1 0 0

Δ a 1 1 0 0
A -a 1 1 1 1

V 1 1 1 1

Illustration 4 Let S be the set of subsets of [ 1,2,3}, and let - and Π be set-
theoretic complementation and intersection, respectively. S is a field of sets and
hence a standard Boolean algebra. The following binary function P is a relative
probability function of Popper's of Type I but violates RB8 and KB8 (and,
hence, CB8 as well):

B

P(A9B) A {1} {2} {3} {2,3} {1,3} {1,2} V

Λ 1 1 0 0 0 0 0 0
{1} 1 1 0 0 0 0 0 0
{2} 1 1 1 0 0 0 1 0
{3} 1 1 0 1 1 1 0 1

{2,3} 1 1 1 1 1 1 1 1
{1,3} 1 1 0 1 1 1 0 1
{1,2} 1 1 1 0 0 0 1 0

V 1 1 1 1 1 1 1 1

Renyi's relative probability functions want further comment. RB8', the con-
straint we initially placed on them, required that any P-abnormal member of S
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be identical with Λ; hence, that any member of S indiscernible under P from
Λ be identical with Λ, and by the same token that any one indiscernible under
P from V be identical with V. We just showed RB8' equivalent to RB8, a con-
straint requiring that any member of S indiscernible under P from a given mem-
ber ofS—be that member Λ, V, or one other than Λ and V —be identical with
it. So Renyi's functions do not allow indiscernibles in the sets on which they are
defined. By contrast, those among Popper's relative probability functions of
Type I that are not Renyi functions do. However, being defined on standard
Boolean algebras, they allow indiscernibles in a very systematic way. Indeed, if
member A and member B of S are distinct but indiscernible from each other,
then —A and —B will not only be indiscernible from each other but distinct as
well, and so will A Π C and B Π C for many a C in S. We return to this whole
matter at the close of Section 5.

5 The relative probability functions of Type II By a relative probability
function of Popper's of Type II we understand any binary real-valued function
defined on a set closed under - and Π, and meeting constraints B1-B5 on p. 6
plus these familiar two:

B6 For any A, B, and C in 5, P(A ΠB,C)< P(B CiA, C) (Commutation)
B7 For any A, B, and C in S, P(A,B Π C) < P(A, CΠB) (Commutation)

And by a relative probability function of Renyi's, Kolmogorov's, or Carnap's
of Type II we understand any relative probability function of Popper's of that
type that meets constraint RB8 in Renyi's case, KB8 in Kolmogorov's, and CB8
in Carnap's.

Notes: (a) Lemmas 2-3 hold of course with P a relative probability function
of Popper's of Type II, and are invoked in this section as well.

(b) In the absence of AΓ, the indiscernibility versions B6-B7 of Al are in-
dependent of B1-B5 and of each other.18 But, as we shall shortly see, those of
A2-A3 follow from B1-B5 together with B6-B7.

(c) In Sections 3-4, where S was presumed to be a standard Boolean algebra,
we had Λ and A Π -A, hence V and A U —A, identical for any A in S. Here we
merely have Λ and A Π —A, hence V and A U — A, indiscernible under P for any
such A (see Lemmas 2(h)-(i)).

Since standard Boolean algebras are sets of a certain sort and B6-B7 hold
in Section 3 by dint of AΓ, any relative probability function of Type I is one of
Type II. But not vice-versa, a point possibly obscured by Popper and all too often
missed by his readers.19 Consider, for example, the set {a, b, c} such that -a = c,
—b=—c = a,aΓ\b = bΓ\a = aC\c = cC\a = a, and bΓ\c = cΓ\b = c. This binary
function

B

P(A,B) a b c

a 1 0 0
A b 1 1 1

c 1 1 1
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constitutes a relative probability function of Popper's of Type II. But [a,b,c]
violates A3' and hence does not constitute a standard Boolean algebra. Nor, in
point of fact, could [a,b,c] constitute such a Boolean algebra since it has three
members. P, by the way, is a Kolmogorov function that is not a Renyi one.

Theorems 5.1-5.6 and 5.10 concern relative probability functions of Popper's
of Type II, a fact which for special reasons we underscore in two cases. A func-
tion of Type I being one of Type II, as just noted, the theorems nonetheless hold
for all Popper functions. On exactly which sets functions meeting constraints Bl-
B7 can be defined was ascertained—in large part—by Popper in [15]. Theorems
5.1-5.5, together with constraint B6 and Theorem 3.3, deliver his share of the
result. The proofs of Theorems 5.1-5.3 are his in [15].

Theorem 5.1 P(A Π (B Π C),(A Π B) Π C) = 1.

Proof:
1. P(A CιB,(AΠB)nC) = l (Lemma 2(c))
2. P(A,(A Π B) Π C) = 1 (1, Lemma 3(b))
3. P(B,(A Π B) Π C) = 1 (1, Lemma 3(b))
4. P(C,(A ΠB)ΠC) = l (Lemma 2(c))
5. P(B Π C,(A Π B) Π C) = I (3,4, Lemma 3(b))
6. P(A Γ)(B(ΊC),(AnB)nC) = l (1,5, Lemma 3(b)).

Theorem 5.2 P((A Π B) Π C9A Π (B Π C)) = 1.

Proof: Similar to that of Theorem 5.1.

Theorem 5.3 P(D,A Π (B Π C)) = P(D, (A Π B) Π C) for every D in S.

Proof: By Theorems 5.1-5.2 and Theorem 3.2(a).

Theorem 5.4 P(A Π(BΠC),D)= P((A Π B) Π C,D) for every D in S.

Proof:
1. P((A ΠB) Π C,D) =P(A nB,CDD) XP(C,D) (B5)
2. =P(A,BΠ (CΠD))xP(B,CnD)xP(C,D) (1, B5)
3. =P(A,Bn(CΠD))xP(BΠC9D) (2, B5)
4. =P(A,(BnC)ΓιD)xP(BnC,D) (3, Theorem 5.3)
5. =P(AΠ(BΠC),D) (4,B5).

Theorem 5.5 P(A Π -B,D) =P(CΠ -C,D)for every D in S if and only
if P(A Π B,D) = P(A,D) for every such D.

Proof: By Lemmas 2(f) and 2(h) when D is P-normal, by definition otherwise.

Now for what we call Popper's Theorem. Let P be a relative probability func-
tion of Popper's of Type II. Clearly, A is indiscernible under P from A; Bis in-
discernible under P from A if A is from B; and A is indiscernible under P from
C if A is from B and B is from C. Further, by B6 4̂ Π 5 is indiscernible under
P from 5 Π Λ; by Theorem 5.4 A Γ) (B Γ) C) is indiscernible under P from
(A ΠB) DC; by Theorem 5.5 A Π -B is indiscernible under P from CΠ -C
if, and only if, A Γ) B is from v4; and by Theorem 3.3 — A is indiscernible un-
der P from -B, and 4̂ Π Cindiscernible under P from BΠ Cif A is from 5.
Finally, as shown in Section 3, at least two members of S are sure because of Bl
and B3 to be discernible under P. So:
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Theorem 5.6 Let Pbea relative probability function of Popper's of Type II,
and S be the set on which P is defined. Then:
(a) Indiscernibility under P constitutes an equivalence relation on S;
(b) P meets the indiscernibility versions of A1-A5;
(c) At least two distinct members of S are discernible under P; and hence
(d) S constitutes a nondegenerate Boolean algebra with respect to indiscernibility

under P (Popper's Theorem).20

That the sets on which Popper defines his relative probability functions con-
stitute nondegenerate Boolean algebras is a remarkable finding. It has a num-
ber of corollaries. Note, for instance, that if the identity versions AΓ-A5' of
A1-A5 deliver a certain identity A = B9 then their indiscernibility versions are
sure to deliver

P(A9 C) = P(B, C) for every C in 5,

this by clause (b) of Theorem 5.6. So, owing to Theorem 3.1:

Theorem 5.7 Let P be a binary real-valued function meeting constraints Bl-
B7; let S be the set on which P is defined; and suppose A=B is provable by Al '-
A5'. Then

P(A, C) = P(B, C) for every C in S

and

P(C,A) =P(C,B) for every C in S

are consequences of B1-B7.

Various clauses of Lemma 3 in the Appendix are proved by appeal to this
corollary.

Other corollaries of Popper's Theorem are of theoretical significance. Be-
cause of it, indiscernibility tout court in the sense of p. 11 is one more equiva-
lence relation with respect to which the sets that Popper's relative probability
functions are defined on constitute Boolean algebras. Further, suppose P is a
Renyi function, and let A and B be arbitrary members of the set S on which P
is defined. Since P meets constraint RB8, A will be identical with B if indiscern-
ible under P from B. So S, a Boolean algebra with respect to indiscernibility un-
der P by Popper's Theorem, is one with respect to identity as well. So:

Theorem 5.8 Renyi's relative probability functions of Type II are identical
with those of Type I.

But Carnap's relative probability functions are Renyi ones: meeting constraint
CB8, they meet constraint RB8. So:

Theorem 5.9 Carnap's relative probability functions of Type II are identi-
cal with those of Type L

So, at this point, there is just one family of relative probability functions in
Renyi's sense, and just one in Carnap's sense. But, as reported in Section 1, each
family can be characterized in two different ways. In both characterizations one
must require of the functions that they meet constraints B1-B5 plus whichever
of constraints RB8 and CB8 is appropriate. This done, however, one may either
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require as in Section 3 that the sets on which the functions are defined be stan-
dard Boolean algebras or require as in this section that the functions themselves
meet the extra constraints B6-B7. Those extra constraints, remarkably, compel
the sets on which the functions are defined to be standard Boolean algebras.

Here as in Sections 3-4 those among Popper's relative probability functions
that are not Renyi ones allow indiscernibles, but they are less systematic about
it than on pp. 18-19. For example, look back at the function displayed on
pp. 18-19. Members b and c of the set [a,b,c] on which the function is defined
are indiscernible but distinct of course from each other; their complements, on
the other hand, are the same. Our present concern, however, is a related but dif-
ferent one, i.e. noting that, where P is a Popper function that is not a Renyi one
and S the set on which P is defined, one can sort the indiscernibles that P allows
into equivalence sets, each set consisting of all the members of S indiscernible
under P from a given one, and turn P into a relative probability function on the
set consisting of those equivalence sets. That set is of course a standard Boolean
algebra, and the function into which P is turned proves of course to be a Renyi
one.

More formally, let P and S be as described. S is sure by Popper's Theorem
to be a Boolean algebra with respect to indiscernibility under P. So let [S] be
what we called in Section 2 the reduction of S with respect to that equivalence
relation,21 and let [P] be the following binary function on [S], to be known as
the reduction ofPto[S]:

[P]([A],[B])=P(A9B)9

where A is an arbitrary member of [A] and B an arbitrary one of [B]. (Since
for any A' in [A] and any B' in [B]9 P(A\C) = P(A,C) and P(C,B') =
P(C,B) for every C in S, the choice of A and B is immaterial.) Clearly, [P] is
real-valued just as P is and meets constraints B1-B7 just as P does. But, impor-
tantly here, [P] also meets constraint RB8. For suppose that

[P]([A],[C]) = [P]([B],[C]) for every [C] in [S].

Then, by definition,

P(A, C) = P(B, C) for every C in S,

and hence, as noted on p. 6,

[A] = [B].

So:

Theorem 5.10 Let P be a relative probability function of Popper's of Type
II that is not a Renyi one; let S be the set on which P is defined; and let [S] be
the reduction of S with respect to indiscernibility under P. Then the reduction
[P] ofPto [S] constitutes a Renyi function on [S].

We established in Section 4 that the converse

IfP(C,A) = P(C9B)for every C in S,
then P(A, C) = P(B, C) for every such C

of Popper's Constraint is characteristic of Kolmogorov's relative probability
functions and hence does not hold true of other relative probability functions.
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A case in point is the Renyi function P on p. 18, Illustration 2: P(C,-a) =
P(C,V) for every C there, but P(-a,a) Φ P(V,a). However,

P (C, A) = P(C,B) for every relative probability function P
of Popper's of Type II defined on S and every C in S

entails

P(A, C) = P(B, C) for every such P and every such C,

as we go on to show. So members A and B of S prove to be indiscernible tout
court if rigΛMndiscernible as well as if fe/Mndiscernible under every relative
probability function of Popper's of Type II defined on S.22

Theorem 5.11 P(C,A) = P(QB) for every relative probability function P
of Popper's of Type II defined on S and every C in S if and only if P(A,C) =
P(B,C) for every such P and every such S.

Proof: Suppose P is a relative probability function of Popper's of Type II de-
fined on 5 and C is a member of S such that P(A, C) Φ P(B, C). Then by B6
either P(A ΠByC)Φ P(A, C) or P(B ΠA,C)Φ P(B, C). So suppose first that
P(A C\B,C)ΦP(A,C), in which case P(A,C)Φθbγ Lemma 2(n); and let Pc

be this function gotten from P by conditionαlizing on C:

PC(D,E)=P{D,EΠC).

Pc meets B2 by B2, B3 by Lemma 2(c), B5 by B5 and Theorem 5.3, B6 by B6,
and B7 by Theorem 5.7. As for Bl, since P(A9C) Φ P(B9C), P(A,C) Φ 1 or
P(B,C) Φ 1 or both, hence P(A,C Π C) Φ 1 or P(B>CΓ) C) Φ 1 or both by
Theorem 5.7, and hence PC(A,C) Φ 1 or PC(B,C) Φ 1 or both. And as for
B4, suppose E is Pc-normal. Then E Π C is P-normal by definition, hence
P(-D,EΓ\C) = \-P(DiEnC) by B4, and hence PC(-D,E) = \-PC(D,E).
So Pc constitutes a relative probability function of Popper's of Type II, and
hence in particular PC(B,B) = 1 by B3. But PC{B,A) = P(B C\A,C)/P(A,C)
by B5 and P(A,C) Φ 0, hence PC(B,A) = P(A Π B,C)/P(A,C) by B6, and
hence PC{B,A) Φ 1 by the hypothesis on P(A Γ)B,C). So PC(B,A) Φ PC(B,B).
Suppose next that P(B Π A,C) Φ P{ByC). Then PC(A,B) Φ PC(A,A) by
interchanging A and B throughout. So there exists a relative probability func-
tion P of Popper's of Type II defined on S and a member C of S such that
P(C,A) Φ P(C,B). So Theorem 5.11 by Theorem 3.1.

We put this result to use in Section 7.

6 Absolute probability functions By an absolute probability function of
Popper's of Type I we understand any unary real-valued function P defined on
a standard Boolean algebra S and meeting these three constraints, adaptations
of constraints of Popper's in [14]:

Cl For any A in S, 0 < P(A) (Nonnegativity)
C2 For any A in S, P(A U -A) = 1 (Normality)
C3 For any A and B in S, P(A) = P(A Π B) + P(A Π -B)

(Special Addition)23
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And by an absolute probability function of Carnap's of Type I we understand
any absolute probability function of Popper's of that type that meets this extra
constraint:

CC7' For any A in S, ifP(A) = 0, then A = Λ.

Notes: (a) Assembled under Lemmas 4-5 in the Appendix are various facts
about unary real-valued functions that meet constraints C1-C3 above and C4-
C6 on p. 26. The latter are the extra constraints placed on P when the function
is of Type II. They trivially follow from AΓ-A5'. So the various clauses of
Lemmas 4 and 5 hold of all absolute probability functions. In accord with our
practice in Sections 4-5 we say of the last step in the proof of Theorem 6.1 that
it is taken by Commutation; and of the one step in this section taken by a con-
sequence of AΓ-A5' other then C1-C6, we shall say that it is taken by BA.

(b) CC7' is the characteristic constraint for Carnap's absolute probability
functions that we used in [12]. The alternative constraint CC7 that we promised
in Section 1 will be introduced on p. 25.

(c) According to Lemma 4(e)

P(A Π -A) = 0.

So P has at least two distinct values. So S is a nondegenerate Boolean algebra.

The condition

P(A, C) = P(B, C) for every C in S,

which we have used to say that members A and B of S are indiscernible under
the relative probability function P, proved equivalent in Section 3 to

P(f(A)9g(A)) = P(f(B),g(B))
for every Boolean function f and every Boolean function g on S.

Wanted here is a condition which would prove equivalent to

P(f(A)) = P(f(B)) for every Boolean function f on S,

and which, as a result, we could use to say that members A and B of S are in-
discernible under the absolute probability function P.

This condition:

P(A)=P(B),

would clearly not do. For suppose P(A) equaled 1/2, and let B be -A. Then by
Lemma 4(i) P(A) would equal P(B). But by Lemma 4(d) P(A Π A) would equal
P(A) and hence 1/2, while by Lemma 4(e) P(B Π A) (i.e., P( -A Π A)) would
equal 0. So there would be a C in S (i.e., A itself) such that P(A) = P(B) but
P(A OC)Φ P(B Π C). 2 4 However,

P(A) = P(B) and P(A) = P(A Π B),

in short,

P(A) =P(B) =P(A ΠB)9

would do, as we next show; and, along of course with P(A) =P(B) —P(BΓ\A),
it is the simplest condition that would.
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Theorems 6.1-6.3, though concerned with functions of Type I, are proved
using just constraints C1-C6. So they hold of functions of Type II as well. Not
so, however, Theorem 6.4.

Theorem 6.1
(a) IfP(A) = P(B) = P(A Π B), then P{-A) = P(-B);
(b) IfP(A) = P(B) = P(A Π B), then P(A Γ)C)= P(B Π C) for every C in S;
(c) IfP(A) =P(B) =P(A ΠB), then P(CΠ A) =P(CΠB) for every such C.

Proof: (a) By Lemma 4(i). (b) Suppose P(A) = P(B) = P(A Π B), and let C
be an arbitrary member of S. Then P(A Π -B) = P( -A Π B) = 0 by C3 and
Lemma 4(a); hence P((A ΠC)Π -B) =P(-AΠ(BΠ C)) = 0 by Lemmas 4(g)
and 4(j) in one case and Lemmas 4(f) and 4(b) in the other; hence P(A ΠC) =
P(A Π (C Π B)) by C3 and Lemma 4(j), and P(B Γ)C)= P(A Π (C Π B)) by
Lemmas 4(a) and 4(k); and hence P(A ΠC)= P(B Π C). (c) By (b) and Com-
mutation.

As Theorem 3.3 generalized to Theorem 3.4, so does the foregoing theorem
generalize to this (given again that — and Π permit definition of every Boolean
function on S):

Theorem 6.2 P(A) = P(B) = P(A Π B) if and only if P(f(A)) = P(f(B))
for every Boolean function f on 5.

Left- and right-indiscernibility under a relative probability function can be
phrased in terms of symmetric difference, as we showed in Section 4. So can in-
discernibility under an absolute one, our next theorem shows. Four phrasings are
provided there. The first of them will deliver CC7, our new characteristic con-
straint for Carnap's functions. The last two are as close as one can get in prob-
ability theory to the two identities A - B = Λ and - (A - B) = V in Section 1.

Theorem 6.3 Equivalent to

P(A) =P(B) =P(A ΠB)

is each of these:
(a) P(A - B) = 0,
(b)P(-(A^B)) = l,
(c) P(A-^B)=P(A),and
( d ) P ( - U - £ ) ) = P ( V ) .

Proof: (a) By C3 and Lemma 4(a) P(A) = P(B) = P(A Π B) if, and only if,
P(A Π -B) = P(B Π -A) = 0; and hence by Lemma 5(c) if, and only if,
P{A - B) = 0. (b) By (a) and Lemma 4(i). (c) By (a) and Lemma 4(e). (d) By
(b) and C2.

It is when P is an absolute probability function of Carnap's that indiscerni-
bility under P entails identity. Equivalent indeed to

CC7' For any A in S, ifP(A) = 0, then A = Λ,

is

CC7 For any A and B in S, ifP(A) = P(B) = P(A Π B), then A = B,
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the constraint we claimed in Section 1 to be characteristic of Carnap's functions.
The theorem to that effect holds only for Popper functions of Type I. A reminder
of that is the '(I)' we attach to the call number of the theorem.

Theorem 6.4(1) P meets constraint CC1' if, and only if, it meets constraint
CCΊ.

Proof: Suppose//rtf that P meets CC7', and let P(A) = P(B) = P(A Π B), in
which case P(B) = P(B Π A) by Commutation. Then P(A ^ £) = 0 by Theo-
rem 6.3(a), hence A ^ B = A by CCΊ', and hence A = B by BA. So P meets CCΊ.
Suppose next that P meets CC7, and let P(A) = 0. Then P(A) = P(Λ) by
Lemma 4(e), P(A) = P(A Π Λ) by Lemma 4(f), and hence A = Λ by CCΊ. So
P meets CCΊ'.

So, Carnap's absolute probability functions of Type I are those, and those only,
among Popper's functions of that type that meet constraint CCΊ.

The following illustration yields 2X° distinct absolute probability functions
of Popper's of Type I, one for each choice of a nonnegative real not exceeding
1 as r. 2*° of the functions will be Carnap ones, those gotten by choosing r
larger than 0. Each member of the set (A, a,-a, V) on which the functions are
defined will then be discernible from the other three.

Illustration 5 Let S be the set [A,a,-a,Y] as in Illustration 1.

A \P(A)

A 0
a r

-a l-r
V 1

So much, however, for the functions of Type I. By an absolute probability
function of Popper's of Type //we understand any unary real-valued function
defined on a set closed under - and Π, and meeting constraints C1-C3 on p. 23
plus these three, due to Popper in [14]:

C4 For any A and B in S, P(A Π 5 ) < P(B Π A) (Commutation)
C5 For any A, B, and C in S, P(A Π (B Π C)) < P((A Π B) Π C)

(Association)
C6 For any A in S, P(A) < P(A Π A) (Idempotence)

And by an absolute probability function of Carnap's of Type II we understand
any absolute probability function of Popper's of Type II that meets constraint
CC7.

Notes: (a) Versions of C5 and C6 with 4 = ' in place of ' < ' can be gotten from
C1-C6, as shown under Lemma 4 in the Appendix. We list the Idempotence
constraint last because A Π A « A is a consequence of A3. All three of C4-C6,
by the way, are independent of C1-C3 and of each other.

(b) When as on p. 23 S was a standard Boolean algebra we had Λ and
A Π -A, hence V and A U -A, identical for any A in S. Here we merely have
them indiscernible under P for any such A (Lemma 4(e) and C3).
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Since standard Boolean algebras are sets of a certain sort and C4-C6 hold
by dint of AΓ-A3', any absolute probability function of Type I is one of Type
II but not vice-versa. The unary function P gotten from the binary one on p. 19
by setting P(A) at either P(A,b) or P(A9c) is an absolute probability function
of Popper's of Type II that is not one of Type I:

A \P(A)

a 0
b 1
c 1

It is, by the way, one of those among Popper's functions that are not Carnap
functions.

Borrowing from [10], we prove the analogue for absolute probability func-
tions of Type II of Popper's Theorem for relative ones of that type.

Theorem 6.5 Let P be an absolute probability function of Popper's of Type
II, and let S be the set on which P is defined. Then:
(a) Indiscernibility under P constitutes an equivalence relation on S;
(b) P meets the indiscernibility versions of A1-A5;
(c) At least two members of S are discernible under P; and hence
(d) S constitutes a nondegenerate Boolean algebra with respect to indiscernibility

under P

Proof: (a) By Lemma 4(d), C4, and Lemma 5(d), respectively,

P(A) -P(A) =P(A DA),
IfP(A) = P(B) = P(A Π B), then P(B) = P(A) = P(B Π A),

and
IfP(A) =P(B) =P(A ΠB) andP(B) = P(C) =P(BΠC),

then P(A) = P(C) = P(A Π C).

So indiscernibility under P is reflexive, symmetrical, and transitive, (b) By C4
and Lemma 5(1) A ΠB is indiscernible under P from BOA (Constraint Al). By
Lemmas 4(b) and 5(r) A Π (BΠ C) is indiscernible under P from (AΠB)ΠC
(Constraint A2). By C3 and Lemma 4(e) P(A Π -B) =P(CΠ -C) if, and only
if, P(A Π B) = P(A); hence, by Lemmas 4(e)-(f) and 5(i) P(A Π -B) =
P{CΠ -C) = P{(A Π - £ ) Π ( C Π -C)) if, and only if, P(A ΠB)= P(A) =
P((A ΠB)ΠA); and, hence, A Π -B is indiscernible under P from CD-C if,
and only if, A Π B is from A (Constraint A3). Next, suppose that P(A) =
P(B) = P{A Π B). Then P(-A) = P(-B) by Theorem 6.1(a). But, since
P(B) = P(A Π B) by the hypothesis, P( -A Π B) = 0 by Lemma 4(a), and hence
P( -A) = P(-A Π -B) by C3. Hence -A is indiscernible under P from -B if
A is from B (Constraint A4). Lastly, suppose that P(A) = P(B) = P(A Π B).
Then P(A O C) = P(B Π C) by Theorem 6.1(b). But P((A Π C) Π B) =
P(((A nC)ΠB)ΠC) by C3 and Lemma 5(s); and, since P(A Π -B) = 0 by
C3 and the hypothesis, P((A Π C) Π -B) = 0 by Lemmas 4(g) and 4(j). So
P(A Π C) = P(((A Π C) Π B) Π C) by C3 again, and hence P(A Π C) =
P((A ΠC)D (BΠ O) by Lemma 4(b). Hence A Π C is indiscernible under P
from B Π C if A is from B (Constraint A5). (c) By C3 and Lemma 4(e).
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So the sets on which Popper defines his absolute probability functions, like those
on which he defines his relative ones, constitute nondegenerate Boolean algebras.

Theorem 6.5 has an important corollary. Suppose indeed P is a Carnap func-
tion, and let A and B be arbitrary members of the set S on which P is defined.
Since P meets constraint CC7, A will be identical with B if indiscernible under
P from B. So S, a Boolean algebra with respect to indiscernibility under P by
Theorem 6.5, is one with respect to identity as well. So:

Theorem 6.6 Carnap's absolute probability functions of Type II are identical
with those of Type I.

So, at this point, there is just one family of absolute probability functions in Car-
nap's sense. But, as indicated in Section 1, that family can be characterized in
two different ways. In both characterizations one must require of the functions
that they meet constraints C1-C3 plus constraint CC7. This done, however, one
may either require that the sets on which the functions are defined be standard
Boolean algebras or require that the functions themselves meet the extra con-
straints C4-C6. Those extra constraints, interestingly, compel the sets on which
the functions are defined to be standard Boolean algebras.

Popper's absolute probability functions that are not Carnap ones allow in-
discernibles, those of Type I allowing them in the systematic manner of pp. 18-19
and those of Type II in the less systematic one of p. 22. But, given any such func-
tion P that is not a Carnap one, the indiscernibles P allows can of course be
gathered into equivalence sets and P made into a Carnap function on the stan-
dard Boolean algebra consisting of those sets. Instructions are as on p. 22: S be-
ing the Boolean algebra on which by clause (d) in Theorem 6.5 P is defined, and
[S] being the reduction of S with respect to the equivalence relation in clause
(a) of that theorem, let [P] be this reduction of P to [S]:

[P]([A])=P(A).

[P] is easily verified to meet constraints C1-C6 and, importantly, constraint CC7
as well. So:

Theorem 6.7 Let P be an absolute probability function of Popper's of Type
II that is not a Carnap one; let S be the set on which P is defined; and let [S]
be the reduction ofS with respect to indiscernibility under P. Then the reduction
[P] of P to [S] constitutes a Carnap function on [S].

In view of Theorems 5.10 and 6.7 Carnap's absolute probability functions
are to the absolute ones of Popper's in [14] what Renyi's relative probability func-
tions are to the relative ones of Popper's in [15]. The foregoing also suggests a
way of reducing those among Renyi's relative probability functions that are not
Carnap functions to Carnap ones. Renyi functions, to be sure, do not allow in-
discernibles under themselves; but, when not Carnap functions, they allow in-
discernibles under their so-called restrictions to V. Indeed any Popper relative
probability function that is not a Carnap one allows indiscernibles in this sense.
Formally, let P be a relative probability function of Popper's; let S be the stan-
dard Boolean algebra on which it is defined; and let the restriction ofP to Fbe
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the following function, shown in [12] to be an absolute probability function of
Popper's:

Pv(A)=P(A,V).

We shall then say that members A and B of S are indiscernible under P v if

PY(A) = PY(B) = PY(A Π B).

Owing to Theorem 6.5(a), indiscernibility under P v constitutes an equiva-
lence relation on S. And, due to Theorem 6.3,

Py(A) = PY(B) = PY(A Π B)

is equivalent to

PY(A^B) = 0,

hence equivalent to

P(A - B,Y) = 0,

and hence equivalent by Theorem 4.4 to

P(C,A) = P(C,B) for every C in S or
P(C,-A) = P(C,-B) for every such C.

So A and B are indiscernible under P v if> and only if, they themselves are
right-indiscernible under P or their complements are.

Let [S] then be the reduction of S with respect to that equivalence rela-
tion25; and let [P] be the following function on [S]:

[P(A9B) ifPy(B)Φ0
[P]([A]ΛB])=\ / 7

7

Y V

(̂  1 otherwise.

Members of the same equivalence set are not necessarily indiscernible under P
Nevertheless, by Theorem 4.3(b) and Lemma 3(v), P(A',B') = P(A,B) for any
A' in [A] and Bf in [B], when PY(B) Φ 0. So the definition of [P] is sound.
But [P] readily proves to meet constraints B1-B7 plus constraints CB8. Hence
[P] constitutes a relative probability function of Carnap's.

So, when a relative probability function P of Popper's is not a Carnap one,
the indiscernibles under P v that P allows can be gathered into equivalence sets
and P made into a Carnap function on the standard Boolean algebra consisting
of those sets. This reduction can be thought of as achieved in two steps. First,
a Renyi function P' is obtained by reduction with respect to indiscernibility under
P, and then a Carnap function by reduction with respect to indiscernibility un-
der P{.16

A last, and possibly unexpected, result is in store. Heeding the precedent of
the first paragraph of this paper, we could declare members A and B of a set S
indiscernible tout court if A and B are indiscernible under every absolute prob-
ability function P of Popper's of Type II defined on 5, i.e. if P(A) = P(B) =
P(A Π B) for every such P. But, even though

P(A) =P(B)
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and

P(A) =P(B)=P(AΠB)

are not equivalent, we have this:

Theorem 6.8 P(A) = P(B) = P(A Π B) for every absolute probability func-
tion P of Popper's of Type II defined on S if and only if P(A) = P(B) for ev-
ery such P.

Proof: Suppose P is an absolute probability function of Popper's of Type II de-
fined on S such that P(A) = P(B) but P(A) Φ P(A Π B). Then by Lemma 4(c)
P(A ΠB) < P(A) and hence by Cl P(A) Φ 0. Now consider this function,
known as the restriction of P to A:

PΆ(C) = P(CDA)/P(A).

PA constitutes an absolute probability function of Popper's of Type II since it
meets (i) Cl by Cl, (ii) C2 by C2, and Lemmas 4(i), 4(f), and 4(a), (iii) C3 by
Lemmas 4(a)-(b) and 4(j), and (iv) C4-C6 by Theorem 6.5(a), C4, and Lemmas
4(b) and 4(d). But PA(A) = 1 by Lemma 4(d), while PΆ(B) < 1 by Commuta-
tion. So there exists an absolute probability function P of Popper's of Type II
such that P(A) ΦP(B).

So we may declare A and B indiscernible tout court if, more simply, P(A) =
P(B) for every absolute probability function of Popper's of Type II defined on
S. It follows from Theorems 6.5 and 6.8 that indiscernibility tout court in the
present sense is another equivalence relation with respect to which the sets that
Popper's absolute probability functions are defined on constitute Boolean al-
gebras. And it will follow from Theorem 7.6 that indiscernibility tout court in
the present sense and indiscernibility tout court in the sense of p. 11 are the same.

7 Rounding off Popper's probability theory According to Popper's The-
orem any set (closed under — and Π) on which a function meeting constraints
B1-B7 can be defined constitutes a nondegenerate Boolean algebra with respect
to indiscernibility, and hence a nondegenerate Boolean algebra tout court. The
converse of the theorem is also true, as we proceed to show. We use to that ef-
fect what algebraists call ultra-filters, and we appeal to results about ultra-filters,
proofs of which are in Sikorski [20], Chapter 1, §3 and §6.

Let S be a nondegenerate Boolean algebra with respect to some equivalence
relation or other «. By a, filter on S with respect to « we understand any sub-
set S' of S that meets these two constraints:

(i) For any A and B in S, A Π B belongs to S' if, and only if, A and B both
do;

(ii) For any A and B in S, if A « B, then A belongs to S' if, and only if,
B does.

And by an ultra-filter on S with respect to « we understand any filter on S with
respect to « that meets this extra constraint:

(iii) For any A in 5, exactly one of A and —A belongs to S'.
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Theorem 7.1 Let S be a nondegenerate Boolean algebra with respect to «;
let S' be an ultrafilter on S with respect to «; and let P be this function on S:

ί OifB belongs to S' but A does not

1 otherwise.

Then P meets constraints B1-B7.

Proof: P obviously meets constraints B2 and B3. As for Bl, A Π —A cannot
belong to S' since by (i) both A and -A would then belong to S', contrary to
(iii); by the same token -A Π — A cannot belong to S', and hence A U -A
must by (iii). So P(A U -A, A Π -A) = 0 by the definition of P, and hence P
meets Bl. As for B4, suppose P(C,B) Φ 1 for some Cin S. Then P(C,B) = 0
by the definition of P, and hence B belongs to S' by that definition. But by (iii)
exactly one of A and -A belongs to S'. So either P (A, B) = 0 and P(-A,B) =
1 or P(A,B) = 1 and P(-A,B) = 0 by the definition of P, hence P(-A,B) =
1 - P(A9B), and hence P meets B4. The proof that P meets B5 is by cases;
it hinges on the fact that by (i) A Π B belongs to S' if, and only if, both A and
B do, and B Π C does if, and only if, both B and C do. Finally, (A Π B) «
(5 Π ,4) by Al; hence by (ii) ,4 Π B belongs to S' if, and only if, B Π A does;
and hence P(.4 ΠB,C) = P(BDA, C) by the definition of P. But P(A,BΠ C) =
P(A, C Π B)by the very same reasoning. So P meets B6 and B7 as well.27

According to the theorems in [20], any nondegenerate Boolean algebra S has
at least one proper subset that constitutes a filter on S and can be extended to
an ultra-filter on S. So, given Theorem 7.1:

Theorem 7.2 Binary real-valued functions meeting constraints B1-B7 are
definable on all, and only, those sets that constitute nondegenerate Boolean al-
gebras}9'

To attend to the absolute case too, let S and S' be as before, and let Pr be
the V-restriction of P. Then, by virtue again of a result in [12], Pr meets con-
straints C1-C6. So:

Theorem 7.3 Unary real-valued functions meeting constraints Cl-C6 are
definable on all, and only, those sets that constitute nondegenerate Boolean al-
gebras.29

It follows from Theorems 5.8-5.9 and 6.6 that (i) binary real-valued func-
tions meeting B1-B7 and either of RB8 and CB8, and (ii) unary ones meeting Cl-
C6 and CC7, are definable only on sets constituting nondegenerate standard
Boolean algebras. Whether functions of that sort are definable on all sets of that
sort is an open question as of this writing. We suspect that the answer to it is in
the affirmative.

•

Renyi's and Carnap's relative probability functions of Type II and Carnap's
absolute ones of that type proved in Sections 5 and 6 to be of Type I after all,
hence old acquaintances. As mentioned in Section 1, however, there are prob-
ability functions that are closely related to Renyi's and Carnap's but are defined
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on Boolean algebras generally rather than just standard ones. To arrive at them,
we recast the account in Section 5 of the relative probability functions of Type
II and that in Section 6 of the absolute ones. The new account exploits Theorems
7.2 and 7.3, according to which probability functions of Type II are definable
on every nondegenerate Boolean algebra; the theorems allow us to give S top bill-
ing. It also exploits «*, the least equivalence relation on S with respect to which
S constitutes a nondegenerate Boolean algebra.

Let S be a nondegenerate Boolean algebra, and let «* be the least equiva-
lence relation on S with respect to which S constitutes such an algebra.

A Let P be a binary real-valued function on S. Then P constitutes
(i) a relative probability function of Popper's of Type II if it meets constraints

B1-B7, and
(ii) a relative probability function of Renyϊs, Kolmogorov's, or Carnap's of

Type II iϊ it constitutes a Popper one and also meets this constraint in Renyi's
case:

RB8* For any A and B in S, // P(A, C) = P(B9 C) for every C in S, then
A «* B,

constraint KB8 in Kolmogorov's, and this constraint in Carnap's:

CB8* For any A and B in S, if P(C,A) = P(C,B) for every C in S, then
A «* A

B Let P be a unary real-valued function on S. Then P constitutes
(i) an absolute probability function of Popper's of Type II if it meets constraints

C1-C6, and
(ii) an absolute probability function of Carnap's of Type II if it constitutes a

Popper one and also meets this constraint:

CC7* For any A and B in S, ifP(A) = P(B) = P(A Π B), then A «* B.

Equivalent of course to constraints RB8*, CB8*, and CB7* are the results RB8'*,
CB8'*, and CC7'* of replacing '=' everywhere in RB8', CB8', and CC7' by '«*':
the counterparts of Theorems 4.5(1), 4.7(1), and 6.4(1) guarantee that.

As before, the relative and the absolute probability functions of Type I are
simply those of Type II that are defined on a standard Boolean algebra S: in
that case (i) constraints B6-B7 and C4-C6 may be dropped, (ii) constraint Bl
may be dropped when P is a Renyi function or a Carnap one (for the reason
given in Note 17), and (iii) «* being =, RB8*, CB8*, and CC7* are the same
as RB8, CB8, and CC7, respectively. As for the probability functions of Type II
themselves, the Popper and the Kolmogorov ones are of course the same as in
Section 5, but the Renyi and the Carnap ones are new. Since A = B entails
A «* B, any Renyi function of Type I is one of Type II, and so is any Carnap
function of Type I, relative or absolute, but not vice-versa. Displayed below are
a Renyi function of Type II (that is not a Carnap one) and two Carnap ones of
that type. Defined on a set of cardinality 5, hence on a set that is not a standard
Boolean algebra, the functions are not of Type I.

Illustration 6 Let S be the set {Λ,α,δ,-α,V}, where (i) Λ, a, -a, and V are
as in Illustration 1 in Section 4, but (ii) -b = -a, aΠb = bΠb = VΠb = b
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and — aΓ\b = AΠb = A. S is a nondegenerate Boolean algebra with respect to
this equivalence relation «*, which is the least such relation on S:

A »* B -def A = B, or A = a and B = b, or A = b and B-a\

and the following binary function P on S meets B1-B7 and RB8*, but not CB8*:

B
P(A,B) A a b -a V

Λ 1 0 0 0 0
a 1 1 1 0 0

A b 1 1 1 0 0
-a 1 0 0 1 1
V 1 1 1 1 1

Illustration 7 Let S be the same Boolean algebra as in Illustration 6. The fol-
lowing binary function P on S meets B1-B7 and CB8*;

B
P(A,B) A a b -a V

Λ 1 0 0 0 0
a 1 1 1 0 1/3

A b 1 1 1 0 1/3
-a 1 0 0 1 2 / 3
V 1 1 1 1 1

Illustration 8 Let S again be the Boolean algebra of Illustration 6. The fol-
lowing unary function P on S meets C1-C6 and CC7*:

A \P(A)

A 0
a 1/3
b 1/3

- α 2/3
V 1

The relationships between our various families of relative probability func-
tions can be portrayed as in Figure 2, to be compared with the one on p. 9. The
areas marked I consist in all four cases of the functions that are of Type I and
hence are defined on standard Boolean algebras.

When defined as on p. 32, the probability functions of Type II match some
of their counterparts of Type I in a remarkable manner.

Theorem 7.4 Let S be a nondegenerate Boolean algebra, let «* be the least
equivalence relation on S with respect to which S constitutes such an algebra, and
let [S]* be the reduction of S with respect to «*. Then:
(a) The relative probability functions of Popper's (RέnyVs, Kolmogorov's, Car-

nap's) of Type II defined on S match one-to-one those of Popper's (Renyi's,
Kolmogorov's, Carnap's) of Type I defined on [5]*;
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Popper's functions
_ of Type II

Kolmogorov's functions / \ Rέnyi's functions
of Type II / \ of Type II

7 7^ ^v^—^x \
Carnap's functions / / τ /\ τ \ \
of Type II / / / l \ l \ \

Figure 2.

(b) The absolute probability functions of Popper's (Carnap's) of Type II defined
on S match one-to-one those of Popper's (Carnap's) of Type I defined on
[S]*.

Proof: (a) P π being a relative probability function of Popper's of Type II, let
Pι be this binary function on [5]*:

Pι([A]*,[B]*)=Pu(A9B);

and P 1 being a relative probability function of Popper's of Type I defined on
[S]*, let P π bet his binary function on S:

Pu(A,B)=Pι([A]*ΛB]*),

a function under which A and Ar are sure to be indiscernible if A ~* Ά. It is
easily verified that: (i) Pι meets constraints B1-B5 and hence constitutes a rel-
ative probability function of Popper's of Type I, and (ii) Pu meets constraints
B1-B7 and hence constitutes a relative probability function of Popper's of
Type II. And it is clear that the identity

Pι([A}*ΛB}*)=Pιι(A,B)

establishes a one-to-one correlation between the relative probability functions of
Type I on [5]* and those of Type II on S. So, since

[A]* = [B]* if and only if A «* B,

P1 meets constraint RB8 precisely when Pu meets constraint RB8*, and hence
Pι constitutes a Renyi function of Type I precisely when Pu constitutes one of
Type II. Similarly, Pι meets constraint KB8 precisely when Pu does, and hence
Pι constitutes a Kolmogorov function of Type I precisely when Pu constitutes
one of Type II. Lastly, Pι meets constraint CB8 precisely when Pu meets con-
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straint CB8*, and hence P 1 constitutes a Carnap function of Type I precisely
when P π constitutes one of Type II.

(b) In the absolute case the one-to-one correspondence between the functions
of Type I and those of Type II is established by the identity

Pι([A]*) =Pn(Λ).

Clearly, if A «* A', then A and A' are indiscernible under P π . It is easily ver-
ified that (i) if Pι meets constraints C1-C3, then Pu meets constraints C1-C6,
and (ii) if P π meets C1-C6, then Pι meets constraints C1-C3. And P 1 meets
constraint CC7 if, and only if, Pu meets constraint CC7*.

Theorem 7.4 provides the justification for defining Renyi's and Carnap's func-
tions of Type II as we did on p. 32.

Unexpectedly perhaps, but obligingly, «* proves to be the same equivalence
relation as indiscernibility tout court in the sense of p. 11 and indiscernibility tout
court in the sense of p. 30.

Theorem 7.5 Let S be a standard nondegenerate Boolean algebra, and let A
and B be distinct members of S. Then there exist a two-valued relative proba-
bility function P of Popper's of Type I on S and a two-valued absolute proba-
bility function P' of Popper's of Type Ion S such that A and B are discernible
under both P and P'.

Proof: Since A Φ B, either AφAΠB or BΦAΠB. So suppose that A Φ
AΠB. Then the set {C: (A Π -B) Π C = A Π -B] constitutes a filter on S
with respect to =, and by the second result from [20] reported on p. 31 that filter
can be extended to an ultra-filter S' on S with respect to =. So, definable on
S' is the two-valued relative probability function P of Popper's in Theorem 7.1,
a function of Type I in this case since « is =. But A belongs to 5', —B also
does, and hence by clause (iii) in the definition of an ultra-filter B does not.
So P(B,A) = 0, while P(A,A) = 1. Hence P(A,A) Φ P(B,A), and hence A
and B are discernible under P. As for the V-restriction P' of P, (i) it constitutes
as shown in [12] a two-valued absolute probability function of Popper's of
Type I, and (ii) P'(B) = 0, while P'(A) = 1. So A and B are discernible under
P' as well as under P. But, by simply interchanging A and B throughout the ar-
gument, so are they when B Φ A Π A. So A and B are discernible under both
P and P' in either case.

So:

Theorem 7.6 Let S and «* be as in Theorem 7.4. Then:
(a) For any A and BinS,A~*B if, and only if, P(A, C) = P(B, C) for every

C in S and every relative probability function P of Popper's of Type II de-
fined on S;

(b) For any A and BinS,A «* B if, and only if, P(C,A) = P(C,B) for every
C in S and every relative probability function P of Popper's of Type II de-
fined on S;

(c) For any A and B in S, A «* B if, and only if, P(A) = P{B) for every ab-
solute probability function P of Popper's of Type II defined on S.
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Proof: (a) Suppose first that A «* B, and let P be an arbitrary relative proba-
bility function of Popper's of Type II defined on S. Since indiscernibility under
P is by Theorem 5.6 one of the equivalence relations on S with respect to which
S constitutes a Boolean algebra and since «* is the least such equivalence rela-
tion on S, A and B are sure to be indiscernible under P So, P(A, C) = P(B9 C)
for every C in S and every relative probability function P of Popper's of Type II
defined on S. Suppose next that A Φ* B. Then [A]* Φ [B]* and there exists by
Theorem 7.5 a two-valued relative probability function Pι of Type I on [S]*
under which [A]* and [B]* are discernible. In that case A and B are discern-
ible under the function Pn of Type II that according to Theorem 7.4(a) corre-
sponds to P1. So P(A9C) Φ P(B,C) for at least one C in S and at least one
relative probability function P of Popper's of Type II defined on S. (b) By (a)
and Theorem 5.11. (c) Suppose first that A «* B. Then by the same reasoning
as under (a), but with P an absolute rather than a relative probability function
of Popper's of Type II and with Theorem 6.5 substituting for Theorem 5.6,
P(A) = P(B) for every absolute probability function of Popper's of Type II de-
fined on S. Suppose next that A Φ* B. Then by the same reasoning as under (a),
but with clause (b) of Theorem 7.4 substituting for clause (a), P(A) Φ P(B) for
at least one absolute probability function of Popper's of Type II defined on S.

So the following will do as characteristic constraints for the relative proba-
bility functions of Renyi's and Carnap's of Type II, and the absolute ones of Car-
nap's of that type:

RB8** For any A and B in S, ifP(A, C) = P(B9 C) for every C in S, then
P(A, C) = P(B, C) for every such C and every relative probability func-
tion P of Popper's of Type II defined on S;

CB8** For any A and B in S, ifP(C,A) = P(C,B) for every C in S, then
P(C,A) =P(C,B) for every such C and every relative probability func-
tion P of Popper's of Type II defined on S; and

CC7** For any A and B in S, ifP(A) = P(B) = P(A Π B), then P(A) =
P(B) for every absolute probability function P of Popper's of Type II
defined on S.

The three constraints are impredicative, but they are phrased entirely in terms
of properties of the functions P, without explicit reference to features of the
set5.

It is an immediate consequence of Theorem 7.6 that, one, indiscernibility tout
court in the sense of p. 11 and indiscernibility tout court in the sense of p. 30 are
the same, and, two, in the event that S is a standard Boolean algebra, indiscern-
ibility tout court and identity are the same. So, to round off the remarks in Sec-
tions 4 and 6:

(i) it is when P is a relative probability function of Renyi's that /e//-indis-
cernibility under P entails indiscernibility tout court, and hence—for P
of Type I —identity;

(ii) it is when P is a relative probability function of Carnap's that right-
indiscernibility under P entails indiscernibility tout court, and hence —
for P of Type I —identity; and
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(iii) it is when P is an absolute probability function of Carnap's that indis-
cernibility under P entails indiscernibility tout court, and hence—for P
of Type I —identity.

The extra probability functions of Type II that the account on p. 32 yielded
are of particular interest, as we remarked in Section 1, when they are defined on
sets of statements. For proof, let S consist of all the statements that can be com-
pounded from given atomic ones by means of ' - ' and '&'. S does not constitute
a standard Boolean algebra. However, it constitutes a Boolean algebra with re-
spect to a variety of equivalence relations, the least of which is the relation of
truth-functional equivalence. So probability functions of Type II can be defined
on S, the relative ones of Renyi's meeting this version of RB8'*, in which F is
the statement counterpart of Λ:

(i) For any statement B in S, ifP(A,B) = 1 for every statement A in S, then
B is truth-functionally equivalent to F, 3 0

the relative ones of Carnap's meeting this version of CB8'*, in which T is the
statement counterpart of V:

(ii) For any statement A in S, ifP(A,T) = 0, then A is truth-functionally
equivalent fo F, 3 1

and the absolute ones of Carnap's meeting this version of CC7'*:

(iii) For any statement A in 5, if P(A) = 0, then A is truth-functionally
equivalent to F.

Wittgenstein in [21] and Carnap in [2] first accord absolute probabilities to
the so-called state-descriptions in S, i.e. to the statements in S of the sort

(,..(±Λ1&±A2) & . . . ) & ± A n 9

where (a)AlfA2,...,Anare in some prescribed order the first n atomic state-
ments in S and (b) for each / from 1 through n, ±At is either A t itself or ~Aj.
A being an arbitrary statement in S that is not a state-description in S and Bx,
B2i... ,Bm (m > 0) being the various state-descriptions in S in which A holds,
they then take the absolute probability of A to be 0 when m = 0, otherwise the
sum of the absolute probabilities of Bu B2,... ,Bm. Constraints featuring the
state-descriptions in S and equivalent to (i)-(iii) can be had for the present func-
tions:

(i') For any state-description A in S, P ( ~ A , A) = 0

for the relative probability functions of Renyi's of Type II;

(ii') For any state-description A in S, P(A9 T) > 0

for the relative probability functions of Carnap's of Type II; and

(iii') For any state-description A in S, P(A) > 0

for the absolute probability functions of Carnap's of Type II.
The first of these constraints, due to Kit Fine, appears in [13]32; the other

two respectively appear as C53-3 on p. 287 and T55-1 on p. 295 of [2].
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Some would rather assign probabilities to propositions than to statements.
Their preference is easily met. Consider [A]*9 where A is a member of the
present set S, i.e. where A is a statement compounded from given atomic state-
ments by means of'-' and '&'. Owing to Theorem 7.6, [̂ 4]* consists of the state-
ments in S that are indiscernible tout court from A. Hence, owing to a theorem
of probability semantics, [A]* consists of the statements in S that are truth-
functionally equivalent to A. Hence, under one account of a proposition, [A]*
is the proposition expressed by A. So [S]* consists of the propositions expressed
by the statements of 5. So the unary real-valued functions defined on [5]* that
meet constraints C1-C3 will assign probabilities to those propositions one at a
time, and the binary real-valued functions defined on [S]* that meet constraints
B1-B5 will assign them probabilities two at a time.33

Appendix Proofs of the fourteen clauses of Lemma 2 and the eleven clauses
of Lemma 4 will be found in the Appendix to [12]. Clauses (c)-(l) of Lemma 3
follow by Theorem 5.7 from the Boolean identities — A = A, A Π (A U B) = A,
etc., proofs of which are left to the reader.

Lemma 1 Let S be a Boolean algebra with respect to «.
(a) AΠA^A.

Proof: By A3 by taking B and C there to be A.

(b) A~AΠ -A, andV ~AU -A, for any A in S.

Proof: By (a) A Π A « A for any A in 5. Hence by A3 A Π -A « B Π -B «
C Π —C « . . . . Hence (b) by the definitions of Λ and V.

Lemma 2 Let P be a binary real-valued function that meets constraints
B1-B7.
(a) 0<P(A,B) < 1;
(b) IfP(A,B) xP(C9D) = 1, thenP(A,B) = P(C,D) = 1;
(c) P{A9AΠB)=P(A9BΠA) = l;
(d) If A is P-normah then P(-A9A) = 0;
(e) IfB is P-normal, then P(A Π -B,B) = P(-B Π A9B) = 0;
(f) //C is P-normaU then P(A9C) = P(A Π B9C) + P(A Π -B9C);
(g) P(A ΠA9B)=P(A9B);
(h) IfB is P-normal, then P(A Π -A9B) = P(A9B) = 0;
(i) P(-(AΠ-A)9B)=P(Y9B) = 19

(j) P(A9VΠB)=P(A9BnV)=P(A9B);
(k) V is P-normal;
(1) IfP(B9Y) Φ 0, then P(A9B) = P(A Π £,V)/P(£,V);
(m) P(A ΠB9C) < P(A9C) andP(A ΠB9C) <P(B9C);
(n) IfP(A9C) = 0 , thenP(A ΠB9C) =P(BΠA9C) = 0 .

Lemma 3 Let P be a binary real-valued function that meets constraints
B1-B7.
(a) P(A9BΠ -B) =P(A9A) = 1.
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Proof: P(B,BΓ\-B)=P(-B,BΠ-B) = 1 by Lemma2(c). So P(A,BΠ -B) =
1 for every A in S by B4, and hence P(A,A) = 1 by the definition of Λ.

(b) P(A ΠB,C) = l if, and only if P(A,C) = P(B,C) = 1.

Proof: If P(A Π B,C) = 1, then P(A,C) = P(B,C) = 1 by Lemmas 2(m)
and 2(a). So suppose that P(A,C) = P(B,C) = 1, and let C be P-normal.
Then P(-B,C) = 0 by B4, hence P(A Π -B,C) = 0 by Lemma 2(n), hence
P(A Π B,C) = P(A,C) by Lemma 2(f), and hence P(A Π B,C) = 1. But
P(,4 ΠB,C) = I by definition when Cis P-abnormal. HenceP(A ΠB,C) = 1
in either case.

(c) P ( — A , B ) = P ( A , B ) ;
(d) P(y4 Π (>1 UB),C) =P(A,C);
(e) P ( 5 Π (̂ 4 UB),C) =P(B,C);
(f) P(^--5,C)=PU-5,C);
(g) P(-(A^B)9C)=P((AΠB) U(-AΓ) -B),C);

( h ) P(-^.v,5)=PU,5);
(i) P(VUA,B)=P(V,B);
(j) P((^n-5)Π(5Π-^),C)=P(Λ,C);
(k) P((AnB)n(-An-B),C)=P(A,C);
(1) P((,4 U ̂ ) Π -yl, C) = P ( £ Π -^4, C);
(m) P(>1 U^,C) = P ( Λ C ) + P(5,C) - P M nfl,C).

Proof: By definition when C is P-abnormal. So suppose C is P-normal. Then
P(A UB,C)= P((A U B) Π v4,C) + P(M U 5 ) ί l -Λ,C) by Lemma 2(f),
hence P(A U B,C) = P(A,C) + P((A U B) Π -A,C) by (d) and B6, hence
P(A U ί , C ) = P(v4,C) + P(,S Π -y4,C) by (1), and hence P(A U B,C) =
P(A, C) + P(B, C) - P(A Π B, C) by Lemma 2(f).

(n) IfP(A Π 5,C) = 0, then P(A U B,C) = ? μ , C ) + P(B,C).

Proof: By (m).

(o) P ( Λ C ) < P μ U 5 , C ) .

Proof: By (m) and Lemma 2(m).

(p) //C fe P-normal, then P(A ̂ -B,C)=P(AΠ -B,C) + P{B Π-A,C).

Proof: If C is P-normal, then P((A Π -.β) Π (B Π -A),C) = 0 by (j) and
Lemma 2(h). Hence (p) by (n) and the definition of A — B.

(q) P(A ̂ B,C)=0 if, and only if P(A Π -B,C) = P(B Π -A,C) = 0.

Proof: By (p) and B2.

(r) //C is P-normal, then P((A (Ί B) U (-A Γ) -B),C) = P(A Π B,C) +
P ( - Λ n - £ , C ) .

Proof: Like that of (p) but using (k) in place of (j).

(s) If A or B is P-normal, then so is A U B.

Proof: Suppose A U B is P-abnormal. Then by definition P(CΠ A, A U B) =
P(A,A U ί ) = l for every C in S, hence by B5 P(C,A Π(AUB)) = 1, and
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hence by (d) and Theorem 3.1 A is P-abnormal. But P(C9B Π (A U B)) = 1 by
the same reasoning. So by (e) and Theorem 3.1 B is P-abnormal as well.

(t) IfP(C,A) = P(QB) for every C in S and A is P-normal, then

P(-A,B)=P(-B9A)=0.

Proof: Suppose P(C,A) = P(C, B) for every C in S, and suppose A is P-normal.
Then B is P-normal by definition. Hence P(-A,A) = P(-B,B) = 0 by Lemma
2(d), and hence P(-A,B) = P(-B,A) = 0.

(u) IfP{ -A, C) = P( -B, C) = 1 for every C in S, then AUBis P-abnormal.

Proof: Suppose P(-A,C) = P(-B,C) = 1 for every C in S. Then P(-A,
-BΠ(AU B)) = P(-B,A U B) = 1, hence P(-v4 Π -£,,4 U B) = 1 by B5,
hence P( - 04 U B), A U J5) = 1 by (c) and the definition of A U B, and hence
A U B is P-abnormal by B3-B4.

(v) 7/P04 - £,V) = 0 andP(C,Y) Φ 0, ίte/i P(A,C) = P(B,C).

Proof: Suppose P(A - £,V) = 0 and P(C,V) Φ 0. Then P(A -^ B,C) = 0
by B5 and Lemmas 2(n) and 2(j). Hence P(Λ Π -B9C)= P(B Π ->4,C) = 0
by (q). So P(A, C) = P U Π 5, C) and P(£, C) = P(B Π yl, C) by B4. Hence
P(A,C) = P(B,C) by Commutation.

Lemma 4 Zβ/ P be a unary real-valued function that meets constraints
C1-C6.
(a) P(A)=P(BΠA)+P(-BΠA);
(b) P(A Π(BΠ O) = P((A r\B)ΠC);
(c) P(A Cι B) < P(A) and P(A O B) < P(B);
(d) P(AΠA)=P(A);
(e) P ( ^ Π - v 4 ) = P ( Λ ) = 0;
(f) 7/P(y4) = 0, then P(A Π B) = P(B ΠA) = 0;
(g) IfP(B Π C) = 0, /Λe>7 P((>1 Π 5 ) Π C ) = 0;
(h) P(ΛΠ^4) = 0;
(i) P(-A) = 1 - P(A);
(j) P(μπ5)nc)=ppn^)nc);
(k) P(A n (BΠ o) = P04 n (cn ^)).

Lemma 5 Let P be a unary real-valued function that meets constraints
C1-C6.
(a) P U ) < 1 .

Proof: 0 < P(-,4) by Cl. So (a) by Lemma 4(i).

(b) P(A ΠB) = 1 if, and only if P(A) = P(B) = 1.

Proof: Like that of Lemma 3(b) but using Lemma 4(c), (a), Lemma 4(i), Lemma
4(f), and C3 in place of Lemmas 2(m) and 2(a), B4, and Lemmas 2(n) and 2(f).

(c) P(A ΌB)=0 if and only if, P(A) = P(B) = 0.

Proof: By (b), Lemma 4(i), and the definition of A U B.

(d) IfP(A) = P(A Π B), andP(B) = P(B Π C), then P(A) = P(A Π C).
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Proof: If P(A) = P(A Π B), then P(-B Π A) = 0 by Lemma 4(a), hence
P ( ( - B Π A) Π C) = 0 by Lemma 4(f), hence P ( - B Π ( A Π C)) = 0 by Lemma
4(b), and hence P(B Π (A Γ) C)) = P(A Π C) by Lemma 4(a). But, if P(B) =
P ( £ Π C), then P(B Π -C) = 0 by C3, hence P(A Π(BΠ -C)) = 0 by Lemma
4(f), hence P((A DB)Π -C) = 0 by Lemma 4(b), hence P((B ΠA)Π -C) =
0 by Lemma 4(j), hence P((B ΠA)ΠC)= P(B ΠA) by C3, and hence P(B Π
(,4 Π C)) = P(.4 Π J3) by Lemma 4(b) and C4. Hence, if P(A) = P(A Π 5) and
P(J5) = P(B Π C), then P(>1 ΠC)= P(A Π 5), and hence P(A) = P U Π C).

(e) P((,4 Π 5 ) Π C ) < P ( 5 Π C).

Proof: By Lemmas 4(b) and (c).

(f) P((ADB)nC)<P(AΠC).

Proof: By (e) and Lemma 4(j).

(g) IfP(A)<P(A),thenP(A)=O.

Proof: By Lemma 4(e) and Cl.

(h) P((AΠB)n-A) = O.

Proof: By (f) and (g).

(i) P(A ΠB)= P((A ΠB)DA).

Proof: By C3 and (h).

(j) P{AC\B)=P({AC\B)C\B).

Proof: P(B ΠA)= P((B Π A) Π B) by (i). Hence (j) by C4 and Lemma 4(j).

(k) P(((A Γ)B)Γ)B)n-A)=O.

Proof: By (f) and (g).

(1) P(A ΠB)= P((A Γ\B)Γ\(Bn A)).

Proof: P(A Π B) = P(((A 0 B) Π B) Π A) by C3 and (j)-(k). Hence (1) by
Lemma 4(b).

(m) P((A Π(BΓi O) Π -A) = 0.

Proof: By (f) and (g).

(n) P(A Π(BΠ O) = P((A Π (B Π C)) Π A).

Proof: By C3 and (m).

(o) P(((A Γ)(BΠ O) Γ\A)Γ\ -B) = 0.

Proof: By (e)-(g).

(p) P(A Π(BΠ O) = P{(A Π(BΓί C)) Π (A Π B)).

Proo/: P(^4 Π(BΠ C)) = P(((^l Π(BΠ C)) ΠA)ΠB) by C3 and (n) and (o).
Hence (p) by Lemma 4(b).

(q) P(((A Π(BΠ O) Π(AΠ B)) Π -C) = 0.
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Proof: By (e)-(g).

(r) P(A Π (BΠ O) = P((Ά Π (B Π C)) Π ((Λ Π 5 ) Π C).

Proo/: P(A Π(BΠ C)) = P(((A Π (B Π C)) Π (̂ 4 Π £)) Π C) by C3 and (p)
and (q). Hence (r) by Lemma 4(b).

(s) P(((A ΓιC)Γ)B)n -C) = 0.

Proof: By(e)-(g).

NOTES

1. The epithet "conditional" is used by Kolmogorov, Renyi, and others in place of "rel-
ative". It has misled some into thinking of conditional probabilities as the proba-
bilities of conditionals, and we avoid it. So does Popper. Ψ(A,B)9 is commonly
read 'the probability of A, given B\

2. It is deliberately that we talk of A and B as left- and πg/tf-indiscernible under P,
violating in the process the use/mention distinction. "A and B are indiscernible qua
first (qua second) arguments of P" would be more correct, but it does not yield such
handy substantives as "fe/Mndiscernibility" and "πgΛMndiscernibility".

3. All the sets considered in this paper will be closed under — and Π.

4. A1-A3 are adaptations of postulates of Byrne's in [1], and A4 and A5 are adapta-
tions of postulates of Rosenbloom's in [19]. Popper in [15] uses adaptations of
equivalent postulates due to Huntington and featuring *U' in place of 'ΓV. See Note
23 concerning the independence of the postulates.

5. Note that any set S whatsoever that is closed under — and Π constitutes a Boolean
algebra with respect to the universal relation; but that algebra is of course a degen-
erate one.

6. Rosenbloom, on pp. 9 and 13-14 of [19], explicitly talks of a Boolean algebra with
respect to an equivalence relation, said relation possibly, but not necessarily, the
identity relation. Popper on p. 356 of [15] talks of substitutional equivalence as an
equivalence relation, but goes on to define

A=B

as

P(A, C) = P(B, C) for every C in S.

This has misled many, possibly Popper himself, into thinking of the sets on which
his probability functions are defined as standard Boolean algebras. That they need
not be. The set considered on p. 19 constitutes a Boolean algebra in Popper's sense.
Yet it has three distinct members, and hence is not a standard Boolean algebra.

7. A Boolean algebra that is not degenerate is sure of course to have more than one
member.

8. [S] is what is often called the quotient-algebra with respect to the ideal Δ =
{AeSiA^A}. Though a set of sets, [S] is not, by the way, a field of sets: - [A]
is not the set-theoretic complement of [A], nor is [A] Π [B] the set-theoretic in-
tersection of [A] and [B]. For proof, [Λ] Π - [A] is not the empty set. Identical
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with [A] Π [-A], and hence with [A Π -A], it consists of every B in S such that
B ^ AΠ -A, hence of A Π -A plus possibly other members of S.

9. Popper's own constraints concerned the functions in Section 5; they will be found
on p. 332 of [15]. For more about them see Note 10.

10. Proof that B1-B7 are equivalent to Popper's own constraints in [15] will be found
in [5], as will be proof that each of B1-B7 is independent of the remaining six. For
more about Popper's own constraints and their independence, see p. 10.

11. It is of course to preserve consistency that a restriction is placed on B in B4. Due
to B3, B5, and Lemma 2(a)

P(A,A)=P(-A,A) = h

as the proof of Lemma 2(c) in [12] bears out. So, were no restriction placed on B
in B4, P(A,A) would equal 0 as well as 1. But Popper requires of B that it be P-
normal. Renyi and Carnap require that it be distinct from Λ, a stronger restriction.
Proof that Renyi's functions, as understood here, are those meeting B1-B3, B5, and
this version of Complementation:

B4' For any A and B in S, if B Φ Λ then P(A,B) = 1 - P(A,B),

will be found in [12]. For more on Renyi's and Carnap's functions see pp. 9-10. See
also [9] and [10].

12. In each case P'(B) reappears as P(B,Y). Note that when P'(B) φ 0, P(A,B) equals
P'(A Π B)/P'(B) by Lemma 2(1). In that case the value of P for any A and B in
S is thus determined by the values of P' for A Γ) B and B.

13. In his subsequent work [17] Renyi required of S' that AU B belong to it if both A
and B do. We cannot pursue the matter here.

14. Functions essentially like those in [4], but defined on the statements of languages
with the familiar connectives '—' and *&', appear in the earlier [2]. We shall consider
them on pp. 37-38.

15. On p. 332 of [15] Popper stated in effect that B1-B7 deliver (**), but gave no proof
of it. The one we supply on pp. 9-10 first appeared in [7]. It is, to our knowledge,
the earliest and the shortest proof in print of Popper's Constraint. (*) appears in the
Appendix as Lemma 2(m).

16. Incidentally,

P(QA) = P(QB) for every C in S

does not entail

P(Q-A) = P(C9-B)for every such C,

nor as a result

P(CJ{A)) = P(CJ(B))for every C in S and for every Boolean function f on S.

17. It follows of course from RB8 that

If A Ψ B, then P(A, C) Φ P(B, C) for at least one C in S.

So, if like Renyi and Carnap we required of every Boolean algebra that it be non-
degenerate, then at least two members of the standard Boolean algebra on which a
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Renyi —and, hence, a Carnap — function P is defined would have to be discernible
under P9 and like Renyi and Carnap we could dispense with constraint Bl.

18. See [5] for proof of that.

19. Popper talked of

{(A,B):P(A,C) = P(B9C) for every C in S]

in [15] not as the relation of identity but as a relation of substitutional equivalence.
But, as indicated in Note 6, by abridging

P(A, C) = P(B, C) for every C in S

as

A=B,

he blurred the distinction between substitutional equivalence and identity, hence that
between a Boolean algebra in general and a standard one.

20. On pp. 351-352 of [15] Popper supplies a proof of Theorem 5.4 that in effect does
not use B7. So an analogue of Popper's Theorem can be had with P a relative prob-
ability function meeting just B1-B6 and /e/Mndiscernibility under P substituting for
indiscernibility tout court under P. Intriguingly, Popper was weary of using (**),
a constraint we dubbed in Section 3 Popper's Constraint. #/g/tf-indiscernibility un-
der P also constitutes an equivalence relation on S, but in view of Note 16 5 does
not constitute a nondegenerate Boolean algebra with respect to it. See Note 22 for
more on this matter.

21. [S] is thus the quotient-algebra with respect to the ideal Δ = {A G S:A is P-ab-
normal}.

22. And r/g/tf-indiscernibility as well as /e/Mndiscernibility under every such function
is one of the equivalence relations with respect to which the set on which the func-
tion is defined constitutes a Boolean algebra.

23. Popper's own constraints concerned the functions on p. 26; they will be found in
[14]. Proof that C1-C3 and constraints C4-C6 on p. 26 are equivalent to Popper's
constraints will be found in [8]. Each of C1-C3 is independent of the remaining five.

24. The illustration is from [18]. Elliott Mendelson pointed out in a letter that it shows
A5' independent of AΓ-A4'. As noted in [1], each of AΓ-A3' is independent of the
other two. Whether A4' is independent of AΓ-A3' and A5' is still an open ques-
tion, it appears.

25. [S] is thus the quotient-algebra relative to the ideal Δ = {A e S :A is of Pv-prob-
ability 0).

26. The reductions of relative probability functions of Popper's that are not Renyi ones
match those functions one-to-one. Not so the reductions of Popper functions that
are not Carnap ones. But, given the remarks on pp. 8-9, that was to be expected:
those among Popper's absolute probability functions that are not Carnap ones do
not match one-to-one the relative probability functions under Cases 3 and 4 there.
Our proof that Renyi's functions reduce to Carnap ones is in answer to a question
by Peter Schotch.

27. Since V e S', P meets KB8' as well, and hence is a Kolmogorov function.
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28. The analogue of Popper's Theorem that we mentioned in Note 20 makes for an an-
alogue of Theorem 7.2 with B1-B6 in place of B1-B7.

29. It should be noted that not all sets closed under - and Π and of cardinality larger
than 1 constitute nondegenerate Boolean algebras. Consider the three-membered
set {a,b,c}, and let -a = b, -b = c, and -c = a. Then, however Π be defined and
whatever equivalence relation on (a, b, c} « might be, A « B is sure to hold for any
A and B in S.

30. Equivalently, only statements in S that are truth-functionally equivalent to F are
P-abnormal. The constraint appears as B8 in [5], where the functions meeting it are
ascribed to the Carnap of [3], a text in which Carnap and Renyi are in accord.

31. Equivalently, only statements in S that are truth-functionally equivalent to F are of
Pτ -probability zero.

32. The functions meeting (i') are ascribed in [13] to the Carnap of [2]. They should
have been ascribed to the Carnap of [3] or—as here —to Renyi.

33. This closing paragraph is in answer to a question of Nicholas Asher's.
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