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Varying Modal Theories

TH. LUCAS and R. LAVENDHOMME

Abstract The notion of modal theory is extended by accepting the idea that
axioms and language itself vary over a plurality of possible worlds. Inference
rules involving different worlds are introduced and completeness is proved
by using a notion of 'ugly diagram', which is a graphical means of detecting
when a family of modal theories has no model.

Models of modal theories are indexed by a plurality of possible worlds
equipped with a binary accessibility relation. It seems natural to extend the no-
tion of modal theory by accepting that axioms, and even language itself, vary
over a similar structure.

Here is an argument which supports our point of view, as opposed to already
existing work on modal model theory (e.g. [1]). Consider a language L for a mo-
dal theory in the usual sense (L is constant). Consider a modal structure M: it
varies with the elements of a set /. We may define the "theory of M " as the set
of sentences satisfied in the "actual world", but we could as well consider for each
/ E /the set 7} of sentences satisfied by M/ in L. A further step consists in the
adjunction for each / E / of constants #7 for #, E M(/), giving rise to languages
Lxr = L U {tf/|#/ E M(i)} varying over the set / of indices.

The aim of this paper is to answer the following preliminary question: when
is a family of usual modal theories the theory (in our sense) of a model?

To be specific, we will deal with the system K in the main body of the text
but discuss in the last section the extension to other systems.

In the first section, we propose a notion of (K-) theory (7})zG/ varying over
a structure </,i?>. Structures and models for these theories are essentially the
usual ones (see e.g. [3]), but we note that models validate rules of deduction in-
volving different indices. To take a simple example: if a sentence Πφ is satisfied
in / and if iRj\ then φ is satisfied in j .

In the second section we describe a notion of consistency. It is clearly nec-
essary but not sufficient to say that for each / E /, 7} is K-consistent; if 7} proves
Πφ in K, if iRj and 7} proves -ιφ in K, then T = (7})/G/ has no model. It is
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shown that Γis inconsistent in the sense of the proof theory of Section 1 (i.e.,
T \γ ±) if and only if T contains (level by level in the sense of K) an "ugly" dia-
gram, typical examples of which being (iRk, iRl, jRk)

(UΏφ) (i,Πφ V Πψ) (i,Πφ) (j,^ψ)

(k,^φ) (k,-iφ) (/,-Ί/0 (k,^φ\/^φ).

In the third section, we prove a completeness theorem: the proof remains very
close to the completeness proofs in Henkin's style and it could be used as an ele-
mentary proof of completeness for usual K-theories (i.e., from our point of view,
theories over a one-point set).

/ Languages, structures, and theories over a set with a binary relation Let
/ be a nonempty set and let R be a binary relation over /.

Definition 1 A language L over </,/?> is a family (Z,/), e / of usual first-order
modal languages Lt such that if iRj, then Op" £ Op" and Rel" c Relf for all
n E ω. (Op? and Relf are the sets of symbols of «-ary operations and Λ-ary re-
lations.)

Terms and formulas of level / are defined as the usual terms and formulas
of Lt and denoted by Terπii and Forrrij respectively. We assume that the set V
of variables is countably infinite and is the same for each / E /: the inclusions
Terrrii <Ξ Termj and Forrrii c Forrrij are then trivial. In practice, we will consider
the (important) case where only the sets of constants Opf vary with /. One could
also generalize the given concept of language by allowing /to be a graph and con-
sidering for each arrow a:i-> j in /mappings a"p from Op" to Opf and a"eι
from Rel" to Rel": the generalization is easy but not motivated at this point of
our study.

Definition 2 An L-structure M over </,/?> is determined by giving:
(1) for each / E /, an usual L,-structure Af(/); the underlying nonempty set will

also be denoted by M(i), a n d / M ( / ) and r M ( ί ) denote the interpretations of
operation symbols/E Op" and relation symbols r E Rel";

(2) for each ij E / such that iRj, a mapping of sets M/,: M(i) -> M(j) such that
for each/E Opf and a E M(i)"

fM^Mυά = Muf
M{i)a.

It is not assumed in general that the transitions are inclusions or that they
in some way preserve the relations rM<<ι).

The interpretation of terms and the satisfaction of formulas in Mis the usual
one. To be precise, we first define as usual t{x) [ά] E M{i) for t E Termi9 x a
list of variables containing those of t and a a matching list of elements of M(i).
We then define M \γ φ(x) [a] for φ E Formh x a list of variables containing the
free variables of φ and a a matching list of elements of Af(ι'). Quantifiers are in-
terpreted at the same level

(M \γ lyφ(x,γ) [a] iff 3b E M(i)M \ψ φ(x,γ) [ά,b])
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and the inclusions £, c Lj and transitions M^ (for iRj) are used to interpret Oφ
and Πφ: e.g., M \γ Πφ(x) [a] iff Vj(iRj -+M\j> φ(x) [Mua]).

Definition 3 A theory T over </,/?> in L is a family (7})/G/ where for each
/ G /, 7} is a set of sentences of L,.

It is well-known from the work of Kripke [2] that even starting from a the-
ory over a one-point set, a model for it is in general over a bigger set. We must
therefore extend Definition 2 to allow for that possibility.

Definition 4 Let I be a language over </,/?>. Let (J9S) be an exten-
sion of </,/?>. The extension L of L to </,S> is defined for 7 G /by Op/ =
Uiei,is*j Op? and ϊte/f = U/e/,/s*/ Λe//1, where S* is the reflexive and transitive
closure of S. An L-structure M extended over </,S> is defined to be an L-
structure.

To axiomatize the theory of L-structures extended over some < J,S> Ξ> (I,R}9

we describe rules of deduction for a theory T over /.
By first-order K, we mean here the usual propositional system K (all prop-

ositional tautologies, the axiom schema Π(φ -* ψ) -+ (D<p-> •1/O, the rule
of necessitation) supplemented by the usual rules or axioms of quantification
(vxφ(x) -> φ(t) when t is free for x in φ, the rule of generalization), plus also
the axiom x = y-+Π(x = y). We write 7} hg φ to mean that there exists a finite
subset {r 1,.. ., τπ) of 7} such that rx Λ . . . Λ τn -• <ρ is a theorem of first-order
K. This is a notion which should be sharply distinguished from a more general
one, to be denoted T \j φ9 which depends upon the whole family (7})/e/ and
which we define by induction:

Definition 5 The clauses defining T \j φ are for sentences φ, ψ, χ, Bxα (x) G
Form (Li):
(a) the two initial clauses:

(K) T^φ^Tljφ;
(D) Ti^ΠφJRj, Tj\κ^φ=> Γlj±;

(b) the four inductive clauses:
(MP) Thfφ, T^φ^φ^T\τφ;
(_L) Ttτ±*T[F±;

(v) 7}fκ (pvi/s r + (ι»Frx, ^ + (/,tf) hrx^ ̂ iτχ;
(3) 7} lκ 3xα(x), Γ + (/>(c)) ^ x => Γhr χ

In rules (v) and (3), Γ + (/,α) designates the theory T' given by T( = 7} U [a]
and 7}' = 7} for j Φ i. In rule (3), it is assumed that c is a new constant (i.e., c
is in no L, ) and the deduction takes place in the language L = L + (/,c) given
by

• Lj = Lj supplemented by the constant c and this for every j such that
iR*j, and

• L'k= Lk for every A: such that not iR*k.

The notation Γ + (/,α(c)) will henceforth always presuppose that c is such a
constant and that the relevant language is L + (/,c). We also emphasize that
φ,φ,χ and 3xa(x) are sentences of L/ and not formulas in general. We refrain
from giving the notion of proof corresponding to T\j φ\ proofs are sequences
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(iι,<Pι)... (in,φn) satisfying conditions corresponding to the clauses given
above. We will also use without mention some obvious properties of T \γ φ.

To illustrate the use of Definition 5, we give examples of derived rules which
are interesting in themselves and will be used in the sequel.

Proposition 1
(-π) T+ (i,-iφ)\T±=> T\τφ.
(DO TkΠφJRj^TVpφ.
(0) T^φ.iRj^T^Oφ.

(v') Γh-^v ,̂ r+(/,^)hrx, y+i/^jlrx^rhrx.
(3') TtτlXφ(x), T+ (i,φ(c))\jΓX=* T ̂  χ.

Proof of (-.): Let T = Γ + (/,-•<?). Then T[ fc ± -• φ, Γ f- ± -• ̂  by (K),
7" f7 ± by hypothesis and T \j φ by (MP), i.e.

Γ + ( ι , - i ^ ) ^ ^ (1)

On the other hand,

T+(i,φ)[τφ (2)

and

Ti^φv-^φ (3)

Applying (v) to (1), (2) and (3), we get T\j φ, the desired result.

Proof of (Dr): Let Γ = T+ (i,Πφ) + (y,->*>). Trivially, Γ/ lχ Π^ and Γ/ ^
i ^ . Then T \j ± by (Π), Γ' h" J- by (±) and

T+ {j^φ)\τ^Uφ (4)

by(-»). On the other hand, by the hypothesis T\γ Πa,

T+(j^<p)^n<p. (5)

From (4) and (5), we derive Γ + U^ψ) \j J- (using \^ ̂ Πφ-> (D< -̂> ±), (K)
and MP), Γ + (y,-«^) Ij ± by (_L) and finally Γl j >̂ by (-ι) and arguments al-
ready used.

Proof of (0): Similar to the proof of (D')

Proof of (v'): Let η = T+ (/> v ̂ ) , Γ2 s 7\ + (it,-iχ), r = T2 + ( / » and
Γ" = Γ2 + (ι,^). Then Γ' hr -iχ (since T contains Γ2), r frx (since Γ con-
tains Γ + ( / » and T+ ( / » ^ χ ) , from which we derive Γ' ^ ± and Γ' fj- ±
by (±), i.e.,

T2+{hφ)\τ ±. (6)

Similarly, the consideration of T" gives

T2+(i,Ψ)h-±. (7)

Since we also have

(T2)i \κ Ψ v ψ, (8)
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we can apply (v) to (6), (7) and (8) to obtain: T2 h" J-, hence T2 ^ ± by (±),
?i br X fey ί"1) a n d finally T \γ χ by transitivity of consequence and the hypoth-
esis T\γ φv ψ.

Proof of (3'): Similar to the proof of (v'), letting Tx = T+ (i,lxφ(x)), T2 =
Ά + (*, iχ) and Γ' = Γ2 +(/>(c)) .

We now turn to the soundness theorem.

Definition 6 Let L be a language over </,#>, let Γ be an L-theory over / and
A/be an L-structure extended over </,S> ^ </,#>. Mis a model of Γ(in sym-
bols M t= Γ) if for every / G / and every sentence r G 7}, M ty r. Let <? be a sen-
tence of L, ; <p is a semantic consequence of Γ at level / (in symbols T\ψ φ) if for
every model M of Γ, M tj φ.

Theorem 2 (Soundness) IfT\jφ, then T\γφ.

Proof: Let M be a model of Γ. We prove by induction on the proof of φ that
M\f φ. The soundness of (K) is a well-known fact. The soundness of (D) is an
immediate consequence of the definition of satisfaction for Ώφ. Similarly for
(MP) and implication. Rule (J.) is sound because for every iyM\ff J_. For rule
(v), since 7} fg= φ v ψ, M \γ φ v ψ, hence M \ψ φ or M \ψ ψ; in the first case,
M\f T 4- (i,φ), hence by induction M \γ χ; the second case is analogous. For
rule (3), since 7} t= 3x<p(x), M ^ 3x</?(x) and for some element a G M(/), M \ψ
φ(x) [a]. Add a new constant c to every Ly with /7?*y and interpret c in M at
level i by α and at level j with ί/ζ/Ί Rj2R .. i?/Λ-i Rj by αy = Mjn_xj... M y U 2

M/ j (a). This turns Minto a structure M + for L + = L + (/,c) and the relation
between M and M+ is such that

(a) for every y with /i?V» every formula \K j?,c) of Lj and every 5 in M(y),

M + Ij 0(Λc) [5] iff M\j φ(y9x) [B,aj]

and
(b) for every k such that not iR*k9 every formula ψ(y) of L j and every δ

inM(A:),

M + ^ ψ ( ^ ) [ * ] i f f M I ^ ^ ( j ; ) [ ό ] .

Using this, it is clear that M+ is a model of Γ + (/,<^(c)); hence by induction,
M + | j ^ and M hf ^ again by the relation between M and M + .

2 Mce theories The notion of consequence described in the preceding sec-
tion mixes indices. Rules (D') and (0) of Proposition 1 are typical examples of
this phenomenon and they generally suffice to detect most inconsistencies.

As a first example, consider the situation represented by

(ι,Dα v DjS)

O',iαvD7) ( W A D 5 )

\ /

(/,-iγv ->δ)
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meaning that iRjRl, iRkRl and that, at each level, one has the displayed sen-
tences, e.g., 7} f̂  Dα v Uβ. Rule (D') applied to k and / and rule (0) applied
to i and k will easily yield the contradiction.

But in the following example, more complex situations are suggested and rule
(v) seems to be necessary:

(i,Dαv Uβ)
y \

( p α v D7) (*,-ι|8v Dδ)

\ y

(/, (-17 Λ -iδ) v (D<ρ Λ D^))

• \

(m,Dχ v -\φ) (n,Πω v -1 )̂

(A" χv -iω).

To obtain a contradiction, we may proceed (informally) as follows. In T +
(/,Πα) we have successively: a iny, D7 in7, 7 in /, not (-17 Λ ->δ) in /, Πφ Λ D^
in /, φ in m and ̂  in Λ, Dχ in m and Dω in n, χ and ω in/7, _L in/?, _L in /. Sim-
ilarly, in T + (i,Uβ) we have ± in / and may conclude by applying rule (v).

To clarify this somewhat involved combinatorics of deductions, we propose
a "graphic" view of it.

Let </,/?> be a nonempty set with a binary relation, and let L be a language
over </,/?>.

A labeled diagram D (over /) is determined by giving for each / G / a sen-
tence βi of I/,-, the label of / in D, in such a way that et be 7> ("true") except for
a finite number of indices.

We often identify two diagrams if their labels are equivalent in first-order K.
If D and D' are two diagrams with labels (e °) and (ef*') and if k E /, we

define the wedge in k D" = Dv D' by the labels:

k

eΓ = e?ve?'9
eΓ = e?AeΓ, ϊoτiΦk.

Let k E / and let c be a constant of Lk. Let Z> s D(c) be a diagram. The
labels ef of Z> in / may be written [c/x]eP(x) where c does not occur in eP(x).
We define the 1-wedge in k Df = a^JtZHx) by the labels

e f = a*e?(jc)

ef' = vχeP(x) for / gfc A:.

Let Γbe a theory over (I,R) in L. We say that T contains diagram Z> if for
every i G /, 7} ̂  e?. (The interest of this concept is that it works level by level
and that only a finite number of indices are really concerned.)

We now define a graphic version of inconsistency:

Definition 7 Ugly diagrams are defined inductively by the following clauses:
(1) for every / G /, the diagram
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ei>m±

ef = Tr for k Φ i
is ugly;

(2) for every ij E / with iRj, i Φ j , the diagram

efmUφ

ej? Ξ= Tr for k Φ ij
is ugly;

(3) for every / G / with iRi, the diagram

ef s Πφ Λ -ι^

βf = 7> for A: * i
is ugly;

(4) if D\ and D2 are ugly, then for every / G /, Dλ v, £>2 is ugly;
(5) if / e / and J9(c) is in the language L + (/, c) and is ugly, then ^xD(x) is

ugly in the language L.
A theory Γis ugly if it contains an ugly diagram, nice otherwise.

Note that in (5) c occurs at most in the labels ef for which iR*j. As for the
notation Γ + (/,α(c)), D(c) and ^xD(x) will appear only in contexts where
c is a new constant and D(c) is in the language L + (/,c).

Since the indices for which the label is 7> play no significant role, we will of-
ten omit them, thus denoting by (/,-L) diagrams of type (1), by

1

diagrams of type (2) and by (i,Πφ Λ -ιφ) diagrams of type (3). Type (3) has been
separated from type (2) for technical reasons only: we prefer to handle diagrams
labeled by formulas rather than by sets of formulas.

The definition of ugly diagram allows us to characterize the notion of con-
sequence.

Theorem 3 Let T be a theory over </,/?> in L, let i e / and φ be a sentence
of Li. Then T)jφiffT+ (/,-.<?) is ugly.

Proof: (A) We prove first by induction on the form of D that if Γ + (i,-*φ) con-
tains the ugly diagram D, then T\j φ.

Case 1. Suppose D is (k,±). If k Φ /, then Tk f̂  ±, Tf*- ± by (K), T\γ ± by
(±) and T tγ φ by "e falso" in K and (MP). If k = /, then Tx^ U {-ιφ] \^ ± and
T\γ φ follows easily.

Case 2. Suppose D is the elementary diagram

(k,Πa)
I

with kRl, kΦl.
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Case 2.1. If i£ {A:,/}, then Tk\^ Dα and 7} ^ -iα, Γ ^ j . by (D), T\j _L by
(J_) and Γ Ij <p by "e falso" in K and (MP).

Case 2.2. If / = k, then 7} U {~̂ φ} \^ Dα and T \^ -<α. From the first we get
Ti\j[<pv Dα and from the second T\γ 0-ια by (0). From this, T\γ φ will eas-
ily follow.

Case 2.3. If / = /, then Tk \^ Dα and 7} U {-vp) [̂  -ια. From the first we get
T\γ a by (D') and from the second 7} ^ ^ v -iα. From this, T[γ φ will easily
follow.

Case 3. Suppose D is the elementary diagram (&,Dα Λ -KX) with kRk.

Case, 3.1. If / Φ k, then 7^ f̂  Dα Λ -ια, Γ̂  \^ Dα and Γ̂  [̂  -"α, Γfp ± by (D),
Γ ^ ± by (±) and Γ ^ ^ by "e falso" in K and (MP).

Case 3.2. If / = k, then 7] U {-«?} f̂  •« Λ -KX. (1)

Let Γ' = Γ + (/,i^); then Γr ^ Dα, Γ' [γ a by (Dr), Γr i- ± by (1) and argu-
ments already used, T \j φ by (-»).

Cα5e ^. Suppose Γ + (/,-><?) contains £)' v D" where D' and £)" are ugly.
k

Case 4.1. UkΦ i, we have

mk:Tk\κe?'veΓ (2)

in/:7}U {^φ} f^ef Λβf"

i n / ί {/,*): Γ/ lκ^ 'ΛβΓ.

Consider the theories Γ' = T + (Aτ,ef') + (i,^φ) and Γ" = Γ + (Aτ,ef") +
(/,-ι<ρ). Clearly 7" contains Z)7, hence by inductive hypothesis

T+(k,e?f)[r<P. (3)

Similarly, T" contains D" and

T+(k,eΓ)h<P (4)

It suffices to apply (v') to (2), (3) and (4) to obtain Γl j φ, the desired result.

Case 4.2. If k = /, we have

in £ = /: Tk U {-î j h" βf v ef", i.e. Γ* lκ ^ v ef' v e f (5)

mlΦkiTi^e? Λe?".

Consider the theories Γ = Γ-h (A:,ef) + (£,-»<?) and Γ" = Γ + (k,e}?') -h
(/:,-i^). Clearly Γ' contains £>', hence by inductive hypothesis:

T+(k9eP')\rφ. (6)

Similarly, T" contains D" and

Γ+(Ar,βΓ)hr^ (7)

Finally,

T+lk^fcφ, (8)
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and it suffices to apply an immediate extension of (v') to (5), (6), (7) and (8) to
obtain T\η- φ, the desired result.

Case5. Suppose Γ+ (/,-•<£>) contains 3kxD(x) for some ugly D(c) inL + (k,c).

Case 5.1. If kΦ /, we have:

\Άk\Tk\z*xej?(x) (9)

in/:7}U {-.*>} IK *xe?(x)

in /£ [i,k] iT^Mxe^x).

Consider in L + (k,c) the theory T = T+ (k9e]?(c)) + (i^φ). Clearly T con-
tains D(c)9 hence by the inductive hypothesis

T+(k,ej?(c))\τφ. (10)

It remains to apply (3') to (9) and (10) to obtain T\γ φ, the desired result.

Case 5.2. If k = /, we have:

in * = i: 7* U {-i*} IK 3xef (x), i.e. Γ̂  (^ ̂  v lxe?(x) (11)

in/^t A::Γ/fκ VxeP(x).

Consider in L + (k,c) the theory T = T+ (k9e]?(c)) + (i9-*φ). Clearly T con-
tains D(c), hence by the inductive hypothesis

T+dcePicVfcφ. (12)
On the other hand

T+(k9φ)^φ. (13)

From (11), (12) and (13) we conclude T \γ φ by an easily established derived
rule:

if Tk\ϊrφ\/lxψ(x), Γ+ (kMc)) fp X and Γ + (k9φ) frx then T^χ.

(B) We now show how to associate inductively with every proof T fj- φ an
ugly diagram £) contained in Γ + (/,-χρ).

(Rule K) Suppose 7} \^ φ and we conclude T \γ φ. To this use of (K) we as-
sociate the ugly diagram (i,±) which is clearly contained in T + (i,~^φ).

(Rule D) Suppose 7} [̂  Πφ, iRj, Tj \χ -ιφ and we conclude T \j J-. If i'Φ
j , we associate to this use of (D) the ugly diagram

(/>•*>)
4

which is clearly contained in T + (j, -> ±). If / = j , we associate the ugly diagram
(iyΠφ Λ -ι<̂ ) which is also contained in T+ (y,-i±), i.e. in Γ + (ι,-i±).

(Rule MP) Suppose T\γ φ , T\γ φ-+ψ and we conclude T\γχ. The induc-
tive hypothesis is that there exist ugly diagrams D' and D" such that T+ (i>->φ)
contains D' and T + (i,-* (φ-> ψ)) contains D". It is easy to show by reasoning
in K only that Γ + (/,-n/0 contains £> = Df v, Dr/.
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(Rule -L) Suppose T \γ ± and we conclude T \γ ±. By inductive hypothesis,
there exists an ugly diagram D such that T' + (/,->±) contains Zλ The same D
is obviously contained Γ + (&,-• ± ) .

(Rule v) Suppose Tj\^φwφ9 T+ (i,φ)\γχ and Γ + (/,Φ) Ij x and we con-
clude Γfj χ By inductive hypothesis, there are ugly diagrams D' and D" such
that T+ (i9φ) + (/,-ιχ) contains D' and Γ + (/,^) + (/,-ιχ) contains D". It is
easy to show that T + (/,-ιχ) contains D = D' \r D".

i

(Rule 3) Suppose 7} f̂  3ΛΓ <p(x), Γ + (/,<P(C)) IJ φ and we conclude T\j φ.
By inductive hypothesis T+ (i,φ(c)) + (i,-iφ), which is in L 4- (/,c) contains
some ugly D(c) in the same language. Using the theorem on constants in K it
is easy to show that T + (i,~*φ) contains the ugly D = 3/Λ:D(X).

Theorem 3 shows that ugly diagrams are really a substitute for "contradic-
tion". We illustrate this by giving the proof of a deduction theorem.

Corollary 4 // T + (i, φ) \γ φ, then T\j φ-^φ.

Proof: If T+ (i9φ) \j φ, then, by Theorem 3, Γ + (i9φ) + (i,-*ψ) contains an
ugly D, T + (ι,-i (φ -> φ)) contains D, and T[γ <p-+φ by Theorem 3.

3 Completeness The soundness theorem (Theorem 2) and the characteriza-
tion of consequence contained in Theorem 3 give:

Proposition 5 If T has a model, then T is nice.

Proof: If Γis ugly, then by Theorem 3, T contains some ugly diagram D9 T +
(/,-i-L) contains D9 T\j _L, T\j ± by Theorem 2, hence finally Γhas no model.

We now proceed to prove the converse. Let L be a language over </,i?> and
let Γbe a theory over (I,R) in L. Suppose Γis nice and find a model M of it
extended over some </,5> ^ </,/?>. We may proceed very classically in Henkin's
style with three kinds of elementary steps: (a) adjunction of φ or -ιφ to maximal-
ize, (b) adjunction of constants to enrich for 3, (c) adjunction of new worlds to
enrich for 0. We first deal with these steps separately, then show (d) that each
nice theory is contained in a maximal nice, 3-rich, 0-rich theory, (e) for which
it is easy to construct a model.

(a) Adjunction of φ or -ιφ.

Lemma 6 Let T be a nice theory over </,/?> in L. Let i G / and φ be a sen-
tence of Li. Then Γ + (i9φ) orT+ (/,-κp) is nice.

Proof: If both 7" = Γ + (i9φ) and T" = Γ + (/,-•<?) are ugly, they contain ugly
diagrams D' and D" respectively. Then clearly T will contain the ugly diagram
D' v D".

i

(b) Adjunction of constants.

Lemma 7 Let Tbea nice theory over </,/?> in L. Let i G /, let 3x φ(x) be a
sentence of Lt and assume 7} 1̂  3xφ(x). Introduce in Li and in every Lj with
iR*j a new constant c, thus forming the language L = L+ (/, c). Consider in L
the new theory T s T+ (i,φ(c)). The claim is that T is nice.
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Proof: Otherwise 7" contains an ugly diagram D(c). Then Tcontains liXD(x)
which is ugly. This is easily seen as follows. In kΦ i, Tk=Tk\j£ ek(c) and since
c is new, Tk [g Vxβf(jc). In i, T{ = 7} U [<p(c)} [g- e?(c), hence 7} Ig- φ(c) ->
ef(c)9 Tj Ig- Vx(φ(x) -> ef (x)) since c is new, and by the hypothesis 7} fg 3x<p(x)
we get 7} [̂  3xeP(x).

(c) Adjunction of new worlds. We need a new construction on diagrams. Let
Z)bea diagram in / ' and /" be a "minimal" element of /' having a unique
"predecessor" / G /' in the sense that iRi~ and for all j G /', not /~/ξ/ and
yi?/~ =>y = /". Define over / = /'-{/"} a diagram D* by:

βf-ςffory^i.

Lemma 8 If D is ugly {in / '), then D* contains an ugly diagram (in I).

Proof: By induction on the form of D. The case (k,±) is trivial.
Consider the case

(*,Dα)
4

with kRl, kΦllΐlΦ Γ, then D* is D. If / = i", then £ = / and Z>* is (/,Dα Λ
O-iα) which contains (/,JL).

Consider the case (£,Dα Λ ~iα) with AΓΛA:. The case & = ι" is excluded, and
for kΦi~9 D* =D.

For the case D = D' v D", one verifies that in each of the cases k = i and
k

k £ {/,/"), D* contains D'* v £>"*, and that for A: = /", D* contains Df* v D"*.
k i

Consider finally the case lkxD(x) with D(c) ugly in L + (£,c). If £ = /",
the condition that D{c) is in L 4- (/~,c) shows that c has no occurrence in the
labels of D(c) other than eβ(c); in fact, as is easily shown by a trivial induc-
tion on diagrams, c does not occur either in eβ(c). Consequently, 3;— xD(x) is
(K-equivalent to) D(c) and (3/-xD(x))* is D(c)* which contains an ugly dia-
gram by the induction hypothesis.

For the case k = /, we denote by £>0(c) the ugly diagram contained in
D*(c) which is given by the induction hypothesis; we denote by Dγ (c) the dia-
gram which has the same labels as D*(c) except that in /, eP^c) = ef*(c) Λ
OvxeP-(x); then clearly, Dx(c) contains D*(c) (using Ovxe£(x) -+ <>eβ(c));
hence Dx(c) contains D0(c), 3iXDι(x) contains 3/Λ:£>O(*) which is ugly by
the inductive definition of ugly diagram; it remains to observe that 3,xDi (x)
is (K-equivalent to) (lxD(x))*: in /, the label of the first is lxePι(x) s
3x(e?(x) Λ Ovxeβix)), while the label of the second is 3xe?(x) Λ Ovxeβ(x));
in k Φ /, the labels clearly coincide. The case k $. {/,/"} is handled by observ-
ing that (3kxD(x))* contains 3kxD*(x): in /, the label of the first is VxeP(x) Λ
Ovxe?-{x) (1), while the label of the second is Vx(ef(x) Λ OeP-(x)) (2). And
(1) implies (2) because OVΛΓ^(X) -> vx<>φ(x) is a theorem of K; in / Φ i, the labels
coincide.
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Lemma 9 Let Tbe a nice theory over {I,R) in L. Let iEl, φ be a sentence
of Li and assume 7} f̂  Oφ. Add to la new element /" with the only condition
iRi~~9 thus giving a new set Γ = / U {/"} and a new relation i ? ' = ί U ( ( i , i ' »
extending </,/?>. Extend L to V over </',#'> by letting Lt- = Lh Extend T to
Tf by letting T(- = {φ}. The claim is that T' is nice.

Proof: Otherwise T' contains some ugly diagram D (over / ' ) . We show that T
contains Z>*. Since T(- = {φ} and 7" contains D, [φ}\^eP-, hence successively,
k<P -> e£, fcD (φ - ef-), \^0φ -> Oef-, 7} fc Oeβ (since Tt t 0^), Tt \g e?*
(since 7] \g eP). For A: ̂  /, it is trivial that Tk \γ; ef * since Tk = T£, e%* = ef
a n d Γ ^ e f .

(d) Maximalization and enrichment\ The adaptation of the usual definitions
of maximality, richness, etc. . . . is easy:

Definition 8 Let L be a language over </',Rf >. By | L \, we mean the cardinal
ΣieΓ\Form(Li)\. Let T be a theory over Γ in L'.
(1) T' is maximal if Γ' is maximal for inclusion, among nice theories over ZΛ
(2) T' is 3-πcA if for every i G Γ, every sentence 3x<p(x) G L/, Γ/ f̂  3x^(x) im-

plies Γ/ \χ <ρ(c) for some constant c of L .
(3) Γ' is 0-rich if for every / G /', every sentence 0<̂  G L , Γ/ ̂  0v? implies

Tj lχ ^ for somey G /' with iJR/.

Lemma 10 Let Tbe a nice theory over </,R) in L. There exist an extension
</; R') of {I, R), a language U over (Γ,R') such that Lf restricted to </, R) is an
enrichment ofL by constants and \L'\ < J L \, and there exists a theory T over
</;/?'> in L' such that T restricted to (I,R) contains Tand T is maximal, 3-rich,
and 0-rich.

Proof: Enumerate all pairs (/$,^$)$<α with i% G /and φ% a sentence of L, . Con-
struct a chain (I^R^L^T^)^<a9 starting with (I,R,L,T) and define (7€+1,
Rξ+ι, Lξ+uTξ+ι) by considering (iξ9φξ). To avoid lengthy definitions, we de-
scribe only Γξ+i. If T^ + (/€ ,-ι^) is nice, take 7$+1 = Tk + (/ {,-i^). If Γξ +
(/^,-i^) is not nice, then

Γ* = ^+(^)

is nice (Lemma 6). If φξ is of the form 3x<p(x), make the construction of
Lemma 7 and take

7|+i = (Γ* + ( / ^ ( c ) ) .

If ^^ is of the form <V, make the construction of Lemma 9 and take

r€+1 = 7-+(/f».

In other cases, take Γ ^ = Γ*.
For limit steps, we take unions. With this construction, we obtain (7 ( 1 ),

R{l\L(l\ Γ ( 1 )) which satisfy (1), (2), and (3) of Definition 8 but only for / G /,
sentences of Li9 and provability in 7}. It suffices to perform the construction ω
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times to obtain the result. Of course, in limit steps, we use the finite character
of ugly diagrams. The cardinality result \L'\ < \L\ follows from the construction.

(e) Completeness.

Theorem 11 Let T be a theory over (I,R) in L. If T is nice, then T has a
model over some <Γ,R') extending </, R) with ΣiGΓ \ M; | < | L | .

Proof: By Lemma 10, it suffices to prove that if T' is maximal, 3-rich, O-rich
over (I\Rf) in Z/, then T' has a model Mover that same /'. Here is the defini-
tion of M: M(i) is the quotient of the set of closed terms of L, by the equiva-
lence t ~; t' iff (t = t') E 7}. Interpret the functional symbol/ in M(i) by
fMW(t/~i) = (fi)/~i and the relation symbol r by rMU) = {?/-, \rte 7}}. De-
fine Mij by Mjj(t/~i) = t/~j. All these definitions make sense and determine a
model because we admitted in first-order K the axiom x = y -* D (x = y). It is
easy to show by the usual inductions that M hf φ\t/~i\ iff φ(t) E Th hence the
result.

5 Extension to other logics In this section, we present some comments on
the proof and on the possibilities of extension. We will confine ourselves to the
simplest propositional cases.

1. For the system K itself, it is interesting to remark that if one starts from
a binary relation R that is irreflexive or asymmetric or intransitive or is a tree,
the construction preserves those properties and the model obtained satisfies them
immediately: it is an advantage of the method that it is not necessary to "unravel"
the model.

2. The scheme (t)Όφ-+φ. This corresponds to the semantic condition that
R is reflexive. It is easy here to revise the construction replacing everywhere K
by Kt. The most natural way to do it is to transform the relation R over I into
its reflexive closure R = R U {</, />| / E /}. The key point is to prove that if Γis
nice over </,/?>, then so is Γover </,^>: just look at the new relations iRi. One
can also use that fact but apply it only at the end of the construction: the con-
struction gives a maximal O-rich Γover some </,JR>; the same Γis maximal 0-
rich over (I,R). One could finally also keep the construction as it is: it gives a
model Mover some </,/?>; that same model is also a structure Mover </,/?> with
the property that M \γ φ iff M tj φ, the inductive proof of which uses M \j
Π\[/->\l/. Whatever the method, we obtain a model over a reflexive R and if the
relation one starts with is asymmetric or intransitive, it remains so at the end of
the construction.

3. The schemes D^->DD<^ and φ-* Dθ<p. These correspond respectively
to the semantic conditions that R is transitive and R is symmetric. One can adapt
the foregoing observations replacing R by its transitive or its symmetric closure.

4. The scheme 07*. This corresponds to the semantic condition that R is
serial: ViljiRj. The construction will immediately ensure this, since for every
/, 7} h 0Γ, a point /" is added in the "adjunction of new worlds".

5. The scheme <>\3φ -> Dθ<p. This corresponds to the semantic condition:
vi\fj>fk(iRj Λ iRk-• 3/ (jRlΛkRl)). It seems much harder here to adapt the con-
struction step by step. We can however obtain the result that every theory Γhas
a model satisfying that condition as follows. The construction gives a T over
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</,/?> where (I,R) is a substructure of the canonical structure (IC,RC) (Mcj iff
[φ\ΠφGTi}Q 7}): if iRj and Πφ E 7} then <p E 7}, for otherwise -><p E 7} and
Γis ugly. By the usual completeness theorem one has a model M over (IC9RC)
satisfying the semantic condition and such that:

M ^ φ iff φ E 7*, for every A: E /c.

By our unmodified completeness theorem there is an M with

M \γ φ iff φ E 7}, for every / E /.

Consequently:

M \j φ iff M fj φ, for every / E /,

and M is a model of the original theory satisfying the semantic condition.
6. For other schemes such asD0^>-»0D<ρ, the indirect argument of the

foregoing point seems even more necessary, since the semantic condition corre-
sponding to it is not preserved by union of chains.

Of course, in cases 5 and 6 the result is interesting only from the point of view
of the original problem: it gives no new insight into completeness proofs for those
extensions of K; one could also say that our proof exhibits conditions ("niceness")
for a family (7})/G/ of theories being embeddable in the canonical model.
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