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Negative Membership

WAYNE D. BLIZARD*

Abstract Generalized sets whose characteristic functions may assume any
integer value, positive or negative, are formalized in a first-order two-sorted
theory MSTZ which contains an exact copy of ZFC and is relatively con-
sistent.

Introduction By negative membership we mean the fact of belonging to a
collection of objects a negative number of times. This concept extends the no-
tion of belonging to a collection of objects any positive number of times, which
has been formalized using multisets (see Blizard [1] and [2]). A multiset, or mset,
is a collection of objects, called elements, in which elements are allowed to re-
peat. The number of times an element repeats in a multiset is called its multiplic-
ity. The cardinality of a multiset is the sum of the multiplicities of its elements.
In the multiset [c,a,b,a,a,b] the element a has multiplicity 3, b has multiplic-
ity 2, and c has multiplicity 1. We denote this multiset by [a,b,c]3f2,ι The cardi-
nality of [a,b,c]3>2,ι is 6. A set is a multiset in which each element has
multiplicity 1. We denote the set [c,a,b]χΛΛ by {a,b,c}. It is assumed that ele-
ments of multisets have finite multiplicities but that the number of distinct ele-
ments in a multiset need not be finite. The concept of negative membership, or
negative multiplicity, has been used and investigated in the literature (see [4], [6],
[10], [16], [17], and [18]). We develop a first-order two-sorted theory MSTZ for
multisets in which elements may have integer multiplicities (positive, negative,
or zero). In MSTZ, [fl,6,c]_1>2,-4 denotes the unique multiset containing —1
copies of a, two copies of b, and —4 copies of c. The theory MSTZ is a gener-
alization of the theory MST (see [1] and [2]). We show that MSTZ contains an
exact copy of ZFC and that MSTZ is relatively consistent.
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Negative multiplicity in the literature T. Hailperin [10] uses multisets to
interpret the logical system in G. Boole's Laws of Thought. In his first edi-
tion (1976), Hailperin used the word "heap" instead of "multiset". (For re-
views of both editions, see Gridgeman [8].) In Hailperin's notation, the multiset
{(λi)#i,... ,(Λz )ff, , . . . } contains the element a\ with multiplicity Λ l 5 . . . , the
element α, with multiplicity A/5 Hailperin needs additive inverses to interpret
Boole's unrestricted subtraction. He therefore introduces signed multisets —
multisets in which the multiplicities A, can be any integer. He remarks, "While
the notion of a signed multiset is not as intuitively simple as that of an unsigned
multiset, a brief reflection on the history of the difficulties which were experi-
enced until negative numbers were in good standing, should help one overcome
resistance to the acceptance of signed multisets as a meaningful notion" ([10],
p. 139).

The conceptual difficulties encountered when negative numbers were intro-
duced into mathematics are discussed in M. Kline [11], pp. 252-253, 592-593 and
E. Fischbein [7], pp. 97-102. It is interesting to note that negative numbers were
introduced and accepted in China much earlier (by the second century B.C.) than
in the West. The conceptual difficulties inherent in negative numbers are exactly
the conceptual difficulties associated with negative membership (or negative mul-
tiplicity). One great advantage of negative numbers is that they permit unre-
stricted subtraction. In MSTZ, the existence of negative multiplicities allows for
unrestricted complementation; that is, the mset x — y is meaningfully defined for
all msets x and y.

In [18] H. Whitney argues that the algebra of characteristic functions of sets
is preferable to the usual algebra of sets since it can be expressed using opera-
tions on numbers. He investigates generalized characteristic functions: "Suppose
we associate with each element of a set R any integer, positive, negative or zero,
instead of merely one or zero. The resulting function will not in general be the
characteristic function of a real set; but we may consider it as the characteris-
tic function of a generalized set, where each element is counted any number of
times" ([18], pp. 411-412). He remarks, ". . . 'generalized sets' . . . are useful
in various mathematical theories" ([18], p. 405), citing ". . . chains in analysis
situs [topology]" ([18], p. 412) as one example. Whitney develops the algebra of
characteristic functions of "real" and "generalized" sets and establishes condi-
tions on their normal forms for distinguishing between the two types of sets.

R. Rado [16] investigates properties of families of sets using multisets. Rado
defines a multiset as a cardinal-valued function such that the nontrivial ele-
ments of the domain (elements whose image is nonzero) form a set. He calls
the class of all such multisets the cardinal module since its structure most re-
sembles that of a module over the semigroup of all cardinals. He defines a signed-
cardinal as a pair (σ,λ) where λ is a cardinal and σ G {-1,1}. After describing
the arithmetic of signed-cardinals, Rado investigates multisets that are certain
signed-cardinal-valued functions ([16], pp. 139-140). This is exactly the notion
of negative membership, or negative multiplicity, under consideration in this
paper.

M. P. Schutzenberger makes use of negative membership (positive and neg-
ative integer-valued characteristic functions) in his mathematical theory of ele-
mentary families of automata. S. Eilenberg ([4], p. 158) gives a brief description
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of Schϋtzenberger's work with references. W. Reisig defines negative-valued mul-
tisets ([17], Section 9.2) in his introduction to relation nets. He states, ". . . we
allow that some element d may also be contained in MNegatively often'" ([17],
p. 126). R. Feynman [6] employs negative-valued multisets (which occur at in-
termediate stages of computation) as a conceptual aid to introduce the concept
of negative probability, which he then applies to two-state systems. The very idea
of negative probability suggests the use of sample multisets containing both pos-
itive and negative numbers of occurrences of events.

In [14] Meyer and McRobbie are able to distinguish between the Ander-
son/Belnap system R of relevant implication and its Dunn/McCall extension
RM. They find ([14], pp. 107-108) that in RM". . . it is permissible to take
premisses of arguments as being collected together into sets . . .", but in R mul-
tisets of premisses must be used since ". . .it matters in the theory of deduction
for R but not in the theory of deduction for RM how often a premiss is repeated
in the course of an argument". The details of the systems R and RM need not
concern us here. Meyer and McRobbie, therefore, make use of multisets of
premisses. Although they do not consider negative multiplicity, they come very
close ([14], pp. 128, 130) to exactly the same concept. The binary additive union
of two msets x and y is denoted by x fcJ y. The elements of x W y are all elements
that belong either to x or to y. The multiplicity of an element in x \H y equals
the sum of its multiplicity in x and its multiplicity in y (where not being an
element is interpreted as having multiplicity zero). For example, [a,b]U2 t)
[b,c]2,3 = [a9b,c]i4i3. Let 0 be the mset with no elements. For two msets x
and y, we say that x divides y, written x\y, iff y = x l±J z for some mset z. In
fact, the mset z is unique. For any mset x, x\x since x = x lil 0 ; and 0 \x since
x = 0 I±J x. Meyer and McRobbie note that if x\y and y = x I±J z, then an ele-
ment with multiplicity n in x, and m in j>, must have multiplicity m-ninz. This
is as far as they go. However, one can ask, for any mset JC, does x\ 0 ? In other
words, does there exist an mset z such that 0 = x U z? This unique mset z must
be such that an element has multiplicity n in x iff it has multiplicity -n in z. This
new type of mset is like Hailperin's signed multiset. In Hailperin's notation, if
x= {(Λi)έϊi,... ,(Λ/)α/,... } then the mset z is {(-λi)ίϊi,... ,(-Λ,)α/,... }.
Hailperin's sum is equivalent to the additive union of msets. Therefore, although
negative multiplicities do not arise in [14], Meyer and McRobbie's division oper-
ator leads directly to msets that are equivalent to Hailperin's signed multisets.

The relevance of multiset theory to physics has been discussed in [1] and [2].
There is an analogy between msets in MSTZ and certain (collections of) elemen-
tary particles in physics. M. Guillen has suggested that P. Dirac's 1930 predic-
tion of the existence of the positron (confirmed in 1932) was an application of
the concept of negative number to theoretical nuclear physics ([9], p. 65). Since
1932, negative counterparts (or antiparticles) have been identified for all other
known subnuclear particles (including the proton and the neutron). Guillen con-
cludes " . . . antimatter is now recognized to be as significant a part of the nat-
ural world as negative numbers are of the algebraic realm", " . . . scientific
theories agree that antimatter is the embodiment of mathematical negativ-
ity . . .", and " . . . it is accurate to say that particles of antimatter are the
mathematicians' negative numbers incarnate" ([9], pp. 65-66). One remarkable
feature of the positron (with mass equal to the electron but with positive rather
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than negative charge) is that if it should ever be in the vicinity of an electron, both
particles would be annihilated instantly ([9], p. 65). In MSTZ, we show that an
mset and its unique 'shadow' mset 'annihilate' each other when joined in addi-
tive union.

The formal theory MSTZ We now generalize the theory MST developed in
[1] and [2] to obtain the theory MSTZ. The axioms for a vector space are stated
in a two-sorted language with scalar variable symbols and vector variable sym-
bols. The axioms for a vector space include the axioms for a field, stated in scalar
variable symbols, and the axioms for vectors and scalars stated in both sorts of
variable symbols. In exactly the same way, the language of MSTZ employs two
sorts of variable symbols: numeric variable symbols k, /, m9ή9.. .used to denote
multiplicities, and mset variable symbols x,y,z,... used to denote msets and ele-
ments of msets. As we shall see, the axioms of MSTZ include axioms for the in-
tegers stated in numeric variable symbols, together with generalizations of ZF
axioms stated in both numeric and mset variable symbols.

The theory MSTZ is formulated in the first-order predicate calculus with
equality using the usual logical symbols: ~ (not), Λ (and), v (or), -> (if . . . then
. . .), <-> (iff), 3 (there exists), V (for all), = (equality), and enclosures (,), [, ].
The first-order language of MSTZ is L = {<, e, \ + , , 0, 1, -1}, where < is
a binary predicate symbol, e is a ternary predicate symbol, A is a unary function
symbol, + and are binary function symbols, and 0, 1, and —1 are numeric con-
stant symbols.

An expression of L is any finite sequence of symbols of L. The collection of
numeric terms of L is the smallest collection of expressions of L that contains
the numeric variable symbols k9 /, m9 ή9..., the constant symbols 0, 1, and - 1 ,
and is closed under the function symbols and +; that is, if s and t are any nu-
meric terms of L, then s-t and s + t are also numeric terms of L. The symbols
s and t are metamathematical symbols used to denote numeric terms of L. We
write —s to stand for the numeric term — 1 s. By s — t we mean s + (— t).

The mset terms of L are the mset variable symbols x,y,z9... together with
all expressions of L of the form s9 where s is any numeric term. The numeric term
s denotes the 'set' corresponding to the number denoted by s. (For nonnegative
s, s is just the usual von Neumann numeral set corresponding to s.) We use the
metamathematical symbols u9 v9 and w to denote mset terms.

The atomic formulas of L are all expressions of L of the forms s < t,
e(u9 v91), s = t9 or u = υ. These formation rules do not permit equality between
mset and numeric terms. The numeric and mset universes of MSTZ are, there-
fore, disjoint.

The well-formed formulas (wffs) of L are defined as follows: all atomic for-
mulas of L are wffs, and if φ and ψ are wffs, then so are ~0, φ Λ ψ9 φ v ψ,
φ -• φ9 φ <-> φ; and for all variable symbols x and ή9 so are lxφ9 Vxφ9 lήφ9 and
Vrtφ.

We adopt the convention of A. Levy ([13], p. 5) that φ(...) means that the
interesting cases of what is to be said are those where the variable symbols (mset
or numeric) displayed in the list (. . .) occur free in φ. Therefore φ(x) (or φ(ή))
does not mean that x (or ή) is a free variable in φ9 nor does it mean that φ has
no free variables other than x (or ή).
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We adopt the following convention for numeric quantifiers: 3nφ(n) stands
for3ή(ήΦθAφ(ή)) and Vnφ(n) stands for vfι(ή Φ 0-»</>(«))• Therefore, the
bound numeric variable symbols k, l,m9n9... without dots are intended to range
over nonzero numbers.

When φ(u) (or φ(t)) is used after first using the notation φ(x) (or φ(ή)), we
mean the wff obtained from φ(x) (or φ(fι)) by the proper substitution of the mset
term u (or the numeric term t) for the free occurrences of x (or ή) if any. By
proper substitution we mean that we assume that collisions between variable sym-
bols are avoided. For example, if n is bound in φ(x), we assume that the bound
occurrences of n are replaced by some other suitable numeric variable symbol
before the mset term ή is substituted for all free occurrences of x in φ(x) to
obtain the wff φ(ή). If we write φ(t) after first using the notation φ{n), the
numeric term t is assumed to denote a nonzero number.

Whenever class terms of the forms {u\φ(u)\ or {t\ψ(t)} are used, the expres-
sions in which they occur are always reducible to wffs of L (see, for example,
A. Levy [13], 3.1, p. 9).

The intended interpretation of the atomic formula e(u,v, t) is "u is an ele-
ment of v with multiplicity t". We introduce the dressed ternary epsilon predi-
cate symbol as follows: u E ' V stands for e{u,υ,t). From this point onward, we
drop the predicate symbol e and use the dressed ternary epsilon predicate sym-
bol instead. We also introduce a binary epsilon predicate symbol as follows:
uEv stands for 3n u En v. Recall that our convention for numeric quantifiers
means that in u E Λ v stands for 3ή(ή Φθ ΛU €:" v). The intended interpre-
tation of u E v, therefore, is "w is an element of v with some nonzero multiplic-
ity". We emphasize that u E v stands for a wff of L—it is not an atomic formula
of L. Let s < t stand for the wff s < tv s = t.

The nonlogical axioms of MSTZ include a collection of first-order axioms
that characterize the integers stated in the numeric variable symbols k, /, m, fι>...
of L. For example, we could use the collection of axioms for an ordered inte-
gral domain (Pinter [15], pp. 170, 206) stated in the language {<,+, ,0, 1,—1}
together with the first-order axioms of Peano Arithmetic (Chang and Keisler [3],
p. 42) stated in the language L restricted to nonnegative elements of the integral
domain. The first six axioms of Peano arithmetic are numbered Nl through N6.
The induction schema reads as follows: for every wff φ of L, the universal clo-
sure of

N7^ φ(0) Λ Vή(0 < ή -+ (φ(ή) -• φ(ή + 1)) -» V/*(0 < n -• φ(ή))

is an axiom.
Equivalently, we could use the axioms for an integral system (Pinter [15],

p. 207) where the second-order statement of the well-ordering principle (every
nonempty set of nonnegative elements has a least element) is replaced by the fol-
lowing first-order axiom schema: for every wff φ of L, the universal closure of

3/i(0 < ή Λ φ(fι)) -> 3«(0 < / Ϊ Λ φ(ή) Λ Vm((0 < rh Λ rh < ή) -+ ~φ(m)))

is an axiom.
The remaining nonlogical axioms of MSTZ are stated in both numeric and

mset variable symbols. They are generalizations of the axioms of MST which
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were formulated to resemble as much as possible the corresponding axioms in
classical ZF set theory.

The exact multiplicity axiom of MSTZ is

I VxVyVflVm((Λ: e n y /\x Gm y)-+n = m).

In other words, the multiplicity with which an element belongs to a multiset is

unique.
The axiom of extensionality of MSTZ is

II VxVy(VzVn(z e n x++z En y) -+x = y).

If two msets have exactly the same elements occurring with exactly the same mul-
tiplicities, then they are equal.

The empty set axiom of MSTZ is

III ByVxVrt -x Gn y.

In words, there exists an mset that contains no elements with nonzero multiplic-
ity. By II this mset is unique and we denote it by 0 . Therefore, Vx x £ 0 or
vxvri(x e" 0-+/i = 0).

Let Set(u) stand for VxV«(jc Gn u -> n = 1). Since Set(0), we call 0 the
e m p t y s e t . L e t u Q v s t a n d f o r V z V n ( z e π u - > 3 m ( n < m ι \ z E m v ) ) . l f u ^ v
we say that w is an msubset oϊvΛϊu^v any element of u must have a nonzero
multiplicity in v (by our convention for numeric quantifiers). Therefore, even
though — 1 < 0, for example, we do not have nonempty msubsets of 0 . There-
fore, [ x j ] _ 1 ) _ 2 i 0 , V ^ c 0 - , x = 0 ) , v x 0 c χ , M _ I C { Λ : } , [XUXQQ

[x]_7, and [x,j>h,_2 £ [*,.y]2,-i The relation c is reflexive and transitive, and
using Axioms I and II it is proved that <Ξ is also anti-symmetric: VxVy((x <Ξ
y/\y<^x)->x=:y).

The elementary msets axioms of MSTZ are

IV (i) vxvnly(x en y Λ VZ(Z G ^ Z = X))
(ii) vxvy(χΦy-+ vnvmiz(x e n zΛy GWZΛVZ'(Z' G Z ^ (Z' =XV

z'=y)))).

Axiom IV(i) states that for any mset x and any number «, there is a unique
(by II) mset y containing exactly n copies of x and nothing else. Let [u]t denote
the mset that contains exactly t copies of u and nothing else. We denote [u]χ by
[u] and we call it the singleton set containing u since Set([u]χ).

Axiom IV(ii) states that for any two distinct msets x and y and any numbers
n and m, there exists a unique (by II) mset z containing exactly n copies of x, m
copies of y, and nothing else. Let [u, v]Stt denote the mset that contains s cop-
ies of uy t copies of v, and nothing else. We denote [u9 v] j ^ by {u9 v] and we call
it the pair set containing u and v since Set([ u, v]^). We require x Φ y in Axiom
IV(ii) since if x = y but n Φ m, then IV(ii) would assert the existence of an mset
that contradicts Axiom I. Therefore, we cannot write {x,x} in the language of
MSTZ since elements of pair sets must be distinct.

For msets u and v, we define the ordered pair (u,v) = {{u}, {u,v}} iϊ uΦv
and <w,w> = {{«}, [u]2). We call (u9υ) the ordered pair set since Set((u,v)).

The powerset axiom of MSTZ is

V Vxly(Set(y) Λ VZ(Z Gy++z^x)).
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For every mset x, there exists a set y whose elements are exactly the msubsets of
x. The set y in Axiom V is unique by II. For any mset term u, we denote the set
of all msubsets of u by P(w) and we call it the powerset of u since Set(Ψ(u)).
The reasons we require Vx Set(Ψ(x)) are discussed in [1] and [2].

Powersets in MSTZ differ from powersets in MST since an mset in MSTZ
has many more msubsets. For example, P([0}) = {{0}, 0 , [0]_i, [0]-2>
. . . ) Q P([0]2> However, we can still prove in MSTZ:

Theorem VxVy(x Qy++ Ψ(x) c ψ(y)).

Proof: The -> direction follows by the transitivity of <Ξ. For the <- direction, as-
sume that Ψ(x) c ψ(y) and let z E" x. Since z E" JC, [z]n £ x and [z]n E Ψ(x).
By our assumption [z]n E Ψ(y), so that [z]n £ >>• But since z EΛ [z]π, we must
have lm(n <mι\z E m y ) and, therefore, JCc:^ as required.

The axiom of foundation of MSTZ is

VI vy{yφ 0->3x(jcG}ΆVz(zGx->zί j))).

In words, every nonempty mset of MSTZ contains an Έ-minimal' element (an
element from which it is disjoint). Therefore, the defined binary epsilon rela-
tion E is well-founded. Axiom VI disallows infinitely descending E-chains within
an mset, E-loops of the form xx E x2 E . . . E xn = xλ, and 'extraordinary' msets
such that x= {x}.

The informal rules for binary union U, binary additive union l±J, and bi-
nary intersection Π that must hold for their formal counterparts in MSTZ are
as follows:

(i) Nonmembership is interpreted for this purpose as multiplicity zero;
(ii) For binary union, take the maximum of nonzero multiplicities;

(iii) For binary intersection, take the minimum multiplicity only when there
are two nonzero multiplicities. Otherwise, the mset is not a common ele-
ment and is not an element of the intersection;

(iv) For additive union, take the sum of multiplicities.

For example, in MSTZ we require that

M - u U [χ,zh,-ι = [χ,y,zh,2,-i

[x,y]-i,2n [*>*]3,-i = M-u and

[χ,y]-i,2ϋ [χ,zh,-i = [χ9y,z]2,2,-i-

In this example we notice that the intersection is an msubset of both the union
and the additive union, but the additive union (unlike in MST) is a proper msub-
set of the union (the sum of multiplicities is less than the maximum of multiplic-
ities).

Axioms I through VI are stated exactly as in MST. However, for the union
axiom we must make a change. In MST, the elements of Ux are the elements of
elements of x. The multiplicity of an element z E UΛ: is the maximum of the mul-
tiplicities with which z belongs to elements of x, if the maximum exists, and the
minimum such multiplicity, otherwise. In MSTZ, however, neither the maximum
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nor the minimum such multiplicity need exist (consider the mset x = {[z]\,
[z]-u [z]2, [z]_2,. . }).

The union axiom of MSTZ is the formal L-sentence that states:

VII "For all msets x, there exists an mset z' such that, for all msets z and all
integers n, z belongs to z' with multiplicity n iff z is an element of elements of
x and if the multiplicities of z as an element of elements of x have a maximum
m, then n = m; otherwise, if the multiplicities of z as an element of elements of
x have a minimum k, then n = k\ otherwise, n — 1."

Since this sentence is clearly expressible in L (see, for example, Axiom VII of
MST in [1] and [2]), we do not explicitly write it out. We let Ux denote the unique
mset zf in the above Axiom VII. If we define binary union by u U v = U {u, v]
if u Φ v and U {u} otherwise, then the formal binary union operation follows the
informal rules discussed earlier.

The elements of the additive union lϋx of x are exactly the elements of UΛ:;
that is, all elements of elements of x. To determine the multiplicity of an element
z in l±Jχ we must know whether z belongs to a finite number of elements of x.
If so, then its multiplicity in l±Jχ is a, finite sum of products. If not, then its mul-
tiplicity is its multiplicity in Ux.

The additive union axiom of MSTZ is the formal L-sentence that states:

VIII "For all msets x, there exists an mset z' such that, for all msets z and
all integers n, z belongs to z' with multiplicity n iff z is an element of elements
of x and if z belongs to a finite number of elements y of x such that z Ek y Gι

x holds (for each such y), then n equals the finite sum (over all such y) of the
products k'l; otherwise, n equals the multiplicity of z in Ux."

The formal statement of this axiom is long and complex. It is exactly the same
as the formal statement of Axiom VIII in MST ([1] and [2]) except for a small
technical change. In MST, imφ means 3m(m > 0 Λ φ), but in MSTZ, Smφ
means 3m((m < 0 v m > 0) Λ φ). Because of this, 3ra(.. . must be changed to
3m(m > 0. . . and ~3m3/... must be changed to ~3m(m > 0 Λ 3/ Except
for these minor changes, the formal statement of VIII in MSTZ is exactly the
same as the formal statement of VIII in MST.

If we let lux denote the unique mset z' in the above Axiom VIII, we can de-
fine binary additive union as follows: w ϋ i; = ttl { M , υ \ ι t u Φ υ and l±J [u]2

otherwise. The formal binary operation li) follows the informal rules discussed
earlier.

The formal statement of the separation schema of MSTZ is exactly the same
as in MST: for every wff φ(x,n) of L with free variables including x and n but
excluding y and n\ the universal closure of

IX^ VxVnVn'((φ(x,n) /\φ(x,n'))-+n = n')-+
vziyvxvn(x e"y++ [x]n CZΛΦ(x,n))

is an axiom of MSTZ.
The mset y is well-defined because we require that φ(x9 n) be 'functional'. In

all such axioms IXφ we have y c= z since \/χ\/n(x En y-+ [x]n £Ξ z).
For any mset z\ let φ(x,n) be x = z' Λ X Gn z. Φ(x,n) is 'functional' by Ax-

iom I. We denote the mset y £ z in the consequent of Axiom IXΦ by zz*. There-



354 WAYNE D. BLIZARD

fore, zz £ z and zz> = [z']n iff z' E" z and zz> = 0 iff z' £ z. The msubset zz>
contains every copy of z' in z (if any) and nothing else. We define the numeric
term \zz*\ as follows: \zz>\ = tiff z' E*z.

We need a general procedure whereby any mset containing elements with neg-
ative multiplicities is 'replaced' by an mset containing elements with positive mul-
tiplicities. The separation and replacement schemata of MST cannot increase
multiplicities from negative to positive. We have adopted the separation schema
of MST without change, but we modify the replacement schema to suit our
needs. In any case it would have been necessary to modify the replacement
schema, since a least multiplicity for elements of the 'domain' mset need not exist
in MSTZ.

The replacement schema of MSTZ is: For every wff φ(x9y) of L with free
variables including x and y but excluding y' and z', the universal closure of

X* vxvyvy'((0(x,.>') Λ φ(x,y')) -+y=y')-+
vz3z'vywz(y en z' +* [3x(x E z Λ Φ(x,y)) Λ
[VxVm((x G" z Λ φ(x,y)) -» m > 0) -*
(3x(x G " Z Λ φ(x, y)) Λ VxVm((x E w z Λ φ(x, y)) -+n< m))] Λ
(3x3m(x E m z Λ φ(x,y) Λm<0)-+n = 1)])

is an axiom of MSTZ.
In words, if the multiplicities of all elements x in z, such that φ(x,y), are pos-

itive, then the multiplicity of y in zf is the least multiplicity of all such elements
x in z. If, on the other hand, there is some element x in z, such that φ(x9y), hav-
ing a negative multiplicity in z, then the multiplicity of y in z' equals 1.

To define the mset Πx we use the following principle: If the multiplicities of
z as an element of every element of x have a minimum, then the multiplicity n
of z in Γ\x equals that minimum; otherwise, n = 1. Since a maximum multiplic-
ity may exist that is less than 1, and a minimum multiplicity may not exist, in
general Πx £ Ux. For example, if x = {[z]_2, U]-3, [z]_4,... }, then Πx =
[z] £ Ux = [z]_2 The same example shows that, in general, Πx £ l±Jx. If x =
(UJ, UJ-i, [z] 2 . [ z ] _ 2 , . . . } , t h e n U x = l ± / x = n x = fz).

Since in general Πx <£ Ux, we cannot hope to define the mset Πx by sepa-
ration on the mset UΛ: as we did in MST. Let x be an arbitrary mset. The mset
UΛ: exists by Axiom VII. Elements of every element of x will be elements of UJC,
but there may not be enough copies of such elements in Ux. We replace each ele-
ment z in Ux by itself to obtain the mset y' that contains exactly the elements
of Ux but with all multiplicities at least 1. We then invoke separation on the mset
y' to obtain the msubset Πx c y\ We use the wff φ(z, ή) of L that states

"z is an element of every element of x and if the multiplicities of z as an ele-
ment of every element of x have a minimum k, then n = k\ otherwise, n = 1."

If we define binary intersection by: u Π v equals Π{u9v] when u Φ v and
equals Π {u} otherwise, then the formal operation Π satisfies the informal re-
quirements discussed earlier.

In MSTZ, we are able to preserve the identities x U 0 = χ i ± ) 0 = x and
x Π 0 = 0 , and the implication x Π ^ = 0 ^ x l ± l ^ = xU^. Also, the distribu-
tive laws for multisets (as given by Knuth [12], p. 636) still hold in MSTZ. Spe-
cifically, binary U and Π distribute over each other, ϋ distributes over both U
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and Π, but neither U nor Π distribute over 1±J. We say, therefore, that lί/ is "dis-
tributively stronger" than both U and Π. For example,

M - i U ( M _ 2 a M - 3 ) = M - i U [x]-5 = M - i , but

<M-i u [x]_2) ta «χ]-i u [x]_3) = M - i ϋ M - i = M - 2 ;

M i n (W_ 8 ta M 2 ) = [x]ι n M - 6 = M - 6 , but

( M i n M-8) W ( M i n M 2 ) = M-8 ϋ M i = M-7.

In MSTZ, we also preserve the relationships

xΓiy^x, yQxUy

since min(fl,m) < n, m < max(Λ,m) for any integers. We retain, as well, the
equivalences

χζy<->χΓ)y = x++x\Jy=y.

A quick proof of the first equivalence: If x Q y and z G" x, then 3m > n and
z Gm.y. Since min(n,m) = n, z En xΠy. Therefore, xQxΠy a n d x Π y ^ x
by the relationship above. Conversely, if xΓ)y = xand z £ Λ xthen z GΛ xΠ j .
Therefore, 3m z E w ^ a n d Λ = min(m9n). So 3m > n andz G m ^ . Hencex^y.

The formal statements of the infinity and choice axioms of MSTZ are exactly
the same as in MST. The infinite mset axiom of MSTZ is

XI 3y(0eyΛVx(xey->xΌ [x] ey)).

As in MST, we obtain the set {0, {0}, {0, {0}},...} of (nonnegative) von
Neumann numerals. We shall discuss their negative counterparts shortly.

The choice mset axiom of MSTZ is

XII vy[[yφ 0 Λ vχ(xey^>χφ 0) Λ
vxvz((x Gy Λ z Ey Λx * z) ->x Γι z = 0)] ->
3J>'(VΛ:VA7(Λ: e"j>-> Bx'(x' G " / Λ J C ' G J C Λ

VX" {(X" G X Λ X" G JO -^ X" = X'))) Λ

vx'vn(x' enyr-• 3x(x G V Λ X ' G X ) ) ) ] .

The mset ^ ' in Axiom XII is called a choice mset for j>. The elements xf my' oc-
cur with the same multiplicity, positive or negative, as do their corresponding
elements x in the mset y. The multiplicity of the 'chosen' element x' in x is not
taken into account. A choice mset y' for y is not unique unless every element x
of y is a simple mset of the form [x']m.

Exactly as in MST, we define the transitive closure TC(y) of an mset y to
be the smallest set containing the elements of y9 the elements of elements of y,...
etc. Informally, TC(y) = y U (Uy) U (UUy) U . . . . An mset y of MSTZ is
called a hereditary set if HSet(y), where HSet(y) stands for Seί(j>) Λ VX(X G
rcxy) -> Seί (x)). The hereditary sets, or Λsete, of MSTZ are the exact analogs of
classical sets in ZFC.

For every mset y of MSTZ we prove the existence of a unique set of MSTZ
that contains exactly the elements of y, but normalizes all multiplicities (posi-
tive or negative) of elements in y to 1. We call such a set the 'root set' of y.

Theorem (Existence of Root Sets) Vy3z Vx(x G ^ ^ J c G ; ) .
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Proof: Let y be an arbitrary mset. Let φ(x,y) be the wff x = y of L. Apply-
ing replacement (Axiom X^) to the mset y gives an mset y' that is similar to
y (Vx(xEy^xEy ') holds) andy' has all multiplicities at least 1 (VxV«(A: E Λ

y' -> n > 1) holds). In fact, .y is an msubset of y\ Let ψ(x9n) be the wff x =
x Λ « = 1 of L. By separation (Axiom IX^) on the mset >>' we obtain the subset
z^y' such that vx(x E* z <-> x E j>') holds.

We denote the unique mset z in the above theorem by y*9 and we call it the
root set ofy since Set{y*). Therefore, VyVx(x E 1 y* ++xGy). Since multiplic-
ities of elements in y may be any integer, we could have y = y* or Set(y), y Q
y*,y* ^y,y £y* ory* £y. As inMST, 0* = 0 and vxvy(χg.y->x* c / ) ,

From the structure (the existence of additive inverses) of the numeric universe
Z = [ή\ή = ή] of MSTZ, it is clear that there should correspond to every mset
y a unique 'shadow' mset containing exactly the elements of y with multiplici-
ties that are the additive inverses of their multiplicities in y.

Theorem (Existence of Shadow Msets) Vy3zvxwz(x Gn z++x G~n y).

Proof: Let y be an arbitrary mset. The root set y* exists by the previous the-
orem. For each x E y*, the simple msubset yx c y exists by separation. We re-
place each element x in the set y*by the corresponding mset yx to obtain the set
y' = [yx\x E >>*}. For each x E y*9 yx = [JC]Λ iff x Gn y. Therefore, y' =
{[x]n\xEy* ΛX Gn y}. For each mset [x]n iny r the mset [x]-n exists by the
existence of additive inverses in Z and Axiom IV(i). We replace each element
[x]n in the sety' by the mset [x]-n to obtain the sety" = {[x]_n\x Ey* AX e Λ

y]. Let z be the mset Uy" which exists by Axiom VII. Clearly, VxVn(x En z ++
x E~ny) holds as required.

We denote the unique mset z in the above theorem by y ~, and call it the
shadow mset of y. Therefore, Vy VxVAZ(X E Λ .y <+ x E ~Λ 7 ~) and V^ (y (±! ̂  " =
0 ) . We say that the msets y and .y" annihilate each other. Every mset .y of
MSTZ is the shadow of some mset (namely, y~); that is, Vy((j>~)~ = y)
Clearly, 0 " = 0 , Vx(x = x~<+x=0), and VJCV/I(([JC]Λ)" = M _ Λ ) . Every
mset of MSTZ is 'obtainable' from any other mset of MSTZ by a single appli-
cation of additive union: VxVy3z(x = y l±J z). (Proof: Given msets x and y9 let
z = .y ~ ttl x). Since the msets y and .y ~ are generally distinct (except when y = 0),
they can coexist as elements of the same mset, as in {y,y ~}. Although {y,y ~} Φ
0, we have W{y,y~\ = 0 . Since {x} = [x]u {x}~ = [x]_ r. Therefore, {x~j ^
{x}~ since {x~} contains the element x~ with multiplicity 1 but {x}~ contains
the element x with multiplicity — 1.

Consider the mset x = {{z},{z}~}. By Axiom VII, Ux = (z). By Axiom
VIII, however, ii)χ = 0 . Since a finite sum of products of multiplicities of z as
an element of elements of x may equal zero (even though such multiplicities may
have a nonzero maximum), it is possible for z E Ux Λ z ί βx to hold. As we
have seen earlier, a sum of multiplicities may be less than a maximum of mul-
tiplicities. In MSTZ, therefore, in general Ux ξέ ΰx.

The msets y and y~9 though distinct (when y Φ 0 ) , are similar since Vx(x E
y*+xE y~). They must, therefore, have the same root set (y* = (y~)*). The
msets (y~)* and (y*)~ are generally distinct since all multiplicities in (y~)* are
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1 and all multiplicities in (y*)~ are - 1 . In fact, one can show that Vy((y~)* =

If the mset y contains elements with only positive multiplicities (if
VXVAZ(Λ: G* y -+ n > 0) holds), our intuition is clear about the msets x that are
elements of y and the numbers n that are their multiplicities in y. Since y and y~
contain exactly the same msets as elements, there is no mystery surrounding the
nature of the elements in the shadow mset y~. Multiplicity measures the extent
to which an element occurs in a multiset. The multiplicity —n of element x in y~~
measures the extent to which (or lack thereof) x occurs in y~, which depends en-
tirely upon the extent n to which the same element x belongs to y (the greater the
latter, the lesser the former).

Negative multiplicity loses much of its mystery when viewed as the natural
result of unrestricted complementation in MSTZ. For any msets x and y, let
x — y stand for x fcJ y~. Therefore, x — x= 0, x — 0 =x, and 0 — x = x~~. We
can think of the mset x~ as the mset 0 — JC. In particular, [x}~ = 0 — {x}. The
mset {x}~ = [x]-ι is the result of removing a single copy of element x from 0 .
From the definition of x — y9 we have x — x~ — x fcJ x and x~ — x — x~ lίl x~.
Since shadow msets are unique, and since (x — y) ϋ (y — x) = (x ϋ) y~) 1±J
(y W x") = 0 , we have that (x - y)~ = y - x.

Since (x lϋ y) ϋ (x~ t) y~) = 0 and since shadow msets are unique, we
must have (x l±J y)~ = x~ W y~. However, in general, (x U y)~ Φx~ Uy~ and
(x Π j ; ) " * Λ:~ Π y~. For example, let x = [Zi,z2]-i,2 and ^ = [*2l-3 τ h e n

*~ = [Zi,z2]i,-2 and j ~ = [z2]3? and x U >> = [Zi,z 2 ]-u and (x U y)~ =
Ui,Z2]i,-2>butx"U^"= [Zi,z2]i,3 Similarly, xΓ\y= [z2]_3and (χΠy)~ =
[zih butx~Π^~ = [z2]-2-

We proved the existence of shadow msets having first proved the existence
of root sets. To see that the reverse procedure is also possible, assume that the
existence of shadow msets has been proved, and let x be an arbitrary mset. By
separation, the msubsets x (z En x ++ z En x /\ n > 0) and x (z &n x*+ z En

x Λ n < 0) exist. If we apply separation to the mset x U (x)~, we obtain its root
set. The root set of x U (x)~ is a subset of x U (x)~ since all multiplicities in
x U (x)~ are at least 1. By Axiom II, the root set of x U (x)~ equals the required
root set of x.

Exactly as in MST, we can define a translation ' from every wff φ of ZFC
to a wff φ' of MSTZ as follows: (JC = y)' is HSet(x) Λ HSet(y) Λ X = y\ (x G
yY is HSet(x) ΛHSet(y) AXG^Ά~ψ)' is ~ψ'; (φ v 0)' is ψ' v 0'; (φ Λ θ)' is
0' Λ 0'; (ψ -^ 0)' is ψ' -+ θ'\ (ixψ)' is lx(HSet(x) Λ ^ ) ; and (VJC^)' is
vx{HSet(x) -* ^ ' ) . One can show that ([1] and [2]), for every wff φ of ZFC

ZFC h φ iff MSTZ h φ'.

Therefore, the theory MSTZ contains a copy ZFC = {φ' \ φ G ZFC} of classi-
cal ZFC set theory.

With a copy of full set theory at hand, we have copies of the ordinals, the
cardinals... etc. in MSTZ. The mset universe M of MSTZ is {x\x = x] and the
hset universe V of MSTZ is {x\ HSet(x)}. Exactly as in ZFC, one can prove that
V = (J v ; where Vό = 0 , V;+ 1 = P(V;), V^ = |J v ; if λ is a limit ordi-

aGOn a<λ

nal, and VxΨ(x) = {xG IP(x)\ Set(x)}. The Ma hierarchy of MSTZ is defined
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as follows: Mo = 0 ; M α + 1 = {x\x* E V^+1 U P(Mα)}; and M λ = (J Ma when-

ever λ is a limit ordinal. Exactly as in MST using Axiom VI, one can prove that
the mset universe M = \J Mα.

α£0/ί

The first few levels of the Mα hierarchy of MSTZ are:

M o = 0

M! = ( 0 )

M 2 = { 0 , { 0 } , [ 0 ] _ ! , [ 0 ] 2 , [ 0 ] _ 2 , . . . }

M3 = { 0 , . . . , [ 0 ] Λ , . . . , . . . [ [ 0 } ] „ , . . . , . . . [ 0 , { 0 J ] Π t m . . . . . . . [ [ 0 ] n ] m

. . . . . . . e t c . }

where AZ and m range over Z. Included in M3 are all msets of MSTZ whose
root sets are subsets of M2. In other words, {x\x* c M2} £ M3.

For any mset x in M, we define the rank of x in M, denoted by τ(x), to be
the least ordinal a in On such that x G M α .

We want to define the notion of the 'hereditary shadow' y= of an arbitrary
mset y in M. The mset y= should have a root set {JC= | JC G y] and be such that
Vx\/n(x= e~ny=++xeny). Therefore, 0 = = 0 and ([0]n)

= = ( [ 0 = ] Λ ) ~ =
[ 0 ] _ r t . The mset j>= is the result of taking the shadow of y, the shadow of ele-
ments of y, the shadow of elements of elements of y,... through all msets in
TC(y).

Theorem (Existence of Hereditary Shadow Msets) Vy3zVxW2(x= G ~n z <->

Proof: Let j> be an arbitrary mset in M. We prove the existence of y = by induc-
tion on the rank of y in M. If y = 0 , then 0 = = 0 exists by Axiom III. If
y = [0]n for some n in Z, then ( [ 0 ] Λ ) = = [0]-n exists by Axioms III and
IV(i). If τ(y) > 2, we assume that the mset x = exists for all msets x in M such
that r(x) < r(j>) We now show that the mset y= exists. The mset y~ exists by
the previous theorem. For each x Gy~, r(x) < r(y) since Vx(x Gy~ ++xEy)
holds. Therefore, for each xGy~9 the mset x= exists by the induction hypoth-
esis. We replace each x in y~ by the mset x= to obtain the mset y'. All multiplic-
ities in y' are at least 1. Let z £ y' be the result of separation on the mset y\
where Φ(x,n) is the wff of L that states "the multiplicity of x= in z equals the
multiplicity of A: in j>~". Then VXVΛ(X= G~n Z++X Gn y) holds. Therefore, the
mset y= exists for all msets y in M.

Remark Although perspicuous, the formal statement of the above the-
orem is not strictly correct since it contains the defined symbol x=. What is
needed is an L-sentence such as Va3fvy(r(y) < a-+3z((y9z) G / Λ V#(jtG.y->
3A:'«A:,JO G / Λ WK*' G " Λ Z++X GΛ^))))), where Vα... is for all msets α, if

"α is an ordinal" then . . . and 3 / . . . is there is an mset/, "/ is an injective func-
tion" and. . . . So, for each a E On and each mset y with r(y) < a, fa(y) =
y = . We denote the unique mset z in the above theorem by y= and call it the
hereditary shadow of the mset y. For shadows, we have vy(y~)~ = y. We prove
a similar result for hereditary shadows.
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Theorem Vy (y = ) = = y.

Proof: By induction on the rank of y in M. If y = 0 , (y = ) = = ( 0 = ) = =
0 = = 0 = j , . if y = [0]n for some n in Z, then (y = ) = = (([0]n)

=)= =
( [ 0 ] _ π ) = = [0]n = j>. If /•(>>) > 2, we assume that (x=)= = x for all msets
x such that τ(x) < τ{y). Now vxV/i((x=

 G ~ Λ ̂ = <-• * e π y) Λ ( ( Λ : = ) = G*
( J > = ) = <->x= E~n y=)) holds by the definitions of y= and (y = ) = . Therefore,
VxWi((x=)= GΛ ( f Γ ^ ^ e " } ' ) holds. For each element ( x = ) = in (y = )= we
have r(x) < r(y) since Λ: G J>. By the induction hypothesis, each such (x= ) = =
x. Therefore, VxV«(x G" {y=)=^x G" y) holds, and (j>=)= = j by Axiom II
(extensionality).

We note, in particular, that for hereditary sets y9 y
= = {x=\x G y}~ and

(y=)= = ({x=\xGy}~)= = {x|xGy] =y. For hereditary sets y Φ 0,y= is not
a hereditary set in the extreme—there are no nonempty sets in TC({y=}).

An example of the hereditary shadow of an mset that is not a hereditary set
is ([0, [{0}]n]m,kΓ = [ 0 . [[0]_i]_/1]_m,-/t. It is easy to prove in MSTZ that
Vy(y= =y~<r+(y = 0vlny= [0]n)) holds (since vx(x = x= <-»x= 0 ) holds).

The last nonlogical axiom of MSTZ determines the syntax for the unary func-
tion symbol A of L. The numeric-mset correspondence axiom of MSTZ is

N8 6 = 0 Λ 1 = { 0 ) Λ VΛ((/I > 0 ->

« + l = / ί U ( n ) ) Λ ( « < 0 - > / ι = ( ^ D ) .

Axiom N8 defines the correspondence A from integers in Z to certain msets in
M. For example:

2={0}U{{0}} = {0, {0}}

3 = {0, {0}} U {{0, {0}}} = {0, {0}, {0, {0}}}

( Q ) = (ϊ)= = {0}= = {0=}- = {0}-

(^2) = (2)= = [0, {0}}= = {0, { 0 Γ ) ~

(^3) = {0, {0}, {0, {0}}}= = {0, {0Γ, {0, {0}-}-}-

In other words, for all integers n <0, ή = {riι\n < m <0}~.
With this definition of the correspondence A: Z -> M, we have the follow-

ing relationships:

0 c i c 2 c , , .

O c M c ^ c . . , and

0G1G2G...

O G ^ I G ^ G . . .

where G in the third row is G ι and G in the fourth row is G - 1 . Thus the chain
of Q relationships and the chain of G relationships to the right of 0 reverse them-
selves to the left of 0. Therefore, to the usual set-theoretic representation of the
nonnegative integers 0, 1,2,... by 0 , (0), {0, (0) } , . . . corresponds an mset-
theoretic representation of the negative integers - 1 , - 2 , . . . by {0}~ , {0,
{0}~}~,... that preserves the nice relationships of the classical case. Tradition-
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ally, the negative integers are represented in ZFC by equivalence classes of or-
dered pairs of natural numbers. (See for example Enderton [5], p. 91, where the
equivalence class Kn,n+ 1 > | « E N ) represents — 1. The equivalence class to
which the ordered pair {n,m) belongs is taken to represent the (ordered) differ-
ence n - m.)

We could have defined ή, for every n < 0, to be simply the shadow of
( - Λ ) ; that is, Vn(n < 0 -• n = (-n)~. With this definition, (-2) = (2)~ =
{ 0 , [0}}~ = [ 0 , {0)]_i,_i. However, we^would not obtain the very nice re-
lationships described above (here, — 1 ̂  —2). With this simpler definition, we
do have h t±J (^h) = n\ϊ) (n)~ = 0 corresponding to n + (-n) = 0. This does
not hold for the hereditary shadow definition of A above. However, because of
the very nice £ and G relationships, we will stick to our hereditary shadow def-
inition, that is, Vn(n < 0 -• h = (^-h)=). Thus, to every integer n in Z corre-
sponds a unique mset ή in M.

The mset [ 0 , ( 0 ) , { 0 , ( 0 ) } , . . .]_ 1 > _ 2 > -3,... satisfies the conditions in the
infinite mset Axiom XI of MSTZ. The collection of (nonnegative) von Neumann
numerals is that unique set { 0 , { 0 } , { 0 , { 0 } } , . . . } that is a subset of the root
set y* of every mset y of MSTZ that satisfies Axiom XI. By separation (the wff
Φ(x,n)isxΦ 0 Λ « = 1) we obtain the subset y' = { { 0 } , { 0 , { 0 } } , . . . }. We
replace each element x in y' by the mset x= to obtain the set y" = {{0 } = , { 0 ,
{ 0 } ) = , . . . }. The sety' U y" is {/*|Λ E Z Λ AZ * 0}. Let z be an arbitrary mset.
We replace each element h in the s eί >>' U y" by the mset [z]n (which exists by
Axiom IV(i)) to obtain the set {[z}9 [z]_i> [ z ] 2 , [z]-2> )• This is the set that
provided many useful examples in our discussion of the msets UΛΓ, WJC, and Πx.
We can also show that {h\n G Z) is a set in M. Since [ή\n G Z Λ n Φ 0} is a
set ( / U / above), {n\neZ} = {n\nEZΛnΦθ} U { 0 } is a set of MSTZ.

The definitions of function, injection, surjection, and bijection between msets
are exactly as in MST ([1] and [2]). The function/: x* -+y* (defined in the clas-
sical sense) is automatically a function from x to y, denoted by/: #-> y. The func-
tion/: x-+y is an injection if/: x* -»y* is an injection (defined classically) and
Vz(z G Λ:* -> I*J < I>yω |), recalling that |xz\ = n iff z G* x and\yΆz) \ = m iff
/(z) G w j . The function/: x -+y is a surjection iff: x* -> j>* is a surjection (de-
fined classically) and Vz(z Gx*-^ |x z | > \yfω |). The function/: *-•.)> is a W-
jection if it is an injection and a surjection; that is, if/: x* -+y* is a bijection
(defined classically) and Vz(z G x* -> |x j = | jy ( z ) |). The numeric terms \xz\
and |jy(z ) | may be positive or negative in MSTZ. For example, the function/:
l*,y] -+ {zi,z2} given b y / = {(x,Zi),(y,z2)} is an injection from [x,y]-2,\
to [Z19Z2I-LS9 & surjection from [x,y]-2,ι to [zi,Z2]-3,-2> and neither from
[ x , j ] _ u to [zi,Z2]-2,2 If x £ y, there is the natural injection/: x-+y that
embeds x into .y. For example, if x~ c x and x ^ 0 , then the identity map on
x* = (x~)* is the natural embedding of x~ into x.

A function/ of MSTZ is a set (/ = /*) of ordered-pair sets. What is the
shadow of/? The mset / " i s not a function of MSTZ when / Φ 0 since
~Set(f~). The elements of/"" are exactly the ordered-pair sets in/ but their
multiplicity in/~ is - 1 . As with all msets,/lil/~ = 0 and/* = (/")*. How-
ever, since Set(f), we also have for functions that/ = / * = (/")*.

Before we define the cardinality of msets in MSTZ, we must distinguish be-
tween various types of msets. An mset y is called M+ iff VA:V«(JC GW y -> n > 0)
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holds. An mset y is called M~ iff VxV«(x G" y -> n < 0) holds. An mset that is
neither M + nor M~ is called hybrid. For example, 0 is M + and M~ but not hy-
brid, [x]3 is M+, [y]-j is M", and [A:, J ] _ I , I is hybrid. From the definitions, we
get immediately this result:

Lemma x is M + <r+ χ~ ς.χ
A: is M ~ <r> xςz χ~

Λ: is M + ++x~ is M~
x is hybrid «-> x~ £ x A X £ jf~.

If JC is M+, then the identity map on x* = (JC~)* is an injection from x~ into
x (the natural embedding Λ:~ C= Λ:) and a surjection from x onto x~. There is no
bijection from x to x~ since multiplicities do not agree. If x is hybrid, then x~
is hybrid and the identity map onjc* = (jc~)*isa function from x to x~ and
from x~ to JC but neither function can be injective, surjective, or bijective.

For all msets JC, x t ! x~ = 0 . What are the msets xUx~ and JC Π JC~? The
above lemma, together with the equivalencesxQy++xUy = y++xΠy = x9 give
us this:

Lemma xis M + ++xUx~ = x++xΠx~ = x~
x is M~ ++xUx~ =x~++xΠx~ =x.

As mentioned earlier, by applying the separation schema to any mset x9 we
can define two msubsets x and x of x such that VZVΛ(Z E / I X < - > U E " . X : A « >

0)) and VZVΛ(Z G / Z X ^ ( Z G Λ Z X Λ / 7 < 0 ) ) . The msubsets Jc and x are disjoint by
Axiom I.

Lemma x is the "largest" M + msubset of x; that is, x ^ x A x is M+ A
Vy((y QXAyis M+) -+y Qx).

Proof: If z En y c x Λ j is M + then 3m > Λ > 0 such that z G " 1 ! Hence, z G w

jc and ̂  <Ξ Jc.

Lemma Every mset x can be "separated" into anM+ part x and anM~ part
xsuch thatx = χ\ϊ)x = xUx.

Proof: By Axiom II and the fact xΠx= 0 . (Recall that VxVy(x f)y = 0^>
xϋy = xUy).)

Lemma x is M + ++ x = x (or x = 0 )
x is M~ ++x = x {or x= 0 )
x is hybrid ++x Φ 0 AXΨ 0 .

Proof: Obvious from the definitions of x and x

Lemma For any mset x, χ = x AX = XAX= 0.

Proof: Since x is M+, x = x; since x is M~, x = x; and since x is M+, x = 0 (all
by the above lemma).

Lemma For ίmy mset x, x — x = x and x — x = Jc.

Proo/: x - Jc = (Jc l±) x) W ( « " = x; JC - x = (Jc W x) W (x)~ = Jc.
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In [1] and [2] we defined the cardinality of multisets in such a way that the
multiplicity of each element in an mset contributes to the cardinality of the mset
as a whole. It is consistent with this philosophy of cardinality, therefore, that in
MSTZ the multiplicity of an element in an mset should augment or diminish the
cardinality of the mset as a whole, depending upon whether it is positive or neg-
ative. The positive extent to which some elements occur in a mset x and the neg-
ative extent to which other elements occur in x should cancel each other out
(either wholly or partly) when counted in the cardinality of x as a whole.

Since MSTZ contains a copy ZFC of ZFC, the classical (positive) cardinal
numbers are particular hereditary sets in M. They are the hset copies K' in V =
{x\ HSet(x)} of cardinal numbers K in V. A negative cardinal number of MSTZ
is an mset in M of the form (κ')= (the hereditary shadow of the hset K' that cor-
responds to the cardinal number K). From this point on, we do not distinguish
between cardinal numbers of ZFC and their hset associates of MSTZ. We use
variable symbols α, β9 λ, K, . . . for msets that are cardinal numbers of MSTZ.
The mset XQ = {ή\n>:0}= = {(ή)= \n > 0}" = {(^h)\n > 0)" is the mset whose
elements are exactly the nonpositive finite cardinal numbers of MSTZ, each of
which belongs to K^ with multiplicity — 1. We want to define the cardinality
C(u) of an mset u in such a way that C(u~) = C(«) = .

In order to define the cardinality of msets in MST we required an operation
//with the properties: \/x HSet(H(x)), VxVy(χΦ y^> H(x) Φ H(y)), and Vx
x* « H(x), where x ~ y stands for "there is a bijection from x to y". Since we
only apply the H operation to M + msets of MSTZ, the definition of//in MST
can be used in MSTZ. Hence, for any M + mset v, we define

H(v) = {(H(u),n}\u G" VΛn>0}.

For the proofs that //is well-defined and has the required properties, see [1] and
[2]. Therefore, the operation //takes arbitrary distinct M + msets to distinct
hsets such that H(v) is 'equinumerous' to the root set v*.

Given an arbitrary mset u = U l£J w, we look at C(ΰ) and C((u)~) in order
to determine C(w). If the mset u is M+, we define the cardinality C(u) of u ex-
actly as we did in MST. (C(w*) is the cardinality of H(u*) in ZFC'. If C(u*)
is infinite in ZFC, then define C(w) = C(w*).IfC(w*)is finite in ZFC and
t = 2 \uv\ then we define C(u) = t.) If, on the other hand, the mset u is

veu*
not M+, we proceed by cases:

(1) If ΰ and u are both finite; that is, if C(u) = s and C((u)~) = i, then we
define C(u) = (s - t).

(2) If U is infinite and u is finite; that is, if C(ΰ) = K > Ko and C((u)~) =
f, then we define C(w) = K.

(3) If ΰ is finite but u is infinite; that is, if C(ΰ) = s and C((w)") = K > Ko,
then we define C(u) = κ = .

(4) If ΰ and u are both infinite; that is, if C(ΰ) = K > Ko and C((u)~) =
λ > Ko, then

(i) if K > λ, we define C(u) = κ;
(ii) if λ > K, we define C(u) = λ=;

(Hi) if K = λ, we define C(u) = 0 = 0 .
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An mset u infinite if Case (1) holds; that is, if there are numeric terms s and
t such that C(ΰ) = s and C((«)") = t. In all other cases, the mset u is called in-
finite. In MSTZ, there are many nonempty msets y with cardinality C(y) =
0 = 0 . For example, [x9y,z]-3,4,-1 * 0 a n d C([Jt,j>,z]-3,4,-1) = 0 = 0 . There
are infinite msets of MSTZ with cardinality 0 . For example, if y = [*i,*2>*3>
. ]i,2,3f...

 a n d Z = Ui>*2,*3, ]-2,-4,-6,... then C(y) = C( j a y ) = 0 . In
this case, C(y) = C(y)= = KQ .

Lemma VxVy^)" = (x~)y.

PAΌO/: If .y £ X then Λ> = 0 , (*>)" = 0~ = 0 and .y <£ X~ SO that (x~)y = 0 .
I f^e Λ Λrthenx y = [;>]„, (xy)~ = [y]-n, andj> G~w x~ so that (*")>,= [.y]-*
as required.

Therefore, C(xy) = Πff 1̂ 1 =/iffj> G'xiff.y G - ' J T " iff |(JC")J,| = |Cx>)~| =
-/ iff C((Xy)~) = -t. Also, vxvyvn((y £x^>C(xy) =0)A(y enx-+C(xy) =
ή)) holds in MSTZ.

In MSTZ, v*Vy(;t £ j ; -> C ( x ) ^ C(j')) does nor hold. Consider the case
[x]-2 £ M2 where C([x^_2) = -2 = 2= = {0,(0}-}- and C([x]2) = 2 =
{0,(0}}. Since {0}" e -2 but {0}~ £ 2, C(W_ 2) $£ C([JC] 2).

Let Card be the class of cardinal numbers in ZFC and Card' the correspond-
ing class of ZFC. Let CARD = {C(x)\x G M} be the class of cardinal numbers
in MSTZ. Therefore, CARD = Card' U [κ= \κ G Card'}. The well-order <' in
Card' induces a linear order < in CARD as follows. Let a and β be msets in
CARD. The class CARD contains no hybrid msets. If a and β are both M+,
then we define a < β iff a < ' β. If a is M~ and β in M+, then define a < β. If
α is M + and |8 is M~, then define β < α. If both α and |8 are M~, then we de-
fine a < β iff j3= < ' α = . We note that < does /zoί well-order CARD.

In MSTZ, VxVĵ Jt c j -> C{x) < C( j)) does ΛO^ hold. For example, {z} £
[z,*Ί i,-2 but ϊ ^ - 1 . In MSTZ, VxV^(C(xfl j ) < C (xUj)) does ΛO/ hold.

For example, iίx= {Zι,z2} a n d j ^ = [z\,z$] 1,-3 andZ\ ΦZi, thQnx^Πy= {z\\

andC(ΛτΠj) = 1, b u t x U ^ = [zuz2,S3] 1,1,-3 and C(xU^) = - 1 . The same
example also shows that VJCV>>(C(X Π J>) < C(x t) j)) does Λor hold in MSTZ
since 1^0. If x = y = [z]~ι thenxUy = [z]_i andJCfcJ j = [z]_2 Therefore,
in general, C(xUy) £ C(xϋy) in MSTZ.

One could develop a cardinal arithmetic (with additive inverses) in CARD
based on the (positive) cardinal arithmetic in Card'. For an example see Rado
[16], pp. 139-140.

Remark We proved earlier that (x li) y)~ = x~ t) y~. Since x = x i±) x9 we
have x~ = (x lίl x)~ = (x)~ ta (x)~. However, x~ = (jΓ7) W (x l) . Clearly,
(x)~ = (x2) and (x)~~ = (ic^). We use these identities in the following result:

Theorem Vx C(x~) = C(x)=

Proof: We proceed by cases.

Case 1: If C((F")) = s and C((xZ)~) = f then C(JC~) = (s - t). However, as
we observed above (xZ)~ = ((x~)~) = x and (JΓ) = (x)~ so that C(x) = t,
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C((x)~) = ί, and C(x) = {T^). Therefore, C(x~) = (s^t) = ί 1 1 ! ^ ^ ) ) =
C(x)= .

Case 2: If C((JΓ)) = * > Ko nd C(((xl))~) = i then C(x") = K. However,
C(x) = t and C((x)~) = K > Ko so that C(*) = K". Therefore, C(x ) = K =
(K = )= = C(x)= .

Ctase 5: Case 3 proceeds exactly as Case 2.

Case 4: If C((JΓ)) = * > Ko and C(((aC)Γ) = λ > Ko, then C((x)~) = K > Ko

and C(Jc) = λ > Ko.

(i) If K > λ then C(x") = JC, but C(x) = κ= so that C(JC") = κ=(κ = ) = =
C(*)=.

(ii) If JC < λ then C(JT") = λ= and C(ΛΓ) = λ. Therefore, C(x") = λ" =
C(x)=.

(iii) If K = λ then C(JC") = 0 = 0 and C(JC) = 6 = 0 . Therefore, C(JC") =
0 = 0 = = C(x)= as required.

This completes the proof of the theorem.

Corollary Vx C(x) = C(x")=.

Proof: Since Vx(x = (JC~)") holds in MSTZ, C(x) = C ( ( J C " ) " ) = C(x~Γ by
the theorem.

Corollary VxVj C(Λ: - J ) = C(^ - x)=.

Proof: We proved earlier that χ-y=(y- x)~. Therefore, C(x - y) = C((y -
x)~) = C(y — x)= by the theorem.

A theory T' with language L{T') is a conservative extension of a theory Γ
with language L(Γ) if

(i) L ( Γ ) c i ( Γ ) , a n d
(ii) for every wff φ of L(T), T h 0 iff Γ h φ.

The theory MSTZ is tfoί a conservative extension of the theory MST ([1] and
[2]). In fact, MSTZ is not even an extension of MST. For example, the theorem
Vxvy((x £ y Λ Set(y)) -> S^(x)) of MST is not a theorem of MSTZ (consider
[x]-ι c= {*}). The same type of example shows that the sentence Vx3y(y £
[x] *y Φ [x] /\yΦ 0) is & theorem of MSTZ. It is not, however, a theorem of
MST (for such an mset y to exist in MST would imply 3# (0 < n Λ n < 1) holds
in Peano arithmetic).

Although theorems about hsets in MSTZ are the exact analogs of theorems
about sets in ZFC (for every wff φ of ZFC, ZFC h φ iff MSTZ (-</>'), MSTZ is
not a conservative extension of ZFC in the strict sense above. The nonlogical
symbol G of ZFC is not in L - {<, e9 \ +, , 0, 1, -1}. The languages of ZFC
and MSTZ are disjoint. However, MSTZ is a conservative extension of our copy
ZFC of ZFC (for every wff φ of ZFC, ZFC h φ iff ZFC h φf iff MSTZ h φ').
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A model of MSTZ We assume ZFC.
Let Z be the set of integers as usually constructed in ZFC, and let Z be the

set Z with the set representing zero removed. Let F be a hierarchy of Z-valued
functions in ZFC defined as follows:

F o = 0 ,

Fa+\ = [x- dom x-> Z|dom x c Fa}9

Fλ= \J Fa if λ is a limit ordinal, and

F= U Fa.
αGOn

We define an L-structure F with two domains: the set Z over which the nu-
meric variable symbols range, and the class F over which the mset variable sym-
bols range. We are, therefore, modeling multisets of MSTZ by (nonzero)
integer-valued functions of ZFC.

The language of MSTZ is {<, e, % +, , 0, 1, — 1}. Let the nonlogical sym-
bols <, +, , 0, 1, and - 1 be interpreted in F by the strict order relation in Z,
binary addition in Z, binary multiplication in Z, and the sets in Z representing
zero, one, and minus one, respectively. Let the ternary predicate e(x9y,n)9 or
x Gn y, be interpreted in F by y(x) = n (or (x9n) E y).

To interpret the unary function symbol A of L in F we define a function A:
Z-*Fas follows:

0 = 0 , the empty function in F\\ and

rί+Λ = ή U {</U>} for all n > 0.

So, for example,

ί = 0 U {<0,1>} = {<0,1>) inF 2 ; and

2 = {<0,1»U{<[<0,1>}, 1>}

= {<0,1>,<{<0,1», 1»

which is in F3 since dom 2 = {0,{<0,1>}} c F 2 . In order to define h for all
n < 0, we need the interpretation of shadows and hereditary shadows in F. Let
y be an arbitrary function in F. The 'shadow' function y~ of y in F is such that
dom y~ = dom y and Vx G dom y~ = dom y9 y~(x) = —y(x)9 where -y(x) is
the additive inverse oϊy(x) in Z. The function y~ is in F since the rank of y~
in F equals the rank of y in F (since dom y~ = dom y). Therefore, 0~ = 0 ,
{(x,n)}-••= {<Λ:,-Λ>} for all Λ * 0, and VxVn((x9n) Gy •+ <x,-fl> G^~).

The 'hereditary shadow' function j>= of j> in F is such that y= = {<x=,
—Λ2>|<JC,ΛT> e j ) . Equivalently, using the 'shadow' function, y= = {<x=,
n)\(x,n) Ey}~, or y= = [(x=,n)\(x9n) Ey~}. The function^" is inFsince the
rank of y= in Fequals the rank of y (by induction on rank). Therefore, 0 = =
0, {(x,n)}= = {<X=,-H>} for all AZ * 0, mdvxVn«x9n) e y ++ (x=>-n) e y=).
We now complete our definition of the function A: Z -> i5! For all n < 0, de-
fine /} = (^7ί)=. For example, we have

Cϊ = ( ϊ )= = {<0,i>}= = K 0 = , - 1 » = {<0,-l»
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which is in F 2 , and

^2 = (2)= = {<0,1>,<{<0,1», 1>} =

= {<0 = ,-l>,<{<0,l>} = , - 1 »

= {<0,-l>,<{<0,-l»,-l»

which is inF 3 since dom ̂ 2 = {0, {<0,-l>}} cf 2 ,
For any wff φ of L, we define the interpretation of φ in F, denoted by F(φ),

by induction on the logical complexity of φ as follows:

F(ή < rh) is ή G Z Λ m G Z Λ Λ < m;

F(e(x,y,fι)) is Λ:GFΛJ> EFΛ/Ϊ G 2 Λy(x) = «;

F(ri = m) is ή €I Z A m E 2 Λ ή = m; and

F(x = j ) is X G F Λ J ; GFΛΛ: = .y.

(Equality of functions in Fis just equality of sets of ZFC.) If φ is nonatomic,
Έ(~ψ) is ~W(ψ); ¥(φ v θ) is ¥(ψ) v ¥(θ); ¥(ψ Λ θ) is F(^) Λ F(0); F ^ -• (9)
is F(^) -> F(0); F ( ^ <-• (?) is ¥(ψ) +> W(θ); Ψ(3nφ) is 3n(n G 2 Λ F ( ^ ) ) ;

F(VΛ^) is VΛ(Λ G Z -• F(ψ)); F(3ΛΓ^) is lx(x G F Λ F(^)); and F(VΛΓ^) is
Vx(xeF-+W(ψ)).

For every wff φ of Z, F(0) is a wff of ZFC. By "φ holds in F w we mean
ZFC h F(φ). To show that F is a model of MSTZ we must show that every the-
orem of MSTZ holds in F; that is, if MSTZ h φ then ZFC h F(φ).

If φ is a numeric axiom of MSTZ (for example, an axiom of an 'integral sys-
tem' or Axiom N8), then our interpretations of <, +, , 0, 1, and —1 in Z,
and our definition of the function \ Z ->Fin F, are such that ZFC h F(φ). If
φ is a nonnumeric axiom of MSTZ (one of Axioms I through XII), then the
proof of ZFC h F(φ) is identical (in most cases) to the proof in [1] and [2] for
the corresponding axiom of MST. Since the union, additive union, and replace-
ment axioms of MSTZ differ from those in MST, slight modifications must be
made to the 'union', 'additive union', and 'range of replacement' functions in F
The changes needed for the 'union' and 'additive union' function definitions in
Fare obvious. For the replacement axioms, we give a detailed proof.

For any replacement axiom Xφ of MSTZ, consider its interpretation F(X^)
in F (we assume variables are restricted to the class F, or the set 2, as appro-
priate):

vxvyvy'((Φ'(x,y) Λ f U / ) -+y = y') -
vziz'vyvn(z'(y) = n++ [ix(xG domzΛψ'(jcj)) Λ
[VxV/n((zW = mΛφ'(x,y))-+m>0) ->
(3x(z(x) = ΠΛ φf(x,y)) Λ vxvm((z(x) = m Λ φ'(x,y)) -+n< m))] Λ
(lxvm(z(x) = m Λ φ'(x,y) Λ m < 0) -+ n = 1)])

where φ' (x,y) is W((φ(x,y))9 a wff of ZFC with free variables including x and
y but excluding y' and z'. Let Φ'(x,y) be such that the antecedent of f(Xφ)
holds, and let z be an arbitrary function in F with domain dom z. We apply ZFC
replacement to the set dom z using the wff φf(x,y) to obtain a new set (the
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elements of which are restricted to the class F), which we shall call dom z'.
Therefore,

y G dom z' *+ 3X(JCG dom ZΛφ'(x,y)).

We define a function z' with domain dom zf as follows: For every y G dom z',

z'(y) = 1, if 3x(xG domzΛφ'(x,y) ΛZ(X) < 0) holds, and
z'(y) = n, if [3x{z(x) =«Λψ'(jcj))ΛVjcVm((zW = m Λφ'(x,y))-->

n < m)] holds, otherwise.

Clearly, the function z' satisfies the consequent of W(XΦ). To establish that the
function z' is in fact in F let β be the union of the ranks of all y in F that are
functions in dom z'. The Fa-hierarchy is such that Fa £ Fβ for all a < β. There-
fore, if y G dom z', then yEFβ. Hence, dom z' £ Fβ and z' G Fβ+ί c f a s re-
quired. Therefore, Axiom Xφ holds in F; that is, ZFC h F(XΦ).

Since ZFC h F(φ) for every axiom φ in MSTZ, we obtain the result:

Theorem For every wffφ in L, if MSTZ h φ then ZFC h F(φ).

The L-structure F is a model of MSTZ. It follows that MSTZ is relatively con-
sistent', that is, if ZFC is consistent, then MSTZ is consistent.1

NOTE

1. The positive integers can be identified with the set of all finite multisets of prime num-
bers; that is, every positive integer n is associated with the unique multiset TV of its
prime factors (1 is associated with the empty multiset 0). Therefore,

p Ea Niff pa\n Λ pa+1j(n.

With this identification, the multiplicative properties of positive integers translate into
properties of multisets of primes. For example, the property 'prime' corresponds to
'singleton', the property 'relative prime' to 'disjoint', 'product of distinct primes' (or,
'square-free') to 'set', 'power of a single prime' to 'simple multiset', 'divides' to 'is an
msubset of, 'multiplication' to 'additive union', 'lowest common multiple' to 'union'
and 'greatest common divisor' to 'intersection'. I am grateful to Tom Etter for
reminding me of a very nice example of negative membership using the above iden-
tification generalized to positive rational numbers. The positive rationale can be iden-
tified with the set of all finite multisets of prime numbers in which multiplicities may
be positive or negative; that is, a positive rational q = n/m is associated with a mul-
tiset Q such that

pea QΛ a > Oiff pa\n /\pa+ljfn and
pea QΛa< 0 iff p~a\m Λp-^Jfm.

In other words, a negative multiplicity a of an element p in Q indicates that — a is
the highest power of p that divides the denominator of q. To avoid having distinct
multisets for numerically equal rationals, we define Q = iVliJ M~ (where M~ is the
shadow of M). If n and m are not relative prime (if TV Π M Φ 0), the addition of
negative and positive multiplicities of common prime factors in TV l±J M~ is equiva-
lent to cancellation to lowest terms. With this interpretation of negative membership,
the shadow operation ~ is simply reciprocation ~ !. Therefore, n/\ is TVlil 0~ = TV
and \/n is 0 lϋ TV" = TV" and, in general, (n/m)~ι = m/n = mΛ/n is MW TV" =
(TVl±) M~)~. The annihilation TVlϋ TV" = 0 corresponds to the simple fact n/n = 1.
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