
241

Notre Dame Journal of Formal Logic
Volume 31, Number 2, Spring 1990

Complexity for Type-2 Relations

MIKE TOWNSEND*

Abstract If Σ is an alphabet, then a type-2 functional is a (partial) function
whose arguments are elements of Σ* and functions from Σ* into Σ*. Type-2
relations are the domains of such functionals. We consider the natural exten-
sion, POLY, of the class of polynomial time functions to include type-2 func-
tionals, and a variant, POLY, in which the time bounds depend only on the
string arguments. Using these, we define two possible extensions of the
(relativized) polynomial hierarchy to include type-2 relations. For example,
Σξ = Tίξ is the class of relations whose characteristic functionals are in
POLY. Then Σ£+1 is the class of relations definable by POLY length
bounded existential quantification of relations in Π£, and dually for Π^+1.
Thus Σf is the type-2 analogue of NP. For any function g, we may relativize
the definitions of Σζ (Π£) to obtain Σj* (Π£*). Let Σζ denote | J Σ%g.

g

Some properties of the (relativized) hierarchy are studied. A similar analysis
is carried out for the hierarchy based on POLY. In addition, we consider
some topological notions that seem 'naturally' associated with time and space
bounded computations of oracle Turing machines, and we give topological
characterizations of several classes of type-2 relations. In particular, we give
a topological characterization of Σf. We use these characterizations to ex-
amine analogues of several well-known open questions of computational
complexity theory. For example, we show that a certain type-2 analogue of
the NP = PSPACE question has a negative answer. These results suggest
that topological considerations are an integral part of the study of resource
bounded computations of oracle Turing machines.

1 Introduction and preliminaries One (sometimes criticized) line of research
concentrates on transferring, as far as possible, the concepts and techniques of
recursion theory to the theory of computational complexity. Type-2 recursion
theory extends ordinary recursion theory by permitting arguments that are func-

*I would like to thank Professor Peter Hinman and the referee, both of whom made
many helpful comments, suggestions, and corrections.

Received April 18, 1988; revised October 18, 1988

242 MIKE TOWNSEND

tions. Historically, type-2 recursion theory is the recursion-theoretic end of an
interface with descriptive set theory. Thus the subject has a 'feel' somewhere be-
tween recursion theory and topology (see Hinman [5]). In this paper, we consider
extensions of the (relativized) polynomial hierarchy to include type-2 relations.
In particular, we have NP, a type-2 analogue of NP. In addition, we consider
some topological notions that seem Naturally' associated with time and space
bounded computations of oracle Turing machines, and we give topological char-
acterizations of several classes of type-2 relations (for example, the set of rela-
tions NP in some oracle). We use these characterizations to examine analogues
of several well-known open questions of computational complexity theory. For
example, we show that a certain type-2 analogue of the NP = PSPACE ques-
tion has a negative answer. These results suggest that topological considerations
are an integral part of the study of resource bounded computations of oracle Tur-
ing machines. We begin by briefly discussing the notation and terminology used
in this paper.

If/ is a function, then Dom(/) and Im(/) denote the domain and the im-
age of/. We say that f(x) is defined if x is in the domain of/; otherwise, f(x)
is undefined. If/ and g are two functions, then/(x) = g(x) means that either
f(x) and g(x) are both undefined, or are both defined and have the same value.
We write/: ΛΓ-* 7to mean that/ is a function with Dom(/) c Λf and Im(/) c
Y. Two functions / and g from X into Y are equal iff f(x) = g(x) for all x
in X. We let XY denote the set of all total functions from X into Y. If n =
{0,..., n — 1} is a natural number, then an element of nX is identified with the
corresponding finite sequence of elements from X. For natural numbers n, m9

we let m>nγ= mYχ n(γY). lϊyx is an element of Ywhenever xis an element of
X, then we use the expression λx.yx to denote the function [(x9yx) :xEX}. For
any set X, Card (A') denotes the cardinality of X.

We fix our alphabet Σ = [0,1}. The set of strings over Σ is denoted by Σ*.
We let e denote the empty string, and let B be the symbol for a blank. Unless
otherwise specified, the following notational conventions will be used. Natural
numbers will be denoted by k, l9 m9 «,..., and strings will be denoted by u9 v9

w, x, y, z. Functions from Σ* into Σ* are denoted by/, g, — Subsets of nΣ* will
be written as A, B, R, S, etc. Functions from W>"Σ* into Σ*, also called func-
tionals of rank (m9n) or type-2 functional, will be written as F , G , Classes

of functionals will be denoted by Γo, Γ l 5 Subsets of m>ΛΣ*, also called re-
lations of rank (m9n) or type-2 relations, will be denoted by A, B, R, S, etc. We
use underscoring to represent sequences. Thus x is a string and x is a finite se-
quence of strings.

If R is a relation of rank {m9ή)9 then —R denotes the complement of R with
respect to m ' " Σ * . Subsets of Σ* and functions in Σ*Σ* are also referred to as
oracles. A functional of rank (n9θ) is identified with the corresponding function
on ^-tuples of strings, and relations of rank (n,0) are identified with subsets of
nΣ*.

The lexicographic ordering of Σ* is e < 0 < 1 < 00 < We denote the
nth string in this ordering by St(n), and let λxNum(x) be the inverse function.
We let |x| denote the length of x. The concatenation of x with y is denoted by
xy9 and xn denotes x concatenated with itself n times. If x = xoxγ... xn_\ and
m < n9 then x I m = xn-m . . . xn-\ if m > n9 then x I m = x.

TYPE-2 RELATIONS 243

Let < > be any fixed coding of finite sequences of strings such that if x =
x$,X\,... ,Λ:Λ_I, then xk may be extracted from (x) in O(n\xk\) steps. Such a
coding is described in Townsend [13]. For any u, if u = (x0, *i> >**-i> and
/: < n — 1, then (u)k = xk; otherwise, (u)k = e. I f / = / 0 , . . .,/„ is a sequence of
functions, then </> = λx.(fo(x),... ,/Λ_!(x)>. We often identify sequences
with their codes.

A function /is length-increasing if |JC| < |j>| implies that \f(x)\ < |/(.y)|
We say that Έ(x0,... ,xn,f0,... ,fm) is length-increasing in its kth string argu-
ment if whenever x0,... ,XA:-I > *£+i > >χn a r e fixed strings, / 0 , . . . ,fm are fixed
functions, and |x | < |j>|, then |F(x o > . . ,**_i, x, x*+i> >*/π/o> >/m)| ^
|F(xo> ,Xk-i>y> Xk+u- ,xn>fo> Jm)\ - A functional F is length-increasing
if it is length-increasing in each of its string arguments. We write | F | < |G| to
mean that for all (x,f) in the domain of F, |F(x,/)| < |G(x,/)|, and in this
case we say that G bounds F. We say that Γo majorizes Yx if for every G! in ΓΊ,
there is a Go in Γo bounding Gγ.

We associate with each R its characteristic functional KR defined by

Γθ,ifR(x,/)
KR(xJ)=\ m

1̂ 1, otherwise.

We also associate with each R its positive characteristic functional KR(X,/) de-

fined by

Ht(*Λ-ί*'"(t/)

(^undefined, otherwise.

We will also identify subsets of Σ* with their characteristic functions, and thus
extend functionals to include subsets of Σ* as arguments.

For the following definitions, we omit the mention of rank, trusting that
the ranks involved are clear from the context. The zero string successor function,
So, is defined by S0(x) = xθ; we define Si similarly. The length bounded expo-
nential function, E, is defined by E(x, y) — O'*"-*''. The application functional,
APP, is defined by APP(#,/) =f(x). We say that F is defined from G by ex-
pansion if for all x, y, f, and g, ¥(x, y, f g) = G(x, f). We say that F is defined
from G by explicit transformation if for all x and/, F(x, /) = G(y, g), where
each yk is either a fixed string or one of the x/s, and each gk is either a fixed
function or one of the/}'s. We say that F is defined from G o , . . . ,Gk, R o , . . . ,
R^_i by cases if for each x and/ there is at most one m < k — 1 with Rm(x,
/) , and for all x and/

[Gm(x,f), if Rm(x,f) for some m<k-\
F(x,/) =<

[Gk(x,f)> otherwise.

We say that F is defined from G o , . . ,G^_i, R o , . . . ,Ryt-i by positive cases if
for each x and/ there is at most one m < k — 1 with Rm(x, /) , and for all x
and/

244 MIKE TOWNSEND

fG m (*,/), if R m (ί , /) for some m < k - 1
F(x,/) H - ."

^undefined, otherwise.

We say that F is defined from G, H o , . . . ,H*-i by functional composition if for
all x and/, F(*,/) = G(H 0 (x ,/) , . . . ,H*-i (x,/),/). We say that R is defined
from S, G o , . . . ,G^_i by relational composition if for all x and/, R(x, /) iff
S(G0(x, /) , . . . ,G*_i (x, /) , /) . We say that F is defined from~G and H by
functional substitution if for all x and/, Έ(x,f) = G(x,f, λy;li(yf * , /)) . We
say that R is defined from S and H by relational substitution if for all x and/,
R(x,/) iff S(x,/, \y.H(y, x,f)). We say that F is defined from G, Ho, Hu B
by limited recursion on strings if for all x, y, and g,

F(x,e,g)=G(x,g)
F(x,j>0,g) = Ho(2ί,ΛF(jf,Λg),g)
F(x,jl,g) = H!(x,^F(x,j;,g),g)
|F(x,j,g)| < |B(x, Λ g) | .

Multitape Turing machines (TM's) are described fully in Hopcroft and
Ullman [6]; we use their notation and conventions. Such a machine consists of
a finite control, an input tape, a finite number of worktapes, and possibly an out-
put tape. Certain states are designated as halting states, and no moves are pos-
sible from halting states. An instantaneous description (ID) of a machine is an
encoding of the configuration of the machine. A computation is a finite sequence
I o , . . . Λn of ID's such that Io is the initial ID relative to some input, and for each
1 < k<n, lkencodes an ID obtainable from lk_x in one move. Such a compu-
tation has n steps. Accepting computations are those that end with an ID con-
taining a halting state. A string is accepted by a machine if it generates an
accepting computation. The language accepted by a machine is the set of strings
accepted by the machine. A machine is deterministic if its finite control speci-
fies at most one possible move for each ID; otherwise, it is nondeterministic. On
input x, the machine computes value z if there is some computation halting with
zon the output tape and no other computation halting with some wΦzon the
output tape. As described, our machines compute functions from Σ* into Σ*,
but through the use of codings a machine can compute a function from nΣ* into
Σ*. We will often identify a machine with the function it computes. If Ms a
function from Σ* into Σ* and M is a Turing machine, then M runs in time
(space) t if for every input x no halting computation for x requires more than
\t(x)\ steps (tape cells). If T is a class of functions, then the phrase 'in T time
(space)' means in time (space) t for some t in T.

We may extend Turing machines to accept functions from Σ* into Σ* as pa-
rameters or arguments by considering oracle machines as described in Mehlhorn
[8]. An oracle machine (OTM) is a TM augmented by two special tapes, a write-
only oracle input tape and a read-only oracle output tape. It takes as input an
element (x, f) of U Σ * . An OTM operates exactly as a TM except that from
time to time it can, by entering a special state, ask the oracle about the function
value of a string z on the oracle input tape. When this happens, the machine
replaces the contents of the oracle output tape with/(z), places the read head
on the rightmost symbol of /(z), and erases the oracle input tape. ID's for

TYPE-2 RELATIONS 245

OTM's include encodings of the current oracle input tape, the last oracle input
tape, and that portion of the current oracle output tape that has been scanned.
As before, by using codings, a deterministic oracle machine can compute a func-
tion from m>nΣ* into Σ*. The oracle input and output tapes have been distin-
guished so that multi-fold composition cannot be computed cheaply. We write
Mf for machine M using oracle /. Note that the machine is charged one step
(space) for each symbol of the oracle input written and each symbol of the oracle
output actually read. This convention is natural if we consider oracles to be rep-
resenting arbitrary function (subroutine) inputs. For a contrary convention with
respect to space see Ladner and Lynch [7]. If T is a functional from m>nΣ* into
Σ* and Mis an oracle machine, then Mruns in time (space) T if for every input
(x,f), no halting computation requires more than |T(x,/) | steps (tape cells).
If Γ is a class of functionals, then the phrase 'in Γ time (space)' means in time
(space) T for some T in Γ.

Hopcroft and Ullman [6] give a coding of machines, and we let DTMX,
DOTMX, and NOTMX represent the xth deterministic, deterministic oracle, and
nondeterministic oracle machines, respectively.

A functional is partial recursive (in g) if it is computable by a Turing ma-
chine (using oracle g as a parameter). If the functional is total, we often drop
the word 'partial'. A set is recursive (in g) if its characteristic functional is recur-
sive (in g). A set is semi-recursive (in g) if its positive characteristic functional
is partial recursive (in g).

POLY is the smallest class of functions that contains the successor and
length bounded exponentiation functions and is closed under composition, ex-
plicit transformation, and limited recursion on strings. It was first described in
Cobham [4]. We assume some enumeration POLY^ of POLY. The use of the
expression 'POLY' is justified by the following two results.

Lemma 1.1 (Observation 1.5 of Mehlhorn [8])
(1) For every g in POLY, there is a polynomial p such that for all x, \g(x)\ <

P(M).
(2) For every polynomial q, there is an fin P O L Y such that for allx, q(\x\) <

I/WI
Lemma 1.2 (See Cobham [4] and Fact 1.3 of Mehlhorn [8]) The following
are equivalent:
(1)/ is in POLY.
(2) / is deterministically computable in POLY time.
(3) / is deterministically computable in polynomial time (i.e., for some poly-
nomial p, no halting computation on x requires more than p(\x\) steps).

Note that the Turing machine definition of polynomial time is not suitable
for generalization to functionals because functions do not have a 'length'. As seen
below, however, POLY does provide a way to define polynomial time that is suit-
able for generalization to functionals.

We let P ^ denote the class of sets polynomial in X\ that is, the collection
of languages accepted by deterministic OTM's running in POLY time and using
oracle X. Note that A E Px iff KA is computable by some deterministic OTM
running in POLY time and using oracle X. We let N P X denote the class of sets

246 MIKE TOWNSEND

accepted by nondeterministic OTM's running in POLY time and using oracle X.
If A is in NP*, then we say that A is NP in X. We let CO-NP* denote the col-
lection of sets whose complements are in NP*. Polynomial Turing reducibility,
<τ, is the polynomial time analogue of ordinary Turing reducibility, and is de-
fined by A <τ B iff A is in P B . Polynomial many-one reducibility, <£, is the
polynomial time analogue of ordinary many-one reducibility, and is defined by
A <m B iff A is reduced to B via an/ computable in POLY time; that is, in case
for all x, x E A iff f(x) E B.

Quantifications of the form a|j>| < \wXyf\ and v|j>| < \wxj\ are called
length bounded quantifications. If λ(x, f) Wχ,f comes from some class Γ of
functional, then these are also referred to as Tbounded quantifications.

The relativized polynomial hierarchy is the complexity-theoretic analogue
of the relativized arithmetical hierarchy (see Rogers [10]) and is defined for any
set A as follows. We begin with Σ$A = UξA = A$A = P A . Then L%& is the class
of sets definable by POLY bounded existential quantification over sets in ΐl%A.
Similarly, we define Uζ'Aι as the class of sets definable by POLY bounded
universal quantification over relations in Σ%A. We let Δ ^ be the class of sets
<τ reducible to some set in Σ%A. In particular, ΣfA = NP A . If A = 0 , then we
have the ordinary polynomial hierarchy. In this case, we will drop the superscript
and write Δ £ , etc.

For any A and n, R E Σ*Λ iff -R E U%A. Moreover, Σ*A, ϊl£Λ and A%A

are closed under <™, finite union, and finite intersection. Also, A%A is closed
under <? and complementation. We have that Σ%+\ is closed under POLY
bounded existential quantification, and R E ΣζfA

{ iff R is NP in some S E Σζ'A.
T7ir»α1iΛ7 γP,A I j TΊP,A (- \P,A <— γP,A r\ ττP,Ά o t Ί r i γP,A _ τiP,A :ff yP,A _ yP,A

rmally, Ln' U lίn' c Δ Λ ' + 1 C L Λ ' + I Π Un+h and Ln'+ι - IIrt'+2 in ^«+i - ^ri+i
iff Σ%Aι = UPA\. Yao [14] describes the construction of an oracle relative to
which all levels of the polynomial hierarchy are distinct. PSPACE is the collec-
tion of sets whose characteristic functions are deterministically computable in
POLY space. We define NPSPACE to be the collection of sets nondeterministi-
cally acceptable in POLY space. As is well-known, PSPACE = NPSPACE by
Savitch's Theorem (see [11]). We let EXP denote ίλx.02'POLY>;U)l :y E Σ*}; we
also denote by EXP the corresponding class of sets.

If the discrete topology is assigned to Σ*, then the Baire topology on Σ Σ*
is the product topology (see Munkres [9]). A basic open set is denoted by [<5 >],
where s is a finite sequence of elements of Σ*. The set [(s)] consists exactly of
those functions which extend 5, where s is viewed as a finite initial function
from Σ* into Σ*. Here 'initial' refers to the lexicographic ordering. A functional
is continuous with respect to the Baire topology iff it is partial recursive in some
g. Hence, a set is open iff it is semi-recursive in some g, and a set is clopen iff
it is recursive in some g (see Hinman [5]).

2 The extended arithmetical hierarchy In this section, we extend the poly-
nomial hierarchy to include subsets of m>nΣ*. Many of the results in this section
are straightforward adaptations of well-known results in recursion and complex-
ity theory. For this reason, many proofs have been omitted. Complete details of
the omitted proofs may be found in Townsend [12]. Mehlhorn [8] defines POLY
to be the smallest class of functionals containing the successor and length

TYPE-2 RELATIONS 247

bounded exponentiation functions, the application functional, and which is
closed under composition, explicit transformation, and limited recursion on
strings. This is a reasonable definition in light of Lemmas 1.1 and 1.2. It can be
thought of as describing what it means to say that a computer program is effi-
cient with respect to arbitrary string and function (subroutine) inputs. We have
that F is deterministically computable in POLY time iff F is in POLY. We as-
sume that we have an enumeration POLY* of POLY. We have defined B to be
in P A in terms of an oracle machine using A as parameter. We might also have
defined B to be in P A if KB = λx.G(x9 A) for some G in POLY. Lemma 2.3 of
[8] shows that for every F in POLY there is a n / in POLY such that for all char-
acteristic functions g and all x9 \¥(x,g)\ < \f(x)\. Hence the two definitions are
equivalent.

Definition 2.1 For any subset A of m>nΣ*,
(1) A is polynomial if KA is deterministically computable in POLY time;
(2) A is nondeterministic polynomial if for some x and y, A is accepted by
NOTM* running in time POLY ;̂
(3) A is co-nondeterministicpolynomial if —A is nondeterministic polynomial.

We denote the set of polynomial, nondeterministic polynomial, and co-
nondeterministic polynomial relations by P, NP, and CO-NP, respectively.
Clearly, P ς N P Π CO-NP c NP. We define PSPACE, NPSPACE, and EXP
in the obvious way. Because of our convention about space and our encoding
of OTM ID's, the proof of Savitch's Theorem given in Hopcroft and Ullman [6]
carries over, and hence PSPACE = NPSPACE. Indeed, if the nondeterminis-
tic machine runs in space T, then the carried-over proof produces a polynomial
p and a deterministic machine that uses no more than/?(|T(x,/)|) cells for any
input (* ,/) .

Proposition 2.2 (For an analogous result, see Baker, Gill, and Solovay [1])
For any subset A o / m ' " Γ ,
(1) A e NP iff for some F in POLY and R in P, A(x, /) <-> 3 | u\ < |F(x,
f)\R(u9x9f);

(2) A G CO-NP iff for some G in POLY and S in P, A(x, /) <-> V | u | < |F(x,
f)\R(u9x9f).

By definition POLY is closed under functional composition, from which
it follows that the class of functionals deterministically computable in POLY time
and polynomial relations is closed under relational composition. We also have
the following.

Lemma 2.3 POLY is closed under expansion and functional substitution.

Corollary 2.4 The class of functionals deterministically computable in POLY
time and polynomial relations is closed under relational substitution.

Lemma 2.5
(1) The class of (partial) functions deterministically computable in POLY time
and polynomial relations is closed under definition by cases;
(2) The class of (partial) functionals nondeterministically computable in POLY
time and nondeterministic polynomial relations is closed under definition by pos-
itive cases;

248 MIKE TOWNSEND

(3) If the class of (partial) functionals deterministically computable in POLY time
and the nondeterministic polynomial relations is closed under definition by pos-
itive cases, then P = NPΠ CO-NP.

Corollary 2.6 P is closed under complementation, finite union, and (there-
fore) finite intersection.

With appropriate modifications, the results of Lemma 2.3, Corollary 2.4,
Lemma 2.5, and Corollary 2.6 hold for POLY, P A , NP A , and CO-NPA for
any A.

Definition 2.7 The class of polynomially bounded relations is the smallest
class containing P and closed under POLY bounded quantification.

We next define a classification of the polynomially bounded relations based
on the type of quantification needed to define the relation.

Definition 2.8 (The polynomial hierarchy) For all n,
(1)Σ£ = Π£ = P;
(2) Σn+ι is the class of relations definable by POLY bounded existential quan-
tification over relations in Πj;
(3) Π£+1 is the class of relations definable by POLY bounded universal quan-
tification over relations in Σ£.

We have used the same notation for this hierarchy as for the previously de-
fined polynomial hierarchy, because when restricted to relations on nΣ* they are
equivalent (in this case, the type of quantification used to define the relations is
identical). Moreover, many of the definitions and results concerning this hier-
archy carry over to the previously defined polynomial hierarchy when they do
not rely on the presence of function arguments in any essential way. We will com-
ment when this is the case. Note that Σf = NP and Πf = CO-NP. We do not de-
fine a Δ class for this hierarchy. If we follow recursion theory, we might define
Aζ = Σζ Π Π£. Another possibility, based on complexity theory, would be to
define the notion of being 'polynomial in a functional', and define a set to be
in Δ^+1 if it is polynomial in the characteristic functional of some Σζ set.

Example 2.9
(1) {(x,f) :f(x) 'codes' a propositional formula with no shorter equivalent for-
mula) is in Πf.
(2) {(x,f) :NΌΎMX accepts/(x) in |JC| steps) is a member of Σf.

Next we give a sequence of technical results detailing some basic properties
of the classes of the polynomial hierarchy.

Lemma 2.10 All classes of the polynomial hierarchy are included in the class
of polynomially bounded relations.

Lemma 2.11 For all n, R e Σ% <* -R G Π£.

The converse of Lemma 2.10 follows from the next two results.

Theorem 2.12 The classes of the polynomial hierarchy have the following
properties:

TYPE-2 RELATIONS 249

(1) For all n, Σ% and Ίlζ are closed under composition and substitution with
functional in POLY
(2) For all n, Σζ and Π j are closed under expansion
(3) For all n,PQΣζΠUζ
(4) For all n, Σζ and Wζ are closed under finite union and intersection.

We next consider closure under bounded quantification. Suppose that S in
Σ%+{ is defined by S(w, v9x,f)+*l\w\ < |F(w, v, x,f)\Q(w9 u, v, x,f) for

some F in POLY and Q in Uζ. Consider the relation R defined by R(v, x, f) <->
3\s\ < \υ\S(s, v,x,f)<*(3\s\ < |y |)3 |w | < \Έ(s, v,x,f)\Q{w,s, v,x9f)~We
would like to have a G in POLY such that if \s\ < | v\ then |F(s, v, x, f)\ <
|G(y, x, f)\, because in this case we would have

(v,xj)++\z\ < \Oc^G\(v^)+\^\(\(z)o\ ^ \υ\
and |(z)il < \Έ((z)0,v9x9f)\ andQ((zhΛz)0,v9x9f))

and we could conclude that Σ^+ 1 is closed under POLY bounded existential
quantification. Such a G exists if F is bounded by a POLY functional that is
length-increasing with respect to s. However, if F(s, v, x, f) =fo(s), then there
is no reason to believe that such a bounding functional exists. We will consider
below another extension of the polynomial hierarchy of Section 1 for which this
problem does not arise.

We do have the following.

Lemma 2.13 For all n:
(1) IfSisinΣζ+ι andR is defined by R(v, x,f) ++l\s\ < \v\S(s, v,x,f), then
R is in Σζ+3

(2)//S isinU^+ι andRis defined by R(v, x,f)++l\s\ < \v\S(s, v9x9f)9 then
R is in Π^+3.

Proof: (2) follows from (1). For (1) let F and Q be as above and define Q' by
Q'U, w, u9 v,x,f)++Q(w,u, ί;,x,/).ThenQ/isinΣ^+1byTheorem2.12and
R(^, x,f) « (3 \s\ < I v |) (v |z | < 1)31 w\ < \Πs9 v9 x9f)\Q'(z, w, s9 v, x,f).

We remark that with the appropriate modifications the proof of Theorem
2.12 applies to the polynomial hierarchy defined in Section 1. Moreover, in that
case, if R and S are as in Lemma 2.13 (1) then R is in Σ^ + 1 , since Lemma 1.1
implies that bounding functions can be chosen to be length-increasing.

Corollary 2.14 For all n :

(DE^UΠ^cEJΓ+iΓlltf+i
(2) UΣ£ = UΠ£ = U (Σ£ Π Π£) = the class of polynomially bounded relations.

We do not know that each inclusion is proper, but conjecture that this is
the case.

Proposition 2.15 (For an analogous result, see Baker and Selman [2]) For all
n, the following are equivalent:
(l)Σtf = ltf+1

(2) Π£ = Σζ+ι

(3) Σp

n = Σζ+ι

(4)Π£ = Π£+i.

250 MIKE TOWNSEND

Moreover, each of (l)-(4) imply

(5)Σΐ = πp

n.
We turn next to the question of universal sets for NP and CO-NP.

Definition 2.16 For all w, *,/, and m, Uf(w, <x>, </>, 0w) <-• NOTMW ac-
cepts (x,/) in at most m steps.

Lemma 2.17
(ΌUfeΣf
(2) For every R in Σf, ί/*ere exr/ste # w and y such that R(x, /) <-• Uf (w, <x>,

(3) -Uf E Πf
(4) For evβAj R /Λ Πf, ί/zere ex/ste a w andy such that R(x, f) <-• -Uf (w, <x>,
</>, olpOLY.y<*'/>l).

Proof: The padding 0m ensures that (1) holds; (2) is clear from the definitions;
(3) and (4) follow from (1), respectively (2).

In this sense, Uf and -Uf are universal for Σf, respectively Πf. We post-
pone the discussion of universal sets for other classes until later in the section.

Next we describe another possible extension of the polynomial hierarchy
to include type-2 relations. Define POLY to be the class of functionals determin-
istically computable in POLY time; that is, the time bound for some computa-
tion on (x, f) is of the form | t(x)\ for some t in POLY (rather than |T(JC, f)\
for some T in POLY). This definition appears in Townsend [12], and a similar
definition appears in Buss [3]. Note that F is in POL Y iff F is computable in
POL Y time. Similarly, we define PSPACE, NPSPACE, and EXP. As before,
PSPACE = NPSPACE. We define P to be the class of sets whose characteris-
tic functionals are in POLY. Similarly, NP is the class of sets nondeterministi-
cally acceptable by a machine running in POL Y time. The appropriate version
of Lemma 2.2 holds with essentially the same proof. Straightforward machine
simulation shows that POL Y is closed under composition, explicit transforma-
tion, and functional substitution. Define SIGQ = PIo = P- Then SIG^+i is the
class of relations definable by POL Y bounded existential quantification of re-
lations in PI,f, and PI^+i is the class of relations definable by POL Y bounded
universal quantification of relations in SIG^+i. Again, when restricted to rela-
tions on nΣ*, this hierarchy is equivalent to the polynomial hierarchy of Sec-
tion 1. Note that SIGj <Ξ Σζ for all n. All of the previous results of this section
hold for the SIG and PI classes with essentially the same proofs.

We now turn to the question of universal sets for the SIG and PI classes and
remark that a similar discussion, with corresponding results, can be carried out
for the polynomial hierarchy of Section 1. Before describing the universal sets,
we develop some normal form representations for sets in the SIG and PI classes.

Lemma 2.18
(1) For every fin POLY, there is an h in POLY such that for all x, \f(x)\ <
I h(x)\ and h is length-increasing
(2) For every F in POLY, there is an H in POLY such that for all (*,/), |F(x,
f)\ < |H(x, f)\ andH is length-increasing.

TYPE-2 RELATIONS 251

Proof: The proof of (1) is an easy induction on the definition of POLY. If/ is
a successor or the length bounded exponential function, then the statement is ob-
vious. We next consider limited recursion on strings; the arguments for compo-
sition and explicit transformation are similar. Suppose that/ is defined from g,
hOi hx, and b by limited recursion on strings. By the induction hypothesis, there
is an appropriate h for b. Since b is a bound for/ h works for/. For (2), if F
is computed in time g, and h is a length-increasing bound for g, then for H take
λ(x,/).θlΛ (^l.

We now derive some normal form representations for the SIG and PI
classes.

Corollary 2.19
(1) For any «,RG SIG£ iff there exist length-increasing functionals H o , . . . , Hn-\
in POLY and T in P such that R(x, /) «-> 31 uo\ < |H0(x, f)\ . . . Qn-X \ un_x | <
! ! ! „ _ ! (x, f)\Ύ(u0,.. .,«„_!, x,f), where Qn_x is 3 ifn is odd and V ifn is
even
(2) For any n, R E Pl£ iff there exist length-increasing functionals H o , . . . ,
HΛ_! in POLY and T in P such that R(x, /) ^ V | uo\ < |H0(x, f)\ . . . Qn-X

\un-ι\ < \Hn_{(x, f)\Ύ(uOf... ,un_u x, f), where Qn_x isVifn is odd and 3
// fl is even
(3) For UTA2̂ n > 1, R G SIG£ ///' ̂ Λ̂ re /5 ύf length-increasing functional F /Λ
P O i y ^ Q G P I ^ w/7/2R(x,/)^>3|w| < |F(x,/)|Q(w, x, f)
(4) For any « > 1 , R G Pl£ iff there is a length-increasing functional F /« POLY
and QGSIGS-x withR(x,f)++v\u\ < |F(x,/)|Q(w, x , /) .

Proof: It is clear that any R so defined in (1) and (2) is in SIG£, respectively
Pl£. We prove the converse by induction on n. There is nothing to prove if n = 0.
Assume the result for n, and suppose that R in SIG^+1 is defined by R(x,/) <-•
3|w| < |F(x,/)|Q(w, xj) for some F in POLY and Q in Pl£. By the induction
hypothesis, there exist length-increasing functionals H l s . . . ,H^_! and T in P
with Q(M, x,/) « v|«! I < \UX (u, xj)\ . . . Qn-X I un_x I < |H Λ _! (ii, xJ)\Ύ(ux,
. . . , wrt_i, w, x, /) . If H o is a length-increasing bound for F, then

R t e , /) ~ 0 | i i o | ^ | H 0 (x , /) |) (v | W l | < \Hx(H0(xJ),xJ)\)...
(\uo\ < \f(xj)\ and | W l | < I H ^ X , /) ! . . . and . . .Ύ{uu... ,un9u0,x9f))

and the result follows from the properties of P and POLY. (3) follows from (1),
and (4) follows from (2).

We remarked before the proof of Lemma 2.13 that if our bounds are in-
creasing in length, then we can conclude that there is closure under length
bounded quantification.

C o r o l l a r y 2 . 2 0 For all n>l,
(1) SIG£ is closed under POLY bounded existential quantification
(2) PI „ is closed under POLY bounded universal quantification.

Moreover, in the corresponding version of Lemma 2.15, we have SIG£ =
Pl£ implies that SIG£+1 = Pl£+ 1 (n > 1) because SIG£ and Pl£ are closed un-
der length bounded existential quantification, respectively length bounded univer-
sal quantification. We prove one more normal form representation.

252 MIKE TOWNSEND

Lemma 2.21 For all n:
(1) R is in SIG^j iff for some S in Pl£ and length-increasing F in POLY, R(x,
f)~l\u\ = \F(x,f)\S(u,x,f)
(2) R is in Pl£+i iff for some S in SIG£ α«rf length-increasing F //i POLΓ, R(x,
/) ~ v | κ | = \Έ(x,f)\S(u,x,f).

Proof: (1) Clearly any R so defined is in SIGf+1. Conversely, suppose R in
S I G ^ ! is defined by R(x, /) ** 3\u\ < |F(x, f)\Ύ(u, x, f) for some length-
increasing F in POL Y and f in Pl£. Then R(x~f) «-> (3|w[= |F(x,/)|)3|ι; | <
|«|T(t;, * , /) . (2) follows from (1).

We are now ready to define universal sets for the SIG and PI classes.

Definition 2.22
(1) UNf (w, <x>, </>, 0m) ̂ NOTMW accepts (x,f) in at most m steps;
(2) U N £ M (W , <x>~, <f>, 0m°,...,0m»)~3\u\ =~mn -UN^(w, <w, x>, </>,

0 m °, . . ^ O ^ " - 1) .

Theorem 2.23 For all n > 1:
(1) UN£ is in SIGj and -UN^ & //i PI^
(2) IfR is in SIGf, then for some w and length-increasing functional F o , . . . ,
Frt_! in POLY, R(x,/) ~ UN^(w, <x), </>, θlFo<*/>l,... ,θlF-^*/>l)
(3) IfRis in Pl£, then for some w and length-increasing functional F o , . . . ,
F r t_! m POLY, R(x,f) <* -UNf(w, <x>, </>, O '^^^l , . . . ^ f ^ - i ^ / ^) .

Proof: (1) is proved by an easy induction on n. We prove (2) and (3) by induc-
tion on n. If n = 1, then the statement is clear from the definitions. Suppose R
in SIG^+i is defined by R(x,/) ++ 3|κ| = \F(x,f)\S(u, x,f) for some length-
increasing F in POL Y and S in Pl£. By the induction hypothesis

S(w, * ,/) ̂ -UNf(w, <«, x>, </>, OlFo^'/)l,... ,olFπ-i(*/>l)

for some w and length-increasing F o , . . . , FΛ_ } in POLY. Hence

»(£,/) « UNJΓίw, <^>,</>,0lFo<*/>l,... ,0lF"-i^/)l,0lF(* />l).

The argument for Pl£+1 is similar.

We cannot use the same argument for the Σ and Π classes because POLY
does not satisfy the appropriate version of Lemma 2.18. However, Lemma 2.3
of Mehlhorn [8] shows that for every F in POLY, there is a n / in POLY such
that, for all characteristic functions g, \F(x, g)\ < \f(x)\. It follows that if we
restrict our attention to relations on strings and characteristic functions, then the
SIG and Σ classes are the same.

There are two natural definitions for the notion of TOLY in g\

Definition 2.24 For any g:
(1) POLY[g] = {F: there exists a G in POLY with F(x,/) = G(x,f g) for all
xand/};
(2) POLYg is the smallest class containing g, the successor and length bounded
exponentiation functions, the application functional, and which is closed under
composition, explicit transformation, and limited recursion on strings.

TYPE-2 RELATIONS 253

Lemma 2.25 For any g, POLY[g] = POLY*.

We will write POLY£, for λ(x,/).POLYw(*,/, g). There are two natural
definitions for the relativized hierarchy.

Definition 2.26 For any g:
(1) Σξ[g] =Uξ[g] =?[g] = {A:KAePOLY[g]};
(2) For any n > 1, Σ%+Ϊ[g] is the class of relations definable by POLY[g]
bounded existential quantification of relations in Uζ[g];
(3) For any n > 1, Π£+ 1[g] is the class of relations definable by POLY[g]
bounded universal quantification of relations in Σζ[g]\
(4) For all n,Re Σ%g iff there exists an S in Σ£ such that for all (x9 /) , R(x,
f)**S(x,f,g);
(5) For all n,RE Π£ g iff there exists an S in Π£ such that for all (x, /) , R(x,
/)"S(x,/, g).

Lemma 2.27 For all n, Σ%[g] = Σ%8 and Ώ%[g] = U%g.

For any g, all of the previous results of this section hold for the relativized
classes. For universal sets, we need g to be a characteristic function. If we restrict
our attention to relations on strings and use characteristic functions for oracles,
then these classes agree with the relativized hierarchy of Section 1. Hence by a
result of Yao [14] there are g's relative to which all levels of these hierarchies are
distinct.

Definition 2.28 For any n:

(\)ΣΪ = U{ΣΪ[g]:gGΣ*Σ*};

(2)nϊ=UiIlϊ[g]:geΣΣ*}.

In a similar manner, we may define POLY[g]9 SIG£[g], Pl£[g],
PSFACE[g],PSPACE[g]9 NPSPACE[g], NPSPACE[g]9 EXP[g], EXP[g]9

SIG£, Pi£, PSPACE, PSPACE, NPSPACE, NPSPACE. EXP, and EXP. As
before, the appropriate versions of Savitch's Theorem hold. In the next two sec-
tions, we discuss some topological properties of Σf and SIGf.

3 Topology In this section, we introduce some topological concepts that are
Naturally' associated with time and space bounded computations of oracle
machines. For simplicity, we consider our machines to be taking inputs of the
form (x,/). Our goal is to describe certain subsets of U Σ * both complexity the-
oretically and topologically.

Recall the operation of an oracle machine. When making an oracle call, the
machine is charged one step. In addition, the machine is charged one step (space)
for each symbol of the input written and each symbol of the output read. This
suggests that we take into account three things: the number of oracle calls made,
the size of the oracle input, and the amount of information actually used from
the oracle output.

In ordinary recursion theory, we use the Baire topology to study oracle com-
putations. Because oracle machines have finite controls, two inputs (x,f) and
(x, g) will produce the same halting computations on a machine Mif / and g
agree on a sufficiently long initial segment of Σ*. In other words, if (x,/) pro-

254 MIKE TOWNSEND

duces a certain set of halting computations, then there is some basic open interval
[<!s'>]Baire such that if g is in this interval then (x, g) produces the same set of
halting computations. This analysis takes into account only the number of calls
made and is not an appropriate model for complexity bounded computations.

We begin with some preliminary definitions. Recall that B is the symbol for
a blank. We let BΣ* denote {Bx:xeΣ*}.

Definiton 3.1 Let/?: Σ* -> (Σ* U BΣ*) be a finite function. We define the in-
terval [/?]* c Σ *Σ* b y / E [/?]* iff for every w E Dom(/?),

ίx,ifp(w) = Bx
f(w) =<

yzp(w) for some z E Σ*, otherwise.

In other words, if /?(w) is prefixed by a B, then/(w) must equal the suffix;
otherwise,/(w) need only have/?(w) as a suffix. A finite function p will also
be denoted by (Xo,p(xo)),... ,<JCΛ,/?(JCΛ)>, where {xo> >xn) is the domain of
p. We will assume that there is a coding of finite functions into Σ*, and will
identify finite functions with their codes.

Example 3.2
(l) I f / = λ x . l l , t h e n / e [« U >] * , / £ [<O,B1>]*,/E [<e,ll>]*,/E [<e,Bll>]*,
a n d / E [<1,>, <10,l>]*.
(2) [<€,01>]* Π [<€,B01>]* = [<€,B01>] .
(3) [<e,101>] Π [<€,01>Γ = [<e,101>]*.
(4) [<e,101>] Π [<1,1>] = [<e,101>, <1,1>]*.
(5)[<€,1O1>] Π[<€,BO1>]* = 0 .
(6) [<e,B01>]* = [<01>]Baire.
(7) [<01>]Baire is a proper subset of [<e,01>]*.
(8) [<e,B01>, <1,)]* is a proper subset of [<01>]Baire.
(9) [<e,01>, <1,1>]* and [<01>]Baire are incomparable with respect to set inclusion.

The next result shows that these intervals generate a topology equivalent to
the Baire topology.

Lemma 3.3 {[/?]*: p is a finite function from Σ* into Σ* U BΣ*} is a basis
for a topology that is equivalent to the Baire topology on Σ *Σ*.

Proof: For any s = so>... ,sk, [<^>]B a i r e = [<e,Bso>,.. ,<St(A:),B^>]*. On the
other hand, ifx o<-^i < * * < *m a n d / i s in [<xo,p(xo)>,.. . . U m ^ W l ' =
[p]*9 t h e n / E [< / (€) , . . . , /Uw)>]B a i r e £ [p]*. Thus [p]* generates a topology
equivalent to the Baire topology.

We have the following immediate corollary.

Corollary 3.4 The product topologies on U Σ * given by the discrete topol-
ogy onΣ* and the topology generated by [p]*, respectively the Baire topology,
are equivalent.

The following key definition will be used to describe time and space com-
plexity in a topological manner.

TYPE-2 RELATIONS 255

Definition 3.5 For any Go, G1? G2, and U, U is called (Go, Gu G2)-open
if for every (x, f) in U there is an interval [/?]* containing/ such that the fol-
lowing hold:

(i) U) X [/>]*<= U
(ii) Card(Dom(/7)) < \G0(x,f)\

(iii)Forall wEDom(p), |w| < |Gi(x,/) |
(iv) For all wGΌom(p), \p(w)\ < | G 2 (x , /) | .

The use of the word 'open' is justified by (i). Intuitively, (ii) says that the num-
ber of oracle calls is bounded by Go; (in) says that the size of the oracle input
is bounded by Gi and (iv) says that the size of the part of the output actually
used is bounded by G2.

Definition 3.6
(1) For any Go, G l f G2, and U, U is (Go, G^ G2)-closed if - U is (Go, G l f G2)-
open. U is (Go, G b G2)-clopen if both U and - U are (Go, G l 5 G2)-open.
(2) For any Γo, Γu Γ2, and U, U is (Γo, Γ l s T2)-open (clopen) if U is (Go, G^
G2)-open (clopen) for some Go, G1 ? G2 in Γo, Yu Γ2, respectively.

For notational simplicity, we will identify a functional with the class con-
sisting solely of that functional.

Example 3.7
(1) ((*,/) :f(w) = 1 for w < x] is (POLY, POLY, λ(x,/).02)-open.
(2) l(x,f):f(w) = 1 for \w\ < \x\] is (EXP, POLY, λ (*,/).0 2)-open but not
(POLY, POLY, λ(x,/).02)-open, since membership of (x,f) depends on an
exponential number of values of/.
(3) {(*,/) :/(10) = 11} is (λ(x,f).O, λ(x,/).O2, λ (*,/).03)-open but not (λ(x,
/).O, λ(x,f).O2, λ(x,/).02)-open, since membership of (x,f) depends on the
fact that/(10) is 11 rather than simply containing 11 as a suffix.
(4) {(*,/) :/(*) = 1} is (λ(x,f).O, λ(x,f).O^, λ(x,/).02)-open but not (λ(x,
/).0, λ(x, /).0, λ(x, /).02)-open, since membership of (x, f) depends on an
oracle input of length | JC| .

Definition 3.5 requires us to consider three things: the number of oracle calls
made, the size of the input for these calls, and the amount of information ac-
tually used from the results. The previous example shows that these are three dif-
ferent things; modification of one component can lead to a different class of
open sets. We might also consider modifying the definition of the []* intervals.
We could, for example, require/? to be a finite function whose domain is an in-
itial segment of Σ*, but this would be different from our definition because
there are potentially 2n oracle inputs of length n. The action of B is also criti-
cal because without it we cannot specify a function value with the resulting basic
intervals.

We let CGθiGliG2 denote the class of (Go, G!, G2)-open sets, and let C Γ θ) Γ l > Γ 2

denote the class of (Γo, Γ1? Γ2)-open sets.

Proposition 3.8 For any G o , Gi, G 2:

(l) 0 G C G o , G l f G 2

(2) / / | G 0 | , | G 2 | > | λ (x , /) . 0 | and \G{\ > | λ (x , /) . e | , then U Σ * G C G θ f G l ,G 2

256 MIKE TOWNSEND

(3) C G θ) G l G 2 is closed under arbitrary union
(4) For any H o , H h H 2 majorizing G o, Gi, G 2, respectively, C G O , G I , G 2 £
C H 0 ,H l f H 2

Proof: (1) and (3) are easy. For (2) note t h a t / E [<e,/(e) 4 1>]*. (4) follows
from the definitions.

On the other hand, the following example shows that CGO,G1 5G2

 n e e d not
be a topology.

Example 3.9 Let A = {(*,/) :/(0) = 1} and B = [(*,/) :/(l) = 1}. Then
A Π B = {(*,/) :/(0) =/(l) = 1). Note that A and B are (λ(x,/).O, λ(x,/).O,
λ(x,/).02)-open but A Π B is not.

Definition 3.10
(1) Γ is nontrivial if there is an F in Γ such that for all (*,/), | F (* , /) | > 1.
(2) Γ is self-bounding if for every F and G in Γ there is an H in Γ with | F | +
| G | < | H | .

Note that POLY, POLY, and POL Y are self-bounding since they are closed
under composition and length bounded exponentiation.

Proposition 3.11 For any Γo, Tx, Γ2, To, Γ/, Γ2':
(1) If Γo, Γi, Γ2 are nonempty, then 0 E CΓ o > Γ l > Γ 2

(2) If Γo, Γ 1 ? Γ2 are nontrivial then U Σ * E Cro',Γi,r2

(3) ffΠ, Γ{, Γ2' majorize Γo, Tl9 Γ2, respectively, then CΓ o > Γ l,r 2 £ CΓό,Γf,rf

IfT0, Tι, and Γ2 are self-bounding, then

(4) CΓθ)Γl,Γ2 ^ closed under finite union
(5) C Γ o > Γ l) r 2 /5

1 cto5βrf under finite intersection.

Proof: (1), (2), and (3) follow from Proposition 3.8. For (4), let U* be (Fk9 Gk,
H^)-open for 0 < k < n - 1. By the hypothesis, there exist F, G, and H in Γo,
Γi, and Γ2, respectively, with | F | > Σ |F* | , |G| > max|G^|, and | H | >
max I Hk\. It is easy to see that U\Jk is (F, G, H)-open. For (5) let Fk9 Gk, Hk,
F, G, and H be as in (4). Suppose (x,f) G ΠU^. Then for k <n — 1, there ex-
ists [pk]* with (x,f) e {x} x [pk]*. Define finite/?: UDomί^) -• Σ* U BΣ*
by

|Bx, if there exists a /: with ^ ί ^) = Bx
/?(w) = ̂

(̂ longest of the^ίvv), otherwise.

Then (*,/) E {x} x [/?]* c ΠU^. Moreover, Card(Dom(/?)) < |F(x,/) | , and
for every wE Dom(p), \w\ < | G (J C , /) | and \p(w)\ < | H (J C , /) | .

Example 3.9 shows that C Γ o > Γ l j Γ 2 need not be closed under finite intersec-
tion, and the next two examples show that C Γ θ j Γ l > Γ 2 need not be closed under
finite, union, and that it need not be closed under infinite union even if it is
closed under finite union.

Example 3.12 Let A = {(x,f) :f(x) = 0 if |x| is even, and 01 otherwise} and
let B = {(*,/) :f(x) = 0 if | * | is odd, and 01 otherwise). Let g(x,f) = 2 if \x\
is even and 3 otherwise, and let h(x, f) = 2 if \x\ is odd and 3 otherwise.

TYPE-2 RELATIONS 257

Then A is (λ(x,/).O, λ(*,/).θ'*l, s)-open and B is (λ(*,/).O, λ(*,/)θl*l,
Λ)-open, but A U B is neither (λ(*,/).O, λ(x,f).O^, #)-open nor (λ(x,f).O,
λ(x,/)0lχl,Λ)-open.

Example 3.13 CPOLY,POLY,POLY is closed under finite union and intersection
by Proposition 3.11. It is not closed under either infinite union or infinite inter-
section. Let Ak = {(x,f) :f(w) = 1*+1 for w < St(|jc|*)}. Each A* is (POLY,
POLY, POLY)-open and all are disjoint, but clearly UAyt is not (POLY,
POLY, POLY)-open. Next let B* = {(x, f):f(w) = 1 for w < St(k)}. Then
Γ\Bk = {(x, f) :f is identically 1}, which is not an open set.

4 Topological properties ofΣf and SIfif In this section, we present some
results to the effect that in certain cases subsets of U Σ * can be characterized
both complexity theoretically and topologically. They suggest that topological
complexity is a useful notion for relativized oracle computations.

Definition 4.1 For any F, Go, G b G2, Γo, Tλ, and Γ2:
(1) F is (Go, Gi, G2)-partial continuous if F - 1 (Λ :) is (Go, Gi, G2)-open for ev-
ery x in Im(F);
(2) F is (Γo, Γi, T2)-partial continuous if F is (Go, G b G2)-partial continuous
for some G o, G l s G2 in Γo, Tu Γ2) respectively.

We drop the word 'partial' if F is total. (2) requires a uniform restriction on the
openness of F " 1 , and hence the restriction in (2) is not equivalent to allowing G^
to depend on x.

Example 4.2
(1) Έ(x, f) = I2'*1 is (POLY, POLY, POLY)-continuous but is not deter-
ministically computable in POLY time (otherwise, the bounds for characteris-
tic functions/ would be in POLY).
(2) The application functional is (POLY, POLY, POLY)-continuous and is com-
putable in POLY time.

Proposition 4.3 For any A, Go, Gi, G2, Γo, Γ l 5 and Γ2:
(1) A is (G o, Gi, G2)-open iff A is the domain of a (Go, Gi, G2)-partial con-
tinuous functional
(2) A is (Γo, Tx, T2)-open iff A is the domain ofa(T0,Tι, Γ2) -partial contin-
uous functional.

Proof: (1) (-•): Kj is (Go, G t , G2)-partial continuous and A = Dom(Kί). (*-):
If A is the domain of some (Go, G^ G2)-partial continuous functional F, then
A = U I F " 1 ^) '•*£ Im(F)}. (2) follows from (1).

Corollary 4.4 For any A, Go, Gi, G2, Γo, T1, and Γ2:
(1) A is (Go, Gi, G2)-clopen iffKA is (Go, G^ G2)-continuous
(2) A is (Γo, Γj, T2)-open iffKA is (Γo, Γ^ Γ2)-continuous.

Proof: Immediate from the proof of the preceding proposition.

Example 4.5 The class of (EXP, EXP, EXP)-partial continuous functionals
properly includes the class of (EXP, EXP, POLY)-partial continuous func-

258 MIKE TOWNSEND

tionals. This follows from Proposition 4.3 by noting that A = {(x,f) :/(w) =
I2'*1 for |iv| < |JC|} is (EXP, EXP, EXP)-open but not (EXP, EXP, POLY)-
open, because membership in A depends on an exponential amount of informa-
tion from the oracle output.

In ordinary recursion theory, A is semi-recursive in some g iff A is open.
Analogously, we have the following.

Theorem 4.6 For any A,
(1) A G Σf iff A is (POLY. POLY, POLY) -open
(2) A G SIGf iff A is (POLY, POLY, POLY) -open.

Proof: (1) (->): Suppose that A is accepted by nondeterministic oracle machine
M operating in time POLY^. Suppose that (x,f) E A and let u be an accept-
ing computation. It follows that the number of oracle calls, the size of the in-
puts for the calls, and the amount of information used from the results of the
calls in u are bounded by | POLY^(x, f)\. If zo> >^-i a r e the oracle inputs
a n d i f s e [< z o , B / U o) i |POLY*(x,/)|>,... ,<**-i, Bf(zk-i) 1 |POLY*(x,
/)|>]*, then u is an accepting computation for (x, g). (<-): Let A be (POLY£°,
POLY£i, POLY*?)-open. Define g by

χ | Ί , i f (x , /) G A f o r a l l / G [/ ? Γ

1̂ 0, otherwise.

It follows that (*,/) G A iff for some choice of z0,. ,Zk-i with k < |POLY °̂
(x,f)\ and \zm\ < |POLY^(x,/)|, and some choice Yo,...9 Yk-X where Ym is
either B or e, we have g«x, <z0, Yof(zo) i |POLYj?U/)|>, >) = 1. There-
fore A G Σf [<g, Λo, Ai, A2>] by the relativized version of Proposition 2.5.

The argument for (2) is nearly identical, using the fact that our coding al-
lows us to obtain the necessary information about g, h0, A1? and h2 in an effi-
cient manner.

Note that the proof shows that if A G NP, then A is (POLY, POLY, POLY)-
open, and similarly for A G NP.

Corollary 4.7 For any A:
(1) A G Σf iffKX is (POLY, POLY, VOLY)-partial continuous
(2) A eΠf iff A is (POLY, POLY, POLY)-closed
(3) A G Σf Π Πf iffKA is (POLY, POLY, POLY)-continuous iff A is (POLY,
POLY POLY)-clopen
(4) A G SIGf iffKX is (POLY, POLY, POLY)-partial continuous
(5) A G Plf iff A is (POLY, POLY. POLY)-closed
(6) A G SIGf Π Plf iff KA is (POLY, POLY, POLY)-continuous iff A is
(POLY. POLY, POLYVclopen.

Proof: (1), (2), (4), and (5) are immediate. (3) and (6) follow since POLY and
POLY are self-bounding.

Clearly, any set in Σf is recursive in some g, and hence there are sets which
are open but not (POLY, POLY, POLY)-oρen. Before presenting the next the-
orem, we make several comments about Theorem 4.6. We would like to say, in

TYPE-2 RELATIONS 259

analogy with ordinary recursion theory, that F is nondeterministically comput-
able in some g in POLY time iff it is (POLY, POLY, POLY)-(partial) continu-
ous. The first problem is illustrated by Example 4.2, which indicates that some
restriction on the size of the value of F is necessary. An obvious solution is to
require that F be POLY bounded. Our proposed result would say that if F is
POLY bounded, then F is nondeterministically computable in POLY time iff F
is (POLY, POLY, POLY)-(partial) continuous. Recall that a nondeterminis-
tic machine computes value z if some halting computation has output z and no
other halting computation has output w Φ z. It is still the case that if u is a halting
computation for (x,f) with oracle calls Zo, - ,Zk and at most | P O L Y £ (J C , /) |
steps, then u is a halting computation for any (x, g) with g G [<Zo> B/(z0) i
|POLYj,(jt,/)|>, . . .] * . However, we do not know what happens with the other
computations. We do though have the following.

Proposition 4.8 For any F:
(1) //F is POLY bounded and (POLY, POLY, POLY)-(partial) continuous,
then F is nondeterministically computable in POLY time using some oracle g
(2) If F is POLY bounded and (POLY, POLY, POLY)-(partial) continuous,
then F is nondeterministically computable in POL Y time using some oracle g.

Proof: Let F be (POLY*0, POLY^, POLY^)-(partial) continuous. Define g

by

Γwl, if ¥(xj) = w for all/G [/?]*
g«x,p»=\ m

[0, otherwise.

It follows that F(x, /) is defined iff for some choice of Zo, >£*-i with k <
|POLY20(JC, f)\ and \zm\ < |POLY^(x, f)\, and some choice Yo,..., Yk-\
where Ym is either B or c , we have g(<x, (z0, Yof(zo) I |POLY*?(x,/)|>, . . .)) =
wl. This represents a nondeterministic POLY bounded computation using an
oracle for (g, h0, hu h2). Moreover, if for each such choice of zm and Ym,
g((x,... » = wl, then F(JC, /) = w. Hence F is nondeterministically comput-
able in POLY time using an oracle for (g, h0, hx, h2). The argument for (2) is
nearly identical.

The above results reinforce the claim that our definitions are 'natural' when
considering complexity-theoretic constraints. Moreover, we have the following
result.

Theorem 4.9 For any A:
(1) A e NPSPACE iff A is (EXP, POLY, POLY)-open
(2) A G NPSPACE iff A is (EXP, POLY, POLY)-open.

Proof: (1) (-•): Let M be a nondeterministic machine accepting A in POLY^
space. Suppose that (x, f) G A and let u be an accepting computation using at
most |POLY^(x, /) | cells. It follows that for some n, the number of oracle
calls, the size of the oracle inputs for the calls, and the amount of information
used from these calls is bounded by Λ|POLY*<*,/)^ |pθLY^(x,/)|, |POLY£(x,
f)\, respectively. The rest of the argument proceeds as in (-•) of Theorem 4.6.

(<-): Suppose that A is (λ(x,/).0" | P O L Y "° u /) l , POLY^, POLY^)-Open. Define
£by

260 MIKE TOWNSEND

01, if (z,y) is the Num(s)th and last member of
some/? with (x,f) E A for a l l/E [/?]*

g«x,(z9y>,s)) = < 1, if <j,£> is the Num(s)th but not the last member
of such a p

0, otherwise.

We describe a POLY space bounded nondeterministic machine M using an oracle
for (g, Λo, h\9 h2) which accepts A. On input (x,f), M guesses a z0 and Yo

where Yo is either Bore and |z o | ^ \VOLYiι(x,f)\, and asks g about (<x, <zo>
Yof(Zo) I |POLY*2(*,/)|>, €». If the answer is 01, thenMaccepts. If the an-
swer is 0, then M goes into an infinite loop. Otherwise, M guesses a zι and
Yι,..., and so on. The restriction on space is that M must keep track of the last
5, and be able to ask about strings of the form <x, <z, y)9 s). Note that the
lengths of z and y are assumed to be bounded and Num(s) < «IPOLY« (*'^l if
(Λ:, /) E A. Hence s is also bounded in length if (x, s) E A, so that M runs in
POLY space. The argument for (2) is similar.

Note that the proof shows that if A is in NPSPACE then A is (EXP,
POLY, POLY)-open, and similarly for A E NPSPACE.

5 Applications We close by presenting two applications of the results of the
previous sections. First, we consider generalizations of the polynomial jump oper-
ator. The polynomial jump of A, denoted by K(A), is defined by K(A) = {(*,
y, 0n): NOTM^ accepts y in at most n steps}. The basic properties of the jump
are that K(A) is NP in A, and A is NP in B iff A <£ K(B). A more detailed dis-
cussion of the jump is contained in Townsend [13]. We can extend the jump oper-
ation to functions as follows.

Definition 5.1 F o r / E Σ*Σ*, we define K(/), the jump off, by

(0, if NOTM{ accepts y in at most n steps

1, otherwise.

K(/)(z) is also 0 if z is not of the form <x, y9 0
Λ>.

Corresponding to the previously described properties of the jump for sets
we have only the following.

Proposition 5.2 For any f and A, A E SIGf [/] implies A E POL Y[K(f)].

Proof: Suppose that y E A iff R(y, f) for some R E SIGf [/]. Then R is ac-
cepted by a NOTM{ running in time POLYW, so that y E A iff K(/)«ΛΓ, y,
0 |POLYW<*)|^ = 0

There is a problem in extending the previous proposition to POLY. Follow-
ing the proof, we would have y E A iff K(/)«*, y, ()IP O L Y" (*' /)I » = 0. This,
however, may require values of/. We can avoid this by defining K'(/) = </,
K(/)>. Then we have A E Σf implies A E POLY[K'(/)]. As the next example
shows, we cannot reverse the implication in Proposition 5.2.

TYPE-2 RELATIONS 261

Example 5.3 Let A be such that NP A Φ CO-NPA (see [1]), and take R =
—K(A). Then using an oracle for the jump of KA, R is deterministically com-
putable in POLY time. R £ Σf [KA] because otherwise we would have -K(A) <£
K(A), which contradicts the assumption about A.

In any case, the restriction of these results to relations on strings is neces-
sary if Σf - Σξ Φ 0 (SIGf -SIG£ Φ 0) , because if R is in NP(TVP) but not
in Σζ (SIGf), then R is NP {NP) but not in POLY[#] (POLY[g]) for any g.

Finally, recall the following open questions.

(1) NP = PSPACE?

(2) NPSPACE = EXP?

Compare these with the following.

Proposition 5.4
(1) NP Φ PSPACE
(2) NPSPACE Φ EXP.
Proof: (1) Let A = {(*,/) :f(w) = 1 for | w\ < | * |) . Clearly, A is in PSPACE.
We show that A is not (POLY, POLY, POLY)-open. If g = λxΛ, then for
all x, (x, g) E A. We have already mentioned that for every POLYy there is a
POLYZ such that for all characteristic functions/ and all x, \VOLYy(x, f)\ <
|POLYz(x)|. Since membership in A requires information about exponentially
many values of/, A is not (POLY, POLY, POLY)-open.

(2) Define B = {(*,/) :f(w) = I2'*1 for \w\ < |JC|}. Then B is inJEAPbut
is not (EXP, POLY, POLF)-open.

6 Conclusion Type-2 recursion theory extends ordinary recursion theory by
permitting arguments that are functions. Historically, type-2 recursion theory is
the recursion-theoretic end of an interface with descriptive set theory. Thus, the
subject has a 'feeΓ somewhere between recursion theory and topology. We have
developed a polynomialization of type-2 recursion theory. This development is
parallel to the polynomialization of ordinary recursion theory that is the basis
for structural complexity theory. In addition, we have considered some topolog-
ical notions associated with time and space bounded computations of oracle Tur-
ing machines. The results presented suggest that topological considerations are
an integral part of the study of resource bounded computations.

REFERENCES

[1] Baker, T. P., J. Gill, and R. Solovay, "Relativizations of the P = ? NP question,"
SIAM Journal, vol. 4 (1975), pp. 431-442.

[2] Baker, T. P. and A. L. Selman, "A second step towards the polynomial hierarchy,"
Theoretical Computer Science, vol. 8 (1979), pp. 177-187.

[3] Buss, S., Bounded Arithmetic, dissertation, Princeton University, 1985.

[4] Cobham, A., "The intrinsic computational difficulty of functions," pp. 24-30 in
Proceedings of the 1964 Congress for Logic, Mathematics, and Philosophy of Sci-
ence, North Holland, Amsterdam, 1964.

262 MIKE TOWNSEND

[5] Hinman, P. G., Recursion-Theoretic Hierarchies, Springer-Verlag, New York,
1978.

[6] Hopcroft, J. E. and J. D. Ullman, Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, Reading, Massachusetts, 1979.

[7] Ladner, R. E. and N. A. Lynch, "Relativization of questions about log space com-
putability," Mathematical Systems Theory, vol. 10 (1976), pp. 19-32.

[8] Mehlhorn, K., "Polynomial and abstract subrecursive classes," Journal of Com-
puter and System Sciences, vol. 12 (1976), pp. 147-178.

[9] Munkres, J. R., Topology: A First Course, Prentice-Hall, New York, 1975.

[10] Rogers, H., The Theory of Recursive Functions and Effective Computability,
McGraw-Hill, New York, 1967.

[11] Savitch, W. J., "Relationships between nondeterministic and deterministic tape
complexities," Journal of Computer and System Sciences, vol. 4 (1970), pp.
177-192.

[12] Townsend, M., A Polynomial Jump Operator and Complexity for Type Two Re-
lations, dissertation, University of Michigan, 1982.

[13] Townsend, M., "A polynomial jump operator," Information and Control, vol. 68
(1986), pp. 146-170.

[14] Yao, A., "Separating the polynomial-time hierarchy by oracles, I," pp. 1-11 in Pro-
ceedings of the 26th Annual Symposium on the Foundation of Computer Science,
1975.

Department of Mathematics
Harvey Mudd College
Claremont, California 91711

