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Relevance and Paraconsistency —

A New Approach

Part II: The Formal Systems

ARNON AVRON*

Abstract In part I of this paper we introduced what we called "relevance
structures". These algebraic structures are based on the idea of relevance do-
mains which are graded according to "degrees of reality" and related (or not)
by a certain relevance relation. In the present part we describe the logic RMI
which corresponds to these structures, proving it to be sound and strongly
complete relative to them. The language of RMI is similar to that of the sys-
tems of Anderson and Belnap, but unlike them it is purely intensional: no ex-
tensional connective is definable in it, and all its primitive binary connectives
have the variable-sharing property. We show that the expressive power of
RMI is nevertheless very strong and sufficient for all our needs. In addition,
we investigate the main fragments of RMI, as well as its most important ex-
tensions. One of these extensions is the system RM (of Dunn and McCall),
which is obtained from RMI by adding an axiom to the effect that any two
sentences are relevant to each other.

Introduction Our central problems in this work are to find out how a use of
inconsistent theories is possible, what kinds of logics can be so used, and what
are the possible justifications for it. Henceforth, we shall follow da Costa [11]
in calling logics that allow inconsistencies "paraconsistent"; that is to say, a
paraconsistent logic is one in which an inconsistency does not necessarily imply
everything. Besides their obvious philosophical interest, such logics may also play
a practical role (see Nillson [17], p. 408), e.g., we may like to have a computer-
ized system for deriving conclusions which can act efficiently even when it is fed
with inconsistent information.

The main difficulty any paraconsistent logic has to overcome is what is
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known as the "Lewis dilemma": We can infer any proposition B from a couple
of contradictory sentences, A and —A, by using only two self-evident and ele-
mentary rules of inference. First, we infer A v B from A, using weakening. Then
we apply the disjunctive syllogism (D.S.) in order to infer B from A v B and
-A. It follows that no paraconsistent logic can have an operation of disjunc-
tion for which both weakening and D.S. are always valid. The universal valid-
ity of at least one must be given up.

Which of these two rules is to be rejected? It seems obvious to me that if
Lewis's argument does not apply in concrete situations it is because nobody will
try to infer A v B from A unless he sees a connection between A and B. In con-
trast, applications of (D.S.) are frequent and indispensable. Accordingly, it seems
preferable to retain (D.S.) while limiting the validity of weakening.

Another major logical problem closely connected with that of paracon-
sistency is the problem of the implication (or "entailment") connective. It has of-
ten been claimed that the "material implication" of classical logic does not
represent faithfully our "If . . . then" concept. This is due to the so-called
"paradoxes of material implication": A D (B D A), B D (A D A), and -A D
(ADB). From these classical theorems (together with modus ponens) it follows
that if A is true then it is implied by every sentence, while if A is false then ev-
ery sentence is implied by it. This situation does not correspond to our intuitive
concept of "implication". A logic which does have a connective which corre-
sponds to our intuitive implication is a logic with entailment.

The two problems are related: in any paraconsistent logic in which M.P. is
a rule of inference the "paradox" -A D (ADB) should be rejected. Neverthe-
less, a solution for one problem is not automatically a solution for the other.
Thus A D (B D A) is a theorem of the da Costa paraconsistent logics of [11].
On the other hand the Lewis argument shows that a system containing a disjunc-
tion connective for which both weakening and (D.S.) are among the rules of in-
ference cannot be paraconsistent, even if none of the "paradoxes of implication"
is a theorem in it (with respect to its official implication connective).

One should note that the properties of a "proper implication", for exam-
ple, ->, are neither clear nor agreed upon. Curry [10], for example, takes the de-
duction theorem as a basic property. Its classical formulation is Γ, B h A iff
T h B -• A. Since A, B h A we get K4 -• (B -• A). For this reason Curry thought
that A -* (B -> A) should be valid. Others, among them Church [9], Acker-
man [1], and later Anderson and Belnap [2], did not accept the general valid-
ity of A -• (B -• A), because it then follows that a true A is implied by any
other B. Therefore, Church [9] proposed another version of the deduction the-
orem (the so-called relevant deduction theorem) which -> should satisfy: \-Aχ -»
(A2 -•...-> (An -• B)...) iff there is a proof of B from A\,..., An which uses
all the ^4,'s. The minimal system for which such a deduction theorem holds was
independently found by Church [9] and Moh [16]. In [2] it is called i?_. In this
system, e.g., (A ->B) -• ((B-• C) -> 04 -> C)) is still a logical truth (since C can
be deduced from A-+ B, B-+ C9 and A by two applications of M.P.) but A -»
(B-+A) is not.

Now the term "uses" which appears in the formulation of the relevant de-
duction theorem is not quite clear. The following inductive definition of "uses"
is an obvious candidate: Let BΪ9... ,Bn be a derivation from TO [A] (Γa the-
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ory), then A is used in deriving Bt if either Bt is identical with A, or if 2?/ is ob-
tained (through an application of one of the rules of the system) from previous
B/s (j < i) and A is used for deriving at least one of those B/s. This appears
to be satisfactory when A £ T, but becomes perhaps problematic if A E T. The
upshot is that one can have satisfactory systems based on -• and ~ (negation) for
which a relevant deduction theorem is valid when "use" is defined in some rea-
sonable way. But attempts to include other connectives lead to extremely com-
plicated competing definitions of "use" which lack intuitive appeal.

Later we shall have more to say about this issue. For the moment, let us as-
sume only the following obvious principle: If T U [A} h B but T\t B then A is
used in every proof of B from ΓU {A}. Suppose moreover that our language
contains in addition to the implication connective, -*, a conjunction connec-
tive, Λ, such that A ΛB h A, A ΛB \-B, and A,B V A ΛB. If the relevant deduc-
tion theorem holds then for any sentences A, B, the sentences A Λ B -* A, A Λ
B -• By and A -+ (B -> A Λ B) must be theorems. But from this we can deduce
A -> (B -• A) in R^. A more complex argument (see [2], pp. 233-234) shows
that this remains the case even if we replace A,B \-A Λ B (the adjunction rule)
by A-+B, A^>C\-A-+BΛC (the relevant adjunction rule). Hence the exis-
tence of a suitable conjunction, the validity of the relevant deduction theorem,
and the nonvalidity of A -» (B -• A) are incompatible demands.

The classical and relevant deduction theorems are by no means in conflict.
If D is an implication connective for which the classical deduction theorem holds
(and M.P. is a valid rule of inference) then the intuitive meaning of "Γ h A D
B" may be: either B is derivable from T alone or there is a proof of B from
ΓU j.4) which uses A. Hence, if a logic contains an implication connective -*
for which the relevant deduction theorem holds, and also a disjunction connec-
tive v for which A h A v B, B h A v B, and A -> C, B -* C f- (A v B) -• C are
valid rules of inference, then we can define A D B as (A -• i?) v B. It is then easy
to see that M.P. is valid for this D and that the classical deduction theorem holds
for it. (In particular, every purely implicational theorem of the intuitionistic logic,
including A D (B D A), is true for D.)

All the systems which we construct in this paper contain a relevant impli-
cation -> such that the relevant deduction theorem holds for their negation-
implication fragments (according to the simplest most intuitive definition of
"use"). The relevant deduction theorem fails when we add a relevant conjunc-
tion, and the above-mentioned observations show why it must fail. However, if
we define A D B as (A -• B) v B (where Bv C —dej — (~B Λ ~C)) the classical
deduction theorem as well as a strong version of the interpolation theorem hold
for D (our v satisfies the above-mentioned required properties). In view of the
discussion of the present section, these seem to be the best possible results con-
cerning the entailment problem.

So far the best known attempts to solve simultaneously the problems of
paraconsistency and of relevant implication have been those of the Anderson and
Belnap (A & B) school. Their systems are usually known as "relevance logics",
and the most important among them are E and R. A detailed presentation of
these systems and of the general A & B attitude can be found in [2] and [13].

Essentially, A & B logics are a combination of two components, one rele-
vant and the other extensional. This combination seems to us unfortunate (see
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the discussion above) and is the source of many paradoxical or unintuitive fea-
tures of R and E (as we shall show elsewhere). Beyond these paradoxical results,
R and E seem tc us unsatisfactory also from the following points of view:

(a) They are undecidable (this was recently shown in Urquhart [20]).
(b) They have no simple intuitive semantics.1

(c) The fundamental concepts underlying the systems R and E (like that of
"relevance") have never been clearly defined or explained, and they have
neither a semantical nor a syntactical explication.

(d) A major shortcoming of R and E is the total rejection of (D.S.). Dunn
admits in [13] that this is the point at which he "loses his audience",
which is quite understandable. The arguments of A & B for the a pri-
ori rejection of (D.S.) are far from convincing. They admit themselves
that there are many cases in practice in which (D.S.) is correctly applied
but claim that such applications involve a "relevant" disjunction, not
an extensional one. Nevertheless, there is no real counterpart of such
a disjunction in their systems. (For a comprehensive discussion of this
topic see [8].)

The previous discussion naturally leads us to the following desiderata which,
in our view, should be satisfied by any logic L which is to provide an adequate
solution to our two problems:

(I) There should be a proper provability relation YL for L. By this we
mean that:

(i) If ,4 G 7" then T YL A
(ii) TYL A iff there is a finite (possibly empty) subset S of T such

that S YL A
(iii) If ΓU [Bl9... ,Bn] YLA and TYLBi (/= 1,... ,n) then TYLA
(iv) If Ax,... ,An YL B then A{9... ,A'n YL B' whenever A{,...,

A'n,B' are obtained from AΪ9... ,An,B respectively by substi-
tutions of formulas for variables.2

(II) L should have a negation connective ~ such that p and — p are
equivalent, but p, ~p \fL q if p and q are distinct sentential vari-
ables.

(III) L should have a (primitive or defined) implication connective, for
which an appropriate version of the deduction theorem holds.

(IV) L should have a (primitive or defined) disjunction connective for
which (D.S.) is valid (and hence, by (II), for which weakening is not).

(V) L should be sufficiently simple from a proof-theoretic point of view.
(In particular, we want L to be decidable, on a propositional-logic
level, and to have a cut-free Gentzen-type formulation.3)

(VI) L should have a transparent semantics, such that soundness and
completeness are obtained.

(VII) The semantics should be based on intuitively clear concepts. It is also
desirable that these concepts be expressible in L as much as possible.

(VIII) L should be syntactically complete, i.e., T YL A iff To YL A for
any complete extension To of T (a theory To is complete if for ev-
ery sentence B either TYB or TY ~B).
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We shall prove that the system RMI, which we introduce below, has all the
properties in this list (except for the Gentzen-type formulation, to which a sep-
arate paper will be devoted). We also show that its language is purely intensional
(i.e., no nontrivial extensional connectives are definable in it), and that it has a
natural multiple-conclusioned version which is strictly stronger in its expressive
power than the single-conclusioned version (although it is a conservative exten-
sion of it).

Another important feature of our logic is the central role of the relevant dis-
junction, + , with respect to which (D.S.) is true (i.e., -A,A + B imply B). Al-
though in our systems + and the relevant implication -• are definable in terms
of each other exactly as they are in the A & B systems (i.e., A + B = -A -+B),
there are some reasons for choosing + as the primitive, rather than -•:

(1) Its semantic interpretation is more transparent and has nice algebraic
properties.

(2) As we have seen above, -• loses part of its intended meaning in the pres-
ence of a conjunction connective (i.e., the relevant deduction theorem
fails). This is not true for +.

(3) Disjunction plays a crucial role in Lewis's dilemma. It is therefore nat-
ural to treat the paraconsistency problem by introducing a relevant dis-
junction for which (D.S.) holds but weakening does not, and then to
proceed to develop and investigate the corresponding system(s).

In addition to (D.S.) and the nonvalidity of weakening, it seems reasonable
for us to demand from + the following:

(a) The variable-sharing property (which -• has in R): A + B should not be
a theorem unless A and B share a variable in common.

(b) The truth of at least one of the two disjuncts should be a necessary con-
dition for the truth of A + B9 or expressed syntactically, we should have:
T,A \-L C and T,B YLC imply T,A + B \-L C.

(c) + should be commutative, associative, and idempotent.4 Syntactically
this means, among other things, that we can replace A + B by B + A
everywhere in any deduction (or that VL {A + B) <-• (B + A) in case «-•
is a proper equivalence connective of L).

(d) Inasmuch as our attitude towards disjunction and negation is nonintui-
tionistic, -A + A should be a logical truth. (It seems to me obvious that
there is no question about the relevance between the two disjuncts in this
case!)

(e) In view of (d), it is reasonable to extend (D.S.) to the cut rule: from
A + B and ~A + C to infer B + C.

Again, the connective + of RMI has all the properties listed above.
Semantically, RMI corresponds to the algebraic relevance structures which

were developed in Avron [7], and it is based on the intuitive ideas which underlie
those structures. This includes the idea of Relevance domains, which are graded
according to "degrees of reality", and the relevance relation between such do-
mains. For the reader's convenience we end this introduction with a review of
the main notions of [7], which we are going to use below.

A relevance disjunction structure (r.d.s.) is a structure </},<,-,+> in which
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(D,<) is a poset, ~ is an involution on this poset and + is an associative, com-
mutative, idempotent, and order-preserving operation on <A^> which satisfies
the following condition (D.S.): a < b + c => ~b < ~α + c. If in addition any two
elements α, b of D have a greatest lower bound a /\b, then D is called a relevance
disjunction lattice (r.d.l.).

The most important property of these structures is that every r.d.s. D has
a unique subset TD (the truth subset of D) such that for every a,b in D9 a < b
iff # -• b G Γ/), where # -* & = — # + b. So we have:

TD = {a\~a < a] = {a\~a + a < a]

= {a\~a + a = a] = {a\3c ~ c + c < a}.

The relevance domain of an element a in an r.d.s. Z) is the set \a\ —
{c\~c + c = ~a + a}. \a\ is closed under ~ and + , and unless it is degenerate
(i.e., a singleton) it forms a Boolean algebra relative to < + , - , < > . In case D is
also an r.d.l. \a\ is closed also under Λ and is a Boolean algebra relative to
< + , Λ , ~ , < > . Every relevance domain \a\ has a unique representative in TDi

namely, -a 4- a. Hence the partial order < on TD induces a partial order (the
"grading" relation) on the set of relevance domains. This makes this set an up-
per semilattice in which degenerate domains are necessarily minimal.

Two elements a, b of an r.d.s. D are called relevant to each other (notation:
aRb) if (~a + a) + (~b + b) G TD. The relation R is reflexive and symmetric
but not necessarily transitive. We have that if \a\ = \b\ then aRc iff bRc and
that if aftb then a + 6 £ TD. In an r.d.l. a Λ b G TD if a G TD, b G TD, and

We call an r.d.s. Z>/w// if for every aeD, either a G TD or ~a G TD. A
full r.d.s. Z> is necessarily an r.d.l., and its relevance domains form a tree un-
der < (where by a tree we mean here an upper semilattice in which the subsets
[x\x > a] are totally ordered). Each nondegenerate relevance domain is then a
two-valued Boolean algebra. Moreover, if \a\ < \b\ then a + b = b while if
α$6 then a + b = aΛb and - (α + b) G TD.

The above properties completely characterize full r.d.l.'s. To make this
statement precise, proceed as follows: Let <Γ,<> be a tree, and let t,f,I be three
objects referred to below as the basic truth values. Order them by < so that f <
I < t and define —t = f, —f = t, —I = I. Define next a structure (D,<,~,+ > as
follows: ( l ) D c Γ x {t,f,I} and for every a G T either {(a,t),(a,f)} ς D o r
(α,I) G D but not both; (2) If (α,I) G D then a is minimal in Γ; (3) (a9υx) <
(b9 v2) iff either a — b and V\ < v2 or a < b and v2 = t or Z? < a and i^ = f;
(4) ~(a,v) = (α,~ι;); (5) ( 0 , ^ ) + (Z?,i;2) is ( ^ s u p ^ f ! , ^ } ) if a = Z>, ( M 2 ) if
a <b, (a,Vι) if b < a and (sup< (α,ό},f) otherwise. The resulting structure is a
full r.d.s. in which (a, v) G TD if v G {t,I}. Conversely, every full r.d.s. D is iso-
morphic to a unique structure which is based on TD according to the above
method.

A particularly important r.d.s. is Aω which is obtained by the above con-
struction if we start with a two-leveled, infinite tree and make all its minimal ele-
ments degenerate. We denote the elements of Aω by T,F,l!,I 2 J 3 > . . . . Obviously
~ T = F, ~ F = T, ~In = ln, F < ln < T, T + x = x + T = T, x + F = F + x =
F if x Φ T, 1/ + 1/ = 1/ while I, + Iy = F if / Φj. Aω has among r.d.s.'s the same
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role the two-valued Boolean algebra has among Boolean algebras, i.e., it is
a polynomially free r.d.s. A more complex structure, called in Avron [7] the
canonical structure, is a polynomially free r.d.l. This canonical structure differs
from the Sugihara matrix by having, for each n > 0, a denumerable set of val-
ues \k

n so that ~l£ = In and -m < \k

n < m iff m > n.
The canonical structure Mis a prime r.d.l. This means that aw b E TM iff

a E Tn or b E TM (and so v behaves like an extensional "or" relative to M). Ev-
ery prime r.d.l. is necessarily full.

A The system RMI~ In this section we introduce and investigate the min-
imal formal system which meets the demands we have set forth in the introduc-
tion. Its language contains exactly those connectives that were explicitly required.
It has been convenient to use + (the relevant disjunction) as a basic operation
of the algebraic structures of [7]. Historically, however, relevant logic has been
approached mostly from its syntactical aspect, and there -> has been taken as
primitive. In order to relate our formal systems to those that have been inves-
tigated by Anderson-Belnap et al., we start by presenting a system based on -•
and ~. Then we shall present an equivalent formulation in terms of + and ~.

A.I The system RMI~ (first formulation)

Primitive connectives ~, -»
Defined Connectives A + B =def -A-+B

Aoβ=def~(A^~B)
Axioms IM.l A -+ (A ->A)

IM.2 (A -* B) -> ((B -• C) -> (A -• C))
IM.3 A-+ (B-+O-+ (B-> (A-+C)
IM.4 (A -> (A -* B)) -+(A^B)
Nl —A-+A
N2 (A-+~B)^ (B->~A)

Rule of Inference A.A-^BVB.

A.2 Historical background If we replace the so-called mingle axiom IM.l
by the weaker IM.Γ, A -> A, we get the system R~ proposed by A & B. In this
system, as well as in its subsystem R^ (whose axioms are IM.Γ and IM2-IM4)
the following form of the relevant deduction theorem holds: b4i -> (A2 ->. . .
-> (An -• B)...) iff there is a proof of B from A\,... ,An which uses all mem-
bers of the multiset [A{,... ,An]. In such a multiset a wff may occur more than
once and the definition of "uses" requires that each occurrence be used separately
at least once in the proof.

Dunn and McCall sought systems satisfying a stronger form of the relevant
deduction theorem, obtained by replacing "uses all members of the multiset
[Ai,... ,An] " by "uses all members of the set {Au ... ,An}" (we agree with
them that this indeed is the more natural notion). Now, from the one-member
sequence (̂ 4) we can deduce (by definition) A, hence by the first form of the rele-
vant deduction theorem A-+A should be valid. But since {A} = [A,A] this is
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also a proof of A from {̂ 4,̂ 1} and so by the strong relevant deduction theorem
A -> (A -+A) should be valid. This has led Dunn and McCall to replace IM.Γ
by the stronger IM.l. The system obtained from R^ in this way is RMO-+, and
they have shown that in every extension of it which is closed under substitutions
and which has M.P. for -> as the sole rule of inference the strong relevant de-
duction theorem holds (this includes RMI~).

By the relevant deduction theorem RMI~ clearly satisfies demands (I)-
(III) set forth in the introduction. We now show that the defined connective +
of RM1~ satisfies condition (IV), including all the subdemands (a)-(e) appear-
ing in that section. For this purpose it would be convenient to give RMI~ a
new formulation, RMIτ, in which + is taken as the primitive connective (instead
of -») and which mirrors the subdemands (c)-(e). The equivalence of RMIΎ and
RMI~ makes it clear that every system with a proper relevant disjunction
should be an extension of RMI~.

A.3 The system RMIΎ (second formulation ofRMl~)

Primitive Connectives ~, +
Defined Connectives A -»B =def -A + B

A*B=w~{~A + ~B)
Axioms -A + A (excluded middle)
Rules
(1) The structural rule (S): φ(Au... ,An) \-ψ(Au... ,An) whenever φ(Au...,

An) and ψ(Au... ,An) are two sentences obtained from A\,... ,An using
only the connective + and in which all the Afs occur. (Example: {(Ax +
A2) + (A2 + A3)) + (A3 + (A2 + A{)))

(2) The cut rule (cut):

A +B,~A + C h B + C.

A.4 Notes
(1) We can decompose (S) into the following six elementary rules:

A A +A C+ (A+A) C+ (A+B)

A+A9 A ' C + A ' C + (B + A)'

D+ (A + (B+ Q) D + ((A + B) + C)

D + ((A + B) + C) ' D + (A + (B + O) '

The proof of this fact starts by showing that B 4- A follows from A + B us-
ing ~A + A and cut. Other details are easy.
(2) From the relevant disjunction point of view what distinguishes RMI~ from

the weaker R~ is the idempotency of +: The rule is not valid in R~,
A+A

only its converse is. In fact, the mingle axiom IM.l is equivalent to the schema
A-+(A +A).
A.5 Theorem The two formulations of RMI~ are strongly equivalent (i.e.,
T VRMI~ AiffT \-RMIΎ A).
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Proof: To prove that RMI~ includes RMIT we show that RMI~ is closed under
substitutions of equivalences, i.e., that A -• B, B -> A \~RMI~ Φ(A) -> φ(B)
(where φ(B) is obtained from φ(A) by replacing some occurrences of A by 5) .
Then we show that in RMI~ A + B is equivalent to 5 + ̂ 4, ,4 + (B + C) to
(yl + B) + C, and A + ,4 to ,4 and that VRMIΛA + B)-* {(~A + C)-+(B +
C)), (except for the provability oϊ A-* (A + A) these are all properties of R~
too). From this the implication T \-RMi~ A => T \-RMI~ A follows immediately,
where Γis any set of wff's.

For the converse we show that the relevant deduction theorem (for ->) of
RMI~ holds in RMLr. The proof is by a straightforward induction on lengths
of proofs.5 Using this, IM.1-IM.4 and N2 follow easily. Nl is the result of ap-
plying cut to the axioms: — ~ A Λ—~A and ~A + A. It remains to show that
any RM1~ theory is closed under M.P. for -», i.e., A, -A + B VRMi~ B. To ob-
tain this, infer from A (by (S)) A + A. A cut of this and of -A + B then yields
A + B. Another cut, this time of A + B and ~ A + B, gives B + B and then we
infer B.

We turn next to completeness theorems.

A.6 Theorem RMI~ is strongly sound and complete relative to r.d.s.'es
(i.e., T VRMI^ Aiffv(A)ETD whenever D is an r.d.s. and υ is a valuation in
D such that v(B) E TDfor every B E T).

Proof: For the soundness part we show that if T is a theory in the language of
RMI~, T VRMI~ A, D is an r.d.s., and (D, v) is a model of T, then A is true in
(/>, υ) (i.e., v(A) E TD). We prove this by induction on the length of a given
proof in RMIτ of A from T. (The facts we need concerning TD are reviewed in
the introduction above and proved in 1.8 of [7].) If A E Γthen^4 is true in (D, v).
If A is an axiom of RMIΎ (i.e., A = ~B + B for some B) then v(A) = ~v(B) +
v(B), which belongs to TD. If A results from B by (S) then v(A) = v(B) and
we apply the induction hypothesis to B. Finally, if A follows from two previous
theorems by a cut, then in view of the induction hypothesis it suffices to show
that if a + b E TD and -a -h c E TD then b + c E 7i>. But if a + 6 E TD and
~a + c E TD then ~a < b, a < c and so ~# + α < δ + c. Hence b + c E TD.

To get strong completeness, suppose that T VRMI~ Φ We construct the
Lindenbaum algebra of Γin the usual manner: First we define C — τ B iff both
C^B and B-+C are theorems of T. — Γ is a congruence relation. Let D be the
set of equivalence classes of ~ Γ . We define in D: [C] < [B] iff T VRMi~ C-*
5, ~[C] = [~C],and [C] + [£>] = [C + 2)]. It is not difficult to see that ~,
+ , and < are well-defined and that Z) = <Z),^>~, + > is an r.d.s. Moreover, in
A [A] eTD*=>~[A] < [A]**T\-RM^ ~A-*A^TYA+A^TVRMI^A.

By defining v(C) = C we get therefore a model (Z>, v) of Γin which φ is not true.

A.7 Corollary T \-RMi^ A-+Biffv(A)< v(B) in every model (/>, v) of T
where D is an r.d.s.

A.8 Theorem RMI~ is strongly complete for full r.d.s. 's.

Proof: The soundness part follows from Theorem A.6.
For the converse, suppose that T URMI- Φ- By Theorem A.6 there exists

an r.d.s. D and a valuation v in D such that (D, v) is a model of Tand v(φ) £
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TD. 11.20 of [7] then entails that there exists a full r.d.s. M and a homomor-
phism h of D on Msuch that h(v(φ)) <£ TM. On the other hand Λ(ί;(v4)) E ΓM

for every A G T, since a E TD^> h(a) E TM. Obviously h ° y is a valuation in M,
and (M,Λ ° f) is a model of Γ which is not a model of φ.

Definition We call a model (M, t>), in which Mis a full r.d.s., a/w// model.

A.9 Corollaries6

(1) RMI~ is syntactically complete (i.e., every RMI~-theory is the intersection
of the sets of theorems of all its complete extensions—see the introduction, de-
mand (VIII))
(2)P9~P#RMI^Q
(3) // T,A \-RMI* C and T9B VRMI^ C then T9A + B h M / 5 C.

Proof: (1) Let Γbe an RMI~-theory and suppose that T \fRMi~ A. By Theorem
A.8 there exists a full r.d.s. M and a valuation v such that (M, f) is a model of
Γand v(A) <£ TM. Let 7" = [B\υ(B) E Γ M ) . Then Γ ς Γ', Γ' is complete, ev-
ery theorem of T belongs to Γ', and T' ¥RMi~ A. Hence A is not in the inter-
section of the complete extensions of T.

(2) Assume in Aω that v(P) = Ii and v(Q) = F. Then (^4ω, v) is a model of
{~P,P} which is not a model of Q.

(3) Suppose that (Λf, υ) is a full model of ΓU {>4 + B]. Then either A or
£ is true in (M,v). Since both Γ,>4 VRMi^ C and Γ,^ H^M/^ C, it follows that
C is true in (Λf, f). Hence C is true in any full model of T U [A + £} and so
Γ,yl + 5 hΛM/~ C (by Theorem A.8).

A.10 Theorem RMI~ is finitely strongly complete relative to finite full
r.d.s.'s.

Proof: Suppose that Bu... ,Bn \f A. We show that there exists a finite full
model (Λf, υ) of B{,... ,Bn which is not a model of A. By Theorem A.8 there
is a full model, say (Λf',ι;'), for B\,... ,Bn which is not a model of A. Let
Pi,... ,Pk be all the sentential variables occurring in {Z?!,..., Bn9A}. Let Λf be
the sub-full r.d.s. of Λf' generated by[v(Pι)... υ(Pk)}. By 11.25 of [7] Mis a
finite full r.d.s. Let v be the restriction of υ' to M. Obviously, (M, v) is a model
of the kind requested.

A. 11 Theorem7 Aω is a characteristic matrix for RMI~.

Proof: By Theorem A.6 YRMI~A iff v(A) E TD whenever D is an r.d.s. and υ
is a valuation in Zλ Now every sentence A of the language of RMI~ defines in
a natural way an algebraic expression in the [ — ,+}-language. Our present the-
orem is therefore a direct consequence of the fact that Aω is a polynomially free
r.d.s. (see [7], 1.12).

A. 12 Corollaries
(a) Let A be a sentence with at most n propositional variables. Then \~RMI~A
iff A is valid in An (the finite sub-r.d.s. ofAω with n neutral values)
(b) RMI~ is decidable
(c) RMI~ has the variable-sharing property for + and -•, i.e., A + B or A -+ B
are provable only if A and B share a variable
(d) D.S. for + is valid in RMI~ but weakening is not. Moreover, the provabil-
ity of A or of B or even both does not guarantee the provability of A + B.
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Definition Let A be a sentence. Then Pv(A) is the set of propositional vari-
ables occurring in A.
(e) IfPv(B) c Pυ(A), then A \-RMIz: A + B and A \-RM^ B-+A. (This is the
weak weakening rule)
(f) IfPv(B) c Pυ(A), then VRMI^A ^(B^B) and VRMiΛ(Λ -+B) -+A) ^A
(g) If \~RMI~A and \-RMi~B then VRMi~A + B iff A and B share a variable.

We turn now to the expressive power of RMI~. We shall show that the in-
tuitive ideas of relevance and of grading from [7] can be formalized in it.

A.13 Definition Let A,B be sentences in the language of RMI~.
(a)R+(A,B) =def(~A+A) + (~B + B)
(b) \A\ < \B\ =def(A-*A)-+(B-+B)( = ~(~A+A) + (~B + B)).

A. 14 Proposition Let D be an r.d.s. and v a valuation in D. Then:
(a) R+(A,B) is true in (D,υ) iffv(A)Rv(B)
(b) \A\ < \B\ is true in (D,v) iff\v(A)\ < \υ(B)\.

Proof: The proof is easy (compare to 1.19, 1.21 of [7]!).

A. 15 Proposition
(1) \-RNti~R+(A9A)
(2)\-RMi~R+(A,B)-+R+(B,A)
(3) VRMIΛΛ + B)->R+(A,B), VRMIΛΛ - B) ^R+(A,B)
(4) \-RMI1R+(A9B)-*R+(~A9B)

(5) \-RMI,R+(A,B)^R+(A,B + C), \-RMί^R+(A,B) ^ R+(A,C + B); in
particular, \-RMI^R+(A,A + B) and \-RMUR+(B,A 4- B)
(6) IfPv(A) Π Pv(B) Φ 0 then \-RMI^R+\A,B).

Proof: (6) is a corollary of Corollary A.12(g). The rest can be shown by using
Aω.

A.16 Proposition
(V \-RMI~\A\ < \A\

(2)^RMI:\A\<\B\-+\~A\<\B\

(3) \-RMI~\A\ * \A+B\9 \~RMU\B\ <\A+B\
(4) \-RMI~\A\ * \C\ -> (\B\ < \C\ -+\A+B\< \C\)

\-RMI~\A\ * \ C \ - + ( \ B \ < \C\->\A->B\ < \ C \ )
( 5 ) ±RMIM\ * \B\ - (\B\ < \C\ - \A\ < \C\)
(6) if Pv(B) c Pv(A) then \~RMijB\ *\A\.

Proof: Use Aω (note: (3) is an immediate corollary of (6)).

Two other relations which we would like to express in the language of
RMI~ are the equivalence between propositions and the relation of belonging
to the same relevance domain. For this we need first some formal properties
of °:

A.17 Lemma

(1) \-RMI~((A oB)-+C)-+(A-+(B-+ O)
\-RMIAA -> ( Λ - C)) - «AoB) - C)

(2)VRM^A-+(B^A*B)

(3) IfPv(A) c Pυ(B) then \~RMI^A <>B^>A and VRMi^B <>A^>A
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(4) \-RMI~A oA->A, \-RMI~A -+A°A

(5) \-RMIlAoB-+BoA
(6) \-RMI~A o(BoC)^{AoB)oC, VRMIΛAOB) OC^AO(B<>C)

(Ί)\-RMI,~R+(A,B)-+AOB.

Note (l)-(2), (4b)-(6) of the above lemma are true also for R~. (4a), (3),
and (7) are not. (7) is the main reason we cannot consider o to be a "relevant con-
junction".

A.18 Definition
(l)A~B=def(A-+B)o(B-+A)

(2) (\A\ = \B\) =def (\A\ < \B\) (\B\ < \A\).

A.19 Proposition
(1) \-RMI~(A++B)-+(A^>B)9 \-RMi~(A++B)->{B-+A)

(2) YRMI- M ->*)-> ((B ̂ A)^(A~ B))

(3) \-RMIL\A\ = \B\ -> \A\ < | 5 | , \-RMIJA\ = \B\ - 1*1 * 1̂ 1

(4) H ^ M / J ^ I ^ \B\ - (|Λ| < |Λ| - |Λ| = |Λ|)

(5) IfD is an r.d.s. and v is a valuation in D then \A\ = \B\ is true in (D, v) iff
\v(A)\ = \v(B)\ inD.

Proof: (l)-(4) follow from Lemma A. 17. (5) is obvious.

Note A.19(l)-(4) are true also for R~, although A. 17(3) in general is not.

We end this section with an example of the difference between weak and
finitely strong completeness.

A.20 Proposition RMI~ is not finitely strongly complete relative to Aω (re-
call that this means that there are sentences Au... ,An,B such that A ι,..., An

VRMI^ B but v(B) E TAω whenever v(Aι),v(A2),... ,υ(An) G TAJ.

Proof: Let \A\ = \p\ < \q\, B= \q\ < \p\ ->p (p,q are different atomic vari-
ables). It is not hard to see that the necessary and sufficient conditions for a full
model (M,v) to be a model of A and B but not of p are that \v(p)\ < \v(q)\
and v(p) £ TM. This can happen in the Sugihara matrix but not in Aω. Hence
A,B V-RMI- P> but this is not reflected in Aω.

B The system RMImin In the previous section we saw that RMI~ is, to a
great extent, an optimal relevance logic. However, from one aspect it is less than
satisfactory: its language is not rich enough. An especially important classical
connective, which has no counterpart in RMI~, is conjunction. The connec-
tive o cannot be taken seriously as a candidate since (among other things) A ° B
may be true even if both A and B are false (° is appropriately called "cotenability"
in Routley and Meyer [18]).

We are now going to add a "relevant conjunction" connective Λ to the lan-
guage of RMI~. We shall see that we get by this quite a rich language, which
is, nevertheless, purely intensional.

Note In what follows we use without proofs various properties of RMI~.
The reader may reconstruct the proofs by using Aω.
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B.I The system RMImin

Basic connectives ~,-*,Λ
Defined connectives A + B = -A -• B

A\J B= -(-A A ~B)
Axioms IM.1-1M.4, N1-N2 (see A.I)

(Cl) A Λ B -> A
(C2) AΛB-+B

Rules (1) A,A -+BVB (M.P.)
(2)A^B,A-+C\-A-+(BΛC) (re. adj.)8

Explanation That any (relevant) conjunction operator should satisfy (Cl) and
(C2) is generally agreed. On the other hand the adjunction rule A9B h A Λ B
cannot be justified from the point of view of relevance logic. For even if we as-
sume both A and B to be true, relevance considerations should determine whether
or not it makes sense to accept their conjunction. The intuition which bars con-
structions such as: "If the moon is made of cheese then 2 + 2 = 4", should also
bar constructions such as: "The moon is not made of cheese and 2 -I- 2 = 4". On
the other hand the truth of A -> B and of A -+ C should imply the truth of A ->
(B Λ C), because the common antecedent A guarantees the necessary relevance.
Thus, instead of adjunction we have relevant adjunction. The resulting system
RMImin satisfies the minimal requirements concerning relevant conjunction.

It turns out that we have a natural interpretation for Λ in the structures we
considered in [7], without having to extend these structures. In any r.d.l. inter-
pret Λ as the g.l.b. (greatest lower bound). Using V both for the syntactic sym-
bol and for its interpretation we put: a Λ b = g.l.b. of a and b. Then, as we shall
prove, we get strong completeness of RMImin with respect to this semantics. If
however we limit ourselves only to r.d.l.'s which are full we get a stronger sys-
tem, denoted by RMI, which has important advantages over RMIm[n (recall that
as far as ~ , + are concerned full r.d.l.'s and r.d.l.'s yield the same syntactic sys-
tems). All natural strengthenings of RMI are obtainable by restricting the class
of r.d.l.'s which is to serve as its semantics; this line of investigation is pursued
in the last section.

B.2 Proposition
(l)hww4->ΛvB
(2)^RMIm.nB->AvB
(3)A^C9B^C h*M/min (AvB)^C
(4)bRMimin(A+B)-+AvB
(5)\-RMiΏύn(~AvA)+*(~A+A).

Proof: Use (Cl), (C2), re. adj., contraposition (\-A -• ~ ~ A, Y~~A ->A)9 and
the following theorems of RMI~:

(1) (A -> C) - ((£-> C) -* ((A +B)^ O)
(2)A-+~A +A.

B.3 Theorem RMImin is strongly complete relative to r.d.l.'s, where the
operation on r.d.l. 's which corresponds to the connective Λ is the g.l.b. which we
denote in [7] by the same symbol (recall that this means that T \-RMimin A iff A
is true in every model (D, v) of T in which D is an r.d.l.).
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Proof: The soundness part follows immediately from the fact that in an r.d.s.
D, a < b iff a -> b G TD, and the definition of a g.l.b.

For the converse, let Γbe an RMImin-theory (i.e., a set of sentences in the
language of RMImin). Construct the Lindenbaum algebra D of Γas in the proof
of Theorem A.6. Then D is an r.d.s., and it is easy to see that [A Λ B] is the
g.l.b. of [A] and [B]. Hence D is an r.d.l. Defining v(A) = [A] we get a model
(D, υ) such that D is an r.d.l. and in which exactly the theorems of Γare true.

B.4 Corollaries

(\)~P,P»RMIminQ
(2) RMImin is a conservative extension of RMI~
(3) RMImin has the variable-sharing property for +,-> and Λ; i.e., if either A +
B9 A -* B, or A ΛB is provable then A and B share a variable.

Proof: (2) follows from the completeness of RMI~ relative to full r.d.s.'s
(which are r.d.l.'s by II.4. of [7]). The proofs of (1) and of (3) in the case of +
and -> are exactly as in Corollaries A.9(2) and A. 12. The variable-sharing prop-
erty of Λ is proved similarly (by using A2).

In RMImin we can give an alternative formal definition of the relevance re-
lation.

B.5 Definition RA(A,B) =<& ~{~A ΛA) Λ ~(~BΛB).

Note Since \-RMimin~(~A Λ A) <-> (~A + A) (by Proposition B.2(5)),
RA(A,B) is equivalent^ (~A + A) Λ (~B + B).

B.6 Proposition
(l)bRMIminR

A(A9B)-+R+(A,B)
(2)R+(A,B)^RMIm.nR

A(A9B)
(3)A9B,R(A,B)\-RMIminAΛB

(4) R(A9B) h*M/min * M Λ C9B Λ C)
(5) R(A9B) \-RMIm.n R(A v C9B v C)
(6) h M / m i n i ? M Λ 5 , i ) , bRMimlnR(A*B9B)9

\-RMiminR(A9AvB)9 \-RMIm.nR(B9AvB).

Note By (1) and (2) it does not matter if R(A9B) in (3)-(6) means either
R+(A9B) or RA(A9B).

Proof: (1) This follows from the note to Definition B.5 and the following the-
orem of RMImin: A AB-+A + B. This theorem is derived using (Cl), (C2) and
the fact that \-RMiΛC^A) -* ((C^B) -» (C-» (A + B))).

(2) This follows from the completeness theorem B.3, Proposition A.14(a),
and the fact that if a9b e TD and aRb then a/\bETD (see [7], 1.25).

(3) Similar to (2).
(4) We show that R+(A9B) VRMim{n R

+(A Λ C9B Λ C). We start from the
equivalence of R+(A9B) and A -* (B -• ( - 5 -• ̂ )) in i?M/~. From this
equivalence follows:

(i) i?+04,i0 h Λ Λ / / m i n ^ Λ C ^ ( 5 Λ C ^ ( ^ ^ ^ l ) ) .
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Since \-RMI~C-> (C-+ (~C-> C)) we have also:

(ϋ) h M / m i n ^ Λ C ^ ( 5 Λ C - > ( - C - > C ) ) .

Since h?M/m i nM Λ C) -> (A + C) (by (1)) and since h u ^ M + C) -> (C -*
( - C - M ) ) we have that VRMI^A Λ C ) - > (C-> (~C-*A)). Hence:

(ϋi) l -ΛAf/ f f l i n MΛC)-*(BΛC-K->l)) .

Similarly:

(iv) ^ M Λ C ) ^ ( U Λ C - H ^ C ) ) .

Using the equivalence of >4 -• (i? -> C) and (>1 ° 5) -• C in RMI~, re. adj., and
contraposition we can derive from (i) and (iv) that

(v) R+(A9B) hRMIm[nAΛC^(BΛC-+(~(AΛC)^B)).

Similarly we can derive from (ii) and (iii):

(vi) ϊ-RMimmA Λ C - ( ί Λ C - > ( - ( / l Λ C ) - * C ) ) .

From (v) and (vi) follows finally, by re. adj., that R+(A9B) h?M/min A Λ C-+
(B Λ C -* ( - (A Λ C) -> 5 Λ C))). This is equivalent to what we wish to prove.

(5) This follows from (4) and R+(A9B) VRMI^ R+(~A,~B).
(6) Immediate from A -• B \-RMi~ R+(A,B).

In the following lemma we gather together some other proof-theoretical
properties of RMImin that we shall need later.

B.7 Lemma
(1) *-> C h*M/min AΛB-+AΛC

B^C\-RMίminAvB-+AvC
(2) (i) \~RMimJA -+B)Λ(A-+C)-+(A-+{BΛ C))

(ϋ) ϊ-RMimJA -+C)Λ(B^C)-+ ((A v B) -> C))

(3) \-RMimin(A Λ (A-> B))-+B.

Proof: Since .4 -• (B -* C) is equivalent in /?M/~ to ̂ 1 ° B -• C we have that:

HRMimin[(M -*5) Λ ( ^ O ) oA] -+B \-RMίnήn [((A-^B) Λ (A -> O ) >1] ̂  C.

From this (2)(i) follows by re. adj. and the same equivalence. We leave the other
parts to the reader.

The results of this section up to this point show that RMImin satisfies many
of the demands listed in the introduction. Nevertheless RMImin is still unsatis-
factory because of its following shortcomings:

B.8 Proposition
(1) RMImin is not syntactically complete (i.e., its set of theorems is not the in-
tersection of all its complete theories)
(2) The relevant deduction theorem fails in RMIm\n

(3) From T9A \~RMimin C and T,B h?M/min C it does not follow in general that
T9A + B bRMImin C. '
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Proof: (1) We show that the following sentence is not provable in RMImin, al-
though it is provable in every complete RMImin-theory:

(*) A A (By ~B) -• ((A ΛB)V (AΛ ~B)).

The second part of this claim follows from the fact that B \-RMi~ B <->
( ~ B + B) and from Proposition B.2(5), since the two facts entail that if
T h?M/min B then (*) is equivalent in Γ t o A Λ B -> (A Λ B) V (A Λ ~B), which
is an instance of (Cl). Similarly, if T \-RMi ~B then (*) is equivalent in Γ t o
(A Λ ~B) -> ((A Λ B) v (A Λ ~B)). Hence (*) is provable if Γis complete.

For the first part it suffices to give an example of an r.d.l. in which (*) is
not valid. For this take any Boolean algebra B containing an element b distinct
from \B and 0B. Obtain B' by adding to B an element I and by defining I +
1 = 1,-1 = 1, and a + I = I + a = a for a G B. It can easily be seen that Br is
an r.d.l. (we have that I Λ 1 5 = I Λ I = I and I Λ a = 0B otherwise), and that by
letting v(p) = I, υ(q) = b we get a countermodel to (*). (In fact, v(p Λ (g v
~Q) -> UP Λ q) v (p Λ ~q))) = 0B while TB = {1^,1}.)

(2) Since YRMI~A -> A we have, by re. adj., that 4̂ -> .β KκM/min ^ ^ ( ^ Λ
5 ) . On the other hand bW/min^4 -+ (A ΛB). Had the relevant deduction the-
orem been valid we should have had that \-(A-> B) ^> (A->A ΛB). However,
this sentence is not a theorem of RMImin, as is seen by defining v(A) = I,
v(B) = lB in the substructure {1^,0^,1} of B' from the proof of (1). (This sub-
structure is isomorphic to the finite Sugihara matrix M 3 . ) (See 29.3.4 of [2].)

(3) Suppose for a contradiction that RMImin had this property. Then in par-
ticular we should have that if T9A \~RMim[n C and T,~A \-RMimin C then T9~A +
A \~RMimin C9 i.e., that T \~RMimin C. This property is easily seen to be equivalent
to syntactical completeness, contradicting (1).

Note The relevant deduction theorem fails also for the full system RMI to
be presented below and with the same counterexample. This counterexample
works, in fact, for every other known system containing conjunction in which
A -> (B-+A) fails (including all the systems discussed by A & B). However, in
RMI we have the classical deduction theorem for another implication connec-
tive, D (discussed already in the introduction), which we are now going to in-
troduce.

B.9 Definition A D B =def (A-+B)v B.

Explanation The connective v is the De Morgan dual of Λ, and since the
r.d.l.'s are (nondistributive) De Morgan lattices it is interpreted in every r.d.l.
as the l.u.b.

Now, if aRb in a full r.d.l. M then a v b E. TM iff either a G TM or
b G TM, so in this case v behaves like an extensional disjunction. But, since
h?M/~^+(^4>^4 -• B), A -• B and B have relevant values in any r.d.s. Hence in
full r.d.l.'s the disjunction on the right hand side of the last definition behaves
extensionally. The intuitive meaning of AD B is, therefore, really: "either B is
true or A relevantly entails B", where the "either or" can in this particular case
be interpreted extensionally.

The following lemma shows that D has in RMIm[n the following essential
property of an implication:
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B.10 Lemma A9ADB \-RMimin B

Proof: Since A VRMI~ (A -> B) -• B and \-RMi~B -• B we have by Proposition
B.2(3) that Λ hΛA//min* M D 1 I ) ^ A

Our task in the next section will be to extend RMIm[n to a system free from
the shortcomings of RMImin. The way to do so is almost dictated to us by the
following:

B.ll Proposition A sentence A is a theorem of every complete RMImin-
theory iff it is valid in every full r.d.s.

Proof: One direction is trivial, since the set of sentences which are true in a given
full model (Λf, υ) is a complete RMIm[n-theory.

For the converse, suppose T is a complete RMImin-theory and that
T y-RMimin A. The Lindenbaum algebra of Γis then an r.d.l. in which A is not
valid (see the proof of Theorem B.3.) This r.d.l. is full since Γis complete.
Hence A is not valid in every full r.d.s.

Proposition B.ll means that every syntactically complete extension of
RMImiτi must include the set of sentences which are valid in every full r.d.l. We
next introduce, therefore, the system which corresponds to the semantics of full
r.d.l.'s.

C Formulations and properties ofRMI

C.I The system RMI (first formulation) This is the system obtained from
ΛWmin by the addition of the following axiom-schema:

(RD) RA(B9C) D [A Λ (B v C) -* (A Λ B) V {A Λ C)}.

The reason for adding this axiom is given by the following theorem:

C.2 Completeness Theorem RMI is strongly complete relative to full r. d. I. 's.

Proof: For the soundness part it is enough to use the tree-based representation
of full r.d.l.'s (see the Introduction or [7], II.8,11.13) in order to show that (RD)
is valid in every full r.d.l. (This is a bit tedious. Later we shall see that a sentence
of the form AD Bis valid in every full r.d.s. iff every model (M, v) of A is also
a model of B. Using this the validity of (RD) is immediate, recalling that in a full
r.d.l. if bRc then either ί v c = fiorftvc = c.) For the completeness part it
suffices to show that if T ¥RMI A then there exists a prime theory To (i.e., a
theory To such that To h C v D iff either Th C or ThD) such that Γ ς Γ 0 and
To MRMIA. In RMImin the Lindenbaum algebra of such a To determines a prime
(hence full) r.d.l. M and a valuation v in M such that exactly the theorems of
To are true in (Λf, v). Such an (M, v) is therefore a full model of T in which A
is not true.

The existence of such a To is an immediate consequence of the following:

Lemma T,B YRMiA, T,C YRMiA =>T,BvC YRMiA.

Proof: As in [2] (p. 301), to prove the lemma it suffices to have:

(•) T,BVRMIC^ T,BvD\-RMIC\/D.
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For then we infer

T,B VRMIA =>T,BVC YRMIA V C

T,C\-RMIA=*T9CvA VRMIAvA

and so, since A v A YRMIA, we get T,Bv C YRMI A.
The proof in [2] of (*) (with VRMI replaced by h# or \-R) is by induction

on the length of the proof of C from ΓU [B]. The two nontrivial steps in this
induction correspond to the inference rules. In order to reproduce this proof in
RMI we only need to show that:

(a) D v A, D v (A -+ B) \-RMI Dv B
(b) Dv (A-+B),Dv (A-+C) YRMI Dv (A^BAC).

Now, the proof of (a), e.g., in [2] makes an essential use of the full adjunction
rule (from A and B to infer A Λ B) and of the distribution axiom, both of which
are not valid in RMI. In the present case, however, adjunction and distribution
are both available wherever needed. We illustrate this claim in the proof of (b)
(the proof of (a) is similar). We start with the following lemma:

Lemma R+(B, C) VRMI {A v B) Λ (AV C) -* (Av (B Λ C)).

Proof: Indeed, RA(~B,~C) follows from R+(B,C) by Propositions A. 15(4)
and B.6(2). Applying (RD) and Lemma B.10 we therefore get:

R+(B,C) YRMI~AΛ ( - 5 V - C ) ^ ( ( ^ Λ ^ ) V (~AΛ~C)).

From this the lemma follows by contraposing and using the definition of v.

The proof of (b) is now straightforward: By Propositions B.6(5), B.6(3), and
the fact that YRMI^R+(A -• B,A -• C), we have that:

Dv (A^B),Dv (A->C) YRMI (Dv (A -• B)) Λ (DV (A^C)).

From this (b) follows by using the lemma and Lemma B.7(l)-(2). (In the proof
of (a) we must use Lemma B.7(3) instead of B.7(2).)

By inspecting the proof of the last theorem we see that we have in fact
proved that RMI is also strongly complete (see Proposition A.20) relative to
prime r.d.l.'s. This can be sharpened as follows:

C.3 Theorem If T is an RMI theory and T \fRMI A then there is a model
(M9v) of T such that M is a prime r.d.L, υ(A) $. TM, and υ(A) is minimal
among the normal domains of M.

Proof: This follows easily from Theorem C.2 and 11.29 of [7].

C.4 Definition We shall call a model (AT, v) in which Mis a prime r.d.l. a
prime model

C.5 Theorem RMI is finitely strongly complete relative to finite full (prime)
r.d.l.'s.

Proof: This follows from Theorems C.2 and C.3 in exactly the same way in
which Theorem A. 10 follows from Theorem A.8.
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C.6 Theorem The canonical full r.d.l. is characteristic for RMI. Moreover,
RMI is finitely strongly complete (see Proposition A.20) relative to it.

Proof: The first part is immediate from the fact that the canonical structure is
a polynomially free full r.d.s. (11.32 of [7]). The second part is a consequence
of Theorem C.5 and the fact that every finite prime r.d.l. is embeddable in the
canonical full r.d.l.

We give next an alternative formulation of RMI, which is more similar to
the usual formulations of R and RM, and in which one can clearly see the dif-
ferences between RMI and those two systems.

C. 7 RMI (second formulation)

Primitive connectives ~, -•, Λ , v
Axioms (1) A -• (A -+ A)

(2) (A-+B)^((B-*C)^(A^O)
(3) (A->(B->C))-+(B^(A-+C))
(4) (A^(A^B))-+(A->B)

(5) ~~A^>A
(6) (A-+~B)-+ (B^~A)
(7) A Λ B -• A
(8) AAB^B

(9) (A -• B) Λ (A -> C) -* (A -> B Λ C)
(10) A-+AvB
(11) B-+AvB
(12) (Λ -• C) Λ (B -> C) -• ((Λ v £ ) -> C)

Rules of inference (I) A,A-+BYB
(II) R+(B,C)9B,C\-BΛC

(III) R + (B,C) \-AA(BVC)-+((AΛB)V (AΛC)).

Here 4- and i? + are defined in terms of — and -• as before. (Thus R+(A,B) can
be written simply as ~ (A -• A) -• (B-+ B).)

C.8 Proposition ΓΛe /wo formulations of RMI given above are strongly
equivalent (i.e., T \-RMi A according to the first iff T \-RMi A according to the
second).

Proof: Denote temporarily the first formulation by RMIU) and the second by
RMI{Π). From Proposition B.2(l)-(3), Proposition B.6(3), Lemma B.7(2),
Lemma B.10, and (RD) it follows that T \-RMI{II) A^T \ - R M I U ) A.

For the converse we note first that, since \-RMI^R+(A -• B,A -> C), we
can use the second rule of RMI(II) and then its ninth axiom to d e r i v e ^ - > ( 5 Λ
C) from A^>B and A-+C. Hence we can easily transfer the proof of Theorem
C.3 into a completeness proof of RMI^Π) relative to the same semantics. From
this the desired equivalence immediately follows.

C.9 Corollaries
(1) By adding either R+(A,B) or RA(A9B) to RMI we get RM (see 29.3.4 of

[2]).
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(2) By dropping the third rule from the second formulation of RMI we obtain
a new formulation of RMImin. (This follows from the proof of Proposition
C.8.)

We turn now to proof-theoretical properties of RMI.

CIO Theorem RMI is syntactically complete and it is the minimal extension
ofRMImin having this property.

Proof: In the proof of Theorem C.2 we showed that if T \fRMi A then there ex-
ists a prime theory To such that Γ SΞ To and T \tRMi A. But since VRMI~A V A
(Proposition B.2(5)), every prime Z?M/-theory is also complete. Hence RMI is
syntactically complete. The second part of the theorem follows from Proposi-
tion B.ll and Theorem C.2.

C.ll Theorem RMI is a strongly conservative extension of RMI-.

Proof: This is an immediate consequence of the strong completeness of both rel-
ative to full r.d.l.'s.

C.12 Theorem RMI is decidable. Moreover, the provability relation it induces
between finite sets of sentences and sentences is decidable too.

Proof: Immediate from Theorem C.5.

C.13 Theorem
(1) RMI has the variable-sharing property for -•, + and Λ
(2)~P,P\ίRMIQ
(3) // T9A VRMI C and T,Λ VRMI C then T,A v B VRMI C and T,A + B VRMI C.

Proof: The proof is easy by using full r.d.l.'s and the strong completeness
theorem.

C.14 On the connective v in RMI This connective may be properly called
"semi-extensional". In fact, it is no less "extensional" than the corresponding con-
nectives of E and R, since like them it has all the positive properties of classi-
cal disjunction: It is associative, commutative, and idempotent, and the following
basic rules are valid for it: ®A\-AvB, (ii) B h A v B, (iii) If T9A h C and
T,B\- C then T9Av B\- C. Moreover, v behaves exactly as an extensional dis-
junction relative to the class of prime r.d.l.'s, which suffices for a strong char-
acterization of RMI. (By extensional behavior we mean that A v B is true in a
prime model iff either A is true there or B is.)

On the other hand, with respect to negation v loses much of its classical
character. Except for the law of excluded middle (~A v A) almost no classical
rule concerning v and - is true for it. Thus, for example, ~A9~B \tRMi - (A v
B) (this rule is equivalent to the adjunction rule of R).9

Here are some nice properties of RMI- which RMI lacks: RMI lacks the
Scroggs property which RMI- has; Aω is not characteristic for RMI (A v (A ->
B)9 e.g., is valid in it but not in the canonical r.d.s.); Corollaries A.12(e)-(f),
Propositions A.15(6) and A.16(6) are not true for RMI. (Thus, e.g., VRMIR(A v
B9 A v C) although A v B9 A v C share a variable.) A particularly important
property of RMI- which RMI lacks is the deduction theorem for -> (see the
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note after Proposition B.8). The next section deals with a sort of substitute which
we have for RML

D The deduction and interpolation theorems In the previous section we
showed that RMI satisfies all our demands (I)-(VIII) from the Introduction (in-
cluding properties (a)-(e) of +) except perhaps two: the validity of an appropriate
version of the deduction theorem and the existence of a cut-free Gentzen-type
formulation for RML We shall now show that the connective D, defined in Def-
inition B.9, behaves "almost" like the classical implication. We have already seen
that M.P. is valid for it (Lemma B.10). We next show:

D.I The Deduction Theorem for D T,A VRMIB iff T \-RMI A D B.10

Proof: The "if" part follows from Lemma B.10.
For the "only if" part, suppose that T,A \-RMI B but T \fRMi A D B. By

Theorem C.3 we then find a prime model (M, υ) of Γin which AD Bis not true
(i.e., va\(v(A D B) = f) and | v(A D B)\ is minimal among the normal domains.
Hence val(ι>(2?)) = f, val(v(A-+B)) = f and v(A),v(A -* B) are normal. Now,
since in every r.d.s. \v{A -» B)\ > | υ ( 5 ) | , v(A D B) = v(B) in the present
case (see [7], 11.14). Hence \v(B)\ is minimal in the normal domains. Since
T,A \-RMI B9 \2L\(V(A)) = f too. Hence v(A) is normal and so \v{A)\ >
I v(B)\. This, in turn, implies that va\(v(A -+B)) = t, which is a contradiction.

D.2 A Generalization TiAu...iAnYRMIBiffT\-RMIBv ψ ( A - * * ) v
\<i<n

\JJ (Ai^(Aj^B))v W (Λ-><4/-*<Λ*-B)))vW...v(Λ1->
1 </</<« \<i<j<k<n

(A2 - • . . . -* (An-+B)...)), where W Ai ~* (AJ ~* B) etc- α r e defined in
\<i<j<n

the obvious way.

Proof: By induction on n, using Theorem D.I and:
(i)\-RMiR+(A->B,C^B)

(ii) hRMIR
+(A->BtB)

(ni) R+(A,B) bRMi(C-+(AvB))++((C^A)v(C-+B)).

D.3 A Deduction Theorem for Complete Theories Let Tbe a complete the-
ory. Then T,A \-RMI B iff either T VRMIB or T VRMI A^B.

Proof: One direction is trivial. For the other, assume that T,A VRMi B, where
T is a complete theory. By Theorem D.I T VRMi B v (A -> B). Now, since
b?M/~~ KA -> B)-+B]-+[B-> (A-+ B)], the completeness of T implies that
either T VRMI {A -• B) -> B or T VRMi B-+(A-+B). Since A -• C9B -* C VRMI

(AvB)-> C, we have in the first case that T hRMI B and in the second that
TVRMIA^B.

The connective D lacks, of course, the variable-sharing property, since
\~RMIA D (B D B). However, only theorems of this sort can violate the
variable-sharing principle in the case of D:

D.4 Theorem If VRMIA D B then either VRMiB or A and B share a variable.
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Proof: Suppose that VRM/B and there is no variable common to A and B. By
Theorem C.6 we can find a valuation in the canonical r.d.l. for which v(B) is
not designated. Since A and B share no variable we may assume that v assigns
to all the variables of A the same neutral value. Hence v(A) is neutral and so
designated, while v(B) is not designated. It follows that v(AD B) is not desig-
nated, contradicting YRMiA D B.

In view of Theorem D.4, the validity in RMI of the following strong ver-
sion of Craig's Interpolation Theorem might be expected:

D.5 The Interpolation Theorem YRMI A D B if either YRMIB or there is an
interpolant C, containing only atomic variables common to A and B such that
YRMI A D C and YRMIC D B. C has the form of a v -disjunction of ^conjunc-

tions of sentences in the language of RMI-.

Note Classically there is also a third possibility: The provability of -A, In
RMI, in contrast, that YRMI~A does not entail that YRMI A D B, since -A,A

V~RMI B.

Proof: The "if" part is obvious. For the converse, it is enough by Theorem D.4
to show that an interpolant C as above exists whenever A and B share a variable.
Let, accordingly, pΪ9... ,pn be all the atomic variables common to A and B
(n > 1), and let pn+ί,... ,pn+m be the other variables of A. We construct an
interpolant C as follows: To every finite prime model (M,v) of A we shall
assign a sentence C(M, υ) with the following properties: (i) all its atomic vari-
ables are from {pλ9... ,/?„}; (ii) it is a conjunction of sentences in the lan-
guage of RMI~\ (iii) it is true in (M, v); (iv) every finite prime model (M',vf)
of C(M, v) (where v' is not defined for pn+\,... 9pn+m) m ay be extended to
a finite prime model (M"υ") of A (by this we mean that Mf is a sub-r.d.l. of
M" and that υ" (φ) = υ' (φ) whenever v' (φ) is defined). Once C(M, υ) has been
produced for any such (M, υ) we take C to be the v-disjunction of all the
C(M, v)'s. (The number of the C(M, υ) 's will be finite since up to isomorphism
there is essentially only a finite number of different finite prime models (M, υ)
of A (ignoring superfluous elements of M) and C(M,v) will be identical
to C(M\ υ') whenever (M, υ) and (M\υf) are essentially the same in this
sense.)

By property (iii) of the C(M, υ) 's, at least one disjunct of C will be true in
any model of A. By the deduction theorem it will follow therefore that VRMIA D
C On the other hand, from YRMiA D B, property (iv) of the C(M, v)'s, the
deduction theorem, and the fact that if Dx YRMI B, D2 YRMI B then Dx v D2 YRMI
B, it follows that YRMIC{M,v) D B and so that YRMiC D B.

It therefore remains, given a finite prime model (Λf, υ) of A, to construct
an appropriate C(M,v). We use for this the following observation:

(*) Let ψι,..., φt be all the sentences of the form pt + pj9 where 1 < / <
j<n + m. Using 11.25 of [7] and the fact that in full r.d.l.'s | a\ v | b\ =
I a + b I, it is easy to see that if (M, υ) is a prime model of A and (M', v')
is another prime model satisfying:
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(1) lf\v(φi)\ > \v(A)\(l < / < t) then υ'(φϊ) G TMi ~ υ(φi) G Γ M

(2) If \v(φi)\ > |v(Λ) | then \v(φi)\ < \v(φj)\ or \v(φj)\ < | v(^ .) | iff
|y ' (&) | < \υ'(ψj)\ or | y ' ( ^ ) | < \v'(φi)\ respectively (1 </,./< ί)

then (AT, ί/) is also a model of A. (Note: pt + Pj is equivalent to pi when / = j.)

(*) can easily be strengthened as follows:

(**) If (M, v) is a prime model of A then so is any other prime model (AT, v')
satisfying:

(1') If I v(ψi)\ > I v(A)\ then if φt is true in (Λf, υ) it is true also in (AT, t;')
(similarly with ~ψi)

(2') If |y(^, )| ^ \v(A)\ then |^/ | ^ |^/ | is true in (M\υ') if it is true in
(M9v) (similarly with |φj\ < |^-|, ~ ( | ^ | < μ y |), and ^ ( | ^ | < |^-|)).

Note The difference between (*) and (**) lies in the fact that the truth of
(say) ~(\ψi\ < \φj\) in (M',v') does not guarantee that | ι /(& )| φ \v'(ψj)\9

since there is also the possibility that v'(ψt) = v'(ψj) and both are neutral. It is
easy to see however that in this case (*) holds with respect to (M\ v') and an-
other prime model of A, (M", v")9 which results from (Λf, v) by replacing some
subsets of Mof the form [xGM: \x\ < \a\) by the single element ( |#|,I) (we
use here the tree-representation of full r.d.l.'s), and defining υ" (p) = (| a | ,1) if
υ(p) was replaced by (|α|,I), υ" (p) = v(p) otherwise. (As in the proof of The-
orem C.3 such an (Λf", υ") is a model of at least any sentence that was true in
the original (M,v).) Hence (**) does follow from (*).

From (**) we can obtain without difficulties:

(***) Let (M, v) be a model of A, and let (AT, υ') be any model such that (Γ)
and (2') of (**) hold whenever 1/(1/7) is defined. Then (M',v') can be
extended to a model of A (with the meaning of "extension" we explained
above).

The construction of C(M, v) for a given finite prime model (Λf, υ) of A is
now straightforward: Let ψι,... ,ψt be as above and suppose that φΪ9... ,ψs

(s < t) are all the sentences among the 1/7's which contain only variables from
[pu... ,pn}. If there is no 1 < / < s such that | v(φi)\ > | v(A)\ we take
C(M, f) to be pi -+pι (it is easy to see that (***) and \~RMiΛ D B entail that
^RMIB in this case). Otherwise we take C(M, v) to be the conjunction of all the
sentences of the following forms which are true in (Λf, υ):

(\)φh if 1 < / < s a n d |ϋ(0,.)| > \v(A)\
(2) ~0f., if 1 < / < * a n d \v(φi)\ > |y(>l)|
(3) | ^ | < \ψj\, if 1 < / , y < ^ , and either |v(&)| > | ^ U ) | or \v(φj)\ >

(4) ~(|ifc| < 1^1) if 1 </,y< 5, and either \v(φi)\ > | y ( ^ ) | or |y(^.) | ^

kU)|.
Obviously this C(Λf, v) has properties (i) and (ii) required above. By (***)

it also has property (iv). Finally, we have that | v(ψ)\ > | υ(A)\ for every con-
junct φ of C(M, υ). Hence all the conjuncts are relevant to each other in (Af, v)9



192 ARNON AVRON

and since they are also true there (by definition) so is their conjunction C(M, v).
This concludes the proof of Theorem D.5.

Notes
(1) By substituting B = A in the above theorem it follows that given a sen-

tence A we can find another sentence C, which is a v-disjunction of Λ-
conjunctions of sentences in the language of RMI-, such that \~RMIA D C and
KRM/C ^ 4̂ O n e should remember, however, that this "normal form" is not
equivalent to A since ~ A D ~ C may not be a theorem of RMI (we have, e.g.,
that VRMιA D B and \~RMiB D A whenever \~RMiΛ and \~RMiB)

(2) The method of proof of Theorem D.5 can be used (in a simpler form)
for deriving an interpolation theorem for -• in RMI-. An easier proof of this
was given in Avron [3].

In the formulations of RMI given above the primitive connectives were es-
sentially the purely relevant ones: -> (or +), Λ, and ~. The following theorem
shows (among other things) that we can take as primitives the semi-extensional
connectives of RMI: ~, v, and D (~ can be considered as relevant as well as an
extensional connective; see below).

For the following theorem recall that we call A and B equivalent in RMI
if \~RMIA «-> B, where A <-> B is defined either as (A -> B) ° (B -> A) or (A ->
B) A (B-+A) (the two formulations are equivalent in RMI). The equivalence of
A and B is also equivalent to their having the same value in every model. We have
also: A ++ B hRMι φ(A) ++ φ(B).

D.6 Theorem
(1) A -• B is equivalent in RMI to (AD B) Λ (~BD ~A) (thus it is definable in
terms of ~, v, and D)
(2) For all

AlyA2e {R+(A,B),RA(A,B),A D (B D (AΛB)),

-A D (~BD ~Uvβ))|

we have At YRMiΛ1

(3)A-+B holds in a full model (M, υ) if A D B, ~BD ~A, andR(A,B) hold
there. Hence T \-RMI A -+ B iff T \-RMI A D B, T VRMI ~B D ~A, and
TYRMI~AD(~BD~(AvB))
(4)A++B holds in a full model (M, v) iff A D B, B D A, ~A D ~B9 ~B D ~A9

andR(A,B) hold there.

Proof: We leave the easy details to the reader.

In view of the deduction theorem for D and the properties of v listed in
C.14 we have that if we take ~, v, and D to be the primitive connectives of RMI
then the "positive" fragment of RMI (i.e., that {D,v}-fragment) is as least as
strong as the corresponding intuitionistic fragment. Actually we have more:

D.7 Proposition The set of theorems of RMI in the {D, v} -language is iden-
tical to the corresponding fragment of the system LC of Dumment (which is
stronger than the intuitionistic fragment, see Dummett [12]). An axiomatization
of this fragment can be therefore given as follows:
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Axioms (1) A D (B D A)
(2) (AD(BD C)) D ((A D B) D (A D C))
(3) ((A DB)DC)D ((B DA) DC) DC
(4) ADAMB

(5) BDAvB
(6) (ADC)D ((B DC)D ((A v B) D C)).

Rule of inference A, A DBVB (M.P. for D).

Proof: The validity of Axioms (1), (2), and (4)-(6) (which are the intuitionistic
axioms) follows from the deduction theorem and C.14. Adding the third axiom
is equivalent to adding (A D B) v (B D A), and the validity of it in full r.d.l.'s
can easily be checked.

For the converse we note that in Avron [4] it was shown that even the cor-
responding fragment of the stronger RM is identical with that of LC (this was
essentially proved already in Dunn and Meyer [14]).

D.8 Note Using Theorem D.6 and Proposition D.7 it is not difficult to give
a quite perspicuous axiomatization of RMI in the {~,v,D}-language with M.P.
for D as the single rule of inference. Note that A D — A , — A D A, ~A v A9

A D (~BD~(ADB))9 ~ (A D B) D ~B9 ~(AvB) D -A, and ~(A vB) D

~B are valid while -AD (AD B)9 (A D B) D (~B D -A), ~A D (~B D
-(Aw B))9 and -A D ((A v B) D B) are not. In this formulation RMI looks
like a paraconsistent logic rather then a relevance logic.

We end this section with some independence results concerning definabil-
ity in RMI. Let us say that an ̂ -connective # of RMI (primitive or defined in
i?M/-language) is definable in RMI in terms of a given set of other connectives
of RMI if there exists a formula C(px,... ,pn), formulated in terms of the given
set of connectives, such that

VRMI #(A> ,pn) ++ C(pu... 9pn).

D.9 Proposition
(1) v and Λ are not definable in terms of ~, -•, and D
(2) D is not definable in terms of - and -*
(3) +, ->, Λ, and v are not definable in terms of"~ and D
(4) +, -•, and D are not definable in terms of ~ and Λ.

Proof: In [4] we have shown (1), (2), and (4) to be true even for the stronger RM.
To show (3) note that if A(p,q) is a sentence in the language {p9q9~,D} then
in every full model (M, v) we have that | v(A)\ = \ v(p)\ or | v(A)\ = | υ(q)\,
p + q9 p Λq, p-+q9 and pv q all lack this property.

E A multίple-conclusioned formulation of RMI In this section we give RMI
a new kind of presentation. We use what in Shoesmith and Smiley [19] is called
a "multiple-conclusioned logic", and is also called in Gabbay [15] a "Scott sys-
tem". This version of RMI is in fact stronger than the single-conclusioned ones,
in the sense that it allows us to express (and prove) logical facts concerning full
r.d.l.'s which cannot be expressed in the former versions of RMI. On the other
hand the new system is a conservative extension of RMI (this means that if 7" is
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an RMI-theory and A a sentence in the language of RMI then A follows from
T according to the new system iff T VRMIA). The Gentzen-type formulation of
RMI and the normal-form techniques connected with it correspond directly to
the system of the present section, and not to the system we have investigated so
far.

By a "Scott system" we understand as in [15] a binary relation | h between
finite sets of sentences, closed under substitutions, and satisfying the following
conditions:

(la) A \\-A (i.e., [A] \\-{A))
(b) If Γ I h Δ, Γ C Γ', and Δ c A ' then Γ' | h Δ'
(c) (cut): If Γj I h Δi U {,4} and Γ2 U {A} | h Δ 2 then Tx U Γ2 | h Δi U Δ 2 .

(The intuitive interpretation of Γ | h Δ is: in each case in which all the sentences
of Γ are true at least one of the sentences of Δ is true.)

E.I Definition (a) The relation | VRMI is the minimal Scott system whose
formulas are constructed in the language based on { — ,->,Λ) and which satisfies:

(1)1 \~RMJA for every axiom of RMImϊn

(2) I \-RMIA, -A
(3)A9A-+B\hRMIB
(A)A^>B,A-*C\ JΓRMIA^ (B Λ C).

(b) If Tx and T2 are two sets of sentences then Tx \ \-RMI T2 iff there exist finite
sets Γ1! c Tx and Γ2 C T2 such that Γj | \-RMi Γ2.

Note What is essentially added here to RMIm[n is the condition | YRMjA,~A.
Without this the transition to a multiple-conclusioned system would be a con-
servative extension of RMImin, since by a theorem of Scott (see [15], pp. 7-8),
if h is an ordinary (single-conclusioned) provability relation (see (I) of the in-
troduction) and we define Γ | h Δ iff Γ h A for some A G A, then | h is the
minimal Scott relation extending h and Γ | h A iff Γ h A.

E.2 A Completeness Theorem Let Tx and T2 be sets of sentences. Then Tx

I h?M/ T2 iff every full model (M, υ)ofTx is also a model of at least one of the
sentences of T2.

Proof: The soundness direction is by now trivial.
For the converse assume that Tx \ \tRMI T2. Let To be a maximal extension

of Tx such that To | VRMi T2. We show first that if Δ = [Au . . . ,An] is a finite
set of sentences then To \ [ RMI Δ iff Af G To for some /. Evidently Aι E: To im-
plies To I h Δ. Assume, for a contradiction, that To | hRMi Δ and At $. To for all
/. By the maximality of To this means that there exist finite Γ, c To and Δ, C T2

such that Ai9Ti \ \-RMi Δ, . Using n cuts we obtain that To \ \-RMI Δi U Δ 2 U . . . U
An. (For example, in case n = 2 our assumptions imply that there are subsets
Γ 0 , Γ l 5 Γ 2 of To and subsets Δ l f Δ 2 of T2 such that Γo | VRMI AUA2\ TUAX

I h?M/ Δi; T2,A2 I VRMi Δ 2 . A cut of the first two sequents yields Γ0,Γ! | \-RMI

A2iAx and a cut of this sequent and of T2,A2 \ \-RMI A2 yields Γ 0,Γ!,Γ 2 | \~RMi
Δ i , Δ 2 . Since Γo U Yx U Γ2 c τ0, this means that To \\- AXU Δ 2 .) This con-
tradicts our assumption that To \ VRMI T2.

Since | \-RMIA,~A it follows that To is a complete RMImin theory. We
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have also: To \-RMI BiffBG To. Such a theory determines, as usual (see the
proof of Proposition B. 11), a full model (Λf, v) in which exactly the elements of
To are true. In particular, all the sentences of Tx are true in (Λf, v) while all the
sentences of T2 are not (for evidently To Π T2 = 0 ) .

E.3 Corollary \-RMI A iff | VRMiA.

Note Various Scott systems for various logics were already developed and
used in the past. In all these past cases their use was not essential but only (some-
times) technically convenient. By this we mean that in all those Scott systems a
connective v was available such that T | h Ax,... ,An iff T | h Ax v A2 v . . . v
An. Thus, facts expressible in the multiple-conclusioned system could have been
translated into the single-conclusioned counterpart. In the case of RMI things
are essentially different:

E.4 Theorem No formula φ(A,B) in the language of RMI has the property
that T I VRMI A,B iff T VRMI <p(A,B).

Proof: Suppose for a contradiction that φ is such a formula. Let A = p D q
and B = q D p. A v B is easily seen to be valid in every prime model and so
KRM/^4 v B. It follows that if T is a prime theory then either T VRMI A or
T VRMI B. Hence if Γis prime then T \ VRMIA,B\ and so T VRMi <p(A,B). By
the proof of Theorem C.2 this implies that \-RMIφ(A,B) and so, by our as-
sumption on φ, that I \-RMIA,B. Now consider a full model in which p,q, and
pRq are false; then both A and B are false (although Ay B holds!), which is a
contradiction.

In view of the last theorem it is clear that for the multiple-conclusioned sys-
tem (in contrast to the single-conclusioned one) there is an essential difference
between prime models and others:

E.5 Proposition Let \ VRMIP be the Scott system obtained by replacing (2) of
Definition E.I by (2)': A v B \ YRMIPA,B. Then:

(a) T\ I YRMIP T2 if every prime model of Tγ is a model of at least one of the
sentences of T2

(b) T I VRMIP Au...,An iff T I V R M I P A x \J A 2 M . . . v A n iffT VRMI A x v
A2\ι...\ιAn

(c) T\VRMIPAiffT\VRMIAiffTVRMIA
(d) // Tx I YRMI T2 then Tx \ VRMIP T2, but not vice versa: \ VRMipΛ DB,BDA
but \\fRAfiA D B, BDA.

Proof: We leave the proof to the reader.

F Extensional connectives The meaning of "extensional connective" in clas-
sical logic is that the truth or falsity of a compound formed by applying the con-
nective depends only on the truth values of the various components, each of these
being either 'true' or Ύalse'. This may indicate how to extend the notion for non-
classical logics, but one should not expect there to be a definition covering all
cases by which connectives can be meaningfully classified into "extensional" and
"nonextensional". Suppose that the logic has a semantics based on the notions
of model and satisfaction, such that a strong completeness theorem holds. Then,
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with respect to this given semantics, one could define a connective (say #) to be
extensional if in any model the satisfaction or nonsatisfaction of #(A\,... 9An)
is determined once we know which of the v4;'s are satisfied. However, the same
logic may have a different semantics (satisfying strong completeness) so that a
connective may be "extensional" in one but "nonextensional" in another. In the
case of classical logic, the standard two-valued semantics is the obvious natural
choice, for it underlies the very intuitions that the logic expresses. But in other
cases there may not be a clearly preferred semantics. RMIis strongly complete
with respect to the semantics of full r.d.l.'s as well as with respect to the narrower
semantics of prime r.d.l.'s. The connective v is nonextensional in the first but ex-
tensional in the second.

In the case of a multiple-conclusioned logic, the above-mentioned seman-
tic definition of extensionality can be put in an equivalent syntactic form so that
it no longer depends on the particular semantics. The definition as given in Gab-
bay [15] is:

F.I Definition Let | h be a Scott consequence relation and let # (px,... ,pn)
be a formula based on the propositional variables pu... ,pn. We say that
#(/? ! , . . . ,pn) is extensional (or classical) if for every sequence a G {0,1 }n the
following holds:

Let Γ̂  = [Pi\ai = 1}, Aά = ( A > / = 0}; then either Γ* | h Ad9#(Pu... ,pn)
or Γβ,#(/?i,... ,pn) I h Δβ (but not both, which should be the case unless the
consequence relation is trivial). If/: {0,1 }n -^ {0,1} then #(p\9 >Pn) is exten-
sional with truth table/ if Γfi | h 4/, #(/?i,.. . ,pn) whenever f(a) = 1, and Γ ,̂
#(Pu " ,Pn) I H &„ whenever/(α) = 0.

Now suppose that we have a semantics based on a class of models and a
satisfaction notion such that for all sets of formulas Γ,Δ:

Γ I h Δ iff every model satisfying all the formulas of Γ
satisfies also some formulas of Δ.

Then #(p\,... ,pn) is extensional with truth table/ iff in every model the
truth value of #(p\,... ,pn) i s/ (truth value (p\)9..., truth value (pn)), where
the truth value is, by definition, 1 if the formula is satisfied, 0 if not. (Note that
this concept of semantics for a Scott system is "stronger" or "richer" than the
usual concept of semantics for single-conclusioned systems.)

We have seen that there is more than one way of extending RMI to a
multiple-conclusioned system. The following theorem is true with respect to the
extension which we proposed and is based on the semantics of the class of all full
r.d.l.'s.

Γ.2 Theorem Of the sixteen possible binary truth functions only the following
three can be represented by extensional connectives in the multiple-conclusioned
extension of RMI:

Maua2) = aι;f2(aua2) = a2\Maua2) = 1.

Proof: Let φ = φ(p\,p2) be a formula containing only the propositional vari-
ables Pι,p2. Consider the class of all full models (M, v) such that v(p)ftv(q).
We claim that exactly one of the following possibilities holds:
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(a) In all such models va\(v(φ)) = t and \v(φ)\ = | U ( A ) | v I^(Λ) |
(b) In all such models val(v(<p)) = f and \υ(φ)\ = | t ; (p i) | v |y(/?2)l
(c) In all such models |f(<p)| = |ι>(/?i)|> and va\(v(φ)) is determined

via some fixed function g: {t,I,f} -• {t,I,f} by val(v(pι)). Moreover,

£(I) = I.
(d) As in (c) but with/?! replaced by p2.

Assume for the moment the claim: If φ is extensional with truth table/, then
in case (c), e.g., f(αuα2) depends only on αx. This follows immediately from
considering those models (M, υ) which belong to the class for which the claim
was made and in which M i s the full r.d.s.:

{t,f}

(t,f) {t,f}

Also, since I corresponds to the standard value 1 and in case (c) g(ΐ) = I we must
have that/(I , ) = 1. Hence case (c) gives rise either to/ i or t o / 3 . Similarly case
(d) gives rise either t o / 2 o r / 3 . It is also easily seen that in case (a) f must b e / 3 .
Finally, in case (b) f can only be the constant function 0. But in a model in which
υ(p\) = v(p2) and vd\(υ(pχ)) = I we must have that vdλ(υ(φ)) = I (true in gen-
eral). Hence we must have that/(1,1) = 1. Thus in case (b) φ cannot be exten-
sional.

Proof of the claim: We use an induction on the length of φ\

(1) If φ(p,q) =por <p(p,q) = q then φ has property (c) or (d) respectively.
(2) If φ = ~ψ then φ has property (a) (property (b)) if ψ has property (b)

(property (a)), and φ has property (c) (or (d)) iff ψ has the same
property.

(3) lfφ = φι + φ2 then if either ψι or ψ2 has property (a) so does φ. If both
lack (a) but one of them has (b) so does φ. If both have (c) or both have
(d) so does φ. If one has (c) while the other has (d) then φ has property
(b).

(4) If φ - ψι Λ φ2 then if ψι has property (a) then φ has the same property
that φ2 has. Similarly if ψ2 has (a). If one of φ1, ψ2 has property (b) so
does φ. Other cases are similar to the case of + .

Note "Classical connectives" with truth functions fλ, f2, or f3 are definable
in every Scott system having "logical truths" (i.e., sentences A such that | \Ά).

F.3 By relaxing somewhat the requirements concerning extensionality we get
a richer class of "extensional connectives". Call a generalized truth table a func-
tion g: {t,I,fΓ -^ {0,1 j such that g(l,I,... ,1) = 1. Call #(pu... ,pn) weakly ex-
tensional with generalized table g if in any model (M,v) we have /ι(val(#(/?i,
. ,Pn))) = *(val(ι;(A)), ,val(!;(/?„))), where Λ(t) = Λ(I) = 1 and Λ(f) = 0.
Then we have:

F.4 Theorem Of the 512 possible two-argument generalized truth tables there
are seven which can be represented by weakly extensional formulas. The seven
formulas are:
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Q)p-+P (or (p-+q)->(p~> q))
(2)p(oτ((q^q)Dp))
(3)~p

(4)~(P-/>)
(5)q
(6)~g

The proof is by the same sort of analysis we used in the proof of Theorem
F.2 and is left to the reader.

Note For sentences with a single propositional variable there is no difference
between RMI and classical logic, and all four possible (generalized) truth func-
tions have corresponding connectives in RML Theorem F.4 shows that essentially
nothing new is added while considering binary truth functions. Moreover, it also
shows that negation is the only nontrivial weakly extensional connective which
is definable in RML

G Extensions of RMI In this section we briefly investigate various extensions
of RML An extension, we recall, is obtained by adding new axiom schemes and,
possibly, new derivation rules. A key result in this investigation is the following:

G.I Theorem Let X be an extension of RML Let P = the class of all full
r.d.L's M such that for every A, if YXA then A holds in M under all valua-
tions. Then X is weakly complete relative to P (i.e., \-χA iff A is valid in all
elements of P). Moreover, if X is obtained from RMI by adding only axiom
schemes then X is strongly complete relative to P. The same holds if we restrict
ourselves to prime r.dΛ. 's.

Proof: Without loss in generality we may assume that \-xA iff A EX. Let B £
X. By the proof of Theorem C.2 we can find a prime theory To such that X <Ξ
To but To VRMI B. AS usual, the Lindenbaum algebra of Γo is a prime r.d.l. M
in which [A] G TM if To VRMIA. Since Xis closed under substitutions, this en-
tails that every theorem of X\s valid in M. B, however, is not valid (use, as usual,
the canonical valuation v(A) = [A]). From this the first part of the theorem fol-
lows at once. For the second part assume that T Vx B. If X is obtained by add-
ing only axiom schemes then T Vx B is equivalent to TO X \-RMI B. Extend
TU Xto a prime To and argue as before.

G.2 Corollary RM is obtained from RMI by each of the following methods:
(This strengthens a result of Avron [5]):
(1) Adding the scheme R+(A,B)
(2) Adding the scheme RA(A,B)
(3) Strengthening re. adj. in the second formulation of RMI to the full adjunc-
tion rule: From A and B infer A AB
(4) Adding the disjunctive syllogism (D.S.) for v as an extra rule of inference:
~A,AvB\-B.

Proof: That we get RM by adding either R+(A,B) or RA(A,B) to RMI was al-
ready proved in Corollary C.9. From this (3) also follows immediately.
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That RM is closed under (D.S.) for v is a theorem of Meyer and Dunn (see
[2]). Suppose we add this rule to RMI. Let A and B be any two sentences, and
define C= ~(A^Ά),D = ~(B^>B) yR^(A9B). Then \-RMi-C9\-RMICw D
(by De Morgan laws). Two applications of (D.S.) yield RA(A,B). Hence (4) fol-
lows from (2).

G.3 Corollary11 RM is strongly complete relative to Sugihara chains.

Proof: R+(A,B) is valid exactly in full r.d.l.'s in which every two elements are
relevant, i.e. (see [7], II.7.C), full r.d.l.'s that are totally ordered by <. These
are exactly the Sugihara chains. Hence the theorem follows from Theorem G.I
and Corollary G.2(l).

Note In view of our results the most natural formulation of RM is RMI (first
formulation) + R+(A,B). Since (D) (the distribution axiom) holds in RMwe
may simplify the formulation by replacing (RD) (relevant distribution) with (D).
What we get is simply RMll U Rfde

12 (the first-degree-entailments fragment
of R and E). This formulation of RM is then conservative with respect to its
implication-negation fragment.

G.4 Discussion Corollary G.2 determines the exact place of RM among rel-
evance logics. Since in RM every two sentences are relevant one can describe it
as being obtained from RMI by giving up the relevance idea while keeping the
notion of grading as expressed in the Sugihara chains. (Note that it does not mat-
ter whether we choose to violate the variable-sharing principle for + or for Λ for
this!).

Finally, we review other results on extensions of RMI. The proofs are not
difficult, and most of them were essentially given in [5].

G.5 Definition RMID is the system obtained from RMI by strengthening
(RD) to (D) (the distribution axiom).

G.6 Theorem
(1) RMID is strongly complete for the set of full r.d.l. 's which have at most one
pair of elements a, b such that a$b. Such full r.d.l. fs are either linear (i.e., Sugi-
hara chains) or they result from a chain of normal domains by adding two neu-
tral minimal elements at the end of the chain. (In both cases the r.d.l.'s are
prime.)
(2) RMID has the variable-sharing property for both Λ and -•. Its first-degree-
entailment fragment is exactly Rfde, while its negation-implication is RMI^
(see Avron [3]).

Discussion The difference between AS, the characteristic matrix of RMID,
and the Sugihara matrix, which is characteristic of RM, is that AS has two
"zeroes" instead of one. From a semantical point of view the effect of adding
the distribution axiom to RMI is therefore similar to that of adding to it (adj.)
or (D.S.) for v. It is remarkable that in R and also E there is an intimate con-
nection between (D) and (D.S.) for v: (D) plays a key role in the proof of the ad-
missibility of (D.S.) in R and E ([2], p. 313).
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G.7 Theorem // we replace the axiom (RD) of RMI by [RA(A,B) v
RA(A9C) v RA(B,C)] D[AA(BWC)^(AAB)\/(AA C)] we get a system
which is strongly complete for full r.d.l.'s in which every abnormal domain
is < every normal one. This system is a conservative extension of RMI~ (but
not ofRfdeJ.

G.8 Theorem By adding either of: (i) A v (A -* B) (ii) ((A D B) D A) D A
(iii) ~ (A D B) D A to RMI we get a system which is strongly complete relative
to r.d.l. 's which have a single normal domain. Aω is a characteristic matrix for
this system. Moreover, this system has the same Scroggs property that RMI-
has (see [3]), it is conservative with respect to RMI~, and includes every other
extension of RMI which has this property. Its {U,D} -fragment is identical to the
corresponding classical one.

NOTES

1. An interesting Kripke-style semantics was developed by Routley and Meyer in [18].
Their structures are very complex, though, and in my opinion they are difficult to
use while shedding no real new light on the systems. Few people would claim that
they are a faithful explication of the basic ideas underlying R and E.

2. A relation \-L satisfying (i)-(iii) is called in Gabbay [15] "a Tarski consequence re-
lation", while a relation satisfying (i)-(iv) is called there a "Tarski system".

3. No such formulations for the systems R and E are known. Avron [6] provides one
for RM.

4. From the syntactic point of view idempotency is what distinguished our + from the
corresponding connective of R. To us, at least, it seems unquestionably a property
any disjunction should possess. Our semantical results heavily depend on it (see [7]).

5. i?~ and RMI~ have convenient Gentzen-type calculi in which every such claim can
easily be proved. See [2] and [3].

6. These are all true for R~ also. It is not difficult to give constructive proofs in both
cases.

7. This theorem was first proved in [3], using another method. The corollaries that fol-
low were also shown there and are included here for the sake of completeness. In
[3] it is shown also that RMI~ has a strong "Scroggs" property: It has no finite
characteristic matrix, but every proper extension of it is characterized by some An.
Similar results hold for its pure implicational fragment.

8. In R, E, and RM we have as primitive the adjunction rule: A,B[- A ΛB. The rele-
vant adjunction rule of RMImin is taken as primitive also in Rβje—the "first-degree-
entailments" fragment of R and E (see [2], [13]).

9. Another difference concerning v between R, E, and RM on the one hand, and RMI
on the other, is with respect to the disjunctive syllogism for v. R, E, and RM are
closed under this rule, RMI is not (and there is no reason why it should be).

10. This theorem, as well as the interpolation theorem for D (see below), was first
proved in [4] in the case of RM.
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11. This is a result of Dunn's which extends Meyer's theorem that the Sugihara matrix
is characteristic for RM. Both results are in fact instances of Theorem G.I.

12. See [3] for the meaning of RMIl and [2], Chapter III for the meaning of Rfde.
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