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A Simplification of the Completeness Proofs

for Guaspari and Solovay's R

FRANS VOORBRAAK*

Abstract Alternative proofs for Guaspari and Solovay's completeness the-
orems for R are presented. R is an extension of the provability logic L and
was developed in order to study the formal properties of the provability
predicate of PA occurring in sentences that may contain connectives for wit-
ness comparison. (The primary example of sentences involving witness com-
parison is the Rosser sentence.) In this article the proof of the Kripke model
completeness theorems employs tail models, as introduced by Visser, instead
of the more usual finite Kripke models. The use of tail models makes it pos-
sible to derive arithmetical completeness from Kripke model completeness by
literally embedding Kripke models into PA. Our arithmetical completeness
theorem differs slightly from the one proved by Guaspari and Solovay, and
it also forms a solution to the problem (advanced by Smoryήski) of obtain-
ing a completeness result with respect to a variety of orderings.

Introduction This paper deals with the completeness proofs given in [2] for
the theory R, which is an extension of the provability logic L introduced in [5].
R is formulated in a language containing < and < as connectives for witness
comparison, which enables one to study the provability predicate as it occurs
in formulas like Pr(ΓAn) < P r ( r £ n ) , defined as 3 x ( P r o o f ( x , Γ ^ π ) Λ Vy < x
-iProoff.y,'"/?'1)). Rosser sentences are good examples of this kind of formula.

In Section 1 we describe the theories L and R and the alternative complete-

*The treatment of the Kripke model completeness theorem given in Section 2 has
benefited much from [3]. Albert Visser's suggestions, corrections and remarks also made
a substantial contribution to this paper.
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ness proofs for L given by Visser. Our main object is to give similar alternative
proofs for R. Sections 2 and 3 deal with the Kripke model, and arithmetical,
completeness proofs, respectively.

Only elementary facts from modal logic and PA are used. Formally, no
knowledge of provability logic is presupposed. For background knowledge, see
[1] or the more up-to-date and up-tempo [4]. For that matter, the original articles
referred to above are highly readable themselves. Some of the details omitted
in this paper can be found in [10].

1 The theories L and R For convenience we summarize Solovay's complete-
ness theorems from [5] and give definitions of some relevant notions.

1.1 Definition L is the following theory in <£, the language of propositional
modal logic (A,B,... denote well-formed formulas of <£):

Axioms: Boolean tautologies
Ώ(A-+B)-+ (ΠA-+ ΏB)
ΠA-> UUA
Π{ΠA^>A)-* UA

Rules: modus ponens
A/ΠA.

(Some other names for this system found in the literature are PrL, G, and GL.)

1.2 Theorem (Kripke model completeness) For any sentence A of <£: L h
A iff A is valid in all finite, transitive, irreflexive (tree-ordered) Kripke models
iff A holds at the root of all finite, transitive, irreflexive (tree-ordered) Kripke
models.

1.3 Definition An arithmetical interpretation * of £ is a map from for-
mulas of £ to sentences of PA satisfying:

for all atomic p: p* is an arithmetical sentence
± = 0 = 1; T* = 0 = 0
( ) * commutes with Boolean connectives
(UA)* = Pr(rA*~]).

1.4 Theorem (Arithmetical completeness) For any sentence A of £: L V A
iff for all* (PA h A*).

In other words, L axiomatizes the schemata provable about the provabil-
ity predicate Pr(x) in PA. We also have a system Lω which axiomatizes the true
schemata about Pr(x):

1.5 Definition Lω is the following system of modal logic:

Axioms: All theorems of L
UA^A

Rules: modus ponens.

1.6 Theorem For any sentence A of £ : Lω h A iff for all* A* is true.
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Let S(A) = [B:ΠB is a subformula of A}. Since Lω h A iff L h
^ (ΠB -+ B) -+ A, we also have a Kripke model completeness theorem

for Lω.

1.7 Definition An A-sound Kripke model is a Kripke model whose root
satisfies /j/\ (ΠB^B).

BeS(Ά)

1.8 Theorem For any sentence A of £: Lω h A iff A is forced at the root
of all A-sound, finite, transitive, irreflexive (tree-ordered) Kripke models.

The proof of the arithmetical completeness of L exploits the Kripke model
completeness by "embedding" finite Kripke models "into PA": If L \tA, then
we can find an interpretation * based on a countermodel of A such that PA 1/
A*.

To justify the use of the phrase "embedding into PA" one would like to
have a representation [A]κ of the set of nodes of the Kripke model K in which
A is forced such that

(1) PA h [A]κ iff A is valid in K, and
(2) PA h [A]κ <-• A*9 where * is an arithmetical interpretation based on

K.

However, this is impossible for finite Kripke models K, since for such models
there exists an n such that Πn± and DΛ+1J_ are forced at the same (viz. all)
nodes. But then (2) yields:

P A h ( D Λ l ) * ^ ( D w + 1 l ) *

which is a contradiction.
In [8] the notion of tail model is introduced and it is shown that these tail

models are really "embeddable into PA" in the above sense. Roughly, a tail
model is a finite, transitive, irreflexive, tree-ordered Kripke model with an
ω + 1-tail attached to its bottom node, where the forcing of atomic formulas is
defined constant on the tail (see Section 2 for an exact definition).

Since a tail model is automatically A -sound for every A in £ , we have the
following alternative Kripke completeness theorem for Lω:

1.8' Theorem For any sentence A of £: Lω \- A iff A is forced at the root
of all tail models.

For a proof see [8] or the perhaps more accessible [9].
Tail models will be used extensively in the simplified arithmetical and

Kripke model completeness proofs for the theories R and Rω, which will be de-
scribed below.

1.9 Definition The language <£+ is obtained from <£ by adding two (partial)
connectives for witness comparison: < and <. We also have a new formation
rule:

ΠA < ΏB and ΏA < ΏB are well-formed formulas whenever A and B
are.
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The Σ-formulas are those formulas of £ + which have <, <, or D as their
principal connective. The boxed formulas are those formulas of <£+ which have
D as their principal connective.

From now on A, Bf C,. . . denote formulas of £ + .

1.10 Definition R is the theory with the following rules and axioms:

Axioms: All schemas of L, for all <£+-formulas
A -• ΠA, for all Σ-formulas A (Σ-soundness)
A-+ (A <B)v (B <A)
(A < B) -* A for boxed formulas
{A < B) Λ (B < C) - (A < C) [ (the order axioms)
(A < B)++ (A <B) Λ -i (5 <A) _,

Rules: modus ponens
A/DA
DA/A.

The particular set of order axioms above, which is taken from [3], is some-
what simpler than but equivalent to the set given in [2]. It is easy to see that
the order axioms say that < is a weak pre-ordering of the boxed formulas and
that < is its associated strict pre-ordering, such that true formulas are witnessed
before false ones and false formulas are totally unordered. Some of the follow-
ing straightforward consequences of the order axioms will be used further on:

A - (A < B) v (B < A)
A^(A<B)v{B<A)
(A <B) Λ(B < C)-> (A < C)
(A < B) Λ (B < C) -+ (A < C)
A A -iB -> (A < B)
(A < B)-+ (A < B)
(A<B)-+ -.(£ <A).

Here A, B, and C denote boxed formulas.

1.11 Definition The theory obtained from R by deleting the rule ΏA/A is
called R~.

R~ is used to simplify the Kripke model completeness proof for R, which
is the theory of all schemata provable in PA. Again, as in the case of L, we have
a theory Rω of all true schemata:

1.12 Definition Rω is the following theory:

Axioms: All Theorems of R (in fact, R~ would do)
ΏA-+A

Rules: modus ponens.

In [2] it is noted that deductions in R cannot be normalized, since R h
D T < D 1 and R~ V DT < D±, so any proof of DT < D± must use the rule
ΠA/A. We will show that it is possible to replace the rule ΠA/A by a rule with
the subformula property. (It remains an open question whether a variant of the
system so obtained satisfies a normalization theorem.)
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1.13 Definition R' is the theory obtained from R by replacing the rule
ΠA/A by the rule A/^B -> (ΠA < Π2B).

1.14 Theorem R ' h A ** R h A.

Proof: "<=": Clearly it is sufficient to show that R' h ΏA implies R' h A. Sup-
pose therefore that R' h ΠA, so for all formulas B, R' h -i5-> (D2,4 < D 2 £ ) .
Substitution of "A" for " £ " yields R' \-A.

«=>»: We show that Rhv4 implies R h -i£-+ (Dv4 < D 2 £ ) . Suppose R h
A. Then R h DΛ, so we have R h(DΛ < Ώ2B) v ( Π 2 £ < ΠA). Clearly R h
(ΠA < Ώ2B) -* D 2(-.£ -* (ΠA < Π2B)), and also R h (Π2B < ΠA) -+
D2(->£ -+ (ΠA < Π2B)), since R h ( D 2 5 < D^l) -^ Ώ2B. We conclude that
R h D 2 ( - i 5 - > (ΠA < Π2B) and hence R h - i ^ ^ (ΠA < Π2B).

The rule A/-*B -+ (ΠA < Π2B) is similar to a rule of the system Z in [6],
which results from R by replacing the axiom of Σ-soundness and the rule ΠA/A
by A/-^B -> (ΠA < ΠB) and the axiom ΠA -• D (->£ -> (DΛ < D5)).

2 Kripke model completeness For the reasons stated above we employ tail
models instead of the more usual finite, transitive, irreflexive Kripke models.

2.1 Definition A tail model for L is a transitive, irreflexive, tree-ordered
Kripke model K = <ω,<,||->, which satisfies:

the forcing relation |h satisfies the usual clauses and is defined
for all formulas of <£
if m Φ 0, then 0 < m
if n Φ 0 and n < m, then n > m
for some TV =£ 0: (i) for all «, m > TV (n > m => n < m)

(ii) for n = 0 or n > TV:
for all /?/ (nWpi^N \\- p^.

An TV which satisfies (i) and (ii) is called a tail-element. The subtree generated
by a tail-element is called a to/? part. See Figure 1 for a representation of a typi-
cal tail model.

2.2 Definition A tail model for R is a tail model for L which in addition sat-
isfies:

the forcing relation Ih is defined for all formulas of £ +

the forcing of the witness comparison formulas is persistent, i.e.:
• k Ih A < B =* for all k' > k k' Ih A < B
• k Ih A < B => for all k' > k k' h A < B

all instances of the order axioms are forced at each node.

See Figure 2 for a typical tail model for R.

Note that in a tail model for R, for any Σ-formula A, k \\- A implies for
all k ' > k that k' Ih A. This feature is called ^-persistency.

Unless explicitly stated otherwise, from now on "tail model" will mean "tail
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Figure 1.

model for R" and "finite Kripke tree" will mean "finite, transitive, irreflexive,
tree-ordered Kripke model for R".

2.3 Tail Lemma For every tail model K:

0 Ih A iff for some M, for alln>M n \\-A
0 ¥ A iff for some M, for all n > M n¥tA.

Proof: Easy induction on A. We'll show one case: "A = B < C". Suppose 0 Ih
B < C. Then, by Σ-persistency, for all n, n |(- B < C. For the other direction,
suppose for all n > M that n \\- B < C. Then for all n > M, n \\- B, so, by the
induction hypothesis 0 Ih B. But then 0 Ih B < C or 0 Ih C < B. From 0 Ih C < B
we derive by Σ-persistency: for all ny n Ih C < B, which is a contradiction. So
0 Ih B < C.

Next we'll list some straightforward definitions.

2.4 Definition Let AT be a tail model. The depth d(n) of a node n is defined
as follows:

d(n) = 1 + sup{d{m) :n < m}.

Note: d(fl) = 1 if n is a top element of K and d(0) = ω. In general we have
ά(n) = a iff n Ih Πa± and n \\f Πβ± for all β < a, where Da± is defined
inductively by:

D°± = ±
• *+ 1± = D(D*±)
Dω± = T.
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1 */?,Q,r, 2*P,r,Ur < Up
\Ur < Up /

3^r,Dr < Up 4/p,q,r,Ur < Up, Uq < Up

5y>,r,Ur< Up

6< p9r9Ur < Up

Ί*p,r,Ur< Up
I
I
I

0ip,r,Ur < Up

Figure 2.

If A φ p or B φ r:

i Ih UA < UB iff for some j < i, j Ih UA and j \\f UB
i Ih UA < UB iff for ally < / (j \\- UB*=*j \\- UA) and / Ih UA.

2.5 Definition A set of formulas S is called adequate if

S is closed under subformulas
UAeSandUBGS^ (UA < UB) G S and (UA < UB) G S.

For any formula A, SA denotes the smallest adequate set containing A.

2.6 Definition A Kripke model restricted to a set S of formulas is a Kripke
model for which the forcing relation is required to be defined only for formulas
from S.

One easily derives the Kripke model completeness of R~ from that of L once
one has proved the Extension Lemma below. This lemma says that, given a Kripke
model <^,<,lh> restricted to an adequate set S, we can extend it to a Kripke
model for R, i.e., we can define a forcing relation IK such that <JKΓ,<,IK> is a
Kripke model (for R) and IK agrees with Ih on formulas from S.

In [4] the extension lemma is proved by induction on the complexity of for-
mulas, i.e., on the number of nestings of new witness comparisons, where "new"
means "not already in 5". The complexity c(A) of a formula A is defined, rel-
ative to S, as follows:
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if A is atomic or A E S, c(A) — 0
if A <£S, c(A) = c(£) if A = ~^B or A = ΠB

c(A) = max[c(£),c(C)} if A = B ° C for <>E {V,Λ,->}

cM) = 1 + max{c(£),c(C)} if A = B < C or

A = B < a
In [3] de Jongh introduced certain orderings of boxed formulas in nodes

of a Kripke model which made it possible to define uniformly, for all n, an
extension of the forcing relation on the set of formulas with complexity < n to
the set of formulas with complexity < n + 1. We will show that it is in fact pos-
sible to incorporate the induction on the complexity of formulas into the defi-
nition of the extended forcing relation.

2.7 Definition The de Jongh orderings <kth and <*t|_ and the de Jongh
equivalence relation =kft are defined (relative to a Kripke model <^,<,lh» as
follows:

A <kth B *=> for some k' < k, k' Ih A and kf ||f B
A <kλY B Φ=> k Ih A and for all k' < k, (k' Ih B => kf Ih A)
A =kfh B*=*A <k>¥ B and B <kth A or k \\f A and k \\f B.

We will often write A <kB, A <k B, and A =kBif it is clear from the context
which forcing relation is relevant. It is a trivial exercise to show that <k and <k

satisfy the order axioms and Σ-persistency.

The lemma below establishes the property of the de Jongh orderings which
makes them useful: they correspond to the minimal structure imposed upon the
forcing of boxed formulas by the requirements of a Kripke model for R.

2.8 Lemma Let < and < be orderings on the boxed formulas of an adequate
set S which satisfy the order axioms and Σ-persistency on (K,<9\\-} restricted to
S. Let ~kiψ be the equivalence relation defined as follows:

A ~kth B^k\\-A<Bandk\\-B<Aork\\tAandkUB.

Then for allA,BeS the following hold:

(ϊ)A<kB^k\\-A<B
(ii) k\\-A<B=>A<kB

(iii) ~k is a refinement of =k.

Proof: (i) Suppose A <k B, i.e., for some k' < k, k' If- A and k' 11/ B. Then
k' W A Λ -i£. This implies k' \\-A < B and, by Σ-persistency, k Ih A < B.

(ii) Suppose k Ih A < B. Then k\\-A and for all k' < k (kf Ih B =* k' Ih A),
for suppose for some k' < k that k' Ih B and k' \\t A, whence k' \\- B < A and,
by Σ-persistency, k \\- B < A, which yields a contradiction.

(iii) follows directly from (ii).

2.9 Extension Lemma
(i) A tail model restricted to an adequate set S can be extended to a tail model

forR.
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(ii) A finite Kripke tree restricted to an adequate set S can be extended to a finite
Kripke tree for R.

Proof: (i) Let < f̂,<,|h> be a tail model restricted to an adequate set S. Define
a forcing relation II-' inductively as follows:

k IK Pi^kW-Pi
the usual clauses for Λ, V, -I , -*, D

ΊcfrA <B9ifA,B<ΞS

kV A<B**< A <kfy B, if A £ S, B e S

A <kr B, if B£S

[k\YA <B, if A, BeS

k IK A < B * J A <kty B, if A G S, B £ S

[A <kth> B, if A £ S.

Notice that our use of the de Jongh orderings relative to IK on the right is pos-
sible since A <ktV B and A <kjy B are defined whenever IK is defined on A
and B.

It is easy to verify that IK extends Ih, that the forcing of witness compar-
ison formulas is persistent, and that each instance of an order axiom is forced
at each node. See below for an attempt to visualize the kind of ordering of boxed
formulas the above definition of If-' produces.

The proof of (ii) is similar.

The rationale for the particular extension defined in the proof above can
be extracted from the following considerations.

Suppose (K,<9\\-) is a tail model restricted to an adequate set S. If we
want to extend Ih to a forcing relation IK defined on all formulas of <£+, we
have to choose which new comparison formulas are forced in which nodes, in
such a way that the order axioms and Σ-persistency are satisfied. Σ-persistency
is equivalent to the requirement that the choice of the order in k of boxed for-
mulas which are forced in a node k' < k has to agree with the choice made in
k'. From Lemma 2.8(i) it follows that if ΠA is forced in a node k' < k and
there is no k' < k in which ΠB is forced, then IK has to satisfy k IK ΏA <
ΠB. That means that we only have to choose, for each node k, the order of for-
mulas within the =k ^-equivalence class Fk of boxed formulas forced "for the
first time" in k and the =k^-equivalence class Nk of boxed formulas not
forced in k.

In view of the meaning of the order axioms it is easy to see (though some-
what tedious to prove) that these axioms are satisfied iff in addition to Σ-per-
sistency the following conditions hold for all k:

• ifAENk, then k IK A < B and k \\f' A < B (this implies that all for-
mulas (old and new) in Nk are ^p-equivalent)

• if A G Fk and B E Fk> for some k' < k, then k IK B < A
• the ~k,h'-equivalence classes within Fk form a linear ordering.
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The situation may be illustrated thus: Consider a tail model with 21 as top tail-
element and with 0 < . . . < 15 < 14 < 13 < 8 <5 as the chain of predecessors of
3. Then the ordering of Ξ=3 t(_-equivalence classes in 3 is pictured by:

[ ] F O t 1F 1 4 I 1*13 [ 1F8 [ 1F5 [ 1F3 [ W

Notice that this ordering is independent of the forcing relation and only depends
on the structure of the tail model below the node 3. Of course, the content of
each class Fk does depend on the forcing relation.

If we represent a ~ 3 ^-equivalence class of old formulas by , we get the
following kind of picture of the ordering of those equivalence classes:

H F O . . . [ ] F 1 4 [ ]F13 [-]/% M/* M F 3 [ W

We now have to fill each class Fk with new boxed formulas such that the rela-
tive ordering of old formulas is respected and the ~AΓ,IK-equivalence classes
within Fk form a linear ordering. Thus, if we represent a ~3,p-equivalence
class by °, then the situation within each class Fk in the extended model will in
general look something like [©©•©•]. (E.g., the occurrence o f © is excluded.)
A possible choice is to put all new formulas of Fk into one ~ ^ - e q u i v a l e n c e
class and place this class at the end of the linear ordering of old ~k^ -equiva-
lence classes within Fk (if there are any). In our example this choice has the fol-
lowing result:

[•'•HFO . . M F 1 4 H F 1 3 [•'•'•'•]/% [•'•]/* [ V ° ] F 3 [ Θ L V 3

(where •' represents a — 3, II- ' -equivalence class not containing any new for-
mulas.)

The proof of the Extension Lemma shows that this method can be realized
by means of an inductive definition of the extended forcing relation which
exploits the properties of the de Jongh orderings.

2.10 Theorem For any sentence A of £+, the following are equivalent:

(ϊ)R-\-A
(ii) A is valid on all finite Kripke trees

(iii) A holds at the root of every finite Kripke tree.

Proof: (i) => (ii) and (ii) => (iii) are obvious. To prove (iii) => (i), assume that
R~ 1/ A. Let Z>o, ...,£>„ be the formulas of SA with principal connective <
or < and let p0,... ,pn be distinct atoms of £+ not occurring in SA. For any B
from SΆ, let B' be the formula in <£ such that B = B'[Di/p{\. Define X =
{m (pj -> Upi): 0 < / < / ! } U {Ξ2Γ : B is an order axiom involving only for-
mulas oϊ SA}. Then L V tt\X-+Af. By Theorem 1.2, there is a finite, transitive,
irreflexive (tree-ordered) Kripke model for L (K,<9\\-) such that /AXΛ -ΛA' is
true at its root.

Define V on SA by k V B iff k\\-B', for any B from SA. Notice that /AX
is actually valid on <AΓ,<,||->, so (K,<,\\-'} is a finite Kripke tree restricted to
SA whose root satisfies ~^A. By the Extension Lemma (K,<9\\-'} can be
extended to a finite Kripke tree whose root does not satisfy A.
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The completeness proof for R is now very simple on account of the follow-
ing lemma.

2.11 Lemma (de Jongh) R h A iff for some n G IN, R~ h D M .

Proof: From right to left: Apply the rule ΏA/A n times. For the other direc-
tion, apply induction to the length of the proof of A:

• For all axioms of R~ the result is trivial.
• (modus ponens) Assume that R h 5 and R h B -> A. Then, by the

induction hypothesis, R" h UnB and R~ h Um(B-+A). Then we have
R- h πmax(n>m)B and R~ h πmax(n>m)(B -> A). So we conclude that
R~ h •maχ(/2>w)y4>

• (necessitation) Assume that A = UB and R\- B. Then, by the induction
hypothesis, R~ h UnB9 for some n G IN. So by necessitation, R~ h
D M .

• (DA/A) Assume that R V ΏA. Then, by the induction hypothesis, R~ h
D"D,4 for some n G N. So R" h Πn+ιA.

It is easy to see that, as remarked before, tail models and all their finite top
parts are automatically A -sound for any formula A. The following lemma estab-
lishes that the validity of a formula A on all tail models is equivalent to the valid-
ity of A on all A -sound finite Kripke trees.

2.12 Prolongation Lemma
(i) An A-sound finite Kripke tree restricted to SA on which A is not valid can

be prolonged to a tail model on which A is not valid
(ii) If A does not hold at the root of an A-sound finite Kripke tree restricted

to SA, then there is a tail model whose root does not satisfy A.

Proof: (i) Suppose (K,<,\\-) is an ̂ 4-sound finite Kripke tree restricted to SA.
Attach an ω + 1-tail km+ukm+2,... ,k0 to the bottom km of (K,<,\\-), while
defining forcing for formulas from SA on elements of the tail exactly as on km

(this definition is possible by A-soundness). This results in a tail model restricted
to SA on which A is not valid. By the Extension Lemma, this tail model can be
extended to a tail model for R on which A is not valid,

(ii) Notice that in the proof above k0 ¥ A if km \\ί A.

2.13 Theorem (Kripke model completeness)
(i) R h A iff A is valid in all tail models K

(ii) Rω h A iff 0 Ih A for all tail models K.

Proof: (i) "if": Assume R \f A. Then by Lemma 2.11, for all n G IN, R" \f
D M . In particular, R~ \f DM with n greater than the number of subformulas
of A. By Theorem 2.10, there exists a finite Kripke tree K = (K,<,h) with bot-
tom node k0 on which D M is not valid. But then A is false at a node knG K
such that there is a chain k0 < k\ < k2 < . . . < kn in K. By Σ-persistency, there
exists a n m < « such that km and km+ϊ force the same boxed formulas from SA.
But then km+i \\- UB -> B, for all B G SA, since km+x \\- UB implies km If- UB,
which in turn implies km+i \\- B. By the Prolongation Lemma, the subtree gen-
erated by km+\ can be prolonged to a tail model on which A is not valid.
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"only if": Assume that K is a tail model on which A is not valid. Then for
some k Φ 0, k \\t A. But then for each « G N there exists a finite Kripke tree on
which D M is not valid, viz. the finite Kripke tree generated by the node kn <
k with ά{kn) = d(k) + n. Therefore, for all « G N , R ~ f D M . So, by Lemma
2.11, R I M .

(ii) "only if":

• 0 satisfies the theorems of R~
• closure under modus ponens is trivial
• suppose 0 Ih DA. Then, for all k > 0, k Ih A, hence for all k Φ 0,

k\\-A. So, by the Tail Lemma, 0 Ih A.

"if": Suppose Rω \f A. Then R" \f /fa (ΠB-+B)-+A. Hence there is
BeS(Ά)

a finite Kripke tree K = <ΛΓ,<,lh> such that the bottom node k of K satisfies
k Ih ff\ (UB -* B) and k \\f A. By the Prolongation Lemma, K can be ex-

B^S(A)

tended to a tail model K' = <ω,<,|f-'> with 0 ψ A.

2.14 Remark It follows from the proof of Theorem 2.13 that we may
assume that the forcing of witness comparison formulas in a tail model is a
primitive recursive function of nodes and boxed formulas, since if R \f A we
can construct a tail model in which A is not valid as follows:

(1) we start with a finite Kripke tree restricted to SA

(2) we take the subtree generated by km as specified in the proof of 2.13
(3) we prolong this subtree to a tail model.

Clearly (3) is the only step which might be problematic, since in the proof of the
Prolongation Lemma the Extension Lemma is used and there are clauses in the
definition of the extended forcing relation at k which depend on the forcing rela-
tion at the nodes k' < k.

However, it is possible to give for each formula A a number sd(A), the
search depth of A, such that if d(A:) = sd(^), then for all k' < k9 k' Ih A iff
k Ih A. Therefore for each formula A we only have to search at most sd(v4)
nodes below k to know in which nodes below k A is forced.

sd(A) is defined as follows:

if A is atomic or A E SA: sd(A) = M, with M = the depth of the top tail-
element;

if^^S^: sd{A) = sd(B),ifA =-iB
sd(yl) = max{sd(£),sd(C)},if,4=£oC, withoe {Λ,V,->,<,<}

sd(A) = 1 + sd(£), ifA = ΠB.

3 Arithmetical completeness While attempting to define what an arithmet-
ical interpretation for <£+ would be one encounters the following difficulty: cir-
cumstances extrinsic to the nature of the proof predicate Pr(x) decide whether,
e.g., Pr(Γ0 = (Γ) < Pr( Γ l = Γ ) or Pr( Γ l = Γ ) < Pr(Γ0 = 0"1). To eliminate
the arbitrariness that would result from fixing a particular proof predicate,
Guaspari and Solovay allow arithmetical interpretations to be based on any "rea-
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sonable" proof predicate, i.e., any Σ?-numeration of the theorems of PA in PA
satisfying the derivability conditions and demonstrable Σ-completeness. Such a
reasonable proof predicate is called "standard".

Remark Guaspari and Solovay actually prove that it is sufficient to allow
interpretations to be based on Σ?-formulas provably equivalent to Pr(x). In [4]
"standard" refers to this kind of proof predicate.

An alternative way to abstract from accidental circumstances, and the one
we are going to follow, is to fix a particular proof predicate Pr(x) and allow
arithmetical interpretations to be based on reasonable (pre-)permutations of the
natural numbers, where a (pre-)permutation is called reasonable if Pr(x) still
satisfies demonstrable Σ-completeness when the witness comparison is based on
the ordering of the (pre-)permuted natural numbers. In other words, we allow
arithmetical interpretations to be based on any (pre-)ordering of the natural
numbers such that Pτ(rAn) ° Pr( Γ # π )> with ° a connective for witness com-
parison based on the new ordering, is Σ?. At the end of this section it will be
shown that for our present purposes the latter alternative is to be preferred.

3.1 Definition Let <* be a weak pre-ordering on N and <* its associated
strict pre-ordering such that Pr(x) satisfies demonstrable Σ-completeness when
witness comparison is based on <* and <*. An arithmetical interpretation * of
£+ based on <* is a map from formulas of <£ + to sentences of PA satisfying:

• for all atomic p, p* is an arithmetical sentence
• j _ * = 0 = 1; τ * = 0 = 0
• ( )* commutes with Boolean connectives
• (ΠA)* = Έ>τ(ΓA*~])
• (ΠA< ΠB)* = (ΠA)* <* (ΠB)*>, where 3x φ(x) <* 3x φ(x) =

3x(φ(x)ΛVy<* χ-iψ(y))
• (ΠA < ΠB)* = (ΠA)* <* (ΠB)*, where 3x φ(x) <* lxψ(x) =

lχ(φ(χ) ΛVy <*X-^O0).

One easily verifies:

3.2 Theorem (Soundness)
(ϊ)R\-A=> for all * PA h A*

(ii) Rω h A =* for all * A* is true.

To prove the reverse implications, we define, for any tail model K and any
formula A, a representation [A]κ of the set of nodes in K in which A is forced,
and an arithmetical interpretation (A)κ such that the following hold:

<j)PA\-[A]κ++<A>κ

(ii) if A is not valid in K, PA + -ι [A]κ is consistent.

Fix a tail model K = <ω,<,lh>.
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3.3 Definition IA^K = {k e ω:k \\- A}. Define as a formula of the lan-
guage of arithmetic:

ΓW[JC = /:/H-^4}, if IAIK is finite

\Jk{xΦi:iψA)9 if IAJK is cofinite.

By convention, the empty disjunction is J_ and the empty conjunction is T.

It is easy to see that the following holds:

3.4 Lemma

(i)PAhχe lA]lKΛxe IBJix^xe IA /\BHK

(ii)PAhxE lA^KVxe lB$K++xe lAvBlκ

(iii)PAHx£ lAHκ++xe I-MJ*.

3.5 Definition / = lim h(n), where h is defined as follows:

Λ(0) = 0

f/ι, if for some n > h(k), Proof (A: + 1, rlΦrP)
h(k+ 1) =\

\h(k), otherwise.

The following lemma lists some properties of h and /. Proofs can be found in

[5].

3.6 Lemma
(i) PA h "A is weakly monotonic in <"

(ii) PA h "/ exists"
(iii) PA h "if I = / and i < y, then PA + "/ = j" is consistent"
(iv) PA h "// / = / and i it y, then PA h "/ Φ Γ"

(v) / = 0
(vi) for all /, PA + "/ = /" is consistent.

Remark The arguments for (v) and (vi) cannot be formalized in PA.

Now we are able to define a representation [A]κ of I M I A : in PA such
that PA + -i [A]κ is consistent if and only if A is not valid in K:

3.7 Definition [A]κ = /E IA^K.

Our next problem is to find an ordering <κ on N such that there exists an
arithmetical interpretation < ) κ based on <κ satisfying PA f- (A)κ «-• [A]κ.
That means that we have as constraints on < ) κ :

• PA h [UA < ΠB]K ++ 3x(Proof(x, Γ<^4>^π) Λ Vy <κ x -iProof(7,

• PA h [DA < UB]K ++ 3Λτ(Proof(x, Γ<A)κ

n) Λ Vy <κ x -.Proof(y,
r<B)κ^))

Let Minproof(x,«) : ^ Proof (x,n) Λ Vy < x -ιProof {y,n) and define MIN-
PROOFS = {x:Minproof(jc,r<>l>A:

n), for some A}. (A)κ is of course depen-
dent on <κ, the ordering we still have to define. But because (A)κ occurs at
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the level of codes, we can implement this innocent circularity by the recursion
theorem.

We obtain our new ordering <κ by pushing the elements of MINPROOFS
exactly as much forward as is needed to satisfy the above constraints. That is,
we change the order of m and a larger n if and only if n is a minimal proof of
(A)κ and for some /, h(i) \\- ΏA < ΏB for some B such that either m or, if
m ί MINPROOFS, some p < m is a minimal proof of (B)κ.

If for some /, λ(z') Ih ΏA < ΏB Λ ΏB < ΏA, and m and n are minimal
proofs of (A)κ and {B)κ respectively, then m and n will be equivalent in our
new ordering. We therefore discriminate between pairs which are weakly per-
muted in our new ordering and those which are strictly permuted. By the recur-
sion theorem we can define the following permutation relations of pairs which
are weakly, respectively strongly, permuted:

WP^(m,«)<=> m < n, Minproof(Λ,Γ<τ4>A:"
1), and for some i, h(i) Ih

ΏA < ΏB for some By such that Minproof(m,Γ<Jβ>Λ:"
1)

or, if m £ MINPROOFS, Minpτoof(p,r(B}κ

n), for some
p < m.

SPχ(m,n)*=>m < n, Minproof(A2,Γ<y4>A:"
1), and for some /, h(i) Ih ΏA <

ΏB if Minproof(m,Γ<Jβ>^"1) and h(i) Ih ΏA < ΏB if m £
MINPROOFS, and for some/7 < m, Minprooϊ(p,Γ(B)κ~

]).

Notice that WP^ and SP^ are recursive. For instance,

-iWP^(m,«)^m > n or n <£ MINPROOFS or (m < n and
Minproof(A2,r<y4>^n) and for some /, h(i) Ih ΏB < ΏA
for some B, such that Minproof (m, r(B)κ

n) or, if m φ
MINPROOFS, Minproof ( A r(B)κ

1), for some/? <
m).

The fact that we restrict our action to the set of minimal proofs is not relevant
to our present purposes. This restriction is used in [10] to derive a result of
Tuttas [7]. Let us now give the formal definition of <κ and < ) κ :

3.8 Definition
(i) n <κ m^WPκ(m,n) or (n < m and not SPκ(n9m))

(ii) n <κ m*=> SPκ(m,n) or (n < m and not WPκ(n,m))
(iii) < ) κ is the arithmetical interpretation based on <κ induced by:

• <Pi>κ = It lPilκ*i = ί
• (ΏA < ΏB)K = (ΏA)K <κ <ΏB)K, where 3x φ(x) <κ 3x φ(x) =

3x(φ(x) /\ vγ <κx -iψ(y))
• (ΏA < ΏB)K = (ΏA)K <κ (ΏB)K, where 3x φ(x) <κ 3x φ(x) =

3x(φ(x)ΛVy<κx^ψ(y)).

In the appendix it is proved that <κ is a weak pre-ordering and <κ is its
associated strict pre-ordering.

Example Suppose for some / that h(i) Ih ΏH-ΏC < ΏE < ΏA < ΏB <
ΏD-ΏG < ΏI < ΏF and suppose that Minproof(n,Γ(Φ}κ

n) iff Φ is
appended to n in the following picture:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ikA B C D E KF G HI

Then (1,2,... ,20) gets permuted into (l,2,[7,19],12,3,4,5,6,8,9,10,[ll,17],13,
14,20,15,16,18).

We admit that it is not immediately clear that < ) κ is indeed an arithmet-
ical interpretation. However, before verifying the Σ-completeness for witness
comparison based on <κ, it will be convenient to show the provable equiva-
lence of [A]κ and (A)κ:

3.9 Theorem PA h [A]κ ++ (A)κ.

Proof: By induction on A.

• The cases of atoms and Boolean connectives are easy (use PA h "/
exists" and Lemma 3.4).

• Suppose A = ΠB.

(a) In case [A lκ is cofinite we have, by the Tail Lemma, that [ D#I κ =
^B^κ = ω. By the induction hypothesis PA h T <-• (B)κ. Hence
PA h (B)κ which implies PA h Pr(Γ<J5>^π), i.e., PA h < ΠB)K<-• T.
So we conclude that PA h [ ΠB]K ^ < ΠB)K.

(b) Suppose Aκ is finite. Lety0, Js be all they such thaty |h ΠB and
j 11/ B. Notice that for each / with / \\f ΠB there is ajk such that / < j k .
Clearly it is sufficient to prove that PA h Pr(Γ[B]κ~

1) ^ [ Π ^ ] ^ .
To prove this, reason in PA as follows:

"->": Suppose FrClB]^). Lety be any element of {y0,... Js). By
the definition of [ ]κ we have Pr(Γ/ Φp). Assume Proof(/? + 1,
ΓlΦp). Suppose / <y, then h(p) <j. But then h(p -h 1) =y,
which yields a contradiction. So we have / it y, through which we
obtain W{/ = /:/|(- OB],

"<-": Suppose / = / and i Ih DJ5. Since IΠB^ κ is supposed to be finite,
0 \\f ΠB and thus / Φ 0. So, by the definition of h, Pr( Γ l φΓ).
Moreover, since for some x, h(x) = /, by Σ? -completeness
Pr( Γ3x h(x) = P). Hence Pr( Γl >Γ). Since j > i implies j Ih 5,
we have Pr(ΓW{/ =j:j ^ £ } π ) .

• Suppose 4̂ = ΠB < DC. Reason in PA as follows:

"<-": Suppose 3x(Proof(x, r<£>^n) f\Vy <κx -.Proof(j, r<C>^n)).
Then Pr(Γ<Jβ>AΓ~

1) and, by the induction hypothesis, for some /,
h{i) Ih DA But then h(i) Ih (ΠB < DC) v (DC < DA). Suppose
h(i) Ih DC < DA Then h(ί) Ih DC and thus for some y Minproof(j>,
Γ<C>^Π). But then y <κ x for all x such that Proof(x, Γ<B)K'1), so
we would have for all x (Proof(x,r(ByK~]) -• ly <κ x Proof(j,
Γ(C)K~1)), which yields a contradiction. We conclude that h(i) Ih
ΠB < DC, so by Σ-persistency, / E IAIK.
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"->": Suppose / e IIΠB < ΠC^K. Then for some /, h(i) Ih ΠB < DC,
and thus h(i) Ih ΠB. By the induction hypothesis, for some x
Minproof(x,Γ<^>^π). Suppose 3j> <κx Proof(y, r<C)κ

n), then for
somey, h(j) Ih DC < ΠB, which yields a contradiction. So we have
for some x (Proof (x, Γ<B)κ

n) Λ Vy < * X -iProof(^,Γ<C>^"1)).

• The case of A = ΠB < DC is similar to the one above.

3.10 Definition Σκ is the set of arithmetical formulas which consists of
• Pr( ΓA~]), for some arithmetical formula A
• Pr( rA'1) <κ Pr( rBn), for arithmetical formulas A and B
• Pr(rAn) <κ Pr^B"1), for arithmetical formulas A and B.

3.11 Lemma (Σ-completeness) Any formula from Σκ is proυably equivalent
to a Σ°x-formula.

Proof:

• A = P r ( Γ £ π ) : Trivial.
• A = P r ( r £ n ) <* P r ( Γ C π ) , i.e., A = 3Λr(Proof(x,ΓJ5π) Λ VJ <^

JC -iProof(j,ΓCπ)): Reason in PA. Define / = {x:x = r(A)κ~
], for

some A}.
Cαre 1: ΓBn,ΓC~] £ I: Then by the definition of <κ, A <+ 3x(Proof(x,

ΓBn) *Vy<x -^Proof(y, Γ C Π ) ) .
Case 2: ΓBn = r{D)κ~

],rC~Λ = r{E)κ

Λ: Then by Theorem 3.9, A <-+
[ΠD< ΠE]K.

Case3: ΓB~* = r(D)κ

n

y

ΓC~] £ I: Let m(0) = 0 and, forx^O, m(x) =
max{y:y < x and not ^ίPκ(yyx)}. Then m is recursive and by the
definition of <*, yl ^ 3x(Proof(x, r5n) Λ Vy < m(x) -«Proof(^,
ΓC"1)).

Case 4: ΓB~* £ /, Γ C Π = Γ<£'>^"1: Then by the definition of <*, A ++
3x(Proof (x, ΓBn

 ) Λ V J < J C -π(Proof (y, Γ C Π ) v (3/ h (/) Ih D £ < D D Λ

Proof( A

 Γ<D>^Π))).

• >1 = Pr( Γ 5 Π ) <κ Pr( Γ C Π ) : Similar.

For the reader's convenience, we give the informal considerations leading
to the particular Σ? -equivalents of A given in Cases 3 and 4 of the above proof.
In Case 3 we know that proofs of B may have been pushed forward, but proofs
of C not. Therefore we only have to check whether there is a proofs of C in
the set of numbers z below the minimal proof x of B such that not ΨPκ(z,x).
In Case 4 we know that proofs of C may have been pushed forward, but proofs
of B not. So we now have to check whether there is a proof of C below the min-
imal proof x of B or whether the minimal proof of C is pushed before x, i.e.,
whether there is a proof of some (D)κ below x such that for some /, h(i) \\-
ΠE < ΠD.

Now we can easily derive the following:

3.12 Theorem (Arithmetical completeness)
(i)Rh^l iff for all * PA \-A*

(ii) Rω h A iff for all* A* is true.
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Proof: By Theorem 3.2 we only have to prove the implications from the right
to the left.

(i) Suppose R \f A. Then for some tail model K, A is not valid in K.
Therefore PA + -ι [A]κ is consistent. By Theorem 3.9, PA + -^{A)κ is consis-
tent, so we conclude that PA V (A)κ.

(ii) Suppose Rω (/ A. Then 0 \\f A, for some tail model K. Since / = 0 is
true, [A]κ is not true and therefore (A)κ is not true.

Notice that we may assume that an arithmetical interpretation * is based
on a recursive relation <*.

As remarked before, our definition of arithmetical interpretation is differ-
ent from that of Guaspari and Solovay. Therefore, Theorem 5.6 of [2] and our
Theorem 3.12(i) differ somewhat in meaning, in spite of their identical
appearance.

It is easy to see that if K is a tail model, there is no interpretation * in the
sense of Guaspari and Solovay such that PA h [A]κ *+ A*, since in every tail
model there is a top node k such that k\\- f\ (DΛJ- > Πn+ι±), so PA +

\<n<ω
[\ [DΛ_L > D Λ + 1 1 ] ^ is consistent.

\<n<ω

So PA + y\ ((DΛ i .)* >* ( D " + 1 ± ) * ) would have to be consistent,
l<«<ω

which is clearly impossible if we only allow interpretations to be based on
enumerations of the theorems of PA. A similar argument shows that the rep-
resentation of any kind of Kripke model for R which is really embeddable into
PA cannot be provably equivalent to an arithmetical interpretation in the sense
of Guaspari and Solovay. The above formed our motivation for a definition of
arithmetical interpretation which allows interpretations corresponding to more
flexible ways of mingling witnesses of theorems.

However, even if one is not concerned with the problem of really embed-
ding Kripke models into PA, one might be interested in interpretations where
the box is interpreted as the usual provability predicate, rather than as any stan-
dard provability predicate. In [4] Smoryήski argues that since the exact order
used in the comparisons is irrelevant to results like Rosser's Theorem, "any
decent completeness result ought to be with respect to a variety of orderings",
and he mentions the proof of such a result as an open problem. Theorem 3.12
forms a solution to this problem, although we actually proved the theorem
before we learned of the problem. Independently, this problem has also been
solved by Tuttas [7], who extended a partial result already obtained in [4].

Appendix Let <^, <κ and < ) κ be defined as in Definition 3.8 and let
M(n,A) abbreviate Minproof(/?,Γ<y4>ΛΓ~

1).

Claim <κ is a weak pre-ordering and <κ is its associated strict pre-
ordering.

Proof:

• n <κ n, since n < n and not SP^ίfl,^).
• n <κ m implies n <κ m, since SPκ(myn) implies WP^(m,«), n < m

implies n < m, and ->WPκ(n,m) implies -«SP^(«,m).
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• -i (m <κ ή) => n <κ m:
-i(m <κ n) ̂  -iWPκ(n,m) A -«(m < n A -^SPκ(m,n))

<^(-iWPκ(n,m) AΠ < m) v (-^WPκ(n,m) ASPκ(m,n))
=> (-ιWPκ(n,m) AH < m) v SP^(m,«)
«=* H <# m.

• Λ <# m and m <κ p => n <κ p : Assume that n <κ m and m <κ p.
Case 1: WPκ(m,n) and WPκ(p,m): Then m < n and p < ra, thus

p <n. Further, we have M(«,^4), M(m,5), for some /, h(i) \\-
ΠA < ΏB, and for somey, h(j) |h ΠB < DC, for some C such
that M(p,C) or, if/? ^ MINPROOFS, M(q,C) for some (7 <
p. Thus for ι0 = max(/,y), Λ(/o) Ih Π-4 < DC, for some C such
that M(p,C) or, if p ^ MINPROOFS, M(<7,C) for some q <
p. Hence WPκ(p,n) and thus « <κp.

Case 2: n < m A -iSPK(n,m) A m < p A ~^SPκ(m,p): Then obviously
n < p. Suppose SP^(«,p), then n < m < p and M(p, C) and
for some/, Λ(ι) Ih DC< ΠA\ϊM(n,A), or Λ(/) Ih DC< Dv4
if ^ £ MINPROOFS and for some q < n9 M(q,A). If M(m,B),
then, by -ιSP^(m,p), for some /, h(i) Ih ΠB < DC, which
contradicts -iSP^(«,m). If m £ MINPROOFS, then for some
/, h(i) Ih DC < ΠB, for some B such that for some r < m,
M(r,B) (r = n\ϊn£ MINPROOFS, r = q otherwise). This con-
tradicts -ιSP^(m,p). Hence n < p and not SP^(AZ,P), thus
n <κp.

Case 3: WPκ(m,n) Am <pΛ -iSP^ί^p):
Case 3a: n = p : Then n < p and not S P ^ ί ^ p ) .
Cύr5 β 56; n < p: Suppose SPκ(n,p), then for some /, h(i) Ih

DC < ΠA9 with M(n,A) and M(p,C). By WPκ(m,n), we
have for some /, h(i) Ih DC < D5 for some B such that
M(m,B) or, if m ί MINPROOFS, M((3r,^) for some q < m.
This contradicts -iSP#(ra,p). Hence not S P ^ ί ^ p ) .

Case 3c: n > p: If p (£ MINPROOFS, then we have, by
WPκ(m,n) and m < p, for some /, h(i) Ih D 4̂ < ΠB, for
some .β such that for some q < p,M(q,B), and for A such
that M(n,A). If M(p,C) and M(Λ,^4), then we have, by
-iSPκ(m,p), for some/, Λ(/) Ih Π 4̂ < DC Hence WPκ(p,n).
Thus in all subcases, « ^ p .

Case 4: n< m A -ιSPκ(n,m) A WPκ(p,m):

Case 4a: n < p : Suppose SP^ί^p), i.e., M(p,C) and for some
/, h(i) Ih DC< ΠA, for some^l such that M(n,A) or, if n £
MINPROOFS and for some q < n, M(q,A), h{i) Ih DC <
ΠA. By WPκ(p,m), for some /, Λ(ι) Ih ΠB < DC, and
M(m,B). Hence for some /, h(i) Ih ΠB < ΠA, for some A
such that M(n,A) or, if Λ ί MINPROOFS and for some q < n,
M(q,A), h(i) Ih ΠB < ΠA. This contradicts -»SP^(/2,w).
Hence not S P ^ ί ^ p ) .

Case 4b: p < n: By WPκ(p,m) we have M(m,i?) and for some
/, h(i) Ih D ^ < DC for some C such that M(p,C) or, if p £
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MINPROOFS, for some q < p, M(q,C). By ->SP*(«,m),
we have n G MINPROOFS. Moreover, if M(n,A), then for
some /, h(i) If- ΠA < DC. Hence ΨFκ(p,n). Thus in both
subcases n <κ p.
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