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Linear Logic Displayed
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Abstract “Linear logic” (LL; see Girard [6]) was proposed to be of use
in computer science, but it can be formulated as a “display logic” (DL; see
Belnap [2]), which is a kind of Gentzen calculus admitting easy proof of an
Elimination Theorem. Thus LL is naturally placed within a wider proof-
theoretical framework that is known to include relevance, intuitionist, and
modal logics, etc., and that permits coherent variations on LL itself —
including the definition of “punctual logic”. In order to accommodate LL,
two independently useful modifications of DL are made. First, DL possessed
an unmotivated identification of two of its structural constants. This iden-
tification is dropped in order to make room in DL for the several proposi-
tional constants in LL. Second, DL possessed an unmotivated bias towards
connectives that, when they are introduced as consequents, have restrictions
put on their antecedents. This bias is abandoned in order to make room in
DL for a dual pair of modal-like “exponential” connectives of LL. The latter
modification requires restructuring the proof of the Elimination Theorem for
DL, rendering it perfectly symmetrical in antecedent and consequent.

1 Introduction To “display” any logic is to exhibit it as a display logic, that
is, as the special sort of Gentzen consecution calculus defined in Belnap [2] (DL),
and thus to place that logic within a certain significant proof-theoretical frame-
work. The aim of this paper is to display “linear logic”, which is a logic proposed
by Girard [6] in connection with some important computer science considera-
tions.! It turns out that the display of linear logic requires some healthy adjust-
ments in the universal features of display logic itself.? One set of adjustments
is required in order to treat the “exponentiation” connectives of linear logic, and
another to treat its four (instead of two) propositional constants while keeping
to a single “family” of display logic. After we are done, we will be able to see
how displaying linear logic permits a well-organized consideration of some of
its essential features and of some of its variants.

Received February 15, 1989



LINEAR LOGIC 15

2 Adjustments required by exponentiation The first reason that the meth-
ods of DL need generalizing is that the DL proof of the Elimination Theorem,
and the DL statement of the conditions sufficient to permit its proof to go
through, have a distinct bias towards logics like intuitionism that reserve a special
place for connectives that, when they are introduced as consequents, have restric-
tions put on their antecedents (“consequent-biased connectives”). Note 14 of DL
observed that its methods could easily be adapted to apply to a logic whose bias
was dual to that of intuitionism, but also said that they could not be applied to
logics biased in both ways at once. This limitation prevents an immediate appli-
cation of the techniques of DL to the two exponentiation connectives of linear
logic, which are absolutely symmetrical between consequent-bias and antecedent-
bias: one is biased one way and the other is biased the other way. We overcome
this limitation of DL by making the universal principles of display logic perfectly
symmetrical in antecedent and consequent, as they ought to be. The cost is a cer-
tain amount of added proof-theoretical tedium that we try to minimize.

In detail, the DL proof of the Elimination Theorem is modified as follows.
Instead of continuing to follow Curry [4] by relying on three stages, here we will
define just two: the Parametric Stage and the Principal Stage. By the Principal
Stage we mean exactly the same as Stage 3 in the argument of DL, §4.3. To
introduce the “Parametric Stage”, we first do some naming. The statements
named “Stage 1” and “Stage 2” in §4.3 of DL contain free M, X, and Y which
are there implicitly thought of as universally bound, as usual. Here we explic-
itly bind X and Y and leave M free, calling the new versions Cons(1) and Cons(2)
respectively. We then define Cons(1) & Cons(2), which will have M free, as the
conjunction of Cons(1) and Cons(2). Duals are newly introduced as An#(1) and
Ant(2), and Ant(1) & Ant(2) is defined as their conjunction. Then the Parametric
Stage is defined as follows: For each formula M, either Cons(1) & Cons(2) or
Ant(1) & Ant(2). As before, we take the Principal Stage and the Parametric
Stage as two quite independent propositions; and as before, it is clear that the
Elimination Theorem follows from their conjunction. The argument of Curry
rehearsed in §4.3 of DL shows how Cons(1) & Cons(2) and the Principal Stage
(there called Stages 1-3) together suffice to prove the inductive step of the Elimi-
nation Theorem, and a dual argument shows that Ant(1) & Ant(2) and the Prin-
cipal Stage imply it as well. (These definitions are spelled out below in the
Appendix.)

Now we need to ask what it takes to prove the Parametric Stage. The poinf
is that sometimes we cannot prove Cons(1) & Cons(2) for each formula M of
a given display logic, nor can we prove Ant(1) & Ant(2) for each M; but we can
prove that for each M at least one of Cons(1) & Cons(2) or Ant(1) & Ant(2)
holds.

The condition under which the proof of Cons(1) & Cons(2) as given in §4.3
of DL goes through for a given M is easy, but we make it just a little easier by
giving it a name. Let us say that a formula M, relative to a display logic, is Cons-
regular (see Curry [4]) provided that: (1) when M is a parametric consequent part
you can substitute an arbitrary structure, and (2) when M is a parametric antece-
dent part you can substitute any structure that could be on the antecedent side
of the turnstile when M has just been introduced as principal in the consequent.

Somewhat more rigorously, if less transparently, a formula M is Cons-
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regular if (1) every rule is closed under replacing consequent parametric M by
arbitrary X, and (2) every rule is closed under replacing antecedent parametric
M by any X such that X | M is the conclusion of an inference with M princi-
pal. And most tediously, even if most rigorously, M is Cons-regular under the
following two conditions: (1) if M occurs as a consequent parameter of an infer-
ence of the logic falling under a certain rule, then the same rule also sanctions
the inference obtained by replacing each member of the congruence class of M
(in the sense of §4.1 of DL) with an arbitrary structure X; and (2) if M occurs
as an antecedent parameter of an inference of the logic falling under a certain
rule, then the same rule also sanctions the inference obtained by replacing each
member of the congruence class of M with any structure X such that X M is
the conclusion of an inference of the logic in which M is not parametric.

Observe that to determine if M is Cons-regular requires checking every rule.
But this is easy to do, for, as explained under the verification of C6 in §4.2 of
DL, as long as any rule is stated with the help of structure-variables (instead of
formula-variables) for its parameters, and as long as there are no extra “side-con-
ditions” or provisos added to the statement of the rule, it cannot possibly pre-
vent the Cons-regularity of any M.

It is easy to check that the Cons-regularity of M suffices for Cons(1) &
Cons(2) holding for M; details were given in the proof of Stage 1 in §4.2 of DL.
Ant-regular is defined in exactly the dual way. So the Ant-regularity of M
suffices for Ant(1) & Ant(2) holding for M.

We say that a formula is regular if it is either Cons-regular or Ant-regular.
The asymmetric requirements C6 and C7 of §4.2 of DL are now replaced by this
perfectly balanced

Regularity condition Every formula must be regular.

In accord with the above discussion, if a rule is closed under substitution of
structures for any of its parametric constituents, as is the case for “most” rules,
that rule cannot be a threat to regularity. Only rules that are not closed under
substitution of structures for parametric constituent formulas can cause worry.

The above adjustments to the universal principles of display logic will allow
us to treat of the exponential connectives of linear logic, as we see below.

3 Adjustments for propositional constants Linear logic involves four prop-
ositional constants, two on the side of truth and two on the side of falsehood,
with negation making a definability-pairing between them. What appears to pre-
vent DL from representing these four propositional constants in a single family
is the fact that DL entered for each of the families it considered a pair of struc-
tural postulates, I*+ and I*—, that identify an antecedent occurrence of I with
that of I*, and also a consequent occurrence of I with that of I*, thus permit-
ting only two propositional constants per family. All that is needed, however,
is to withhold for linear logic the postulates I*+ and I*—, which in any event
are not organic to display logic (the matter is discussed a little in Note 4 of DL).
Then we shall have I and I* in antecedent position representing the two prop-
ositional constants on the side of truth, and I and I* in consequent position
representing the two propositional constants on the side of falsehood.
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4 Linear logic Let us now see how these adjustments to DL permit the dis-
play of linear logic.

Girard’s linear logic is a single-family display logic, with numerous formula-
connectives. The following notation is that of Girard [6], except that we take
advantage of his proposal in Note 2 regarding symbols for par and with: inter-
definable “multiplicative” 1 and 1, and interdefinable “additive” T and 0, are
0-place; A+ (linear negation) is 1-place; “multiplicative” interdefinable A ® B,
A U B, and A —B (times, par, and linear implication) are 2-place, and “addi-
tive” interdefinable 4 M B and A @ B (with and plus) are also 2-place. There
are also the interdefinable multiplicative 1-place “exponentials” !4 and ?A4 (of
course and why not), and interdefinable additive quantifiers A x4 and VxA4. In
all cases the interdefinability is via the linear negation, A+, in a familiar De
Morgan-like way. We use 4, B, and M as formula-variables.

To make a display logic of linear logic, we introduce a single family of
structural connectives: I (0-place), * (I1-place), and - (2-place). That is, as for
any display logic, a structure is defined as I or any formula, or the result of
applying * to one structure, or - to two structures. (A chief part of the point of
the current enterprise is that in displaying linear logic we introduce no ad-hocery,
but only the standard means available in display logic. Otherwise the clarity and
ease with which we display linear logic would not count as evidence in favor of
the power of display logic.) We use W, X, Y, and Z as structure-variables. A
consecution always has the form X | Y, where X and Y are structures. We can
define the “positive” and “negative” parts of a structure in the obvious way (flip-
ping for *), and define “antecedent” parts of X | Y as positive parts of X or
negative parts of Y, and dually for “consequent” parts of X - Y.

Certain postulates are common to every family of every display logic, which
also hold for linear logic: The identity schema 4 + A for each variable A
(§3.1), and the eight display equivalences of §3.2 that permit the display of any
antecedent part of X | Y as the antecedent (standing alone) of a display-
equivalent consecution, and dually for any consequent part. For example, X o
Y F Z is display-equivalent to X F Y™* o Z, which displays X as the antecedent
standing alone.

As structural rules for the display logic version of linear logic, we need
from §3.4 the rules I+ and I— that make I in antecedent position an identity;
the rule CI for commutativity of o, and the rule B which in context guarantees
associativity. (Linear logic distinguishes itself as “linear” by not postulating either
weakening, KI, or contraction, WI.) We also need to add a rule that makes I
in consequent position a “bottom”:

XFHI

Xy (H — K).
From this we have the rule (I* — K), from I'* |- Y to infer X | Y, which makes
I* in antecedent position (not an identity but) a “top”. This rule is a variant on
the rule (I — K) of §3.4 of DL.

As connective-governing postulates common to nearly every display logic,
we also have for linear logic the standard postulates from §3.3 for the multi-
plicative connectives, though the change in notation will make things a little
confusing’:
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DL rule from §3.3 Linear logic connective governed Comment
& ®, multiplicative times meet-like
v LI, multiplicative par join-like
- —o, linear implication conditional-like
~A A?, linear negation negation-like
t 1, multiplicative identity verum-like
for times
f 0, additive identity for plus falsum-like

(see below)

For falsum-like L and verum-like T in linear logic we need to add the obvious
rules that make T and 0 interdefinable by negation, and 1 and L interdefina-
ble in the same way; which is to say, the rule for L copies the DL rules for f,
but with I* in place of I; and the rule for T copies the DL rules for t, but with
I* in place of 1.

Furthermore, for the “additive” connectives M (Girard’s meet-like with)
and @ (Girard’s join-like plus) linear logic postulates the rules that in display
logic are called “structure-free”, since they involve no structural connectives (§6.5
of DL). And Girard’s universal-like and existential-like quantifiers A x and Vx
are also added, with structure-free rules as described in §6.2 for vx and 3x re-
spectively.

All of the above components of linear logic, then, are assembled from exist-
ing ingredients of display logic. What is not envisaged in DL are any connec-
tives like the exponentials ! and ? of linear logic; but they fit smoothly into the
apparatus now that we have made the appropriate symmetrizing adjustments.
For convenience in stating the rules for these connectives, we say that a struc-
ture Y is exponentially restricted if whenever Y contains a formula B, if B is a
positive part of Y, then B has the form !4, and if B is a negative part of Y, then
B has the form ?A. In other words, no formulas except ! A’s are positive parts
of Y, and no formulas except ?A’s are negative parts of Y. Furthermore, Y must
not contain I as a negative part. And we define dual exponentially restricted
dually. Then we postulate the following rules:

YFA AFX
YH!A IAFX

XFA AFZ
XF?4 A+ Z

where X is unrestricted, but where Y must be exponentially restricted and Z must
be dual exponentially restricted. (We would not need to define “dual exponen-
tially restricted” were we content to write Z as Y*.)

There are also two additional structural rules, which are stated with the help
of the concept of exponential restriction, namely, restricted forms of weaken-
ing, K, and of contraction, WI:

Xtz YoYFX
- €Xp WIEXP
x-rrz &) rrx OF9)
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provided Y is exponentially restricted. These rules strengthen those of Girard,
and work even in circumstances in which Girard’s do not work, although in the
special context of the other rules of linear logic Girard’s rules are equivalent to
these. What is crucial is that we are using structure-variables in our statement
where Girard uses formula-variables. When CI and B are present this makes no
difference, but when they are absent it gives us control that we would otherwise
not have.

We will now try to clarify the above by way of summary. We display lin-
ear logic via the following axioms and rules. To save space, we will use =
between the premises and conclusion of a rule (< for reversible rules).

Axioms A F A, for each variable A.

Display equivalences Consecutions in the same group are equivalent (mutu-
ally inferable).

MDN)XeY+Z=sXEFY*Z

RQXFYe Ze X Y ZesXFZY

B XFYsY'FX "= X™}Y.

Structural rules

I+) XFY=1-X}FY

I-) I-X+FY=X}LY

(CI) X Y+FZ=>YX}FZ

B) We(XeY)FZ=>(WeX)oYlLZ

(FI-K) XFI=X}FY

(K™P) XFZ= XoYFZ, provided Y is exponentially restricted
(WI®*P) Yo YF X = Yl X, provided Y is exponentially restricted.

Connective rules (right and left rules for each connective, separated by semi-

colons)

1) IFLIFX=1FX

(L) XFI*=>XF1;1FI*

(T) I'FT;I*FX=>THX

0) XFI=>XF0;0FI

(®) XtAand YFB=>X-Y+FA®B;A-BFcFX=>AQBFX

(W) XFAB=XFAUB;AFtXandBFY=>AUBFX-Y

(—) X AtB=>X+rA—B; XF+tAand B+Y=>A—<BFX*-Y

(*) XFA*=2XFAY; A*FX= A X

(M XtAand XFB=>X+tANB;AFX=>ANB+X;BtX=ANBFX

(®) XFA=>X+FA®B; XFB=>X+FA®B;AtXandBFX=A4®
BFX

(A) X | Aa = X F AxAx, provided a does not occur in the conclusion;
AakF X = AxAxFX

(V) XFAa= XFVxAx; Aat X = VxAx | X, provided a does not occur in
the conclusion

(1) YFA=YF!A, provided Y is exponentially restricted; A F X = 14 F X

(7)) XFA=XF?2:4; AFZ > A Z, provided Z is dual exponentially
restricted.
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5 Elimination Theorem Is the Elimination Theorem provable for linear logic
so formulated? The existing argument of DL will not work, but if we ignore
quantifiers for the moment, those of the above rules involving (dually) exponen-
tially restricted structures are the only restricted rules for linear logic; so it is easy
to see that every formula is regular. In fact, ! A4 is Cons-regular, 74 is Ant-
regular, and all other formulas, atomic or complex, are both Cons- and Ant-
regular (bi-regular, as we might say).

Since this is the distinctive feature of our treatment (over and above the
considerations of DL) it is worthwhile to go into the matter a little; we argue
for the regularity of a couple of sample formulas. First, 4 ® B. This formula
is regular because it cannot occur at all as a parameter in one of the exponen-
tially restricted structures. Therefore, an arbitrary structure can be substituted
for A ® B wherever it is a parameter; that is, it is bi-regular. Second, !A4. Ob-
serve first, however, that ! A4 is not Ant-regular (hence not bi-regular); for exam-
ple, !AFB= !4} !Bis an instance of the rule ! in which !A4 is an antecedent
parameter, but !4 cannot be replaced by an arbitrary structure, X, without
violating the exponential restriction on t!. But !4 is Cons-regular and there-
fore regular. In the first place, if it occurs parametrically as part of an unre-
stricted structure in an inference, it is obvious that it can be replaced with a
structure X ad lib. Secondly, suppose it occurs parametrically as part of an expo-
nentially restricted structure, Y, in an inference. All such structures occur as
antecedent parts in our rules (there are only three rules to check), so the occur-
rence of ! A is positive or negative in Y according as it is antecedent or conse-
quent in the consecutions forming the premise and conclusion of the inference.
It cannot be a negative part of Y (all such parts of exponentially restricted Y
have the form ?B by definition of exponential restriction) and so must be a
positive part of Y and thus an antecedent part of the premise/conclusion con-
secutions. But in this circumstance the definition of Cons-regularity requires
replacement not by arbitrary structures but only by structures X that can appear
on the left in the rule !, which is to say, structures that are themselves expo-
nentially restricted. And it is easy to see that replacing a positive formula of an
exponentially restricted structure by an exponentially restricted structure gen-
erates another exponentially restricted structure, so that the replacement of !4
by X will still fall under the same rule. Thirdly, if !4 occurs parametrically in
a dual exponentially restricted structure, a dual argument suffices, including the
tongue-twisting but obvious remark that the replacement of a negative part of
a dual exponentially restricted structure by an exponentially restricted structure
results in a dual exponentially restricted structure.

So the Elimination Theorem is provable for quantifier-free linear logic with
exponentials.

As for the quantifier rules of linear logic, they are structure-free rules, like
those for Mand @, and accordingly are of little special interest. It is true that
the restrictions on the rule FA and its dual VI prevent the regularity of any
formula whatever (for example, an arbitrary structure cannot be substituted for
a parametric formula in an instance of FA and still be an instance of the same
rule), but as Gentzen [5] showed in an exactly similar situation, given proofs of
X FM and M |- Y one can always find by substitution a pair of proofs such
that relative to those proofs there is enough regularity. (Perhaps we should define
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this more general concept, but it is not so clear that it is worth it if quantifiers
are the only example.) So quantifiers are no bar to the Elimination Theorem for
all of linear logic.

With the help of the Elimination Theorem, it is no more than “axiom-
chopping” to show that I A holds in the display logic formulation if and
only if A does in the Hilbert formulation, and that 4 —B holds in the Hilbert
formulation if and only if A | B holds in the display version. They are equiv-
alent.

6 Variants of linear logic The known formulations of linear logic seem to
depend on the associativity and commutativity of &), which is in certain respects
a defect. The display logic formulation of linear logic does not depend on them,
and it therefore permits us to consider variants of linear logic that are nonas-
sociative or noncommutative. The reason is that our treatment of the various
connectives and — especially —our argument for the Elimination Theorem, even
with respect to exponentials, do not at all depend on the postulation by linear
logic of either associativity or commutativity. We can drop these postulates and
still have a coherent concept of all the connectives, including exponentials, or
add other postulates, or subtract some and add others; the rationality of the con-
cepts carried by the various connectives, as expressed in the rules given above,
is completely independent of which structural rules are postulated for a given
family, and of which connectives are present. This is a typical strength of dis-
play logic. The upshot is that we may look to the desired applications in com-
puter science as the sole determiner of whether we make our logic associative
or commutative or whatever.

There is also no bar to adding further exponentially restricted structural
properties if applications should suggest the wisdom of so doing. For instance,
if we are treating of a calculus weaker than linear logic for which associativity
and commutativity are not postulated, we can add exponentially restricted rules
of associativity or commutativity; all formulas would continue to be regular, and
the Elimination Theorem would remain provable. Indeed, we could just add the
exponentially restricted structural rules we liked, since none are needed for, and
none stand in the way of, the Elimination Theorem.

To make the point, let us define “punctual logic” as the one that goes
beyond linearity by postulating no structural rules (except doubtless I+ and I—
for the multiplicative family), neither associativity nor commutativity nor
weakening nor contraction. Punctual logic is still “strong enough” in the sense
of §I1.3 of Girard [6], since if we give the missing structural properties back to
the exponentials we can still translate intuitionist logic. That is, the postulation
of commutativity and associativity for the multiplicative family doubtless has
a point, but not the point of making the logic strong enough to contain intui-
tionism. The proof, resting on Girard’s work, is routine.

(One keeps wondering whether these techniques suggest a “multiplicative
quantifier” that is related to ® in the way that additive A is related to addi-
tive M. Nothing has yet emerged, however.)

Linear logic postulates only one family, (I,*,7), a fact that may be impor-
tant for its intended applications; but as a logical matter it needs to be noted
that the coherence of the concept of exponentiation, or of other features of lin-
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ear logic, does not depend on this adherence to a single family. For example,
one could add the Boolean family (§5.1 of DL), for which one postulates “all”
structural rules. If one did so, one would immediately obtain distribution for
the “additive” connectives A M B and A @ B, without further postulation con-
cerning them, as mentioned in §6.5 of DL. One would then have to choose how
to define “exponentially restricted”, a choice that should be guided by the
requirement of regularity as herein defined. Any such choice that renders all for-
mulas regular will permit the proof of an Elimination Theorem and hence will
be coherent (but of course not necessarily of use in computer science applica-
tions).

In the light of Rezus [9], it is perhaps useful to observe that there is already
present in linear logic an S5-type of modality, with [1A4 definable by T —A, as
can be seen from the point of view of display logic by examining the structural
rules used as the means for defining S5 in §5.6 of DL. The details of the transfer
from DL are, however, a little confusing, because there we: (1) identified I and
I* in similar positions and (2) stated the properties indifferently in terms of I
or I*. But here, having (1’) failed to identify I and I'* in similar positions, (2')
we have in each case to decide whether here it is I or I* that is to have the prop-
erties there indifferently attributed to I or I*. Having made the transfer prop-
erly, however, it is doubtless better to restate uniformly the properties in terms
of I in consequent position, keeping in mind for this purpose the equivalent def-
inition of [JA as 0 LI 4. For example, the key Brouwersche postulate of §3.4
of DL is the inference from X Y FIto Yo X | I, which is here just a special
case of commutativity. In any event, given the following rules it is easy to see
that linear logic distinguishes no more than six “modalities” in the sense of Parry
[8], the same ones distinguished by S5: A4, 4, 04 = (O(A*))*, and the
negations of these.

XFI-A AFX

XFOA4 OAFI-X

XFA X*oAFI
T X*)"F0A4 CAFX

For example, here is a proof that O[] A implies [1A4; it illustrates the precision
with which the rules interrelate:

AFA Identity
OAFI-A ((m)p]
OA-A*FI Display equivalences
OAcA*F @* - T*)* FI-K
OAdA-(I*-I*)FA Display equivalence
(OA-T*)-I*F A BF
OA-I*FI-A Display equivalence
OA4-1*+F0A ()
OA4-OA* FI Display equivalences
OA4*-OA FI Brouwersche; here just CIt

OOA FOA ()
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Observe that adding these rules causes almost no extra work in verifying that
the Elimination Theorem goes through; it is obvious to the eye that all formulas
remain regular. Note in particular that these rules have no “side-conditions” or
provisos on their parameters, even though the connectives introduced are modal
in character.

How do we know that [JA stays modal and does not collapse, and in par-
ticular that the six modalities do not collapse? Meyer [7] shows that the so-
defined (1A together with other connectives is not just S5-like but constitutes
precisely S5 when the context is not linear logic but its proper supersystem
(except for exponentials), the calculus R of relevant implication. And the Elimi-
nation Theorem tells us that exponentials constitute a conservative extension of
linear logic.

How do we know that [JA does not yield as much as S5 in the context of
linear logic (instead of R)? We know this because of the absence of contraction.
And this leads us to wonder if it would be interesting to add a limited form of
contraction to make the [JA part of linear logic even more S5-like, say by
postulating the inference from X o X F 1. Yto X 1. Y, so that we could
prove (0A —([0A—B) | 0A —B. That would appear to be following the lead
provided by Girard’s treatment of exponentiation; perhaps. Etc.

I have not mentioned semantics. Beyond those of Girard [6] and Avron [1]
and works cited there, permit me to call your attention to Routley et al. [11] as
(among other things) a sourcebook on the semantics of the family of weaker sys-
tems to which linear logic belongs.

Appendix The definitions leading to a reshaping of the DL proof of the
Elimination Theorem are as follows. The words “parametric” and “principal”
are to be understood as in §4.1 —and especially Definition 4.1 —of DL.

Cons(1) = Stage 1 as a property of M. For all X and Y: if (Hyp Cla) X M is
derivable; and if (Hyp C1b) for all X', if there is a derivation of X’ I M end-
ing in an inference in which displayed M is not parametric (i.e., ending in an
inference in which displayed M is principal), then X’ |- Y is derivable; then
X | Y is derivable.

Cons(2) = Stage 2 as a property of M. For all X and Y: if (Hyp C2a) M+ Y'is
derivable; if (Hyp C2b) for all Y’, if there is a derivation of M I Y’ ending in
an inference in which displayed M is not parametric (i.e., ending in an inference
in which displayed M is principal) then X | Y’ is derivable; and if (Hyp C2c)
X F M is the conclusion of some inference in which M is not parametric (i.e.,
in which M is principal); then X I Y is derivable.

Ant(1) = Dual stage 1 as a property of M. For every X and Y: if (Hyp Ala)
M | Y is derivable; and if (Hyp Alb) for all Y’, if there is a derivation of
M+ Y’ ending in an inference in which displayed M is not parametric (i.e.,
ending in an inference in which displayed M is principal), then X | Y is deriv-
able; then X | Y is derivable.

Ant(2) = Dual stage 2 as a property of M. For every X and Y: if (Hyp A2a)
X F M is derivable; if (Hyp A2b) for all X, if there is a derivation of X’ F M
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ending in an inference in which displayed M is not parametric (i.e., ending in
an inference in which displayed M is principal) then X’ | Y is derivable; and if
(Hyp A2c) M | Y is the conclusion of some inference in which M is not para-
metric (i.e., in which M is principal); then X | Y is derivable.

Cons(1) & Cons(2) = Stage 1 and Stage 2 conjointly, as a property of M: both
Cons(1) and Cons(2).

Ant(1) & Ant(2) = Dual stage 1 and Dual stage 2 conjointly, as a property of
M: both Ant(1) and Ant(2).

Parametric Stage For all M, either Cons(1) & Cons(2) or Ant(1) & Ant(2).

Principal Stage Assume that for each of X F M and M I Y there are deriva-
tions ending in inferences in which the respective displayed M’s are not para-
metric, and that for all X', Y’ and proper subformulas M’ of M, X' } Y"' is
derivable if X’ F M’ and M’ | Y’ are. Then X | Y is derivable.

It is elementary by induction on the complexity of formulas that if the
Parametric and Principal Stages hold for a calculus, then so does the Elimina-
tion Theorem: if X + M and M | Y are both provable, then so is X |- Y.

NOTES

1. “Linear logic is the first attempt to solve the problem of parallelism at the logical
level” ([6], p. 3). And though the pre-echo is striking, it does seem unlikely that
Bosanquet [3] was a genuine anticipation: “What makes Inference linear is respect
for the independence of its terms” ([3], p. 20).

2. We presuppose what we must: that the reader is familiar with both linear logic
(Girard [6]) and display logic (Belnap [2]), which we refer to as DL. The following
were quite helpful for understanding linear logic: Avron [1], Rezus [9] and [10], a
lecture by Girard that was hosted by Carnegie-Mellon University in the fall of 1987,
and blackboarding with Andrea Asperti shortly thereafter. Avron [1] in particular
is outstanding in relating Girard’s work to the mainstream of studies in nonclassi-
cal logic. Thus, one could take Avron [1] and Belnap [2] as sufficient background
for this paper. It needs to be added that, alas, the background is essential —to sum-
marize 100 pages of Girard or 42 of Belnap would be a waste of trees.

3. In this study the notation for connectives is a particular headache, partly because
there are so many connectives with which to deal, partly because Girard [6] employs
totally nonstandard notation for standard purposes, and partly because DL reluc-
tantly goes its own way over notation for connectives (since its purposes require nota-
tion for indefinitely many families of connectives). Avron [1] introduces some sanity,
which we recommend, but we nevertheless choose to employ the connective notation
of Girard [6] in order to make it indubitably clear that it is linear logic that is being
presented as a display logic.
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