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Infinite Sets of Nonequivalent Modalities
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Abstract The set of irreducible nonequivalent modalities for a class of nor-
mal modal logics is determined. All the logics considered (KT, KD, K4, KB,
among others) have this set infinite.

Introduction The study of irreducible nonequivalent modalities has been
mostly devoted to those modal logics which have a finite number of such modal-
ities. In all these cases the proof that a logic L has finitely many nonequivalent
" modalities is obtained by determining the set of irreducible modalities for L.
Some attention has also been paid to the matter of showing that certain logics
have infinitely many nonequivalent modalities; in fact it has been proved that
the logics S2 [4], KT [5], KD4 and KTB [3], and KBAlt; [7] belong to this class
(see also [1], §3.2, for a summary). But, in all these cases, the proof consists in
finding an infinite set of modalities, usually obtained by reiterating one oper-
ator, which are nonequivalent for the logic under examination; therefore the set
of the irreducible nonequivalent modalities for such logics remains undetermined
(the only exception is constituted by the logic K, since Kit Fine has shown that
no distinct modalities are K-equivalent).

In Section 2 we will show that if L € KAlt; or L € KTAlt; then no distinct
modalities are L-equivalent; as a consequence we obtain, if we indicate by Mod
the set of all modalities (in normal form) and by Y the set of nonequivalent
irreducible modalities of L, that Yxp = Yyt = Mod. On the other hand, we will
show in Section 3 that the set Y4, although infinite, is properly contained in
Mod and is structurally simple; it is in fact obtained by reiterating the initial
operator of the modalities of Yg4, which is, as is well-known, a finite set. More-
over, in this context the addition of the axioms D and T is not useless, because
it holds that YK4 g YKD4 9; YKT4 (i.e., Ys4).

1 Preliminaries Modal formulas are formed in the usual way from the lan-
guage {P, A, v, -, =, =, [1, ¢}, where P is the set of propositional variables
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and O, O are the so-called modal operators. A (normal) modal logic is a set
of modal formulas containing all classical tautologies and the formula O (p —
qg) - (Op — Ogq), and which is closed under modus ponens, necessitation, and
the rule of substitution. K denotes the smallest modal logic; it satisfies the fol-
lowing proposition.

Proposition 1.0 KFE®->Viff KFOP-> OV iff KFOP - OV,
The names of the following formulas are standard:
D=0Op- Op, T=0p-p, B =p-0O0p, and 4 = Op - 0O0p.

We shall also consider the formula Alt, = Op;,vO(pi—=p2)v...vO(PiA...A
Dn = DPn+1). Semantic structures are frames (ordered pairs F = (W, R) where W
is a nonempty set and R € W x W) and models (ordered pairs M = (F, p) with
F a frame and p a function, called a valuation, from P into @ (W); we write
M = {W,R,p) instead of W, R),p)). The well-known Kripke truth-definition
defines the notion “the formula & is true at the point w of M” (in symbols
M E ®[w]); as usual, M F ® means that M F®[w] foreachwe W, and FF®
means that (F,p) F ® for each p on F. The following result is standard: KD,
KT (also called T), and K4 are complete with respect to the class of models
whose relations are, respectively, serial, reflexive, transitive. Moreover (see [7]),
F E Alt, iff |{v: wRv}| < n for each w € W holds.

Proposition 1.1 Let M be a model whose relation is reflexive; then
(i) M E ® implies M F O® and M E 0P
(i) M E —® implies M F ~0® and M E 0.

Let F = (W,R) and w,v € W; we write wR"v if there exist uq,...,u, of
W such that w = uoRu; R . .. Ru, = v. We denote by R* the ancestral of R, i.e.
R* = {{w,v): there exists an n such that wR"v}.

Following [7] we define a formula ¢ to be a modality if it is expressed in
the language {—,[3,0,p}.! A modality ¢ is in normal form if ¢ = t,1,,...,
txp where T, € {—=,0,0} and if i # 1 then ; # -. From K + (=0—p = Op) A
(—-O-p = Op) it follows that each modality ¢ is equivalent to a modality in
normal form; throughout the paper we consider only modalities in normal form,
denoted by @, ¥, 6, &, etc. If T; # — then the modality is positive, otherwise it
is negative. 1™ and ¢ denote strings of m [J-operators and m O-operators
respectively, and [(1°¢ = 0% = ¢. Thus we may indicate each positive modal-
ity by the form

Y =0Ohok,  Ok-10kp,

where k; = 0 implies that k; = 0 either for each j < i or for each j > i. This
condition, instead of the more usual “k; = 0 only if i = 1 or i = r”, will be
convenient in our proofs; so, for instance, the modality ¢[J%p may be writ-
ten in the forms %01 [0%20% and O°0°°0!1 020 %, but not in the form
0% 020202 0%. Moreover, when it will be useful to distinguish between the
exponents of the [J-operators and those of the ¢-operators, we will write ¢ in
the form

¢ = DOmMmomOmorz,  OMs O sp,
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The dual of a modality ¢ is the modality which results from ¢ by interchang-
ing OO0 and ¢ throughout ¢. Obviously, if ¢ and ¥ are equivalent in a logic L,
so are their duals; we shall call this property “duality”.

We set FO = <[w0},®>a Fl = <{W1 }a{(whw1>}>a F2 = <{ wy, UZ}’ {Wz,l)z} X
(w2, 021, p14(P) = (w1}, p1-(P) = D, p2(p) = {w2}.

Lemma 1.2 Let X be any finite string of modal operators (i.e., Xp is a pos-
itive modality). We have that Fy F OXp, Fo ¥ OXp, (F1,01+) F Xp, {Fi,01_) §
Xp, {F5,py) EXOp, (F,,p,) ¥ XUp.

The proof is trivial.

2 Nonequivalent modalities in KT We define the frame Fy = (Wr,Rt) as
follows: Wr is the set of finite sequences of 0 and 1 (as usual, {a;,...,as) *
(by,...,by=(ay,...,a5,by,...,b,)), and Ry = {w, w) {w,w % {0)), (W, w *
(1) :w e Wr} (see Figure 1).

® (0,0 *0,1» ® (1,0 ® a1

\/ \/
\0/

)
Figure 1

FT = <WTaRT>

We indicate by °| w| and !|w| respectively the number of 0’s and 1’s in the
sequence w. Let X € Wr; we set

X0"={ue Wr:u=v%*(0,...,0) for veE X}
()
n-times
X1"={ueWr:u=v=*{l,...,1) for v € X}
—
n-times

XA" = {ue Wr:u=v*v', where v € X and
the length of v’ is less than or equal to »}.

If X = {w] we simply write w0", w1”, and wA" instead of {w}0”, {w}1", and
{w}A". Observe that wA” is the set {v € Wt : wRFv for m < n}, and hence,
since Ry is reflexive, wA” = {v € Wr : wRRv}.
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Lemma 2.0 Let y = O™ oM O™O"2 | O™sOMp; there exists a valuation
py on Fr such that {Fr,py) Fy[w] iff w = @ or w terminates with 1.

The intuitive idea behind the proof is as follows: Suppose that v = & or
v ends in 1. Among the infinitely many sets X S Wr having the property that
if p is true at each point of X then y is true at v, we choose the set f(v) (the set
of “green” points relative to v) following this criterion: whenever the subformula
O¢ of Y must be true at z in order that  be true at v, we impose that ¢ be true
at z * (1). In other words, looking at Figure 1, we choose the set f(v) as far on
the right as possible among the X’s. If, on the contrary, the point « ends in 0,
we choose f(u) (the set of “red” points relative to #) among the infinitely many
sets Y © Wt having the property that if p is false at each point of Y then ¢ is
false at u, following this criterion: whenever a subformula (¢ of ¥ must be false
at ¢ in order that y be false at u, we impose that ¢ be false at ¢ * {0) (in this case
f(u) is as far on the left as possible). Since we shall show that no point of Wy
must be simultaneously green and red, then p(p) = {w: wis green relative to
some v} will be the required valuation.

Proof of Lemma 2.0: If ¢ is a positive modality then, for each w € Wy and
each p on Fr, there hold:

(1) (Fr,p) E O%¢[w] iff (Fr,p) E ¢[w’] for each w’ € wA®

(2) {Fr,p) ¥ O°¢[w] iff (Fr,p) ¥ ¢[w’] for each w' € wA®

(3) {Fr,p) F O%o[w] if (Fr,p) F ¢[w]1°]

(4) (Fr,p) ¥ O¥o[w] if (Fr,p) ¥ 6[w0°].
Let V=(veE Wr:v= D or v terminates with 1} and U = Wy — V. We
define a function f from Wr into ®@(Wr) as follows: if v € V then f(v) =
vA™ 1M AM21"2  A™s1%s and if u € U then f(u) = u0™ A" Q0™2A"2, 0™ A",
From (1) and (3) it follows that for each p on Fr and eachv € V

() if f(v) € p(p) then (Fp) Fy[v],

while, from (2) and (4) we obtain that for each p on Fr and each u € U
(6) if f(u) N p(p) = D then {Fp) F ¢ [u].
Next we will show that

M U srmn U fw=2.

vevV uelU

Let v € Vand u € U: we show that f(v) N f(u) = &. Let z € f(v) and ¢ € f(u).
If vR*u (i.e., u = v * x for a sequence x) then

S s
lz] =% v| + X m; and °|¢] = Olu| + D) m;.
i=1

i=1
But vR*u, v € V, and u € U imply that °|u| > °|v| and, therefore, °|z| <
S
%/¢| and z # ¢. On the other hand, if uR*v then !|z| = !|v| + D) ;> u| +

i=1

S
> n; = '|¢| and hence z # ¢. Finally, suppose that «R*v and vR*u and let
i=1

v=HXay,...,aq)and u =(by,...,b.). Since u # v there exists an i < inf{r,r’}
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such that @; # b; and hence, since ¢ and z start respectively with # and v, the
ith component of z differs from the ith component of ¢, i.e. ¢ # z, and this
concludes the proof of (7). Now let py(p) = U f(v). By (7) we have that

py(p) N U f(u) = & and hence from (5) and (6) it follows that p, satisfies

the Lemma

Theorem 2.1 If £ and 6 are distinct modalities then KT It £ = 6.

Proof: If £ is positive and 0 negative, then from F; F KT and Lemma 1.2 it
follows that KT I £ = 6. If ¢ and 6 are both positive we distinguish two cases:

Case A. 0 is a subformula of £. Then, since £ # 0, either 00 or (16 are subfor-
mulas of £. Let us consider (Fr,p4); since for each w € Wr there existav e V
and a u € U such that wRtv and wRtu, from Lemma 2.0 we obtain that 06
and 16 are respectively true and false at every point of Wr; i.e., {Fr,0p) F 08
and {Fr,py) F = 0J0. Now, if 08 is a subformula of £, then by Proposition 1.1(i)
we obtain that {(Fr,09) F & which, together with (Fr,p4) F 0[(0)] (see Lemma
2.0), implies that KT ¥ £ = 6; on the other hand, if (10 is a subformula of £,
then from Proposition 1.1(i) it follows that (Fr,pe) F —& which, together with
(Fr,p9> FO[ D], again implies that KT I+ £ = 0.

Case B. Neither 6 is a subformula of £ nor £ is a subformula of 6. Let ¢ be the
largest common subformula of ¢ and 6, and suppose that ¢y is a subformula
of 6 and OOy of £. Following the proof of Case A we obtain that (Fr,p,) F 0
and (Fr,py) F 7&.

Remark 2.2 In order to show that two modalities £ and 6 are not equiv-
alent in a logic L, it is enough to find a point w of an L-model M such that
ME £[w] and M ¥ 6[w], or vice versa. By the proof of Theorem 2.1 we real-
ize that KT “separates” the modalities in a stronger sense; in fact, for each £ and
0 we have obtained a model M such that M E £ and M ¥ 6 or vice versa. Fur-
thermore, the proof of Case B is still stronger: If neither ¢ is a subformula of
0 nor 0 of £, there is an M such that M k £ and M F —0 or vice versa. But this
fact cannot be extended to Case A: If £ = Op and 6 = p it is impossible to find
a KT-model M such that M E £ and M F =6 or M F 6 and M F —¢. This limi-
tation that KT-models have in separating modalities persists even for the class
of all Kripke models (i.e., the class of models for K): we show that it is impos-
sible to find a model M = (W, R,p) such that M F Op and M E -100p, or
ME OOCOp and M E ~Op. In fact, if W contains a terminal point (a point
w such that wRv for each v € W) then M ¥ —-UOp and M ¥ -OO0p. Hence
suppose that W is without terminal points; then M F Op implies that M E
O0Op and M E OO Op, and thus M ¥ ~O0O0p. On the other hand, M EOCOp
implies that M F ¢Op, and hence M F Cp[w] for a w € W; therefore M I
=[Op.

From Theorem 2.1 it also follows that in KD all distinct modalities are
nonequivalent. Moreover, this theorem can be strengthened as follows:

Corollary 2.3 If £ and 0 are distinct modalities and L < KTAlt; then L I
E=0.
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Proof.' FT E KTA1t3.

At this point the following question arises: Does Corollary 2.3 hold if we
substitute KTAlt; by KTAlt,? The answer is negative, as shown in the follow-
ing theorem.

Theorem 2.4  KTAlt, F O0O%p = O200p.
Proof: First we show that
(1) KTAlt, = Th(F*), where F* = (w,{{m,m),{m + 1,m):m € w}).

In fact, using methods analogous to those used in the Tree Lemma of Sahlquist
(see [6]), it is possible to show that KTAlt, is complete with respect to the class
X of finite reflexive linear intransitive trees; i.e. it is complete with respect to
K(O0,...,n}, {mmy:m=<n}U m+ 1,m):m < n}), n € w}. Since each frame
of X is a generated subframe of F*, we obtain (1). Hence, setting ¢, = 0J00?p
and v, = 0200p, we must show that F* E y, = y», i.e. that for each p on F*
and each m € w, {(F*,p) FyY; = y,[m] (we simply write mFy; =¢,). If m=3
then the following (a)-(e) are equivalent, and so are (a’)-(e’):

@ mEy,

®)ymEOO?pand m — 1 FOO%p

©m-1EDO% or (mEO?% and m — 2 E O?%p)

dm-iFpforl=si<3orm—jEpforO0=<j=<3

em—ikEpforl<i=<3

@) mEy,

bO®)Ym—-iEOOpfor0=<i<?2

(¢Y(mEOpand m—2F0Op)or (m—1FOpand m—2F Op) or
(m—1kE0Opand m — 3 FOp)

dym—-—ikEpforOsi<3orm-—jEpforl=<j=<3orifm>3,
m—rEpforl<sr=<4

e)ym—jEpforl=<j=<3.

Since (e) = (¢’) we obtain that m F ¢ = ¢,. In the same way we can show that

2y (OEpand 1 Ep)=2Fy,
IF¢1‘='0|=17¢*1F¢2
OFY120Fp=0FEy,,

thus concluding the proof.

Theorem 2.5 The set T of all logics without equivalent distinct modalities,
ordered by inclusion, is without maximum.

Proof: Let us consider the logic KAlt; (=K U {Op —» Op}). Since F; is a frame
of KAlt,, if £ is positive and 6 negative then KAlt, I £ = 6. Hence suppose that
£ and 6 are both positive and let X be the largest initial part common to ¢ and
0; the possible cases are the following:

(1) £ = XOy and 0 = XO¢ (or vice versa)
(i) £ = XOy and 0 = Xp (or vice versa)
(iii) £ = Xp and 6 = XO¢ (or vice versa).
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Let s be the number of operators in X and consider the frame N = {w,{{n +
1,n):n € w}). We have that N E XOy [s], N ¥ X0¢(s], and (N,p) F Xp[s]
iff 0 € p(p). Hence, for all of the above cases, N ¥ £ = 0. But, on the other
hand, N F Op — Op, and therefore no distinct modalities are equivalent in
KAlt;, and KAlt; € I'. Moreover, from Theorem 2.1 it follows that KT € T.
Now, let us consider KTAlt; (=KT U KAlt,). From KT } Op — ¢Op and KAlt, |-
Op — Op it follows that KTAlt, + Op = Op, and hence KTAlt; ¢ T'.

3 Nonequivalent modalities of K4

Lemma 3.0 Let X be a finite, possibly empty, string of modal operators. The
following are theorems of K4:

®y: O0XOp = 0O0p
$,:00X0Op=000p
&,: 00X0Op = 00p
®;: 00X0p = 00O0p.

Proof: First note that the following may be easily established as theorems of K4:

(1) O00p = OOp
() 000O0p = OO0p
(3) 00O0p = OO0,

We now prove ®, inductively. The case where X is empty is (1). Otherwise
X is OY or Y. We show that in each case the following is a theorem:

@) 00XOp = OOYOp.

If X'is OY then (4) is (1) with YOp/p. If X is 1Y and Y is empty then (4) is (3).
If Xis Y and Yis OZ then (4) is (3) with ZOp/p. If X is Y and Y is (IZ then
(4) is (2) with ZOp/p.

As regards ®,, if X is empty then ®, is a tautology. Otherwise X is OY or
0Y. We show that in either case

(5) O0X0Op = O0YOp.

If X is OY then (5) is (1) with YOp/p. If X is OO Y then: if Y is empty then (5)
is (2); if Y is OZ then (5) is (3) with ZOp/p; if Y is (Z then (5) is (2) with
ZOp/p.

Since ®, and ®; are duals respectively of &, and ®,, the proof is con-
cluded.

Theorem 3.1 Let Y, = {(O™MO™MO™sp, O™ [O™20™3p:m,,my € {0,1}}
and Yo=Y, U [{¢:¢ € Y;}. We have:

(i) for each modality  there exists a £ € Y, such that K4y = ¢

(i) if£&,0 € Yoand &£ + 0 then K4 £ = 0.

Proof: The proof of (i) trivially follows from Lemma 3.0. Regarding (ii), since
Fy, F;, and F, are K4-frames, we need only, via Lemma 1.2 and duality, to
consider the case in which ¢ and 6 are positive modalities whose first and whose
last operators are (1. Then we set £ = (0™ 0™20™p and 6§ = (0" O"2(0"p and
consider a model N = {w,>,p) where p is such that 0 & p(p). If m; > n, then
(since N ¥ p[0], N ¥ Oy[0], and N E Oy [0] for each y) we obtain that N F
£[ny] and N ¥ 6[n,]. Hence suppose that m, = n,; since £ and 6 terminate
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O7o0p 22 OH100p
1 1
an Z I—_—,n+lp :f_: Dnop Z Dn+1<>p
k:;' 14
p vl
R
0"+1p Z onp 2‘: <>n+1Dp Z O”I:lp
I I
O"HO0p 2 0"0O0p
Figure 2.

with [0, from the fact that £ # 0 it follows that my =m;=1and n, =n; =0
(or vice versa). But N ¥ O™ O0p([m,] and N E O™ p[m,], and so the proof
is concluded.

Using Theorem 3.1 we can also draw the pattern of implications among
irreducible modalities of K4. Figure 2 pictures the implications among positive
modalities; for their negations reverse the arrows. The arrows not proved in The-
orem 3.1 are straightforward.

Corollary 3.2 Let Yp, = {O00p,00p,0"p:n € w} and Yps = YHs U
{—¢:9 € Yhs). For each modality y there exists a £ € Yp, such that KD4
v=E¢andif £,0 € Ypsand £ # 0 then KD4 £ =6.

Proof: By Theorem 3.1 we need only show that: (i) KD4 i 0"+ p — O”"p, (ii)
KD4 |- 0"+ Op - [0"Op, and (iii) KD4 OO 0p —» 07O 0p. Let us consider
the model N’ = {w,<,p) where p(p) = w — {n}; we have that N’ ¥ O0"p[0]
and N’ F 0"*1p[0], and hence (i) is proved. Regarding (i) and (iii), we show
that for each ¢ KD4 I (1"t 0¢ — [0"O¢. Suppose that F i 0"0¢[w], i.e. FE
O"O-¢[w]; hence there exists a v such that wR”v and F F (0-¢[v]. By tran-
sitivity and seriality it follows that F F 0%2=¢[v] and F E OO ~¢[v]; thus we
obtain that F F 0"*'0=¢[w] and F § 0" 0¢[w].

Finally, we observe that for the systems KB (i.e., K + p — (0Op), KTB, and
KDB it is possible to show that any positive modality is equivalent to a modality
of the form O™ ™2, . O™s-1O™sp where for each i, 1 < i < s, if m; # 0 and
m; < m;,, then m;_; < m;. No distinct modalities of this form are equivalent.

NOTE

1. Under an alternative definition (see for instance [1] or [3]), a modality is a sequence
X of symbols from the set {—,[1,0}. In such a case X and X" are said to be equiv-
alentin Lif L FXp=X'p.
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