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Abstract: Some techniques for the study of intermediate constructive logics
are illustrated. In particular a general characterization is given of maximal
constructive logics from which a new proof of the maximality of MV (Med-
vedev's logic of finite problems ) can be obtained. Some semantical notions
are also introduced, allowing a new characterization of MV, from which a
new proof of a conjecture of Friedman's and a new family of principles valid
in MV can be extracted.

1 Introduction The purpose of this paper is to illustrate some techniques for
the metamathematical investigation of intermediate constructive logics (id's). In
Section 3, a general characterization of the maximal icΓs is given, which stresses
the crucial role played by a class of formulas we call "negatively saturated" (neg.

sat.).
In Section 4 our characterization is applied to obtain, as a particular case,

a new proof of the maximality of MV, Medvedev's logic of finite problems intro-
duced in [11]. The first proof of the maximality of MV was given by Levin [8]
in 1969, but it remained apparently unknown; as a matter of fact, in 1982 Kirk
asked whether MV was maximal ("weakly maximal" in Kirk's terminology, see
[6]), and in [10], where another proof of the same result is given, Maksimova
does not quote Levin's work.

The second technical tool, illustrated in connection with Theorem 5, is a
syntactical procedure, first introduced in [12], for proving the constructivity of
a logic. The qualifying feature of this technique is its wide applicability; in par-
ticular, it is applicable to systems for which no Kripke semantics is known (see
[15],[16]).

Finally, variants of the original semantics of Medvedev's logic [11] are
given, which turn out to be fruitful and allow us to define not only MV (see Sec-

Received September 25, 1986; revised July 20, 1987



544 PIERANGELO MIGLIOLI et al.

tion 4), but also the logics F d (see Section 4) and F i n t (see Section 5). Such
semantics are introduced here mainly as technical devices; for an attempt to
make them plausible from a philosophical point of view, see [14]; their computa-
tional use is illustrated in [13].

Our semantics are used in Section 6 to give a new proof of Friedman's
Problem 41 (see [2]). A previous proof of this result was given by Prucnal [18].
The property that Prucnal and others call "structural completeness" is called
"smoothness" in this paper (according with the terminology of [1]).

2 General notations and conventions The set of well-formed formulas (wffs)
will be the set of formulas generated in the usual way, starting from the propo-
sitional variables, the logical constants Λ, V, ->, and the propositional con-
stant J_ (which denotes the "false" or "inconsistent" proposition). The negation
-A of a wff A will be intended as an abbreviation of A -* _L. Also, we will say
that a wff A is a negated formula iff A = ~ B (for some wff B) or A = ±.

A substitution will be, as usual, a function associating wffs with the prop-
ositional variables. We will indicate substitutions by symbols such as σ, σ', and
so on; by "σAn we will indicate the formula A' obtained by applying σ to A (i.e.,
by substituting all the occurrences of each propositional variable p in A with
σ(p)). INT and CL will be, respectively, (propositional) intuitionistic and clas-
sical logic. If ί is any set of wffs, then "INT U JF" will denote the formal sys-
tem (closed under detachment) obtained by adding to INT the set of axioms 3\

We will deal with classical interpretations; as usual, "T" and "F" will denote
truth values.

3 Operators on constructive logics and maximality By an intermediate logic
(il) we mean a consistent propositional deductive system closed under substitu-
tion and detachment, such that the set of its theorems includes all the formulas
of intuitionistic propositional logic INT.

By a logic L we mean both a deductive system and its corresponding set
of theorems; when A is a theorem of L we write indifferently Vj A or A E L.

By a nonstandard intermediate logic (nsil) we mean a consistent proposi-
tional system L containing all intuitionistically valid formulas, closed under
detachment and under the following rule of restricted substitution:

(rs) If A E L then orA E L, for every σr associating negated formulas with
propositional variables.

One easily proves the following proposition:

Proposition 1 If L is a nsil and A E L, then A is classically valid.

Let L be any nsil; by the extension of L we mean the propositional system
E(L) (closed under detachment) obtained by adding to L all the axioms of the
form ~ ~p ->/?, where/? is any propositional variable.

The following proposition can be easily proved:

Proposition 2 If L is a nsil, then E(L) is a nsil.
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The set of H-formulas (Harrop formulas [5]) is the smallest set 3C of wffs
containing ± and all propositional variables, closed under conjunction and such
that, for every B E JC and every wff A, A -* B G 3C. We say that a nsil L is
closed under //-substitution iff:

(hs) If A E L then σH A EL, for every σH associating //-formulas with the
propositional variables.

Clearly, any negated formula is an //-formula. By an easy induction one
can prove that, for every //-formula A, ~~~A -» A E E(INT); hence, one can
infer:

Proposition 3 If L is a nsil such that L = E (L), then L is closed under (hs).

By an intermediate constructive logic (icl) we mean an il L which satisfies
the disjunction property:

(DP) AvBEL=>AEL or BEL.

Likewise, by a nonstandard intermediate constructive logic (nsicl) we mean any
nsil satisfying (DP). We also say that an icl L (respectively, an nsicl L) is max-
imal iff, for every icl L (respectively, for every nsicl //), if L £ // then L = //.

Theorem 1 If L is an nsicl, then E(L) is an nsicL

Proof: If A(pu..., pn) v B(px,... ,pn) G Έ(L) then ( — p λ - * P 1 ) Λ . . . Λ

(—Pn -+ Pn) -* A(pl9...,pn) v B(pu...,pn) G L, from which, L being
closed under (rs), A(—pu.. .>~~pn) vB(—pl9...,—pn) EL. SinceL is
constructive, A(~~pl9... ,~~pn) EL or B(~~Pι,...,—pn) E L; because
{—pi ++Pi,...,—Pn^Pn} £ E(L), our assertion follows by replacement.

Thus, the extension E(L) of an icl L is always an nsicl; Έ(L) cannot be an
icl because its closure under arbitrary substitutions would imply — A ->A for
every A, i.e., the coincidence with CL.

Let L be any nsil. By the standardization S(L) of L we mean {A: for every
substitution σ, σA E L}. Clearly, S(L) Q L.

The following proposition is immediate, since INT is contained in the stan-
dardization of any nsil:

Proposition 4 If L is an nsil, then S(L) is an il.

Now we have:

Theorem 2 If L is an nsicl such that L = E(L), then S(L) is an icl.

Proof: Let A(pι,... ,pn) v ί ( Λ , . . , ,pn) E S(L), but let us suppose that
A(pχ,... ,pn) £ S(L) and B(pχ,... ,pn) £ S(L). Then there are formulas
d , . . . , Cn,Du... ,Dn such that A(d,. ..9Cn)φL and B(DU ... ,Dn) £ L;
since L = E(L) (so that, by Proposition 3, L satisfies (hs)), we may assume that
any variable occurring in any wff of the set [ C\,..., Cn,Dx,... ,Dn} does not
occur in any other wff of the same set (the variables are //-formulas). Now, for
every wff EE [C\,...,Cn,Dγ,... ,Dn} we associate a formula Ef in the fol-
lowing way: if E is inconsistent we choose some variable q and we set E'' = q;
otherwise we set E' = E. We assume that the choice of the variables has been
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made in such a way that any variable occurring in any formula of the set
{C[,..., C'mD{,... yDή} does not occur in any other formula of that set.

Consider the formula A(C{ A D{y... ,C'n A D'n) v B(C{ A f l ( , . . . , C >
D'n). Since we have assumed that A{pu... ,pn) v B(pl9 ...,/?„) E S(L), this
wff belongs to L; hence one of its disjuncts, say the first, belongs to L. Now
let us substitute all the variables of the formulas D{,..., D'n with negated for-
mulas in the following way. If the wff £" E {D{,... ,Dή} is a variable q, we sub-
stitute q with J-->-L, thus obtaining an E" such that E" <-• (_L-»-L) E INT. If
the formula E' E (A' , . . . ,D'n} is not a variable, then E' = E G {Du... ,Dn}
and ii is consistent, so that there is some classical interpretation / satisfying E''.
Let qu . . . ,qm be all the variables of E'\ for 1 < / < m, if /(<?;) = T, then we
substitute #, in E' with ±->J_; if /(#;) = F, then we substitute #7 in E' with J_.
In this way we obtain a wff E" for which the following fact can be easily proved:
E" ^ (±-+±) EINT.

Now A(C{ A D'{,...,C'n A D'ή) E L, since this formula can be obtained
from A(C{ A D{9... ,Cή Λ D'n) by substituting some of the variables with
negated wffs. But for every /, 1 < / < n, D" +* (J_->J.) E INT and hence C A
D'i <r*Ci E INT; therefore, (by replacement) A(C{, . . . , Q G L .

Finally, let us substitute the variables of the formulas C{,... ,Cή in the
following way. If C( Φ Cι (\ < / < n), then C/ = q for some variable q and C,
is inconsistent: let us substitute q with ±, thus obtaining a wff C" such that
Cf ^ C, E INT. If C/ = C/ (1 < / < Λ), let us substitute all the variables of C"
with themselves, thus obtaining a wff C" such that C" *+ Ct E INT. Again, we
deduce that A(C'{,... , Q ) E L. Since Cf ^ C, E INT (for 1 < / < AZ), by
replacement we infer that A(C\, . . . , C J e I ; but this contradicts the assump-
tion that A(CU . . . ,Cn) φ. L.

In particular, as a corollary of Theorems 1 and 2, we obtain:

Corollary 1 If L is any id then S(E(Z)) is an id and L Q S(E(L)).

Naturally, if L is a maximal icl, then L = S(E(L)), i.e., L is a fixed point
of the operator S ° E transforming id's into id's. It may be interesting to study
the fixed points of the operator S ° E. In this vein, we say that an il L is SE-stable
ifΐL = S(E(L)).

The SE-stable iFs can be characterized as follows: We say that a wff A is
negatively saturated (neg. sat.) iff all its variables are within the scope of —. A
neg. sat.-substitution is any substitution σNS associating neg. sat. formulas with
the propositional variables.

There are iPs whose set of neg. sat. theorems 'determines', so to speak, the
set of all theorems. In this sense we say that an il L is neg. sat.-determined iff:
if σNSA E L for every neg. sat.-substitution σ^ ,̂ then A E L.

Now, the following theorem provides the characterization:

Theorem 3 An il is SE-stable iff it is neg. sat.-determined.

Proof: Let L be SE-stable and let σNSA E L for every neg. sat.-substitution
σNS. Since p and — p are equivalent in E(L), σA E E(L) for every substitu-
tion σ; hence A E S(E(L)), which implies that A E L. Thus, L is neg. sat.-
determined.
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Conversely, let L be neg. sat.-determined, A E S(E(L)), and σNS be any
neg. sat.-substitution. Then σNSA E E(L) and hence (for some ri) (~~p\ ->P\)
Λ. .Λ ( — p n -> pn) -> (σNSA) (p\9. - ,Pn) £ £> where the notation
"(σ;v5v4)(Pi, . ,Pn)" indicates that the formula σNSA contains at most the
variablespu... ,pn; it follows that (σNSA)(—pu...,—pn) E L. Since σNSA
is neg. sat., (σNSA)(—pu...,—pn) is equivalent in L to (ONS^MA* .. ,pn)
(as one easily proves by induction), which implies that σNSA E L. Since σNS is
any neg. sat.-substitution, A G L. Thus, Z, is SE-stable.

Of course, every maximal icl is neg. sat.-determined, since it is SE-stable.
On the other hand, there are neg. sat.-determined id's which are not maximal.
Such a logic is INT, as a consequence of the following result, which can be
proved with a special construction on finite Kripke tree-models (we omit the
proof):

Theorem 4 A(pu... ,pn) GINΎiff A(—/>/v—p},...9—AN—p*)e
INT, where the variables p\,p\,... 9Pn>p% are all distinct.

The neg. sat. formulas play a fundamental role in characterizing the max-
imal icΓs. We will now provide some definitions and results which show that one
can single out a maximal nsicl and a maximal icl once a 'maximal constructive
set' of neg. sat. formulas has been obtained.

Let L be any nsil. By the neg. sat. part ofL, denoted by NS(L), we mean
the set {A: A E L and A is neg. sat.}. Given an nsil L, by the reduction of L,
denoted by R(L), we mean INT U NS(L).

If L is any nsil and all occurrences of p in A(p) are in the scope of a nega-
tion, then, for every B, A(B) is equivalent in L to A(~ — B); hence, NS(L) is
closed under arbitrary substitutions; i.e., one has:

Proposition 5 If L is an nsil, then R(L) is an il.

Since for an nsil L NS(Z) is closed under arbitrary substitutions and INT ci
S(L), one has:

Proposition 6 If L is an nsil, then R(L) c S(L).

One can also prove:

Proposition 7 Let L be any nsil. Then:
(a) L c E(R(L))
(b) ifL = E(L) then L = E(R(L))
(c) R(L) = R(E(L)) c L
(d) ifL can be expressed as INT U AX, with AX a set of neg. sat. formulas, then
R(E(L)) =L.

Now, using the general technique introduced in [12], we can prove the fol-
lowing:

Theorem 5 If L is an nsicl, then R(L) is an icl.

Proof: We may consider R(L) as the formal system consisting of the natural cal-
culus for INT (see [17]) enriched by a set of zero-premises rules (the intuitionisti-
cally unprovable formulas of NS(L)) which we call "axioms" of R(L); a wff
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belongs to R(L) iff there is a proof of it (in the formal system R(L)) without
undischarged assumptions.

For every axiom A of R(L) we associate a set <3(A) of wffs provable in
R(L). <2>(A) is inductively defined as follows:

If A = B Λ C, then C U ) = ( 5 Λ C ) U e ( £ ) U C(C);
If 4̂ = B v C, then, since A E NS(L) and Z, is constructive, B E NS(L) or

C G N S ( I ) . Then we set: if B E NS(L) then Q{A) = [BvC}U Q(B),
otherwise e(A) = {BvC}U β(C);

If A = B-+ Cthen, if B E NS(L) then G(A) = {B-+ C] U C(C), other-
wise β(,4) = {5->C}.

In the following, Π,IΓ, etc. denote proof-trees; to indicate that a proof-
tree Π has Aι,... 9An as undischarged assumptions and B as consequence we
use the notations

Aι,. . . ,^4Λ

Π or U[Au...,An\-B].
B

Now, for every set P = {Πi,... , Π W , . . . } of proofs of the system, we de-
fine in the following way the set Coll(P) of wffs provable in the system:

1. if Π[h#] is a subproof without undischarged assumptions of some
Π, E P, then B E Coll(P)

2. if A is an axiom of R(L) occurring in some Πz E P9 then 6(^4) c
Coll(P)

3. if U[Al9..., A* 1-5] is a subproof of some Π, E Pand {^,... ,An} c
Coll(P), then 5 E Coll(P)

4. nothing else belongs to Coll(P).

We say that a wff A is well contained (we) in Coll(P) iff A E Coll(P) and
one of the following conditions is satisfied:

(a) A is atomic
(b)A = B Λ C, and 5 is we in Coll(P) and C is we in Coll(P)
(c)A=BwC, and 5 is we in Coll(P) or Cis we in Coll(P)
(d) A = B -> C, and if B is we in Coll(P) then C is we in Coll(P).

Now, let us prove:

pi If A is an axiom ofR(L) occurring in some Π, E P, ίΛefl 4̂ is we in
Coll(P).

Proof: If A occurs in some Π, E P, then 6(^4) c Coll(P); the proof of pi is by
induction on the complexity of the formulas B of C{A) and it is obvious if
B = CΛD or if B = C v Λ For the case 5 = C-> A if C E NS(L) then, by def-
inition of G(^4), Z> E G(^4) and our assertion follows from the induction
hypothesis; if C $. NS(L), then C cannot be proved in the system, since C is neg.
sat. and all neg. sat. formulas belonging to INT belong to NS(L); since all for-
mulas of Coll(P) are provable in the system, C ^ Coll(P), hence C is not we
in Coll(P); it follows from (d) that C -+ D is we in Coll(P).

Using pi we can prove:
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p 2 IfΠ[Aι,... 9An h B] is a subproof of some Π, G P and Ai9... yAn are
we in Coll(P), then B is we in Coll(P).

Proof: The proof is by induction on the complexity of Π.
To prove the basis, if Π is a one-step proof consisting of the formula B,

then B is an assumption or an axiom of R(L); in the former case our assertion
reduces to the tautology that B is we in Coll(P) if B is we in Coll(P); in the lat-
ter case our assertion follows from pi.

We will illustrate three cases of the induction step, namely the ones cor-
responding to the rules vE, ->I, and ->E.

(C) CD)...

πί π^ π$
(vE) Let Π = ^ * B — .

B B

Since all assumptions of Π are we in Coll(P), all the assumptions of the sub-
proof Πί are we in Coll(P); so, by the induction hypothesis, C v D is we in
Coll(P), hence C or D is we in Coll(P). Let, for definiteness, C be we in
Coll(P); it follows that all assumptions of W2 (C included) are we in Coll(P)
and hence, by the induction hypothesis, B is we in Coll(P).

. . . ( C ) . . .
IF

(-+I) Let Π = - .
B C-^D

Since all assumptions of Π are we in Coll(P) they belong to Coll(P) and hence
B G Coll(P). On the other hand, if C is we in Coll(P) then (by the induction
hypothesis) D is we in Coll(P); hence, by (d), C-> D is we in Coll(P).

Πί Π£

<-E) Let Π = -£ ^ ^ - .
B B

By the induction hypothesis, C and C -> B are we in Coll(P); by (d), B is we

in Coll(P).

Using p2 one easily proves by induction on the complexity of the defini-
tion of Coll (P):

p3 All formulas o/Coll(P) are we in Coll(P).

Using p3, we conclude the proof of the theorem as follows: Let A v B G
R(L); then there is a proof Π[h4 v B] of the system which does not contain
undischarged assumptions. If P = {Π[b4 v B]}, by the definition of Coll(P)
we have that Ay Be Coll(P); hence A is we in Coll(P) or B is we in Coll(P);
a fortiori, A G Coll(P) or B G Coll(P). Since all formulas of Coll(P) are in
R(L), our theorem is proved.

Let us consider now the relations between maximal nsicΓs and maximal
id's.
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Theorem 6 Let L be any maximal nsicl and let L be any icl such that R(L) c
L. ThenL'^S(L).

Proof: Since L is maximal, from Theorem 1 one has that L = E(L); it fol-
lows, via Theorem 2, that S(L) is an icl; also, from (b) of Proposition 7 one
deduces that E(R(L)) = L. Now, let L be an icl such that R(L) g ZΛ Clearly,
E(R(L)) c E ( Γ ) ; i.e., l g E ( Γ ) . B y Theorem 1, E(Z/) is an nsicl and, since
L is a maximal nsicl, L = E(Z/); it follows that L ς= Z,. Let A G Z/; since L is
an il and Lr <Ξ Z,, for every substitution σ we have that σA E L; hence, by the
definition of S(L), 4̂ G S(L).

Corollary 2 If L is a maximal nsicl then S(JL) & a maximal icl.

Proof: If L is an icl such that S(L) g Z/, then, by Proposition 6, R(L) g L'\
then the assertion follows from Theorem 6.

Conversely one can prove:

Theorem 7 If L is a maximal icl, then E(L) is a maximal nsicl.

Proof: By Theorem 1, E(L) is an nsicl. Now, let L be an nsicl such that E(L) g
L\ then S(E(L)) g S(L'), from which (since L g S(E(L))) we deduce that
L g S(L'). Also, since E(L) g L', L = E(L'), so that, by Theorem 2, S(L')
is an icl. Because L is a maximal icl, L = S(Z/); since, by Proposition 6,
R(Γ) c S(Z'), we have that R(L') g X, from which E(R(Z/)) c E ( I ) . But
Z/ = E(Z/), so that by (b) of Proposition 7 L = E(R(Z/)); it follows that Z/ g
E(L) and E(L) turns out to be maximal.

By Theorems 6 and 7 and point (c) of Proposition 7 one has that any max-
imal icl L is the greatest icl containing R(L). Thus, if R(Z,) Φ L, one has a
nonempty 'greatestness region' (i.e., the region of the id's including R(L) and
included in L) for any maximal icl L. In this region any il different from L is
not neg. sat.-determined as shown by the following theorem:

Theorem 8 Let L be any neg. sat-determined il and let L be any il such that
R(L) c Γ c i andL Φ L. Then L is not neg. sat.-determined.

Proof: From R(L) gZ/ ς l one deduces that E(R(Z,)) g E(Z/) g E(L). Since
from point (c) of Proposition 7 one has that R(L) = R(E(L)), it follows that
E(R(E(L))) g E(L') g E(L). Since E(L) = E(E(L)), from point (b) of Propo-
sition 7 one deduces that E(R(E(L))) = E(L), which implies that E(L') = E(L);
it follows that S(E(Z/)) = S(E(L)). Since L is neg. sat.-determined, by The-
orem 3 it is SE-stable; so L = S(E(L)) and one deduces that S(E(Z/)) = L. Now,
let us assume that L is neg. sat.-determined; from Theorem 3 one has that
S(E(Z/)) = Z/, from which Lf —L\ this contradicts the hypothesis that L Φ L.

According to Theorems 6 and 7, there is a one-to-one correspondence
between the maximal nsicl's and the maximal id's. It seems to be easier to find
maximal nsicl's than to find maximal id's directly, because to find a maximal
nsicl essentially amounts to finding a maximal set of special formulas, namely
neg. sat. formulas. (As an example, we shall prove the maximality of MV by
means of such an indirect method.)

To be more precise, by a neg. sat. intermediate logic (neg. sat. il) we mean
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any set of neg. sat. formulas containing all the intuitionistically valid neg. sat.
formulas and closed under substitution and detachment; a constructive neg. sat.
il (neg. sat. icl) and a maximal neg. sat. icl are defined in the obvious way. It
turns out that, for every nsicl L, NS(L) is a neg. sat. icl. Conversely, for every
neg. sat. icl L\ INT U U is an icl (see the proof of Theorem 5) and NS(INT U
L) = L'\ also, if L is a maximal neg. sat. icl, then E(INT U L) is a maximal nsicl
and S(E(INT U L)) is a maximal icl.

4 The maximal constructive logic MV: Medvedev's logic of finite prob-
lems We introduce the logic MV in the following steps: A form-assignment
a is any function associating with every propositional variable p a finite
nonempty set a(p) of (arbitrary) objects. Starting from a form-assignment a,
we can associate with every wff A the set Fa(A) of its a-forms in the following
way:

l . F . U ) = U }
2. FΛ(p) = a(jθ) for every propositional variable/?
3. FΛ(A Λ B) = FΛ(A) x FΛ(B) (the cartesian product of FΛ(A) and

FΛB))
4. FΛ(A v B) = (FΛ(A) x (0)) U (FΛ(B) x {1}) (the disjoint union of

FΛ(A) and FΛ(B))
5. FΆ(A -» B) = FΛ(B)F»(A) (the set of all functions from FΛ(A) to

FAB)).
Let us denote by "A" any element of Fa(^4). In [11] Medvedev emphasizes

the interpretation of formulas in terms of finite problems: what we call an "a-
form" is called by him a "possible solution of a problem." We look at a-forms
as uninterpreted syntactical objects; they are interpreted by "truth-assignments"
(which we call "discriminations") as follows:

a discrimination DΛ with respect to a form-assignment a is any function
associating with every p of every a(/?) one of the truth values T,F.

A discrimination Da associates with every A E FΛ(A) a truth value Da(A) as
follows (according to the cases):

(a)A,U) = F
(b) for every variable p and every p G FΛ(p), Da(p) is the value of the

function DΛ for p
(c) Da(<B, C» = T iff DΛ(B) = T and £>a(C) = T
(d) DΛ«B90» = T iff DAB) = T and Z?a«C,l» = T iff DΛ(C) = T
(e) DAA ^ B) = T iff, for every A G FΛ{A) such that Da(Λ) = T,

DΛ(A +> B(Λ)) = T, where A ^ B(Λ) is the value of the function
A -^ B for the argument A.

Instead of defining discriminations, Medvedev distinguishes the possible
solutions of finite problems (our a-forms) from their effective solutions, the lat-
ter being a proper subset (possibly empty) of the former. To do so, he introduces
the effective solutions for the propositional variables and explains how the effec-
tive solutions corresponding to arbitrary wffs are built up according to the mean-
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ing of the logical constants. The reader will recognize that our discriminations
are equivalent to Medvedev's choices of effective solutions for the variables and
that, for arbitrary wffs, our sets of true a-forms correspond to Medvedev's sets
of effective solutions (see [11]).

We say that a wff A is ^-constructively valid iff there is an A E FΛ(A)
such that, for every discrimination £>a, DΛ(A) = T.

We say that a wff A is identically constructively valid iff, for every form-
assignment a, A is a-constructively valid.

Our identically constructively valid formulas are called "identically solv-
able" by Medvedev.

The logic MV is defined as the following set of wffs: MV = {A: A is iden-
tically constructively valid).

The following fact is well known (see [3], [9], [11], [20], [21]):

Theorem 9 MV is an id.

As far as we know, no axiomatization has been provided for MV. On the
basis of a Kripke-style semantics characterizing MV in a different way ([3], [9],
[20], [21]), it can be shown that MV is not finitely axiomatizable [9]. However,
we can axiomatize the maximal nsicl Fc l and characterize MV as S(Fcl).

To present F d on a semantical ground, we consider the particular form-
assignment v so defined:

for every propositional variable /?, \(p) = {/?}.

Given a wff A, we will indicate Fy(A) simply by "F(A)"; any element of F(A)
will be called an u evaluation form" (evf) of A and will be represented by the
symbol "A".

The discriminations Dy with respect to the form-assignment v simply
become assignments of truth values to the propositional variables, i.e. classical
interpretations, which we will denote by symbols such as "/". The following fact
(justifying the name "evaluation form") is easily proved by induction on the
complexity of A and states a connection between the truth value of a wff A and
the truth values of the evf's of A:

Theorem 10 For every /, I (A) = T iff there is an A E F(A) such that
I(A) = T.

Thus, A is classically valid iff, for every I, there feanie F(A) such that
I(A) = T.

Now, we define the logic Fc l (where " F " stands for "forms" and "cl" is to
recall that the required discriminations are classical interpretations) in the fol-
lowing way:

F c l = {A: A is v-constructively valid}.

As compared with classical validity, there is an exchange of quantifiers:
V V

A E F c l iff there is an A E F(A) such that, for every /, I (A) = T.
One has:

Theorem 11 Fcl is an nsicl.
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Proof: One easily sees that Fc l is constructive and closed under detachment and
that INT c MV Q F c l; for the closure under restricted substitutions one
observes that the substitution in an evf A (q) of all the occurrences of a vari-
able q with the unique evf ~ B G F(~B) is defined and is an evf of A(~B).

Let us call "constructively valid" any v-constructively valid formula, i.e.,
any formula of F c l . We can generalize the notion of constructive validity by
introducing the notion of "constructive consequence" as follows. Let Γ be any
(finite or infinite) set of wffs: by a generalized evf of Γ, denoted by "Γ", we
mean any function associating, for every B G Γ, a B G F(B). We say that a
classical interpretation / satisfies Γ iff / satisfies every B in the range of Γ. Now,
we say that A is a constructive consequence of Γ (denoted by Γ 1= A) iff the
following holds: for every f there is a n i e F(A) such that, for every 1, if /
satisfies f then I(A) = T.

It turns out that A G F c l iff 0 l=̂= A, where 0 is the empty set of for-
mulas. Also, one can see that classical consequence (denoted by Γ \=A) differs
from constructive consequence in the following sense: Y ¥ A iff, for every Γ
and every I there is an A G F(A) such that I(A) = T if / satisfies f.

We can provide an axiomatization of FcJ that allows us to capture, at the
same time, constructive consequence. First of all we define, for every n > 2, the
axiom schema:

[WKP/i] (~A-*~B1 v . . .v ~ £ r t ) - * ( ~ , 4 - > - # ! ) v . . .v (~A->~Bn).

Then the icl WKP (weak KP) is defined as INT U {[WKPΛ]: n > 2}. We remark
that WKP can be shown to be properly included in KreiseFs and Putnam's logic
KP (in [7]) characterized by the schema:

[KP] (~A -» B v C) -» (~A -* B) v (~A - C).

The logic F d can be characterized as E(WKP), as we are going to show.
First of all, by induction on the length of a proof, one can prove the following
soundness theorem:

Theorem 12 IfT I E ( W K P ) A, then Γ l̂ = A.

Proof: We may consider E(WKP) as the formal system obtained by adding to
the natural calculus for INT the axioms — p -> p and the rules

(WKP/i) ~A-+~Bxv...v~Bn

(~A-+~Bx)\ι..;\/(~A^~Bn)

To prove the theorem it suffices to show that:

(*) For any proof Π[A λ , . . . 9Am h B] of the formal system E(WKP), given
Ai G F(Aλ)9 ...,Ame F{Am), there is a B G F(B) such that, for every
interpretation /, if 1(1^ = T , . . . ,I(Am) = T then I(B) = T.

The proof of (*) is by induction on the complexity of Π.
The basis (including the case where Π coincides with an application of the

axiom ~~p-+p) and the cases of the induction step corresponding to the intui-
tionistic rules can be easily handled (even if, in a different context, the ideas
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involved in the proof are similar to the ones involved in the proof of Theorem
5, point p2). Thus, we will illustrate only the rules (WKPAΪ); without loss of
generality, we will limit ourselves to the case n = 2.

Let
Ax...An

Π
C-+~Dv~E

Π = (WKP2).
B (~C-»~£>)v (~C^~E)

By the inductionvhypothesis, there is an H = ~C -^ ~D v ~E G F( ~C ->
~Z) v ~E) such that //is satisfied by every /satisfying A\,... ,An. Now, there
is exactly one evf ~C G F( ~C); then, // is a function whose domain is {~C).
Let, for definiteness, H(~C) = <~A0>, where ~D is the unique evf of
F(~D)9 and let ~C -^ ~Z> be the unique evf of F(~C-> ~Z>), associating the
unique ~C EF(~C) with the unique ~£> G F(~D): one immediately sees that
<~C A ~A0> G F((~C-> ~D) v (-C-> -£')) is satisfied by every interpre-
tation / satisfying Ax,... ,An (hence if).

To prove the converse, some auxiliary results are needed. The first one is
the following normal form theorem for WKP with respect to the neg. sat. for-
mulas.

Lemma 1 For every neg. sat. formula A there are negated formulas ~Aχ,
... 9~Am (m > 1) such that A <-> ~AX v . . . v ~Am G WKP.

Proof: The proof is a straightforward induction on the 'neg. sat. complexity' of
Ay where the basis corresponds to the case A = — B. To handle the step case
A = B -• C one has to use the axiom-schemas [WKPπ].

From Lemma 1 one deduces (in an almost immediate way, using the axioms

—P-+P):

Corollary 3 For every wff A there are negated formulas ~A\,...,~Am

(m > 1) such that A <+ ~AX v . . . v ~Am G E(WKP).

Corollary 3 is used in the completeness proof for E(WKP). To this aim, one
first of all introduces (in the usual way, see [22]) the notion of an E(WKP)-
saturated set of formulas: A set Γ of wffs is E(WKP)-saturated iff the follow-
ing conditions are satisfied:

1. Γ is E(WKP)-consistent and, if Γ I E ( W K P ) A, then A G Γ;
2. if A v B G Γ, then A GT or B ET.

Now, using Corollary 3, one has to prove the following basic fact:

Lemma 2 v For every E(WKP)-saturated set Γ and every wff A, A G Γ iff
there is an A G F(A) such that I (A) = T, for every classical interpretation I
satisfying all the wffs ofT.

Proof: It is sufficient to prove the theorem for A = ~A\ v . . . v ~Am\ the
assertion is then extended to all wffs by Corollary 3 and by the soundness The-
orem 12.
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Let ~ Ai v . . . v ~Am E Γ: then, since Γ is saturated, ~Aj E Γ for some
/ (1 < / < m)\ it follows that every / satisfying all the wffs of Γ satisfies ~^, .
Moreover, starting from ~Aι>, we can build up ~A i v. T. v ~Am E F( ~>4! v . . . v
~Am) which is satisfied by every / satisfying ~At (see the definition of an evf
for a disjunction).

To prove the converse, let ~A\ v. T. v ~Am E F( - ^ v . . . v ~Am) be satis-
fied by every / satisfying all the wffs of Γ then, there is an ~At (1 < / < m) satis-
fied by any /satisfying Γ; i.e., Γ |^- -A^ since ~A, is negated, Γ I E ( W K P ) A.

Lemma 2 allows us to prove both the completeness and the maximality of
E(WKP):

Theorem 13 IfT^A, then Γ I E ( W K P ) A.

Proof: If Γ 1/E(WKP) A, then, by a standard result [22], there is an E(WKP)-
saturated Γ ' 2 Γ such that A£V. The result then follows by applying Lemma 2
toΓ' .

Corollary 4 F c l = E(WKP).

Corollary 5 WKP = R(Fcl).

Proof: From Corollary 4 and point (d) of Proposition 7.

Theorem 14 F c l is a maximal nsicL

Proof: If L is an nsicl and F c l c L, then E(WKP) c L and £ thus is an
E(WKP)-satu.ated set; also, since L is an nsil, every / satisfies all theorems
of L. Hence, by Lemma 2: A E L iff there is an A E F(A) such that, for every /,
I(A) = T(ffAG Fcl.

Our interest in F c l and WKP is justified by the following theorem:

Theorem 15 MV = S(Fcl) = S(E(WKP)).

Proof: It is clear that MV c F c l ; since MV is an il, MV c S(Fc l). To prove the
converse, suppose A $. MV: then there is a form-assignment a such that A is not
a-constructively valid. Let pu... ,pn be the propositional variables of A and let
(for 1 < / < ή) pi,... ^/^ be the elements of a(/?/): then we can associate with
a(p, ) the disjunction /?/ v . . . v / ^ (for suitable new variables / ? / , . . . ,A*0 in
such a way that ΛQ?/ v . . . v pf1,...,/?,} v . . . v p* Λ ) ^ F c l .

From Theorems 6, 14, 15 and Corollary 5 we immediately obtain the max-
imality result for MV:

Corollary 6 Let L be any id such that WKP c L: then L c MV.

Corollary 7 MV is a maximal id

As said above, WKP is properly included in KP; in turn, KP is properly
included in MV. For instance, Rose's schema (see [19])

[RS] ((~~>4 -*A) -> -A v — A ) -> -A v — A

is included in MV but not in KP [4], [11]. Moreover, by the above results and
Proposition 7 one easily sees that WKP = R(MV); thus, as an immediate con-
sequence of Theorem 8, we deduce:
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Corollary 8 WKP is not neg. sat.-determined.

Also, according to Theorem 8, MV is the unique neg. sat.-determined il in
its 'greatestness region'; i.e., in the family of the iΓs L such that WKP =
R(MV) c L c MV.

5 Further results on MV We stress a difference in the behavior of the neg.
sat.-determined iΓs MV and INT, along the following lines.

Given any nsil L9 for every k > 1 we define the set of formulas: L(k) =
{A: A(p{ v . . . v/?f,... ,p\ v . . . v/?*) E L, wherepu . . . ,pn are the proposi-
tional variables of A and pi,... ,/?f,... ,Pn,... ,/?* are all distinct}.

One can show:

(I) For every k > 1, L(/:) is an nsil (an nsicl if L is).

If L is an nsil satisfying (hs), then one can also show:

(II) For every k > 1, L(k) 3 L(k + 1).

If one takes L = F c l = E(WKP) = E(MV), one has the sequence F c l =
Fcl(l) 3 Fcl(2) 3 . . . 3 Fcl(A:) 3 One can prove (see the proof of Theorem
15):

(III) MV = Πk ¥cl(k) = Πk E(MV)(AΓ).

As concerns INT, using Theorem 4 one immediately deduces the follow-
ing stronger result:

(IV) INT = E(INT)(2).

On the other hand, one can show that, e.g., —(/?Ag)-> ((((—p ->
p) -*Q)-*P)->P) is in Fcl(2) but not in Fcl(3); hence:

(V) MV Φ E(MV)(2) = Fcl(2).

Thus, in contrast with the case of INT (see Theorem 4), there is a formula
A(p,q) such that A(—pι v — p 2 , — q ι v ~~q2) G MV but^4(/?,4θ Φ MV.

As concerns Fcl(2), let, for an nsil L,L(p) = {A: A contains at most the
propositional variable p and A E L]. Using the Kripke style semantics for MV,
described e.g. in [4], we can prove that MV(2)(/?) = Fcl(2)(/?) and that a for-
mula A in one variable belongs to Fd(2) iff A is forced in the state 0 of the fol-
lowing finite Kripke model:

3 ^ σ #4

K l . ^ " " ^ 2

0

Also, let RS be the il obtained by adding to INT Rose's schema [RS] considered
above: then (by a suitable quotientation on the canonical model of RS) we can



INTERMEDIATE LOGICS 557

prove that a formula in at most one variable belongs to RS(2) iff it is forced in
the state 0 of the above Kripke model K.

We collect these facts in the following theorem (proof omitted):

Theorem 16 RS(/?) = MV(/?) = Fcl(2)(/?).

Since F c l is decidable (for A G F c l iff 0 |^= A, and the number of ele-
ments of F(A) is finite), Fci(2) is; so, by Theorem 16, the fragment in one vari-
able of MV is decidable (a different decision procedure uses the above model
K with five states). Unfortunately, we do not know how to relate the fragments
of MV with i variables (/ > 2) with FclO') for somey. Thus, as far as we know,
the problem of the decidability of MV is still open (Gabbay [4] has given an out-
line of a decidability proof for MV, which has been shown to be wrong by
Skvorcov [20]).

Naturally, an axiomatization of MV would provide its decidability. As for
this question, using the characterization of MV as S(Fd) and the semantics of
F c l, we can prove that a remarkable class of schemata belongs to MV.

To be more precise, let XOR(~AU... ,~Ar) be the formula: (~Aι v . . . v
~Ar) Λ - (Aι ΛA2) Λ. . .Λ ~(AX ΛAΓ) Λ. . .Λ ~(Ar_ι ΛAr); let A = (~t/i
Λ . . . Λ ~ L ^ Λ X O 2 ? ( ~ K 1 , . . . , ~ K W ) Λ ( ( — B Λ — C ) - » ~ H Ί Λ . . . Λ ~WnA

XOR(~Z\,... ,~ZS)); let D be any formula built up starting from (at most)
Uj, Uj -• Fj (with 1 < j < k and Fj any wff), ~ Vx (1 < i < m), Wu Wt -> Gt

(with 1 < t < n and Gt any wff), and ~ZΛ(1 < h < s); let E be any formula.
Then: (Λ-> {(B-+C)-*DvE)-* (A-+ ((B->C)-+D) v ((B-^C)-+E)) GMV.

With the help of intuitionistic rules, these schemata allow us to derive, as
a very particular case, ((,4 -• B) -> C v D) -+ ((A -> B) -• C) v ( - A -» D); the
latter schema (equivalent to Andrews' schema [4]) allows us to deduce [KP] and
[RS].

One can attach interpretations to the evf's different from the classical ones.
For example, one can 'intuitionistically interpret' evf's by means of Kripke mod-
els as follows: given a Kripk^model K = (K, <, lh> a k E K, a wff A, and an
A G F(A), one defines k \\- A in the obvious way for atomic A, or if A = B Λ
C, or if A = B v C, and sets k )\- B ^ C iff, for every k' > k in K and every
B G F(B)9 if A:' Ih B then A:'lb £ ^ C(B).

Then, one defines: 4̂ G F i n t iff there is an A G F(^4) such that, for every
K and every state k of K, k\\- A.

One can easily show that F i n t is an nsicl properly included in F c l (—p-+
P £ Fiijt); moreover, even if E(Fint) Φ F i n t, F i n t satisfies (hs).

To axiomatize F i n t, let F b e the family of axioms:

[HKP] (H-* A v B) -> (H-• A) v (H-* 5) for any Harrop-formula if.

Then one can prove (proof omitted):

Theorem 17 F i n t = INT U [HKP].

The link with MV is stated by the following theorem (proof omitted):

Theorem 18 MV = S(Fint).

According to Theorem 18, a maximal icl can be obtained also from a non-
maximal nsicl by applying S.
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6 A strong characterization of MV among constructive logics: The smoothness
property Besides the rules of inference, a logic can display proof-theoreti-
cal 'regularities', which we will call rules of proof (see [1]): if A is a theorem,
B is a theorem.

Remarkable regularities are those rules of proof which are 'closed' under
interesting classes of substitutions; given an il (or an nsil) L, we define:

A \—*B iff, for every substitution σ, \γσA implies Vj σB

A ι-£> B iff, for every restricted substitution σr, \rj^σrA implies \j^σrB

A H^> B iff, for every neg. sat.-substitution σNS, \γσNSA implies \j^σNSB

A Hγ» B iff, for every Harrop-substitutionaz/jh^a//^ implies \j;oHB.

An il (or an nsil) L is called respectively smooth, or strongly smooth, or neg,
sat.-smooth, or H-smooth iff, for any A and B, A \-j+ B implies A \γ- B, or
A ^ B implies A \γ B, or A >ψ» B implies A h^ B, or A ^ B implies
A \γ B. (We remark that, conversely, A \j- B implies A \-γ> B9 or A ^ B9

or A H^» B9 or A hγ> B if, respectively, L is closed under arbitrary substitu-
tions, or it is closed under restricted substitutions, or it is closed under neg. sat.-
substitutions, or it is closed under Harrop substitutions.)

Of course, strong smoothness implies all the quoted kinds of smoothness,
and neg.sat. and H smoothness imply smoothness.

It is easy to see that classical logic is strongly smooth. On the other hand,
INT is not smooth: for instance, we know that -A -+ (Bv C) H^^ (~A ->
B)v(~A-+C) ([5]), while ^ - ^ ( ΰ v C) b ^ (~A -+B) v (~A -+ C) (i.e.,
[KP] is not in INT, but it corresponds to a rule of proof closed under arbitrary
substitutions); also, ( — A -> A) -> (*~A v — A ) \-^^ -A v — A , while
( — A -*A) -• (~A v — A ) btΰT ~Av — A (i.e., [RS] is not in INT, but
corresponds to a rule of proof closed under arbitrary substitutions).

If one is interested in the existence of smooth id's, the following result, due
to Prucnal [18], is crucial:

Theorem 19 IfL is any il, then ~A-+BvC γ (~A^B)v (-A-+C).

According to Theorem 19, any smooth il must contain the icl KP; a for-
tiori, it must contain WKP. Taking into account the nsil's, we do not know
whether Prucnal's theorem applies; we do not even know whether it holds for
the nsicΓs. However, for the nsίcΓs one can state the following theorem involving
WKP and having a much simpler proof than Theorem 19 (for the id's, the the-
orem is an obvious corollary of Theorem 19):

Theorem 20 IfL is an nsicl, then for any n > 1, —A, ~Bχ,... ,~Bn, —A -•
~BX v...v ~Bn γ (~A-+~BX) v . . .v (~A-+~Bn).

Proof: Let ~A -• ~B\ v . . . v ~Bn GL.U A is inconsistent, then (~A -> ~B{)
v . . . v (—A -* ~Bn) E L. Otherwise there is a classical interpretation / satisfy-
ing ~A: let Iχ,... Jk be all such interpretations. Starting from them, one can
associate with all the variables p\9... ,pm of A the formulas ~H\,... ,~Hm

such that: (1) every classical interpretation assigns to ~Hχ9... 9~Hm an m-tuple
of truth values satisfying ~A and (2) all m-tuples satisfying ~A are assigned
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to ~H\,... ,~Hm by some classical interpretation. If σr is the restricted substi-
tution associating -/// with pt\\ < / < m) then σr~ A EL: then α ^ ^ v . .v
σr~BnE L, from which σr ~ BjEL for somey(l <y < /i). Now, by the def-
inition of σr, the hypothesis that ~A -> ~Bj is not classically valid leads to a
contradiction; hence, by the particular form of ~A -> ~Bj9 -A -• i?y G INT,
from which ~A -> ~fij £ L.

Corollary 9 If L is any smooth nsicl, then WKP c £.

The above results provide only lower bounds for smoothness. We observe
that one cannot obtain a smooth icl by progressively extending INT with the
addition of those inference rules which correspond to its rules of proof closed
under arbitrary substitutions: after a single extension, a previous intuitionistic
rule of proof may be no longer a rule of proof, while a new rule of proof may
arise. In this frame, e.g., one can prove:

[R] ((~A ->~5v ~C) ->-5v ~C) Λ((~B-^~AV ~C) ^~Av ~C) Λ

((~C->~A v ~B)->~A v ~B) HJJ^ ~,4v~£v~C.

Let L be the il obtained by adding to INT the inference rule corresponding to
[R] (L turns out to be included in Gabbay's and deJongh's logic Dl in [3]); then
L cannot be extended to a smooth icl, because (as one can show, thus strength-
ening Kirk's result [6]) no icl can contain L and [WKP2]. On the contrary, if we
add all [WKPrc] directly to INT (thus obtaining WKP), [R] no longer holds.

Opposed to INT, the logic WKP is a stable starting point in reaching, by
successive extensions, a smooth icl. For WKP is not smooth, while, as we are
going to see, MV is the greatest smooth icl. Moreover (as a consequence of Prop-
osition 8 below) one has that, for any il L such that WKP Q L c MV, if A γ
By then L U {A -> B j is included in MV; that is, by any way we choose to extend
WKP to a smooth icl we obtain an icl included in MV. Thus, the 'greatestness
region of MV can be called the 'smoothness region for the icΓs\

The smoothness of MV follows from the strong smoothness of F c l:

Theorem 21 F c l is the unique strongly smooth nsicl

Proof: Let L be a strongly smooth nsicl; we will prove that L = F c i . Then, by
Corollary 9, one has that WKP ς L ; moreover,—p \jj p as one immedi-
ately sees; hence, Fc l = E(WKP) c L and, by the maximality of Fc l, Fc l = L.

To prove that F c l is strongly smooth, let A \^ B: then there is some A G
F(A) such that, for every B G F(B), there is a classical interpretation / for which
I (A) = Γand I(B) = R Starting from all such interpretations /, we can define a
restricted substitution σr such that: (1) σr transforms the evf A into an evf σrA
satisfied by every interpretation; and (2) for every B G F(B), σrB is not satisfied
by some interpretation. Hence, σrA G F d , while σrB £ F d .

Now we can prove:

Theorem 22 MV is neg. sat.-smooth.

Proof: Let A b̂ jy- B: then A -> B £ MV, which implies (being MV neg. sat.-de-
termined) that there is a neg. sat.-substitution σNS such that σNS^4 -> B fc MV.
Since NS(WKP) = NS(Fcl) and since WKP c M V c F c l, it follows that σN S^ -*
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B fi F d , i.e., σNSA b^- σNSB. The latter fact implies, by Theorem 21, that
there is a restricted substitution σr such that σrσNSA E Fc l and σrσNSB £ Fci
The composition σ ŝ = σr°

 σNs is a neg. sat.-substitution and σ^s^ £ Fc l and
<ΓNS# ί Fcb it follows (because σάs^ and σ^sB are neg. sat. formulas) that
σ^sΛ E MV and σ^sB £ MV.

From Theorem 22 we obtain PrucnaΓs result [18]:

Corollary 10 MV is the greatest smooth icl.

Proof: MV is smooth, as a consequence of Theorem 22; on the other hand, by
Corollary 9, any smooth icl L contains WKP; hence, by Corollary 6, L £ MV.

We can also show that MV is the unique neg. sat.-smooth icl. First of all
we prove:

Proposition 8 If L is any il such that WKP c L c MV, then:
(fiAiψB iff A ^ B
(b) if A γ B then A W B.

Proof: (a) immediately follows from NS(WKP) = NS(MV). To prove (b), let
A γ B: then A \ψ* B from which, by (a), A ^ B. By Theorem 22, A
Fĵ y- B, which implies A \-^> B (since MV is closed under arbitrary substi-
tutions).

Then we prove:

Theorem 23 Let L be any neg. sat.-smooth id Then WKP U [A -• B:
A ' WKP'

 β} = L

Proof: WKP U {A -+B: A ^ ^ B] g L is an immediate consequence of
Corollary 9 and point (a) of Proposition 8. To prove the converse, with every
wff C G l w e associate a finite set £(C) according to the following rules:

if C = D -» E then: if D £ L then £(C) = [D -+ E], otherwise £(C) =
£(E)

if C = DΛEthen: £(C) = <£(£>) U <£(£)
if C = £> vE then: if Z> E L then <£(C) = £(D)y otherwise £(C) = £(E).

Since no atomic formula belongs to L, for every C E L £(C) turns
out to be a finite set of formulas [Fι -+ G\9... ,F n -• Gn) £ Z. Also, one
easily sees that £(C) f^jr C: hence Z can be presented as the formal system

INT U U £(C). Let F - G E | J £ ( C ) : then F->GeL and, since Z, is

closed under neg. sat.-substitutions, F t^» G, which implies, by (a) of Propo-
sition 8, F h^|p» G. It follows that L c INT U {̂ 1 -> ̂ : yl ^ ^ B] c WKP U

[A^B:A ^>B}.

Corollary 11 Z^ί L be any neg. sat.-smooth icl. Then L = MV = WKP U
{A^B .A^B}.

Corollary 12 MV is the unique neg. sat.-smooth icl.

Open question: is MV the unique smooth icl?
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To conclude this section, we make the following conjecture concerning H-
smoothness and the nsicl F i n t defined in Section 5:

Conjecture F i n t is H-smooth; moreover, F d and F i n t are the only H-smooth
nsicΓs.

As for F c l , it is //-smooth since it is strongly smooth. As for F i n t , because
MV = S(F i n t), A i ^ - ^ B implies A^BG MV, hence A -> B E F i n t , hence
F i n t is smooth.
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