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Abstract Let 5 be a Boolean algebra; let Π be a set of relative (= condi-
tional) probability functions on S, and IT a set of absolute ones; and let V
be A Π A, with A here an arbitrary but fixed member of S. (i) A function
P' in IT is then the V-restriction of a function P in Π (= P has P' as its K-re-
striction) if V(A) = P(,4, V) for each A in S; and (ii) the functions in Π
relativize those in IT if each function in Π has one in IT as its Γ-restriction
and each function in IT is the K-restriction of one in Π. Considered in the
paper are two sets of absolute probability functions (Kolmogorov's and Car-
nap's, the latter like Kolmogorov's except for P(>1) equaling 1 only when
A = V), and ten sets of relative ones (among them Popper's, Renyi's, Car-
nap's, and Kolmogorov's, the last thus called because of their relationship
to Kolmogorov's absolute functions). And it is determined which sets of rel-
ative functions relativize which sets of absolute ones. S is then allowed to be
an arbitrary set, and Popper's relative probability functions on such a set are
shown to relativize his absolute ones.

I wish to point out here that I have received considerable encouragement
from reading A. Renyi's most interesting paper 'On a new Axiomatic Theory
of Probability', Acta Mathematica Acad. Scient. Hungaricae 5, 1955, pp.
286-335. Although I had realized for years that Kolmogorov's system ought
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to be relativized, and although I had on several occasions pointed out some
of the mathematical advantages of a relativized system, I only learned from
Renyi's paper how fertile this relativization could be. The relative systems
published by me since 1955 are more general still than Renyi's system. . . .

K. R. Popper [11], p. 346n

1 Introduction Let S be a set closed under the unary function - and the
binary one Π; let Π be a set of relative (hence, binary) probability functions
defined on S and IT a set of absolute (hence, unary) ones1; and, for some arbi-
trary but fixed A in S, let Fbe A Π A. We say that a function P' in W is the
V-restriction of α function P in Π—hence, that P has P' as its V-restriction — if
for any A in S

?'(A) = ?(A9V).

And, possibly meaning more by the verb than Popper did, we say that the func-
tions in Π relatiυize those in IF if

(i) each function in Π has one in IT as its F-restriction, and
(ii) each function in IF is the F-restriction of one in Π.

The second of these conditions formalizes Renyi's requirement in [12] that abso-
lute probability functions be special cases of the relative ones that relativize
them.

As might be expected, Popper's relative probability functions in Appen-
dix *v of [11] relativize his absolute ones in [9], a fact that we establish in Sec-
tion 8 of the paper. But they do not relativize Kolmogorov's absolute probability
functions in [5], because Popper's relative probability functions are defined on
arbitrary sets whereas Kolmogorov's absolute ones are defined on fields only,
a special kind of Boolean algebra defined in Section 2. To permit a compari-
son of Popper's probability functions with those of Renyi's (defined on fields
only) and those of Carnap's (defined on Boolean algebras of propositions), and
to facilitate the proof of various other relativization theorems, we shall presume
Popper's functions to be defined in Sections 3-7 on Boolean algebras only. The
absolute probability functions thus defined are —it so happens — those of Kol-
mogorov in [5], but made to suit all Boolean algebras rather than just fields. As
for the relative ones they are of particular significance, as we indicate in Sec-
tion 8 and more fully document in [14]. Isolated from the rest of Popper's rel-
ative probability functions, they might earn Popper the recognition that more
traditional probability theorists still deny him.

In Sections 5 and 6 we will be considering, besides Popper's absolute prob-
ability functions, those of Carnap found in 2 of [4], made to suit all Boolean
algebras rather than just those of propositions. And considered in Sections 3 to
6, besides Popper's relative probability functions, will be those of Renyi found
in [12], the paper mentioned in Popper's footnote, and those of Carnap in 2 of
[4]. We adapt the functions in question so they will be total rather than partial,
and so they will suit all Boolean algebras.2

As Popper noted in the first case, and as we shall establish in both, Renyi's
relative probability functions are but some of Popper's, and Carnap's relative
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probability functions are but some of Renyi's. That Carnap's absolute proba-
bility functions are but some of Popper's will be obvious from the account given
below of those functions.

It is an easy matter to prove, as we do in Section 6, that

(a) Popper's relative probability functions relativize Popper's —hence,
Kolmogorov's —absolute ones, and

(b) Carnap's relative probability functions relativize —indeed, match
one-to-one —Carnap's absolute ones.

Our proof of (a) readily generalizes in Section 2 to suit Popper's functions as
he intended them, i.e., defined on arbitrary sets. More arduous is proving, as
we also do, that

(c) Renyi's relative probability functions also relativize Popper's —hence,
Kolmogorov's —absolute probability functions, and

(d) the rest of Popper's relative probability functions relativize those among
Popper's —hence, those among Kolmogorov's —absolute probability
functions that are not Carnap ones.

And it may come as a surprise (as it did to us) that, different though Renyi's
functions are from the rest of Popper's relative probability functions, each of
Popper's —hence each of Kolmogorov's —absolute probability functions is the
K-restriction of one or more Renyi functions and, when not a Carnap function,
of one or more non-Renyi ones as well.

Lastly, considered in Section 7 are relative probability functions that are
mentioned in many texts, but dismissively as a rule. Partial functions like them,
but defined on fields only, appear in [5], where Kolmogorov calls them "con-
ditional" probability functions. Among the extensions of these to full functions
they are the only ones that match one-to-one Kolmogorov's absolute probability
functions. So, for lack of a better name, we call them relative probability func-
tions in the sense of Kolmogorov. They are Popper functions, and those among
them that are Renyi functions coincide with Carnap's functions. They well
deserve, we believe, the attention we accord them here.

2 Boolean algebras Let 5 be a nonempty set closed under - and Π. We say
that the triple <5,—,Π> constitutes a Boolean algebra—or, more informally, that
S together with — and Π constitute a Boolean algebra—if S, —, and Π meet these
five constraints (due essentially to Byrne [1]):

Al For any A and B in S, A Π B = B Π A
A2 For any A, B9 and C in S, A Π (B Π C) =_{A Π B) Π C
A3 For any A9 B, and C in S, A Π B = C Π C iff A Π B = A
A4 For any A and B in S, if A = B, then A = B
A5 For any A, B, and C in S, if A = B9 then A Π C = B Π C.

A1-A5 are known as the postulates for Boolean Algebra. If a certain step in a
proof below follows by one or more of A1-A5, we shall usually say that it does
so by BA and move on.

We take the relation designated in A1-A5 by ' = ' to be the identity relation.
So, when P in Sections 3 to 7 is an absolute or a relative probability function
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on S, P(,4) will automatically equal P(A') if A = A', and P(A,B) will auto-
matically equal P(A',B') if B = B' as well. As we took the so-called unit ele-
ment V to be A Π A for some arbitrary but fixed A in S, so we take the zero
element A to be A Π A for that very A. Note, though, that AΠA =A by A3,
and hence yl 0 ^ = 5 0 5 = 0 0 ^ = . . . by A3 again. So V = A Γ) A and
A = A Γ) A for ίwy 4̂ in S. The present account of a Boolean algebra, by the
way, is consistent with its having just one member, in which case of course A
and A have to be the same. Most writers demand in consequence that a Boolean
algebra have at least two members. Thanks to the constraints placed on the
probability functions considered here, our S will have that minimum number of
members.

When a Boolean algebra consists of sets, and the functions - and Π defined
on S are the set theoretic complementation and intersection, 5 is usually called
afield of sets or—for short, as in Section 1 — afield. Under such circumstances
the unit element becomes the universal set and the zero element the empty set.
The Boolean algebras given in Table 5 (see Note 7) and in Table 6 are fields.

Note that whereas a finite Boolean algebra can only be of cardinality 2n

for some n (n > 0), an infinite one can be of any infinite cardinality. However,
since Carnap's probability functions cannot be defined on all nondenumerable
Boolean algebras, we shall limit ourselves in this paper to denumerable ones.

3 Relative probability functions Let S (together with — and Π) be a Boolean
algebra.

Definition 3.1 By a Popper relative probability function on S we understand
any function P from S x S into the reals that meets these five constraints:

Bl For some A and some B in S, P(A,B) Φ 1
B2 For any A and B in 5, 0 < P(A,B)
B3 For any A in S, P(A,A) = 1
B4 For any A, B, and C in S, P(y4 Π B,C) = P(A,B Π C) X P(B,C)
PB5 For any A and B in S, if Έ>(C,B) Ψ 1 for some C in S, then P(A9B) =

The letter 'P' in TB5' signals that the constraint, due to Popper himself, is pecu-
liar to his functions. Due to Al and our understanding of =, the two additional
constraints that appear in some characterizations of Popper's functions, when
these are defined on arbitrary sets, to wit:

For any A9 B, and C in S, P(A Π B, C) = P(B Π A9 C)

and

For any A, B, and C in 5, P(A,BΠC) =P(A,CΠB),

are automatically met here by P. It is Bl and B3, constraints also met by Renyi's
and Carnap's relative probability functions, which compel the present S to have
at least two members. For suppose A were the same as B for any A and B in
5. Then, by virtue of B3 but contrary to Bl, P(A,B) would equal 1 for any A
and B in S. Displayed on pp. 490-491 are three Popper functions on a set
[A,a,a, V}9 where a may be thought of as {ex}, a as [e2], and hence V as
[eι,e2], e\ and e2 any two distinct elements you please.
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Note To abridge matters, we shall say that B is P-normal if P(A9B) Φ 1 for
some A in 5, otherwise that B is P-abnormal, and hence take PB5 to read:

PB5 For any A and B in S, if B is P-normal, then P(A9B) = 1 - P(A9B).

Definition 3.2 By a Renyi relative probability function on S we understand
any function P from S x S into the reals that meets constraints B1-B4 of Def-
inition 3.1 plus this fifth one:

RB5 For any A and B in S, if B Φ Λ, then P(A9B) = 1 - P(A9B).

The letter *R' in 'RB5' signals that the constraint, equivalent to one used by
Renyi, is peculiar to his functions.3 A Renyi function on the set {A9a9ά9 V] is
displayed on p. 490.

Definition 3.3 By a Carnap relative probability function on S we understand
any Renyi one on S that meets this extra constraint:

CB7 For any A in S, if P(A, V) = 0, then A = A.

The letter *C in *CB7' signals that the constraint, equivalent to one used by Car-
nap, is peculiar to his functions.4 (A constraint RB6 will turn up shortly.) A
Carnap function on {A9a9a9 V] is displayed on p. 491.5

4 Some facts about the probability functions of Section 3

Note All lemmas appealed to in this section and in Sections 6 to 8 are recorded
and proved in the Appendix.

Theorem 1 Let P be a relative probability function of Renyi's on S.
(a) IfB is P-normal, then P(A,B) = 1 - P(A9B);
(b) IfP(A,B) = 1 for every A in 5, then B = Λ.

Proof of (a): By Lemma 1 and RB5.

Proof of (b): Suppose P(A,B) = 1 for every A in 5. Then P(B,B) = 1, hence
by B3 P(B,B) Φ 1 - P(B,B)9 and so by RB5 B = A.

So, if we recast clause (b) in Theorem 1 as a constraint, to wit:

RB6 For any B in S, if P(A,B) = 1 for every A in 5, then B = A,

then by virtue of Theorem 1 each of Renyi's relative probability functions proves
to be a Popper one that meets RB6. But each of Popper's relative probability
functions that meets RB6 meets RB5 as well, and hence is a Renyi function.
Hence

Theorem 2 Renyi's relative probability functions on S are those, and only
those, among Popper's relative probability functions on S that meet RB6.

The result would of course be otiose were all Popper functions Renyi ones, but
in Table 1 the function P on the set [A9a9a,V] is our promised evidence to the
contrary. It is a Popper function that does not meet RB6, and hence is not a
Renyi function.
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Table 1

B

P(A,B) A a a V

A 1 1 0 0
a 1 1 0 0

A a 1 1 1 1
V 1 1 1 1

Theorem 3 Camap's relative probability functions on S are those, and only
those, among Renyϊs relative probability functions on S that meet CB7.

Proof: By definition.

This result too would be otiose were all Renyi functions Carnap ones, but the
function P in Table 2 on the set {A9a9a, V] is our promised evidence to the con-
trary. It is a Renyi function that does not meet CB7, and hence is not a Car-
nap function.

Table 2

B

F(A,B) A a a V

A 1 0 0 0
a 1 1 0 0
a \ 0 \ \
V 1 1 1 1

Given Theorem 2, Carnap's relative probability functions are consequently
those, and only those, among Popper's functions that meet RB6 and CB7. This
characterization can be sharpened, by the way. In virtue of Lemma 3 any Popper
relative probability function P that meets CB7 also meets this constraint:

If P(A9B) = 1, then B=A9

hence this one:

There is an A in S such that if ?(A,B) = 1, then B = Λ,

hence RB6. So:

Theorem 4 Carnap's relative probability functions on S are those, and only
those, among Popper's relative probability functions on S that meet CB7.
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The function P on the set {Λ,a,β,V) in Table 3 is a Carnap function.

Table 3

B

P(A,B) A a a V

A 1 0 0 0

A β 1 1 0 I
A a 1 0 1 \

V 1 1 1 1

The relationships between Popper's, Renyi's, and Carnap's relative prob-
ability functions may be portrayed as in Figure 1 (cf. Figure 2 in Section 7).

Popper's functions

Renyi's functions / >̂

/ / >̂  \ Carnap's functions

Figure 1.

5 Absolute probability functions Let S be a Boolean algebra.

Definition 5.1 By a Popper absolute probability function on S we understand
any function P from S into the reals that meets these three constraints:

Cl For any A in S, 0 < P(^4)
C2 P(F) = 1
C3 For any A and B in S, Έ>(A) = P(A Π B) + Y(A Π B).6

Due to A1-A3 and our understanding of =, automatically met here are three
additional constraints that appear in some characterizations of Popper's func-
tions, when these are defined on arbitrary sets, to wit:
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For any A and B in S, P(A Π B) < P(B Π ,4)

For any A, B, and C in 5, P(Λ Π (B Π C)) < P((,4 Π B) Π C)

and

For any ^ in 5, Y(A) < P(Λ Π .4).
Note that by C3, a constraint that is also met by Carnap's absolute probabil-
ity functions, P(,4) = P(^4 Π A) + PG4 Π Λ). But A = ,4 Π A by A3, and hence
P(.4) = P(A Π ,4). So P(Λ) = 0. But P(F) = 1 by C2, a constraint also met
by Carnap's functions. So, S is again compelled to have at least two members.
Popper's absolute probability functions on our set [Λ,a,a9 V] arc all results of
entering a nonnegαtive real, not exceeding 1, for r in Table 4.

Table 4

A | P ( Λ )

Λ 0

tf r

α 1 - r
F 1

Definition 5.2 By a Cαrnαp absolute probability function on S we under-
stand any Popper one on 5 that meets this extra constraint:

CC4 For any A in S, if P(A) = 0, then A = A.

The first letter ' C in 'CC4' signals that the constraint, equivalent to one used
by Carnap, is peculiar to his functions. Carnap's absolute probability functions
on [A,a9a,V] are all results of entering a nonzero real smaller than 1 for r in
the preceding table.

6 The relativίzation theorems We first establish that Renyi's —and hence,
Popper's —relative probability functions relativize Popper's absolute ones.

Theorem 5 Let P be a relative probability function of Popper's on S. Then
the V-restriction P' of 'P is an absolute probability function of Popper's on 5.

Proof: 0 < P(Λ, V) by B2, P(F, K) = 1 by B3, and P(Λ, F) = P(Λ Π £, F) +
P(,4 Π B9 V) by Lemma 2(f) and Lemma 2(k). So, P' meets each of C1-C3. So
P' is an absolute probability function of Popper's on S.

Thus each of Popper's —and hence, each of Renyi's —relative probability func-
tions has an absolute probability function of Popper's as its F-restriction.

Note as regards the definition of P in the next theorem that when B Φ A,
P'c(B) ΦOby CC4.
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Theorem 6 Let Pp be an absolute probability function of Popper's on S, let
Pc be an absolute one of Carnap's on S, and let P be this function on S:

h,ifB = Λ

P(A,B) = <Έ>ί>(A ΠB)/P{>(B)9 if B Φ A andP^(B) Φθ

[P'C(A Π B)/P'C(B)9 ifB Φ A but Pf>(#) = 0.

Then:
(a) P is a relative probability function of Renyi's on S;
(b) P has Pp as its V-restriction.

Proof of (a): That P meets each of B1-B4 and RB5, and hence is a relative prob-
ability function of Renyi's on S, is established by cases.

Case 1: VΦA by Lemma 4(e) and C2, P£(F) = 1 by C2, and Pί>(A Π V) = 0
by Lemma 4(e) and Lemma 4(f). So, P(Λ, V) = 0 and P meets Bl.
Case 2: P meets B2 by definition when B = A. So, suppose B Φ A, in which case
P'c(B) > 0 by CC4 and Cl. Since P^(AΠB)^0 and P'C(A Π B) > 0 by Cl,
P meets B2 whether or not P?(B) Φ 0.
Case 3: P meets B3 by definition when A = A. So, suppose A Φ A, in which case
Pc(A) > 0 by CC4 and Cl. Since Έ>ί>(A Π A) = Pi>(A) and P£04 Π A) =
Έ>'C(A) by Lemma 4(d), P meets B3 whether or not Pp(A) Φ 0.
Case 4: P meets B4 by definition when C = A and hence B Π C = A by BA. So,
suppose //Vtf that C*Λ&w/ J BΠC = Λ. Then P£ (B Π C) = PQ(B 0 C) = 0
by Lemma 4(e), hence Pp(M Π 5) Π C) = 0 by Lemma 4(g), and hence P
meets B4 whether or not Pp(C) Φ 0. Suppose next that C ΦA, BΠ C ΦA, and
Pp (BΠC) Φ 0, in which case Pp (C) Φ 0 by Lemma 4(f). Then P meets B4 by
Lemma 4(b). Suppose finally that C Φ A, B Π C Φ A, but Pp(B Π C) = 0, in
which case (i) P£ (A Π (B Π C)) = P£ ((̂ 4 IΊ 5) Π C) = 0 by Lemma 4(f) and
Lemma 4(g), and (ii) P'C(B Π C) Φ 0 by CC4 and the hypothesis on B Π C.
When Pp(C) Φ 0, P meets B4 by virtue of (i); when Pp(C) = 0, on the other
hand, P meets B4 by virtue of (ii) and Lemma 4(b).
Case 5: Suppose B Φ A, in which case P£ (B) φOby CC4. Since Pp (AΠB) =
Pi>(B) - Pi (A Π B) and P'C{A Π B) = Pc(#) - P'c(A Π 5) by C3 and BA,
P meets RB5 whether or not P?(B) Φ 0.7

Proof of (b): Let A be an arbitrary member of S. V Φ A by Lemma 4(e) and C2,
and Pp(*0 = 1 by C2. So, since Pί>(KΠ A) = Pp(^) by BA and Pp(F) = 1
by C2, P(v4, V) = Pp(-4)' So Pp is the F-restriction of P.

Thus, each of Popper's absolute probability functions is the F-restriction of a
Renyi relative probability function. So:

Theorem 7 RenyVs relative probability functions on S relativize Popper's
(and hence, Kolmogorov's) absolute probability functions on S.8

But each of Popper's absolute probability functions, being the F-restriction of
a Renyi relative probability function, is of course that of a Popper one. So:

Theorem 8 Popper's relative probability functions on S relativize Popper's
(and hence, Kolmogorov's) absolute probability functions on S.
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Unlike Renyi's relative probability functions, which relativize all of Pop-
per's absolute probability functions, the rest of Popper's relative probability
functions relativize those only that are not Carnap ones. In virtue of Theorem
5, any relative probability function of Popper's that is not a Renyi one has an
absolute probability function P' of Popper's as its F-restriction. But that P' can-
not be a Carnap function. Indeed, since P is not a Renyi function, P by Defi-
nition 3.3 of Section 3 is not a Carnap one either. So, P does not meet CB7, and
as a result P' does not meet CC4. Thus, those among Popper's relative proba-
bility functions that are not Renyi ones have as their F-restrictions those, but
only those, among Popper's absolute probability functions that are not Carnap
ones.

Our next theorem exploits the fact that if a Renyi relative probability
function P R is not a Carnap one, then there is at least one B in S such that
PR(B, V) = 0 and yet B Φ A. It delivers, we shall see, our second result on the
relativization of Kolmogorov's absolute probability functions.

Theorem 9 Let P R be a relative probability function of Renyi's on S that is
not a Carnap one, and let P R be this function on S:

[PR(A9B), otherwise.

Then:
(a) PR is a relative probability function of Popper's on S;
(b) PR is not a Renyi one;
(c) PR has the same V-restriction as P R .

Proof of (a): That PR meets each of B1-B4 and PB5, and hence is a Popper rel-
ative probability function on S, is established by cases.
Case 1: P R (F, V) Φ 0 by B3, and PR(Λ, V) Φ 1 by Lemma 2(k) and Lemma
2(h). So, PR meets Bl.
Case 2: PR automatically meets B2 when P R (£, V) = 0, and does so by B2 in
the contrary case.
Case 3: PR automatically meets B3 when PR(^4, F) = 0, and does so by B3 in
the contrary case.
Case 4: That P R meets B4 is trivially true when P R (C, V) = 0 and hence
P R ( £ Π C9V) = 0 by Lemma 2(n). So, suppose P R (C, V) Φ 0 but
PR(B ΠC,V) = 0, in which case PR((,4 Π B) Π C, V) = 0 by Lemma 2(p).
Since PR(C, V) Φ 0, PR(A ΠB,C) = PR((A ΠB)Π F)/P(C, V) and PR(£,C)
= ?R(B Π C, F)/P R (C, V) by Lemma 2(1), hence PR(A Π B,C) = PR(B,C)
= 0, and hence P R again meets B4. Suppose, on the other hand, that
P R (C, V) Φ 0 and PR(B ΠC,V) Φ 0. Then PR automatically meets B4.
Case 5: Suppose B is PR-normal. Then PR(B, V) Φ 0, hence B is PR-normal,
and hence PR automatically meets PB5.

Proof of (b): Since P R is not a Carnap function, there is a B in S such that
PR(B, V) = 0 while B Φ Λ, hence there is a B in S such that PR(A,B) = 1 for
every A in S while B Φ Λ, hence PR does not meet PB6, and hence by Theo-
rem 2 PR is not a Renyi function.
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Proof of (c): Since P R (F, V) Φ 0 by B3, PR(,4, V) = PR(A, V) for every A in
S, and hence PR and P R have the same F-restriction.

Now let P' be any Popper absolute probability function that is not a Car-
nap one. By virtue of Theorem 6 there is a Renyi relative probability function
P R that has P' as its F-restriction. But P R cannot be a Carnap function: if it
met CB7, then P' would meet CC4, which by hypothesis it cannot do. So, P'
is the F-restriction of a Renyi relative probability function that is not a Carnap
one. Thus, by virtue of Theorem 9, P' is also the F-restriction of a Popper rel-
ative probability function that is not a Renyi one. So

Theorem 10 Those among Popper's relative probability functions on S that
are not Renyi ones relativize those, but only those, among Popper's (and hence,
Kolmogorov's) absolute probability functions on S that are not Carnap ones.

We promised to prove yet another relativization theorem in Section 6, one
concerning Carnap's functions. By virtue of Theorem 5 any relative probabil-
ity function P of Carnap's has as its F-restriction an absolute probability func-
tion P' of Popper's, one which must meet CC4 (If P'(A) = 0, then A =Λ) since
P meets CB7 (If P(A, V) = 0, then A = A), and hence which must be an abso-
lute probability function of Carnap's. Now let P' be an arbitrary absolute prob-
ability function of Carnap's, and let P be this function:

Γl, if P'(£) = 0(i.e., if B = A)

\j>'(A Π B)/P'(B), otherwise.

The proof that P meets B1-B5 and has P' as its F-restriction can be retrieved
from the proof of Theorem 5. But by CC4 A = A if P'(^4) = 0, hence by BA
if P'(/l Π F) = 0, and hence by C2 if P(A, V) = 0. So P meets CB7 as well,
and hence P is a Carnap relative probability function. Hence

Theorem 11 Carnap's relative probability functions on S relativize his abso-
lute ones on S.

This result can be strengthened, as indicated earlier. Suppose indeed that
the foregoing function P' were the F-restriction of two distinct relative ones P!
and P 2 , and suppose first that B = A. Then by Lemma 1

Pι(A,B)=?2(A9B)

for any A in S. Suppose next that B Φ A. Then Px (B, V) Φ 0 and P 2 (£, V) Φ
0 by CB7, and hence by Lemma 2(1)

P2 (A,B) = P! (A Π B, V)/Px (B, V)

and

P2(A,B) = P2(A Π B, F)/P2(£, F).

But, since P! and P 2 both have P' as their F-restriction,

FxiAΠBtV) =V2(A C\B,V)

and

Pι(B,V)=P2(B,V).
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Hence, again,

Pι(A9B) = P2(A9B)

for any A in S. So P! and P 2 would be the same function, contrary to the orig-
inal supposition. But by definition a relative probability function has a single
absolute one as its F-restriction, and by the foregoing argument a Carnap abso-
lute probability function is the F-restriction of a single relative one. So

Theorem 12 Carnap's relative probability functions on S and his absolute
ones on S match one-to-one.

Indeed, as the definition above of P(A9B) reveals, Carnap's relative probabil-
ity functions are simply his absolute ones couched in two-argument idiom.9

7 Kolmogorov relative probability functions Let S be a Boolean algebra. By
a relative probability function on S in Kolmogorov 9s sense we understand any
Popper one on 5 that meets this extra constraint:

KB8 For any A in S, if P(A9 V) = 0, then P(Λ,A) = 1.

Theorem 13 Let P be a relative probability function on S in Kolmogorov's
sense.
(a) IfP(B9 V) = 0, then P(A9B) = 1 for every A in S;
(b) IfP(B9 V) Φ 0, then P(A9B) = P(A Π B, V)/P(B9 F).

Proof ofXa): Suppose P(£, F) = 0. Then P(Λ Π A,B) = 1 by KB8, and hence
P(Λ9A ΠB) x P(A9B) = 1 by B4. But, since P(B, V) = 0, P(A Γ)B,V) = 0
by Lemma 2(n), and hence P(Λ,A Π B) = 1 by KB8 again. Hence P(A9B) = 1.

Proof of (b): By Lemma 2(1).

Hence:

Theorem 14 Let P be a relative probability function on S in Kolmogorov's
sense, and P' be the V-restriction of P. Then:

[l9ifP
/(B)=0

P(A9B) = \
[P'(A Π B)/P\B)9 otherwise.

Given a Kolmogorov (hence, a Popper) absolute probability function P'
on a Boolean algebra 5, a number of writers —Kolmogorov among them —
abridge the quotient

P'(A C\B)/P'(B)
as

P A ( * )

or

PG4,£),

for any B in S such that P' of B Φ 0, and they refer to P as a conditional (i.e.,
relative) probability function on S. As announced on p. 487 and recorded in The-
orem 14, a relative probability function in Kolmogorov's sense is an extension
of their partial function P to any B in S such that P' (B) = 0, with P(A9B) set
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at 1 for that B. Full Kolmogorov functions of the present sort are considered
in Section 55 of [2] and Section 1 of [9], but they antedate both Carnap and
Popper.

Some, but only some, of Kolmogorov's relative probability functions are
Renyi functions, and as reported in Section 1 those that are coincide with Car-
nap's functions. Consider indeed a relative probability function P in Kol-
mogorov's sense that meets RB6, and suppose P(B, V) = 0. Then P(A,B) = 1
for every A in S by Theorem 13(a), and hence B = A by RB6. So P, if it meets
RB6 and hence is a Renyi function, meets CB7 and hence is a Carnap one. But,
as we saw in Section 4, any relative probability function of Carnap's is a Renyi
one. So

Theorem 15 Those among Kolmogorov's relative probability functions on
S that are Renyi ones are those, and only those, among Renyi's functions that
are Carnap ones.

For instance, the function P in Table 3 is a Kolmogorov function: Έ>(A,B) = 1 for
every A in {Λ,a,a, V] whenever P(B9 V) = 0. It is also a Renyi one: P(B, V) =
0 (and hence, P(A9B) = 1 for every A in the set) only when B is A. So, by The-
orem 15, P is a Carnap function, as was indicated in Section 4. On the other
hand, the function P in Table 5 is a Renyi function that is not a Carnap one.
So, by Theorem 15, P is not a Kolmogorov function. Indeed, P(B9 V) = 0 when
i?is either A or a, but P(A9B) = 1 for every A in [A9a9ά9 V] only when B is A.

As only some of Renyi's functions are relative probability functions in Kol-
mogorov's sense, so only some of Popper's functions that are not Renyi ones
are relative probability functions in that sense. For instance, the function P in
Table 1 is a Kolmogorov function that is not a Renyi one, as the reader may ver-
ify. But the function P on the eight-membered set [A9a9b9c9a9b9c9 V] in
Table 5 is a Popper function that is neither a Renyi function (P(A9B) = 1 for
every A in the set when B is a) nor a Kolmogorov one (when B is either b or
c, P(B9 V) = 0 and yet P(A9B) Φ 1 for at least one A in the set). Members a9

b9 and c of the present set are to be understood respectively as {e\}, \e{\9 and
[e3] (eΪ9 e2, and e3 any three distinct elements you please), and hence ά, b9 and
c understood respectively as {e2, β3}, {e\, e3}, and {e\, e2}.

Table 5

B

P(A9B) A a b c a b c V

A 1 1 0 0 0 0 0 0
a 1 1 0 0 0 0 0 0
6 1 1 1 0 0 0 1 0
c 1 1 0 1 1 1 0 1
α l l l l l l l l
5 1 1 0 1 1 1 0 1
c 1 1 1 0 0 0 1 0
V 1 1 1 1 1 1 1 1
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In the presence of Kolmogorov's relative probability functions the relation-
ships between our various relative probability functions on S may therefore be
diagrammed as in Figure 2 below.

Since every relative probability function P in Kolmogorov's sense is a Pop-
per one, its F-restriction (hence, the F-restriction P' of the function P in The-
orem 14) is ensured by Theorem 5 to be a Popper (hence, a Kolmogorov)
absolute probability function, or more specifically: a Carnap one if P is a Renyi
function, a non-Carnap one otherwise. And it is easily verified that, where P'
is a Popper (hence a Kolmogorov) absolute probability function, this function
is a relative probability function in Kolmogorov's sense (a Renyi one if P' is a
Carnap function, otherwise a non-Carnap one) and that it has P' as its F-
restriction:

| Ί , if P'(£) = 0
P(A,B) =\

[P'iA Π B)/P'(B)9 otherwise.

So, a fifth relativization theorem:

Theorem 16 Kolmogorov's relative probability functions on S relativize Pop-
per's (hence, Kolmogorov's) absolute probability functions on S.

This result, as indicated in Section 1, can be strengthened to:

Theorem 17 Kolmogorov's relative probability functions on S match one-
to-one Popper's (hence, Kolmogorov's) absolute probability functions on S.

The argument needed to show that each of Popper's absolute probability
functions is the F-restriction of exactly one relative probability function in Kol-
mogorov's sense is like that on pp. 495-496, but with Theorem 13(a) being sub-
stituted for Lemma I. 1 0

Popper's functions

Kolmogorov's functions/ \ Rέnyi's functions

Carnap's functions | / / λ \ \

\ \ ^C—y I

Figure 2.
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We attended in Section 6 to those among Popper's relative probability func-
tions that were not Renyi ones. Wrapping up that story, we attend here to those
that are neither Renyi functions nor Kolmogorov ones.

Let P be an arbitrary relative probability function of Popper's on S that
is neither a Renyi function nor a Kolmogorov one, and let P' be its F-restric-
tion. By virtue of Theorem 5, P' is of course an absolute probability function
of Popper's on S. Furthermore, since P does not meet RB6, there is a member
of S, say D, other than A such that P(A,D) = 1 for every A in S and hence
P(Λ,D) = 1. But P(Λ Π A V) = 0 by Lemma 2(h), Lemma 2(k), and BA, and
hence P(A,D) X P ( A V) = 0 by B4 and BA. So, P ( A V) = 0, and hence
P'(£>) = 0. And since P does not meet KB8 either, there is a member of S, say
D\ such that V{D\ V) = 0 but P(Λ,£>') Φ 1, and hence such that P'(Z>') = 0
andsobyB3Z)'*Λ. But since ?(A,D) = 1 andP(Λ,D') Φ \,DΦD'. So, P'
is an absolute probability function on S whose evaluation is 0 for at least two
members of S other than A. Thus, those of Popper's relative probability func-
tions that are neither Renyi nor Kolmogorov ones have as their F-restrictions
absolute probability functions of Popper's that are not Carnap ones and whose
evaluation is Ofor more than one argument other than A.

Our next theorem is an adaptation of Theorem 6. Note in connection with
the definition of P given here that when B Π D Φ B, B Π D Φ A by BA and
hence Έ>ί(B Γ) D) Φ 0 by CC4.

Theorem 18 Let P P be an absolute probability function of Popper's on S
that is not a Carnap one and evaluates to Ofor at least two members D and D'
of S distinct from A, let P£ be an absolute probability function of Carnap fs on
S, and let P be this function on S:

Γl, ifBDD = B

P(A,B) =\?ί>(A ΠJ?)/Pf>(B), ifBΠDΦBandPi>(B) Φθ

[Pfc((v4 ΠB)Π D)/P/c(B Π D), if B Π D Φ B but P P (£) = 0.

Then:
(a) P 15 a relative probability function of Popper's on S;
(b) P is not a Renyi one on S;
(c) P is not a Kolmogorov one on S;
(d) P has Pp as its V-restriction.

Proof of (a): That P meets each of B1-B4 and PB5, and hence is a relative prob-
ability function of Popper's on S, is established by cases.
Case 1: P P ( F Π D) = 0 by the hypothesis on PP(£>) and Lemma 4(f). So,
VίΊ D Φ Vand P P (F) Φ 0 by C2. But PP(Λ Π V) = 0 by Lemma 4(e) and
Lemma 4(f), and P P (F) = 1 by C2. So P meets Bl.
Case 2: P meets B2 by definition when B Π D = B. So, suppose B Π D Φ B, in
which case B Π D Φ A by BA, and hence Vc (B Π D) > 0 by CC4 and Cl. Since
P P 04 Π B) > 0 and Pc(M Π B) Π D) > 0 by Cl, P meets B2 whether or not
P'(B) Φ0.
Case 3: P meets B3 by definition when A Π D = A. So, suppose A Π D Φ A,
in which case A Π D Φ A by BA, and hence Pc(^4 Π D) > 0 by CC4 and Cl.
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Since Έ>ί>(A Π A) = Pi>(A) and P'C((A Π A) Π D) = P'C(A Π D) by BA, P
meets B3 whether or not Pp(A) Φ 0.
Case4: P meets B4 by definition when CΠD = Cand hence by BA (BΠC)ΠD
= BΠC So, suppose//rsί that CΠ DΦC but (BΠC) Π D = BΠ C, in which
case C Π D Φ A and (B Π C) Π 5 = A by BA, and hence ((Λ Π β ) Π C ) n 5
= Λ by BA again. Then Pi>(B Π C) = 0 since Pf>((£ Π C) Π Z>) = 0 by the
hypothesis on Pf> φ ) and Lemma 4(f), P£ ((A Π £) Π C) = 0 by Pί> (B Π C) =
0 and Lemma 4(g), P£ ((5 ΠC)ΓiD)=0 and P£ (((Λ Π B) Π C) Π 5 ) = 0 by
Lemma 4(e), hence P meets B4 whether or not P'(C) Φ 0. Suppose next that
CΠDΦC, (BnC)C\DΦBnC,andΈ>ί>(BnC)Φθ,m which case CΠD
= Λ and (B Π C) Π £> Φ A by Lemma 4(f). Then P meets B4 by Lemma 4(b).
Suppose finally that C Π D Φ C, (B Π C) Π D Φ B Π C, but P'(B Π C) = 0,
in which case (i) P£ (04 Π B) Π C) = 0 by Lemma 4(g), (ii) C Π Z) ̂  τl by BA
and hence PQ(C Π D) Φ 0 by CC4, (iii) (B ΠC) ΠD ΦΛby BA and hence
P£((£ Π C) Π D) Φ Oby CC4 again, and (iv) Pc(((^4 Π B) Π C) Π D)
= Pi ((A Π (B Π O ) Π Z>) by BA. When Pf>(C) ^ 0, P meets B4 by virtue of
(i); when P p ( Q = 0, on the other hand, P meets B4 by virtue of (ii)-(iv).
Case 5: Suppose B is P-normal. Then B Π D Φ B by the definition of P. But
Pi>(A ΠB) = Pί(B) - Pi>(A Π B) and P'C(A Π B) = P£(£) - Pc(-4^) by
C3 Lemma 4(a). So, P meets PB5 whether or not Pp(#) Φ 0.

Proof of (b): Since Z) Π Z) = D by BA, P(.4,D) = 1 for every A in S. But Z> *
Λ by hypothesis, so P does not meet RB6. So, by Theorem 2, P is not a Renyi
function.

Proof of(c): As noted in the proof of (a), Case 1, VD D Φ Fand Pί>(V) Φ 0.
So, P(D\ V) = Pp(D' Π V)/Pί>(V)9 and hence P(D\ V) = 0 by the hypothe-
sis on Pp (£>') and Lemma 4(f). But, since D Φ D' by hypothesis, either D ' Π D
:£ D' or Z> Π £)' Φ D by Al, and which of the two is true does not matter.
So, suppose Df Π D Φ D', a choice which dictated the definition of P. Since
Pί>(D') = 0 by hypothesis, P(A,D') = Pi((A Π D') Π D)/P'C(D' Π D) by def-
inition, and since (AΠDf)ΠD = Λby BA, Pc((Λ Π Z)r) Π £)) = 0 by Lem-
ma 4(e). So P(A,D') = 0. So, P does not meet KB8. Thus, P is not a Kol-
mogorov function.

Proof of (d): Let A be an arbitrary element of S. Again, VΠ D Φ Fand P?(V)
Φ 0. But Pi>(A Π V) = Pί>(A) by BA and P£(F) = 1 by C2. So P(>1, V)
= Pp(^4). So, Pf> is the F-restriction of P.

So, a sixth relativization theorem:

Theorem 19 Those among Popper's relative probability functions on S that
are neither Renyi functions nor Kolmogorov ones relativize those among Pop-
per's (and hence, Kolmogorov's) absolute probability functions on S that are not
Carnap ones and evaluate to 0 for more than one member of S other than A.

We conclude this section with tables summarizing our relativization the-
orems and corollaries thereof. Table 6 covers the four types of Popper relative
probability functions that are mutually exclusive; Table 7 covers the remaining
six types.
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Table 6

Relative Probability Functions Absolute Probability Functions

Carnap's match 1-1 Carnap's
Kolmogorov's that are not match 1-1 Popper's that are not Carnap's

Carnap's
Renyi's that are not Carnap's relativize Popper's that are not Carnap's
Popper's that are neither relativize Popper's that evaluate to 0 for at

Renyi's nor Kolmogorov's least 2 elements other than A

Implicit in Table 6 are the results summarized in Table 7.

Table 7

Relative Probability Functions Absolute Probability Functions

Kolmogorov's match 1-1 Popper's
Renyi's relativize Popper's
Popper's that are not relativize Popper's that are not Carnap's

Kolmogorov's
Popper's that are not Renyi's relativize Popper's that are not Carnap's
Popper's that are not Carnap's relativize Popper's that are not Carnap's
Popper's relativize Popper's

8 Popper's probability functions as defined on arbitrary sets We deleted
some of the Popper footnote that serves as the epigraph of this paper. The first
sentence was of no concern to us, and the balance of the last might have misled
the reader at that point. The sentence in its entirety runs as follows (the italics
ours):

The relative systems published by me since 1955 are more general still than
Renyi's system which, like Kolmogorov's, is set-theoretical, and non-
symmetrical; and it can easily be seen that these further generalizations may
lead to considerable simplifications in the mathematical treatment.

Now, Renyi's system is set-theoreticalr, to be sure: the Boolean algebras on which
his relative probability functions are defined, like those on which Kolmogorov's
absolute probability functions are defined, must consist of sets. And the system
is nonsymmetrical: since any function P of Renyi's is defined on the Cartesian
product S x S' of two distinct sets, S a field (of sets) and S' a proper subset of
S, P(A,B) will have a value but P(B,A) will not when B belongs to S' (and
hence to S) but A belongs to 5 - S'. But these differences are not of the essence:
Renyi's functions, as we understand them, are not necessarily set-theoretical,
and—being total functions on S—they are symmetrical in Popper's sense. To us
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it is in two other respects, neither of which was mentioned by Popper, that his
relative probability functions principally and most importantly differ from
Renyi's:

(a) the Complementation Law they obey, PB5, is weaker than RB5, the
one Renyi's functions do, and

(b) as often stated in the preceding pages, they are defined on sets gener-
ally rather than Boolean algebras only, as are the absolute probability
functions in [4].

When in Sections 3 to 7 we presumed Popper's relative probability func-
tions to be defined on Boolean algebras, we required them of course to meet
PB5, thereby ensuring that a number of them —2K° functions of them, to be
precise —are not Renyi ones. And, as stated in Section 1, these 2*° functions
are of particular significance, philosophical as well as mathematical. For
instance, we showed in Section 4 that RB6, to wit:

For any B in 5, if P(A,B) = 1 for every A in 5, then B = Λ9

is a characteristic constraint of Renyi's functions. But other constraints are also
characteristic of Renyi's functions, among them:

For any A and B in 5, if P{A, C) = P(B, C) for every C in S, then A = B,

i.e., if member A and member B of S behave alike under P or —should you
prefer—if A and B are indiscernible under P9 then A and B are identical.11 As
a result, when P is a Popper function that is not a Renyi one, for each mem-
ber of S there will be one or more other members of S indiscernible from it
under P. This matter of indiscernibility versus identity and other consequences
of (a) are studied in [8] and in [14].

As Popper insisted with pride, (b) freed probability theory of its long
dependence upon Boolean Algebra; hence, it freed the theory (i) when S con-
sists of sets, of its long dependence upon the Boolean Algebra of sets, and (ii)
when S consists of propositions, of its long dependence upon the Boolean
Algebra of propositions, etc. As a matter of fact, it is (b), with S taken to consist
of statements, which paved the way in the 70's for what is known as probabi-
listic semantics.12 And (b) makes for extra Popper functions, 2*° relative ones
and an equal number of absolute ones, a fact which to our knowledge is nowhere
noted in the literature. Consider, for example, the three-membered set (a,b9c)
s u c h t h a t a = c , b = c = a, a Π b = b Π a = a Π c = c f ) a = a , a n d b Π c =
c(Ίb = c. The function on S x 5in Table 8 constitutes, as the reader may verify,
a Popper relative probability function in the sense of [11], and its F-restriction
constitutes an absolute one in the sense of [9]. But [a9b,c] violates A3 and hence
does not constitute a Boolean algebra in the sense of Section 2. Indeed, when
A is a, B is b, and C is c, both A Π B and C Π C are c and hence A Π B
= C Π C, but A Π B is b and hence AOBΦA. Nor could [a,b,c] constitute
a Boolean algebra in the sense of Section 2, since it is three-membered and a
finite Boolean algebra in that sense has to be 2Λ-membered for some n or
other.13
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Table 8

B

P(A,B) a b c

a 1 0 0
, 4 6 1 1 1

c 1 1 1

Popper's functions defined on sets that are not Boolean algebras in the
sense of Section 2 are unknown to, or at any rate ignored by, most probabil-
ity theorists, this 30 years after the publication of [11] and 34 after that of [9].14

They demand immediate study. But long overdue in this paper is a formal ac-
count of the relative probability functions in [11] and the absolute ones in [9],
and a proof of the relativization theorem announced in the second paragraph
of Section 1.

Let S be an arbitrary set closed under - and Π.

Definition 8.1 By a Popper relative probability function on S we understand
any function P from S x S into the reals that meets constraints B1-B4 and PB5
plus these extra two, already mentioned in Section 3:

PB6 For any A, B, and C in S, P(,4 C\ B9C) <P(B Cι A,C)
PB7 For any ,4, B, and C in S, P(A,B Π C) < P(A,CΠB).

Definition 8.2 By a Popper absolute probability function on S we understand
any function P from S into the reals that meets constraints C1-C3 plus these
extra three, already mentioned in Section 5:

PC4 For any A and B in S, P(A Π B ) < P(B Π A)
PC5 For any A, B, and C in S, P(v4 Π (B Π C)) < P((A Π B) Π C)
PC6 For any A in 5, PM) < P(A Π A).

Note It is because S here is an arbitrary set and hence need not meet con-
straints A1-A3 in Section 2 that the function P in Definition 8.1 is required to
meet constraints PB6-PB7 and the one in Definition 8.2 is required to meet con-
straints PC4-PC6. PB6 amounts of course to P(A ΠB9C)= P(B Γ)A,C)9 PB7
toP(A9BΠC) = P(A9CΠB), and PC4 to P μ Π B) = P(BΠA). As for
PC5 and PC6, they are shown in Lemma 4 to strenghten to P(A Π (B Π C))
= P((A Π B) Π C) and P(v4 Π A) = P(A), respectively. And, concerning A
and V here, P(A Γi A) = P(B Π B) by Lemma 4(e), and hence P(A Π A)
= P(B Π B) by Lemma 4(i), for any two A and B in S. So, P(Λ) = P(A Π A),
P(F) = P(A ΠA), and hence by C2 P(A Π A) = 1, for any Ain S. We leave
to the reader the verification that (i) P(A9 V) = P(A,B Π B) and P(A,A)
= P(A,B Π B) for any B in S and (ii) P(V,B) = P(,4 Π A,B) and P(Λ,£)
= P(A Π ,4,£) for α«y A in S.

Theorem 20 Let P be a relative probability function of Popper's on S in the
sense of Definition 8.1. Then the V-restriction P' of P is an absolute probability
function of Popper's in the sense of Definition 8.2.
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Proof: P' meets C1-C3 for the same reasons as in the proof of Theorem 5, and
meets PC4 by PB6, PC5 by Lemma 2(c), and PC6 by Lemma 2(g).

The function P in Theorem 21 is, as indicated in Note 10, a Kolmogorov func-
tion defined on an arbitrary set rather than on a Boolean algebra.

Theorem 21 Let P' be an absolute probability function of Popper's on S in
the sense of Definition 8.2, and let P be this function on S:

(l9ifP'(B) = 0
P(A9B) = \

[P'(A Π B)/P'(B)9 otherwise.

Then:
(a) P is a relative probability function of Popper's on S in the sense of Defini-
tion 8.1;
(b) P has P' as its V-restriction.

Proof of (a): That P meets B1-B4 and PB5-PB7, and hence is a relative prob-
ability function of Popper's on S in the sense of Definition 8.1, is established
by cases.
Case 1: P'(V) Φ 0 by C2, and P'(Λ Π V) = 0 by Lemma 4(e) and Lemma 4(f).
Hence P{Λ, V) Φ 1, so P meets Bl.
Case 2: P meets B2 by definition when P\B) = 0, otherwise by Cl.
Case 3: P meets B3 by definition when P'(A) = 0, otherwise by Lemma 4(d).
Case 4: Suppose P'(C) = 0 and hence P'(B Π C) = 0 by Lemma 4(f). Then P
meets B4 by definition. Suppose next that P'(C) Φ 0 but P'(B Π C) = 0. Then
P'((A Π B) Π C) = 0 by Lemma 4(g), and hence P again meets B4. Suppose
finally that P'(C) Φ 0 and P'(B Π C) Φ 0. Then, since P'((,4 Π B) Π C) =
P'(A Π (BΠ C)) by Lemma 4(b), P again meets B4.
Case 5: Suppose B is P-normal. Then P'(B) Φ 0 by the definition of P, and
hence P meets PB5 by C3 and Lemma 4(a).
Case 6: P meets PB6 by definition when P'(C) = 0, otherwise by Lemma 4(m).
Case 7: By Lemma 4(a), P'(BΓ)C)=0 iff P ' ( C Π B ) = 0 . Hence P meets PB7
by definition when P'(B Π C) = 0, otherwise by Lemma 4(n) and Lemma 4(a).

Proof of (b): P{A,BΠB)) = P'(A Π (B Π B)) by C2 and the definition of P.
But, by Lemma 4(e) and Lemma 4(f), P'(A Π(BΠ B)) = 0. Hence P(A9 V) =
P'{A) by C3 and the definition of F.15

Hence, our last relativization theorem:

Theorem 22 Popper's relative probability functions on S in the sense of Def-
inition 8.1 relativize his absolute ones in the sense of Definition 8.2.

Appendix

Lemma 1 Let Sbea Boolean algebra and P be a relative probability func-
tion on S that meets B3-B4. IfB = Λ9 then P(A9B) = 1 for every A in S.

Proof: Suppose B = A. Then A Π B = B by BA. Hence P(A Π B9B) = 1 by B3,
hence P(A9B Π B) = 1 by B4 and B3, and so P(A9B) = 1 by BA.
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Lemma 2 Let P be a Popper relative probability function on S in either the
sense of Definition 3.1 or that of Definition 8.1.16

(<ι)0<P(A9B) < 1.

Proof: P(A9B) < 1 is trivially true when B is P-abnormal. So, suppose B is P-
normal. Then P(A9B) = 1 - P(A9B) by PB5, hence P(A9B) < 1 by B2, and
hence (a) by B2 again.

(b) IfP(A9B) X P(C,Z>) = 1, then P{A9B) = P(C9D) = 1.

Proof: By (a).

(c) P(A9A ΠB)= P(A9B ΠA) = 1.

Proof: P(B Π A, A Π B) = 1 by B3 and either BA or PB6, hence P(A9AΠB)
= 1 by B4 and (b), so P(A9B Π A) = 1 by either BA or PB7.

(d) If A is P-normal, then P(A,A) = 0.

Proof: By B3, PB5, and the hypothesis on A.

(e) IfB is P-normal, then P(A Π B,B) = P(B Π A,B) = 0.

Proof: Suppose B is P-normal. P(A Π B,B) = P(A,B Π B) x P(B9B) by B4,
hence P(A Π B9B) = 0 by (d) and the hypothesis on B9 and hence P(B Π A9B)
= 0 by BA or PB6. Hence (e).

(f) IfCis P-normal, then P(A9C) = P(A ΠB9C) + P(A ΠB9C).

Proof: Suppose C is P-normal. By definition, when A Π C is P-abnormal, other-
wise by PB5

P(B9A nc) + P(B9A n c) = P(C9A n o + P(C9A n o ,

hence by (c)

P(B9A ΠC)x P(A9C) + P(B9A Π C) X P(A9C)

= P(A9C) + P(C9A ΠC)X P(A9C)9

hence by B4, (e), and the hypothesis on C

P(B ClA9C) + P(B ΠA9C) = P(A9C)9

and so by either BA or PB6

P(A n B9C) + P(A nS9c) = P(A9C).

Hence (f).

(g)P(AΠA9B)=P(A9B).

Proof: By B4 and (c).

(h) IfB is P-normaU then P(A Π Λ9B) = P(Λ9B) = 0.

Proof: By (f)-(g) and the definition of A.

(i) P(A ΠA9B) = P(V9B) = 1.
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Proof: By definition when B is P-abnormal; otherwise, by (h), PB5, and the def-
inition of F.

(j) P(A9VΠB) = P(A9B ΓiV)= P(A,B).

Proof: P(v4 Π V,B) = P(A, VΠ B) and P(VΠA,B) = P(A9B) by B4 and (i).
Hence (j) by either BA or PB6-PB7.

(k) V is P-normal.

Proof: Suppose V is P-abnormal, and let A and B be arbitrary members of S.
Then P(A ΠB9V) = 1, hence P(A9B Π F) x P(B9 V) = 1 by B4, and hence
P(A9B) = 1 by (b) and (j). So, contrary to Bl, P(A9B) = 1 for any A and B
in S. Hence (k) by reductio.

(l) //P(£, v) Φ o, ίΛβrt p μ , 5 ) = P04 n 5, F)/P(#, V).

Proof: By B4 and (j).

(m)PC4 ΠB,C) < P ( Λ C ) and?(A ΠB,C) <F(B,C).

Proof: Έ>(A <ΛB,C)< P(A9C) by B4 and (a), and hence P(A Π B,C) < P(5,C)
by either BA or PB6.

(n)//P(v4,C) = 0, thenP(A ΠB9C) = P(BΠA,C) = 0.

Proof: By (m) and B2.

(o) P(A n (BΠ c), v) = P((>i n 5) n c, F).

Proof: By B4 and (j)

P(A Π(BΠ C), F) = P(A,B Π C) X P(B Π C, F)

= pμ,ΰno χp(5,o xP(c,F)
P(M ΠB)ΠQV) = P(A ΠB,C)X P(C, F)

= P(A,B ΠC) x P(5,C) x P(C, F).

Hence (o).

(p) IfP(B ΠC,V) = 0, /ΛeΛ P((,4 Γ\B)ΓlC,V) = 0.

Proo/; By (n) and (o).

Lemma 3 Let Vbea Carnap relative probability function on S. If P (Λ9A) = 1,
then A =Λ.

Proof: Suppose P(Λ9A) = 1 (hyp. 1) and yet A Φ A (hyp. 2). P(A9 V) Φ 0 by
CB7 and hyp. 2. Hence P(Λ Π ̂ 4, F) = P ( Λ F) by Lemma 2(1) and hyp. 1. But
P(Λ9 V) = 0 by Lemma 2(h) and Lemma 2(k), and hence P(Λ Π A, V) = 0 by
Lemma 2(n). Hence P(A9 V) = 0, so A = A by reductio. Hence, if P(Λ,v4) = 1,
then 4̂ =Λ.

Lemma 4 Lei P be a Popper absolute probability function on S in either the
sense of Definition 5.1 or that of Definition 8.2.
(a) P(A) = P(B Π A) + P(B Π A) = P(B Π Λ) + P M Π 5) .

Proo/: By C3 and BA or PC4.

(b) P(A n (BΠ o) = P(U n 5) n c).
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Proof: By BA when P is a Popper function in the sense of Definition 5.1.
Otherwise,

P(G4 n B) n c) = P(c n (A n B)) (by PC4)
<Έ>((CΠA)nB) (byPC5)
<P(5Π (ClΊΛ)) (byPC4)
<PpnC)Π^) (byPC5)
< P(A Π(BΠ O) (by PC4),

and hence (b) by C5.

(c)P(A ΠB) <PM) andP(A OB) < P(B).

Proof: P(A Π B) < P(yl) by C3 and Cl. Hence (c) by PC4.

(d)P(AΓ\A) = P(A).

Proof: By BA or by (c) and PC6.

(e)P(AΓ)A) = P(AΠA) = 0.

Proof: P(A Π A) = 0 by C3 and (d). Hence (e) by PC4.

(f) //P(^4) = 0, Λ̂βΛ P(A ΠB) = P(B ΠA) =0.

Proof: By (c) and Cl.

(g) IfP(B Π C) = 0, then P({A ί) B) Π C) = 0.

Proof: By (f) and (b).

(h) P ( U ΓiA)ΠB) = P((A ΠA)ΠB)= P ( i Π (A Π B)) = P(A Π (B Π v4))
= 0.

PAΌO/: P(G4 Π ̂ 4) Π 5) = P((A Π >1) Π B) = 0 by (e) and (f), and hence
P(AΠ (AΠB)) = 0 by (b). P((B Π A) Π A) = 0 by (e) and (g), and hence
P(A Π (BOA)) =0 by BA or PC4.

0)P(i) = i-pμ).

Proof:
P(A) =P(VΠA) + P ( i Π i ) (by (a))

= P(VΠA) (by(h))
= 1 - P(VΠA) (by C2 and C3)
= 1 - P(^) + P(Λ Π A) (by (a))
= 1 - P(Λ) (by (h)).

(j) P((c n ((yi ΠB)D o) nA) = o.

Proof:
p((c n (04 n ̂ ) n c» n A) = P(C n (u r\B)nc)nA) (by (b»

< P(((>1 ΠB)nC)ΠA) (by (c))
< P(^ϊ n ((,4 n 5) n c)) (by PC4)
< p((i n μ n B)) n c) (by (b»
< P ( i ί i μ Π J5» (by (c»
= 0 (by (h) and Cl).

(k) P(M n (en ((A rιB)n c))) n5) = o.
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Proof:
P((A Π(Cn ((A ΠB)Π C))) ΠB)

= τ>(A n ((c n ((A n B) n c» n #» (by (b»
< P((C Π (M ΠB)Π O) ΠB) (by (c))
< P(C Π (((Λ Π 5 ) Π C ) n £)) (by (b))
< P(((A nB)ΠC)ΠB) (by (c))
< P(B_Π ((A ΠB)Π O) (by PC4)
<ppn^n B)) n o (by (b»
<P(£Π μ i Ί 5 ) ) (by(c))
= 0 (by (h) and Cl).

(l)p«v4 nB)nc) = p « ( 5 n ^ n q n ((Λ n B ) n c » .

P(M r\B)nc) = P(c n α̂ 4 n B) n c))
+ P(C Π ((Λ Π .β) Π C» (by (a))

= P(C Π ((̂ 4 Π B) Π C» (by (h))
= pμ n (c n ((^ nB)n c»)

+ P((C Π ((A ΠB)n O) Π ̂ ) (by (a))
= P(i4 Π (C Π ((A ΠB)Γ) C)» (by (j))
= P(̂  n μ n ( c n «^ Π5>n c)»)_

+ P((>1 Π (C Π ((^ ΠB)Π C)» Π 5) (by (a))
= P(^ n μ n ( c n ((^ n B) n o » (by (k»
= P((β n ̂ i) n (c n α>i ΠB)Π C») (by (b»

= P(((B nA)ΠC)n((AΠB)n C» (by (b)).

(m) P((A ΠB)ΠC) = P((B Π A) Π C).

Proof: P((A Π B) Π C) = P(((B ΠA)ΠC)n ((A Π B) Π C)) (by (1))

= P(((̂ 4 n #) n c) n ((# n yi) n c » (by PC4)

= P((ίn>4)nC) (by(l)).

(n) P(A Π(BΠ O) = P(A Γ) (C Γ) B)).

Proof: By (m) and PC4.

NOTES

1. For brevity's sake we frequently drop the participle 'defined' and say of the func-
tions in question that they are on S. They take of course real numbers as their val-
ues. A real-valued binary function on S is often talked of as a function from the
cartesian product S x S into the reals, and a unary one as a function from S into
the realsy a usage we shall follow on occasion.

2. A binary function P on S is said to be total when P(A,B) has a value for all ^4's
and B's in S, otherwise it is partial. Carnap's and Renyi's relative probability func-
tions on S are partial ones in that P(^4,i?) has a value for all A's in S but only
such B's as belong to S' (Sf in [2]-[4] being the subset S - {Λ} of S, in [12]
any subset of S — [Λ], and in [13] any subset of S — [Λ} to which Bγ U B2 (i.e.,
Bι Π B2) belongs if Bλ and B2 do). Why Carnap and Renyi both bar A from be-
longing to Sf is discussed in Note 5. When A Π A does not belong to S' for any
A in S, a Renyi function has of course no F-restriction.
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3. PB5 and RB5 are known as Complementation Laws. Renyi's own constraint, known
as the Finite Additivity Law, would run here as follows:

RB5' For any A, B, and C in S, if A Π B = A and C Φ A, then
P(A U B,C) = P(A,C) + P(J?,C),

where A U B is of course A Π B. Given B1-B4, RB5 and RB5' are equivalent. Car-
nap in [4] credits von Wright in [15] with first using Complementation in lieu of
Finite Additivity. However, Popper in [10], a text published the same year as [15]
and in which his constraints first appeared, also uses Complementation in lieu of
Finite Additivity. So credit should undoubtedly go to both. Bl and B3 are called
by Popper the Existence Law and the Reflexivity Law, respectively; as for B2 and
B4, they are generally known as the Nonnegativity Law and the Multiplication Law,
respectively.

4. This more familiar constraint:

CB7' For any A in 5, if P(A, V) = 1, then A = F,

is of course equivalent to CB7, but CB7 better serves our purposes here. The fol-
lowing constraint, also equivalent to CB7, turns up in writings on fair (or coher-
ent) betting and is then called the Axiom of Strictly Fair Betting:

CB7' For any A and B in 5, if P(A,B) = 1, then AΠB=A.

Carnap himself refers to CB7" as the Axiom of Regularity, and to the functions
that meet it as regular functions. As indicated on p. 486, what we understand here
by Carnap's relative probability functions are generalizations of functions in [14],
and what is understood in Section 5 by Carnap's absolute probability functions are
generalizations of functions in [4] and Section 57 of [2]. Carnap calls the former
functions confirmation functions and the latter measure functions. In [3] Carnap
studies confirmation functions that meet (among other constraints) counterparts of
B2-B4 and RB5' but not of CB7, and hence are in our terminology Renyi functions
rather than Carnap ones. (Incidentally, Bl follows from B2-B4 and RB5', though
not from B2-B4 and RB5. That no counterpart of B3 is listed on p. 12 of [3] was
an oversight on his part, as Carnap indicated in personal conversation.) In [4], on
the other hand, he studies confirmation functions that meet counterparts of B2-
B4, RB5, and CB7 (pp. 101 ff.) as well, and hence are Carnap functions in our
sense.

5. It is in order to preserve consistency that Popper requires B in PB5 to be P-normal.
Suppose indeed that the restriction were lifted. Since P(A,A) = 1 by Lemma 1 in
the Appendix, P(A,A) would equal 0 by PB5 and 1 by B3. The same contradic-
tion would arise if B in RB5 could be A. As for RB5', the Finite Additivity Law of
Note 3, suppose C there could be A. Since ACiA=AUA=A, P(A9A) -which
equals 1 by B3—would equal 2 as well by RB5'. Renyi and Carnap block such con-
tradictions by denying P(A,A) a value for any A in 5, hence for A and A. Intending
to compare them with Popper's, we extend Renyi's and Carnap's relative probability
functions to total ones and preserve consistency by merely requiring B in RB5 to
be distinct from A. von Wright, whose relative probability functions are also total
ones, preserves consistency by requiring A in B3 to be distinct from A. The resulting
constraint is counterintuitive, and few have followed him in this.

6. Kolmogorov's own constraint in the present context would run:

C3' For any A and B in S, if A Π B = Λ, then P(A U B) = P(A) + P(B),
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which is of course the F-restriction of RB5'. Given C1-C2, C3'and C3 are equiv-
alent. So far as we know, credit for first using the autonomous C3 in place of the
nonautonomous C3' goes to Popper (see [9] for what counts as an autonomous con-
straint). The switch paved the way for his autonomous characterization in [9] of
absolute probability functions and in [11] of relative ones, and it paved the way of
course for probabilistic semantics. Cl is known as the Nonnegativity Law and C2
as the Unit Normalization Law (for absolute probability functions), and C3 is called
by Popper the Complementation Law (for absolute probability functions).

7. The reader should not infer from this proof that every Renyi function can be got-
ten from two absolute probability functions, one of them a Popper one and the
other a Carnap one, or even that pairs of absolute probability functions match one-
to-one Renyi's functions—the way Carnap's absolute probability functions match
one-to-one his relative ones. Consider this function on the eight-membered set
{Λ,tf,Z?,c,ά,Z?,c, F), where (eu e2, and e3 being any three distinct elements you
please) α, b, and c are {eλ}, {e2}, and {e3}, respectively, and hence ά, b, and c are
[e2,e3}9 {eι,e3}, and {eue2}, respectively.

B

P(A9B) Λ a b c ά b c V

A 1 0 0 0 0 0 0 0

a 1 1 0 0 0 0 0 0
b 1 0 1 0 0 0 1 0
c 1 0 0 1 1 1 0 1
5 1 0 1 1 1 1 1 1
5 1 1 0 1 1 1 0 1
c 1 1 1 0 0 0 1 0
V 1 1 1 1 1 1 1 1

This function is a Renyi one, and its F-restriction P P — read off the last column in
the table—is of course an absolute probability function of Popper's which assigns
value 0 to three members of our set besides A, to wit: a> b, and c. But there can be
no absolute probability function P c of Carnap's such that Pc(A Π B)/PQ(B) =
P(AfB) when T*p(B) equals 0, i.e., when B is a, b, or c. Under those circum-
stances PQ(B) must not equal 0 since Pc is a Carnap function. But, as P(a,c) =
0, P'c(a Π c) must equal 0, and hence—a Π c being the same as a—Pc(#) must
also equal 0, which is impossible.

8. The theorem also holds of all the partial functions in [12] and [13] that have a F-
restriction. For by restricting the second argument of the function defined in The-
orem 6 to the set S' (see Note 2) one obtains a partial function of the desired kind.

9. Let P' be an arbitrary absolute probability function of Carnap's, and let P(A9B)
equal P'(A Π B)/P'(B) when P'{B) ψ 0, otherwise undefined. Then P proves by
the same reasoning as above to be a Carnap relative probability function in the
sense of [2]-[4]. So, Carnap's relative probability functions as he understood them
relativize —indeed, match one-to-one — his absolute ones in [2] and [4].

10. The partial Kolmogorov functions discussed on pp. 496-497 receive considerable
attention in [5] and are the subject of [2]. The total ones obtained by setting P(A,B)
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at 1, when in effect P(B, V) = 0, have been accorded but passing (see [2], pp. 293-
294) or dismissive attention (see [9], p. 52) in the literature. They are nonetheless
quite useful in studies such as this one. It is indeed a Kolmogorov function that
delivers Theorem 9, one that delivers Theorem 11, and one —defined on an arbi-
trary set rather than on a Boolean algebra only—that will deliver Theorem 21 in
Section 8. By the way, the same reasoning as in the text will show that the partial
Kolmogorov functions of pp. 496-497 relativize —indeed, match one-to-one —
Popper's (hence, Kolmogorov's) absolute probability functions.

11. Note that ifP(A, C) = P(B, C) for every C in S, then P(C,A) = P(C,B)for every
such C. This serves as a constraint in [11], and proof that it follows from the con-
straints in Definition 3.1 can be found in [6].

12. The switch from propositions to statements is deliberate. Let SΊ be a set of state-
ments closed under — and Π, — now understood as the negation function and Π as
the conjunction one; let S2 consist of the propositions corresponding to the various
members of Si and let member A2 of S2 be identical with member B2 of S2 if the
member Ax of S{ corresponding to A2 is truth-functionally equivalent to the mem-
ber Bγ of Si corresponding to B2. S2 constitutes a Boolean algebra, but SΊ does
not. Note indeed that whereas

A2Γ)B2 = B2Γ) A2

would hold,

Ax Π Bγ= BιΠAί

would not when Ax is distinct from Bu a violation of Al. These matters are pur-
sued in [14].

13. It follows from a result of Popper's in Appendix *v of [11] that, where A = B
means that A and B are indiscernible under any relative probability function P of
[11], each of the constraints A1-A5 in Section 2 follows from the constraints in
Definition 8.1. Consequently, any set on which relative probability functions meet-
ing the latter constraints are defined constitutes a Boolean algebra in a wider sense,
one in which = is the indiscernibility relation of p. 502 rather than the identity rela-
tion of Section 2. So, rather than presuming, as Renyi's relative probability func-
tions in [12] and Carnap's in [2] do, that S is a field and hence a Boolean algebra
in the sense of Section 2, Popper's relative probability functions in [11] compel S
to be a Boolean algebra in Popper's sense. But, we insist, Popper's indiscernibility
relation (or, substitutionαl equivalence relation, as he called it) is a far weaker rela-
tion than identity. To return to the counterexample in Note 12: whereas ^ i Π ^
and Bx Π Ax there are indiscernible under any relative probability function of Pop-
per's in [11], they are simply not the same statements. Furthermore, Boolean
algebras in Popper's sense come in any cardinality you please; Boolean algebras in
the sense of Section 2, on the other hand, come in some cardinalities only, as was
pointed out concerning finite Boolean algebras in the main text. Again, these mat-
ters are pursued in [14].

14. Or, since the constraints in Definition 8.1 first appeared in an Addendum to the
first of the Notes to the Appendix of [10], this 32 years after the publication of [10]
etc.

15. This proof and that of Theorem 20 are adaptations of proofs found in [7].

16. By virtue of Theorem 2, P may also be a Renyi function, a fact we exploit when
proving Theorem 9.
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