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The Completeness of Provable Realizability

G. E. MINTS

Abstract Let A be a propositional formula and r4[x] express in the
predicate logic the statement “x realizes A”. We prove that the clas-
sical derivability of r4[¢] for a lambda term ¢ implies the intuitionis-
tic derivability of A for the formulas A4 in the languges (D,A, ) and
(D,&), where & is the so-called strong conjunction.

Intuitionistic logical connectives are often supposed to be determined by
semantical constructions. For every such (binary) connective C it should be deter-
mined how the construction proving (or justifying) C (A4, B) is composed from
the ones justifying A, B. This approach is traceable to Brouwer and was clearly
formulated in [2] and [6]. Various notions of realizability beginning with [4]
can be thought of as formalizations of these ideas. We follow [7] in formaliz-
ing further and show that the provability of the formula A in the intuitionistic
propositional calculus with implication, negation, conjunction A, and strong
conjunction & (see below) coincides with the classical provability of the formula
rq[t], expressing in the language of the predicate calculus the statement: “the
A-term £ realizes the formula 4”. The main results of this paper were announced
in [8].

Adding the disjunction connective changes the situation drastically: the
familiar formula constructed by G. Rose is unprovable but realizable by a suit-
able if-then-else term.

Strong conjunction & is determined by the stipulation: x realizes 4 & B if
x realizes both A and B.

The definition of the formula r4[¢] and the statement of the problem are
taken essentially from [7]. Nevertheless, the propositional calculus formulated
in [7] for implication and strong conjunction is incomplete, contrary to the con-
jecture made in [7]: consider the formula (A DB) & D) D ((A & C)DB) &
D). It is realizable by the term Ax.x but unprovable in the calculus (see [7]).
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If realizing terms are required to be typed (Howard’s formulas-as-types)
then completeness (for the &-free language) obviously follows from the famil-
iar isomorphism between intuitionistic natural deductions and such terms. (The
author learned this formulation from N. N. Nepeivoda.) We here investigate the
situation where realizing terms are untyped and the derivation of realizability
is classical.

The complete propositional calculus for the strong conjunction presented
in this paper (cf. Section 2) uses formulas-as-types [3] to express the understand-
ing of A & B as the existence of one and the same justification (construction)
for A and B. (For the language without & the usual intuitionistic propositional
calculus would be sufficient.) It turns out to be necessary to take n-conversion
(Ax.cx F ¢ and {It,rt) |- t) into account in the definition of the term assign-
ment, although the definition of the equality of terms uses only 3-conversion
(A\x.t)s Ft.[s].

We present first the case of the propositional language without A, —, then
take account of A in Section 3, and then consider the system with negation.

Recall that N-terms (here, simply terms) are formed from individual vari-
ables denoted by x,,z,..., by abstraction Ax.z, and application (zs). Left
bracketing is assumed; i.e., ¢sy...s, stands for (... (#51)...5,).

Predicate formulas will be formed by D, A, V from atomic formulas P(¢),
where P is a monadic predicate symbol and ¢ is a term.

To any propositional formula A4 (in the language D, &) we assign a predi-
cate formula r,4[x] in the following way. First we assign to any propositional
variable p a predicate symbol P in a 1-1 correspondence.

Definition
rplx] = P(x)
ra-5plx) = vz(rylz] D rgl(xz)]) (D
ragplx] = rqalx] A rglx]. 2

Let us recall some facts about the A-calculus (see [1]). We do not distin-
guish terms differing only by renaming of bound variables. Conversion (or
rather 3-conversion) of the term u is rewriting according to equality

((Ax.1)s) = t,[s] 3)

of some subterm of u having the form (Ax.f)s into #.[s]. Reduction is a
sequence of conversions. The notation

utv 6]

means that there exists a reduction of the term u to v, i.e., that u reduces to v.
Sometimes u I v stands for the reduction itself. The notation

u=v

means that ¥ and v can be obtained from each other by applying the usual
equality rules together with equation (3). In particular, u F v, u | v; implies
that u = v, v = vy.

The following statement is one of the basic propositions concerning the A-
calculus.
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Church-Rosser Theorem u = v implies the existence of the term w satisfy-
ingutw vbkw

The derivable objects of our version of the classical predicate calculus are
sequents I' - A where T', A are lists of formulas.

Our axioms are I', P(¢) —» A, P(u) for t = u. The analysis of such axioms
should include a justification of the equality ¢ = u.

The inference rules are the usual Gentzen-type cutfree rules for the clas-
sical predicate calculus.

The admissibility of the cut rule is proved in the standard way using the
following obvious remark: If the justification of the equation ¢ =  is given, then
we can transform the derivation of the sequent S[¢] into the derivation of S[u]
by simply replacing ¢ by u.

1 Classical and intuitionistic derivability of formulas of the form r4[t] The
main goal of this section is to prove that the use of the classical predicate cal-
culus does not increase (compared with the intuitionistic predicate calculus) the
number of provably realizable formulas if the realizing term is explicitly given.
The last restriction is essential; if it is removed, all tautologies become realiz-
able. Take for example the Pierce formula A = ((p D g) D p) D p. Putting
B = (p D q) D p we derive 3xr [x] as follows:

P(b) P((\y.b)y
P(b) > rq[Ay.b] P(ca) > P((A\y.ca)y)
P(b) » Q(ab),axryx P(ca) > rq[Ny.ca]
= I'psglal, 3xra[x] P(ca) — axr,[x] (1.1)
I'ooglal D P(ca) — 3xrq[x]
rglec] = P(xc), 3xry[x]
Axvy(rgly] D rplxy]

We are interested in derivations of formulas of the form r4[¢]. By the
subformula property of cutfree derivations they can contain only formulas of
the form rz[u] and

relu] D rg(tu). (1.2)

The latter arise as a result of splitting r~gl¢], i.e., VZ(rg[z] D rgltzl).
Using the standard permutation of rules in Gentzen-type derivations [5] one can
arrive at a situation where (1.2) is always split immediately above the formula
resglt] from which (1.2) was generated. Below we assume that this has been
done and will not explicitly list (1.2) in the derivation. This stipulation is to be
accounted for by the following proposition.

Lemma 1.1. Any sequent occurring in the derivation of the sequent
relt] (1.3)
is of the form

re [Oat)ls .. re, [(Xntn)] = rg [uil, ... rg,, [Um] 1.4)
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where x; are variables, t; are sequences of terms, and u; are terms, or in short

rel(xt)] - rglu]. 1.5)

Proof: The proof is by induction on the depth of the cutfree derivation, i.e., the
distance from the lowermost sequent (1.3).

The base is obvious. The induction step is split into cases according to the
last inference rule used.

Case 1: &

rel(xt)] -» rglul, rglvl; rel(xt)] - rglul,rp[v]
rel(xt)] - rglul, rgsrlv] '

Case 2: »D

rel(xt)], raly]l = rglul, rgl(vy)]
rel(xt)] - rg(ul, vy (raly1 D rgl(vp)))

The new antecedent member 74 [ y] is of the required form.
Case 3: &—

rel(xt)], re [(yv)], ri[(yv)] > rglul
rel(xt)], rxg [(yv)] - rglul

Case 4: O—
rel(xt)] - rlul, relwl  rel(xt)], ri(zow) - relu]
rel(xt)], vy (rx[y] D rol(zoy)]) — rglul
rx> [(z20)]

If ¢ is a term and x is a variable, we write x € +¢ when x occurs free in any
term ¢’ such that 7 | ¢’ (including ¢ itself). x ¢ +¢ is the negation of x € +¢.

Lemma 1.2 Let T be a sequence of terms, t,w be terms, and x,y,z be vari-
ables. Then

() x € +(zT) implies x € + (zT?)
(ii) x € +t implies x € + (yTt)
(i) x & +t, t = wimply x & +w
(iv) if x does not occur in t, then x & +t
V) if x &€ +w, x & +t, then x & + (wt).

Proof: (i) Any reduction of the term z77 is of the form z7t |- zT'¢’, where T +
T’, t Ft, so that x occurs free in the last term.
(ii) Any reduction of the term yTt is of the form

yTtbyT't’, where THFT', tFt. (1.6)

By the latter relation x occurs free in ¢’ and so in yT'¢'.

(iii) x € +¢ implies ¢ |- ¢’ for some ¢’ which does not contain x free. From
t k¢, t = w, and the Church-Rosser theorem it follows that ¢’ ¢”, w I ¢” for
some ¢”. Since no new free variable can appear during the reduction, x is not
freein t”, so x & +w.
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(iv) Obvious from ¢ I ¢.
(v) Assume that w F w’, ¢ I ¢’ for some w’, ¢’ which do not contain x free.
This implies wt F w't’.

We could give a slightly shorter joint proof of the next two propositions,
but we shall separate them in order to make the proofs more transparent.

Lemma 1.3 Let x € +t, x & +u,yv in the sequent
raltl, rel(yv)] - rglu). a.m

Then the antecedent members of ry(t] are superfluous. More precisely, any
derivation of this sequent can be pruned (i.e., transformed by deleting some for-
mulas and whole sequents) into the derivation of the sequent

rel(yv)] = rglu]. 1.8)
Proof: By induction on the length of the derivation.

Induction base: Sequent (1.7) is the axiom
I',P(s) > P(s’),A, where s = s’. (1.9)

P(s) cannot belong to the list r4[#] by Lemma 1.2(lii) since x ¢ +s’. So P(s)
belongs to r¢[(yv)], and hence the preceding part of the antecedent is superflu-
ous and can be pruned.

Induction step: Consider the lowermost rule in the derivation.

1. »& By the inductive assumption, the members of rg[#] can be pruned
from both premises and so from the conclusion.

2. 5D

rglt], relyvl, rglz] - rglul, rplwz]
rult], relyv] - rglul, res [wl

(1.10)

The premise of this rule satisfies the condition of the lemma, i.e., x &
+(yv),z,u,(wz). Indeed, the terms (yv), u, w satisfy it since they occur in the
conclusion, and z,(wz) by Lemma 2(iv) and (v) since z is a new variable. Now
we can apply the inductive assumption to the premise and prune rg[¢].

3. &— The inductive assumption is obviously applicable to the premise
and the superfluous part can be pruned from it and from the conclusion.

4. O—

rglt], relyv] —> rglul, relml; rylt], rplzpm], relyv] - rglu)
rgltl, rkspzp], relyv] - rglul )

Consider the possible cases:

1. x € +(zp). Then x € zpm by Lemma 1.2(i), so the formulas rg[£],
rr[zpm] can be pruned from the right premise by the inductive assump-
tion. Therefore one can delete the whole inference (i.e., the branch end-
ing in its left premise) as well as the formulas rg[¢], rx~z [zp] from the
conclusion.
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2. x & +(zp).

2.1. x & +m. Then we have x & + (zpm) by Lemma 1.2(v), and the
inductive assumption is applicable to both premises, so rg[¢] can
be pruned from them and consequently from the conclusion.

2.2.x € +m. Then we have x € + (zpm) by Lemma 1.2(ii) and so we
can proceed as in case 1.

Theorem 1.1 Any classical derivation of the sequent of the form (1.4) can
be pruned into an intuitionistic derivation of the sequent

"p[xt] "’rG’.[u,'] (1.11)
for some i.

Proof: By induction on the length of the derivation. The formula G; which is
left (i.e., not pruned) in the succedent of (1.11) will be called a preserved
formula.

The induction base is obvious.

In the induction step we consider cases according to the last applied rule:

Case 1: -& If a side formula (i.e., one of the conjuncts) is not preserved in
one of the premises, then prune the whole inference (i.e., the branch ending in
the other premise) and preserve in the conclusion the same formula as in the con-
sidered premise. Otherwise preserve the whole inference and its main formula
(i.e., the conjunction) in the conclusion.

Case 2: »D

relxt], rglz] - rglul, rp(wz]
relxt] - rglul, vx(rg[x] D rplwx])’

If r; [wz] is preserved in the premise, then preserve the main formula in
the conclusion. Otherwise, the formula rx[z] is superfluous by Lemma 1.3,
since z is a new variable. So it can be pruned from the conclusion, and the same
formula is preserved there as in the premise.

Case 3: &— The formula preserved in the conclusion is the same one preserved
in the premise.

Case 4: O—

relxt] - rglul, re[wl; relxt], rplzow] - rglu]
relxt], vy(rgly] O rplzvy]) = rglul
If the formula rx[w] is not preserved in the left premise, then prune the
whole inference, preserving in the conclusion the same formula as in the left

premise. Otherwise preserve in the conclusion the same formula as in the right
premise.

2 Completeness of the propositional provability for provable realizabil-
ity The formulation of the main result of this section uses formulas-as-types
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introduced by Howard [3]. H-terms are formed from variables x4, y4, ... (for
{D,&}-propositional formulas A4) by application (for suitable types) and A-
abstraction. Such terms are known to be in 1-1 correspondence to propositional
natural deductions. 7~ stands for the untyped A-term obtained by the deleting
of all types (i.e. superscripts) from the H-term ¢.

Let us describe a natural deduction system reminiscent of ones introduced
in [7] and [9]. We will first prove its equivalence to provable realizability and
then to the predicate calculus introduced in [7].

The formulas of this system are constructed from propositional variables
denoted by p,q,r, ... by the connectives & and D. Sequents are expressions of
the form I' » A, where I is a list of formulas and A is a formula. An enriched
sequent is an expression of the form S(¢) where S is a sequent and ¢ is an
H-term, such that to any free variable x4 of the term ¢ some antecedent mem-
ber A of the sequent S is assigned, and distinct antecedent members are assigned
to different free variables.

Axioms T, A4 - A(x?) 2.1
Inference rules

I'>A@); T - B (1)

& —T-1&B (1)

(&) AL o

=) 1‘21(4,4_)333) ()\(xt‘)‘t) o E%Q
(o) [2ADBWiT=4 ()

B (ts)

It is essential that the relations between enriching terms in the rules are to
hold only up to B-conversions. For example, the &*-inference can have the
form

I'>A(4); T->B(,)/T>A&B (t;), wheret =1, =1. 2.2)

The variable x“ in the axiom and in the rule D¥ is the one assigned to the
explicitly shown antecedent occurrence of A.

We say that a formula A is derivable in our propositional system if a
sequent —»A (t) is derivable for some ¢.

The main result of this paper is the following proposition:

Theorem 2.1. The propositional formula A is derivable iff r4[t] is derivable
in the system L for some \-term t.

Proof: The easy half of the theorem is an instance of the following proposition.

Lemma 2.2 Derivability of the propositional sequent
B,...,B,—> A (1) 2.3)
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implies derivability in L of the sequent
re [x1],...,rg,[xn] > ralt™] 2.4

where Xy, . . . , X, are variables assigned in the term t from (2.3) to the formulas
B,,...,B,.

Proof: By induction on the length of the derivation of the sequent (2.3).
Induction base: Here (2.3)isT',A »> A and (2.4) is T, ry[x] = rqlx].
Induction step: Consider cases according to the last inference rule used:

Case 1: &+ By the inductive assumption we have L-derivations of the sequents
I > r4[t;] and IV > rg[#;7]. Taking into account the fact that ;7 = #; =7 we
can replace the terms ¢{,¢; by ¢. Applying & (this time in the natural deduc-
tion version of L) we obtain I'' — r4¢ 5[] as required.

Case 2: &~ Similarly.

Case 3: D% By the inductive assumption we have I'',r,[x] — rg[t~]. Us-
ing the equation (Ax.u)x = u we obtain by the rules of equality the sequent
[,ry[x] - rg[(Axt7)x], and using O*,v* we have I'' > ry-g[Axt ] when ¢ is
not of the form cx?. If t = cx“, then one need not even use 8-conversion.

Case 4: O~ By the inductive assumption we have
" > vx(rqglx] Dralt™x]) and TV > ry[s™]. 2.5
Using V—,D~ we obtain I - rg[t~s~].

The proof of the second half of Theorem 2.1 is based on the fact that the
proof of Lemma 2.2 can be “reverted,” although this is not so simple.

Lemma 2.3 Let a sequent

re,[x11,...,rg,[x,] = ralt] (2.6)
(or shorter
rglx] - rqlt]) 2.7
be provable in L. Then a propositional sequent
B,,...,B,— A (u) 2.8)
(or shorter,
B— A (u)) 2.9

is provable for some u such that u~ = t.

Proof: If (2.7) is provable, we have by Theorem 1.1 its intuitionistic derivation
from the axioms

T,P(s) - P(s’) (2.10)

where s’ =s,and I',A - A.
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Since natural deduction is normalizable, we normalize it and move equality
rules into the axioms. The lemma will be proved by induction on the length of
such a derivation. By the subformula property all sequents in such a derivation
are of the form (2.7) (possibly with different B, A).

Induction base: If (2.10) is at the same time of the form (2.7), then A[¢] =
rglt] and ¢ = x, so one can take u = x.

Induction step: Consider the last inference rule used.

1. &*

rglx] = relt];  rglx] - rglt]
rglx] — rrgclt]
By the inductive assumption we have
B-F (u); B> G (up); uf =us =t (2.11)

which implies B—> F & G (u;) and u; = t.

2. &~

rglx] = rq8a4,01]
rplx] — ry, (1]
We have B - A; & A, (u), and obtain B - A; (u) with u™ =t
3.v.,D"

rglx] - Vvz(rglz] D rglizl); rglx] — rels]
rplx] - rglis]

(2.12)

It has to be verified that any inference according to the rules v—,D 7 is
indeed a part of some figure (2.12). In fact, since the deduction is normal,
any elimination inference is situated in a branch which begins with the axiom
T', A - A (where A occurs in the antecedent of sequents in (2.12)) and proceeds
by elimination rules. So each succedent implication is of the form rg[s] D
rglts], where resglt] = Vx(relx] D rgltx]) occurs in the antecedent of the
branch in question immediately over the implication considered, so that v—,D~
are indeed included in blocks (2.12).

Now using the inductive assumption we obtain B— FD> G (u), B— F (v),
u- =t, v- =s, which implies B - G (uv) with (uv)™ = ts.

4. vt DOt

rglx]l, rplz] - rgliz]
rglx] - vz(relz] D rglezl)’

By the inductive assumption we have B,F — G (u), where u~ = (£z). By
the Church-Rosser theorem there exists a v such that u~ F v, (fz) Fov. If v =
(¢'z) with ¢ I ¢/, then in view of u~ | v there exists a term c such that u | cz
and ¢~ = t’. In this case we have B— F D G (¢) and ¢~ = ¢. Otherwise (£z) |
(Nzt')z Ft' F o, where t F A\zt’ and u~ = ¢t'. Then (\zu)~ = \zt' =tand B—
FD G (Nzu), (\zu)™ =1t.
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V- rglx] - vy(rely] D rglty])
- rglx] - rr[b] D rgltb]
rglx] » vz(relz] D rgltz]).

To obtain B— F D G (u) with u~ = t it is sufficient to apply the induc-
tive assumption to the upper sequent.

We now show that no other case is possible.

The rules D™, &~ cannot occur immediately over v*, since the corre-
sponding main formulas are not subformulas of the formulas having the form
ry[w]. Finally, the premise of v* cannot be an axiom since the corresponding
antecedent formula would not have the form rg[x].

3 Completeness of provable realizability for (&,D,r) Now we will extend
some of the results and proofs obtained in previous sections to the case where
the usual intuitionistic conjunction is added to the propositional language. Here
the definition of a (realizing) term is to be extended by adding the binary func-
tion constant pair (for pairing function) and unary function constants 1,r (for
left and right projections extracting components of a pair). We use the notation

{u,v) = pair uv.
B-conversion is defined for the new language by the familiar equations
(Ax.t)u = t,[u]

IKt,uy =t
r{t,u) = u.

We put
raglt] = rqllt] A rglre].
We denote by II,II,,II,, . . . arbitrary (possibly empty) finite sequences of
projections 1,r, for example 1,1,1Ir, rllr etc. For the language D,& an important

part was played by terms of the form xt (i.e., head normal forms beginning with
a variable). Now this part will be played by terms of the form

I, (.. IL((IIxT)T;...T,) 3.1

which we call A-terms or xh-terms, to distinguish the head variable x (and we
write t € h or t € xh). The letters T, T}, ... will stand for finite sequences of
terms.

Now, in the formulation of Lemma 1.1 one has to replace the terms
(x181),...,(x,t,) BY t1,...,1,, that is, to replace the sequent (1.5) by

relt] = rglul

with ¢ € h.
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To the proof of this lemma given in Section 1 one has to add two cases,
corresponding to the rules —A and A—. It is the latter that introduces the con-
stants 1, r into realizing terms.

Lemma 1.2 is restated as follows:

Lemma 1.2*
() xe +II,(... (IIxTy) ... T,), i.e., t € xh implies x € +t
(iia) if w € h, x € +t, then x € +wt
@iib) if w € h, x € +w, then x € +lw,rw
(iii) if x & +t, t = w, then x & +w
(iv) if x does not occur in t, then x & +t
V) if x & +w, x & +t, then x & + (wt),1t,rt.

Proof: (i) Any term ¢’ occurring in any reduction of the term ¢ of the form (3.1)
has the same form IT, (... I, (IIxT’)T{)...T,) with T+ T’, T; + T/. So x is
free in ¢’; that is, x € +¢.

(iia) if w is of the form (3.1), then wt | u implies u = w’¢t’, with w - w’,
t+ ¢, so xis free in ¢’ and consequently in u. This implies x € +wt.

(iib) IIw | u for a term w of the form (3.1) implies ¥ = IIw’ with w - w’.

(iii), (iv), (v) are proved as in Section 1.

Lemma 1.3 now takes the following form:

Lemma 1.3% If we have q,t € h, x € +q, x & +t,u in the sequent
rulql, rrlt] - rglu]
then the antecedent members ryg[q] can be pruned.

One has only to add A-cases to the proof in Section 1. These are treated
even more simply than D-cases. The proof of Theorem 1.1 is modified with the
same ease.

The definition of an H-term at the beginning of Section 2 should be sup-
plemented by the constants pair, 1, r and corresponding term construction rules.
The natural deduction calculus is supplemented with the following familiar rules
for A:

L T>ArB ()
O N TS|
) r;A;B_(t_)_
- (rt)

(A% '-A;T-B t u 1z rt.

or
I'-AAB (tu) t

Let us now show how to supplement the proof of Theorem 2.1. In Lemma
2.2 the rules for A have to be considered. The A~ case is obvious, and that
of A" is treated similarly to D .

Finally, Lemma 2.3 is to be supplemented by treatment of A-rules corre-
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sponding to formulas r4,5[¢]. The case of A~ is treated similarly to that of D~
Let us consider the case of A™:

rglx] - rpllt]; rglx] - rglle]
rglx] = regclt]

By the inductive assumption we have

B—- F (u); B->G (v), whereu™ =1f, v~ =rt.

By the Church-Rosser theorem there are terms u;, v, such that ¥~ F u,,
Itbu, v ko, rtlko.

Case 1: u; =1t', vy =rt", t Ft’,t”. By the Church-Rosser theorem there is a
t, such that ¢’,¢” - ¢;, whence u~ F1¢;, v~ Fr#;. So there exists a w such that
ublw,vbrw,w=t.SoB—->F & G (w).

Case 2: Case 1 does not hold. Then at least one of the terms u, v; is not of the
form I1#" with ¢ | ¢’. Let it be #,. Then the reduction 17 - #; is of the form

ItFIe, ) Fe buy

with # | {t,1,). Sowe have u™ =t;, v~ = t,, t = {t1,1), whence (u,v)” =
t~. Therefore B— F A G ({u,v)), which concludes the proof of the theorem.

4 The system with negation Let us now extend the preceding results to the
language D,A,. Put

r-alx] =qer VZ2rglz].

The basic ideas of the proof are as before, but the details become more
complicated. The proof will probably go through for the language with &, but
some additional work is needed here, since familiar reduction to formulas of
depth 3 does not go through for &. This is because the equivalent replacement
theorem is invalid for &. If

E=(a=a')D(a& b=a & b), where (A =B)=((ADB) & (BDA)),

then rg(¢) is underivable for any ¢.
In the remainder of this section we treat only of the language D,A,—.
Recall that familiar depth-reducing transformations are based on the
replacement of the subformula P of the given formula F by a new variable p,
and adding the equivalence p & P.

Lemma 4.1

(i) If a formula D is derivable in the intuitionistic propositional calculus, then
rp(t) is derivable for some term t.

(ii) For any propositional formula F{A] with a distinguished occurrence of the
formula A there is a term t such that

raoplx) Arpray[¥] D repey [(txp)] 4.1
is derivable, where (A < B) =4, (A D B) A (B D A).
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Proof: (i) is established as before by induction on the derivation. The term ¢
encodes the essential content of that derivation.
(ii) follows from (i) and intuitionistic derivability of the implication

(A & B) D (F[A] D F[B)). 4.2)
Definition A standard formula is any propositional formula of the form
E,D(...D(E,Dp)...) 4.3)

where p is a propositional variable and E, ..., E, are formulas of one of the
forms

SifAfD8fDO(&Dh), (fO8) Dh ~fDg gD f 4.4
where f, g, h are propositional variables.
The following result and its proof are standard.
Lemma 4.2 Any propositional formula F can be transformed into a stan-
dard formula S such that

(i) F D S is provable intuitionistically
(ii) S* D F is provable intuitionistically, where S* is a substitution instance of S.

Proof: Let us write F in the form
ED(...0W&FEDG)...) 4.5)

where E,. .., E; are of any one of the forms (4.4) and use an induction on the
length of G. If G is a variable (induction base) we are done. Otherwise write G
as G[A] where A has one of the forms

f& g)fD & _'f' (4'6)

So F'is written as F[A]. Note that the following formulas are intuitionisti-
cally derivable:

(heof&g)eo (hD)A(hDg) A (f=(g—h)],
(he (f28) <« l(fD8)Dh)A(hD(fD el 4.7
(ho~f) o [(hD f)A(2fD A,
(BACDD) e [B— (C— D).

For any A of one of the forms (4.6) denote by E!,E% E? (respectively
E',E?) conjuncts in the right-hand sides of the equivalences (4.7). We apply
the inductive assumption to the formula

E'D(E?D (E?D G[h)) 4.8)
or, respectively, '
E'D (E?D G[h)), 4.8)

where 4 is a new propositional variable, and see that the standard formula S con-
structed for (4.8) or (4.8) would also do for A. Indeed, by the last relation in
(4.7) the formula (4.8) or (4.8’) is equivalent to

(ho A) D F[h].
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It remains only to apply (4.2).

Now we see that it is sufficient to prove our theorem for standard formulas.
In fact we shall transform formulas into sequents.

Definition A standard propositional sequent is an expression
E,.. ,E,—»Dp 4.9)

where p is a propositional variable and E,. . .,E, are formulas of any of the
forms (4.4).
A standard predicate sequent is an expression

re %), .1, [X0] = 1plt] (4.10)

where Ey,...,E, are formulas of any of the forms (4.4), p is a propositional
variable, ¢ is a A\-term, and X, .. .,X, are distinct variables.
In other words, (4.10) says that (4.9) is realizable by the term ¢z.

The formulation of the classical predicate calculus with the thinning rule
presented below is designed for pruning derivations, i.e., deleting superfluous
formulas and sequents.

Axioms are of the form:

P(t) » P(s), wheret=s 4.11)
and the thinning rule and rules for negation — are added:
'-A AT - A '-A4,A4
™ groar O toa-a U7 Throa

This formulation with the thinning rule and axioms (4.11) is well known
to be equivalent to a formulation without thinning but with the axioms:

I',P(t) - P(s),A, wheret =s.

The admissibility of cut for (and completeness of) our formulation is also
established in a standard way. The following proposition will be often used
below without special reference.

Note 1 If ¢ = ¢’ then any derivation of the sequent S[#] can be transformed
in the derivation of S[#’] by replacing some occurrences of ¢ by #’. Indeed, such
a replacement preserves all rules (if eigenvariables of —V are suitably renamed),
and the axioms are preserved in view of the fact that ¢ = ¢’.

Below we shall always assume that all derivations possess the strong pure
variable property: No variable occurs both free and bound, and eigenvariables
of different (—V)-inferences are distinct and occur only over the premises of
these inferences.

Definition A derivation in the predicate calculus is pruned (cf. [5]) if all thin-
nings are moved maximally downward, i.e., (Th)-inferences occur only in the
following three situations: (a) immediately before the lowermost sequent; (b)
thinning introduces a side formula of a one-premise rule having two side for-
mulas, and the other side formula is not introduced by a thinning; (c) thinning
introduces a parametric formula into one of the premises of a two-premise rule,
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while the corresponding formula in the remaining premise is not introduced by
thinning.

Let us call a derivation in the predicate calculus nonsuperfluous if it does
not contain in a single branch identical inferences, i.e. inferences with identi-
cal main formulas and (in the case of v—) identical substituted terms.

The following pruning lemma comes essentially from [5].

Lemma 4.3 Any derivation can be pruned into a pruned derivation with the
same last sequent. Moreover, this transformation preserves nonsuperfluousness.

Proof: Move thinnings downward, deleting if necessary formulas (for example,
parametric formulas in one-premise rules) as well as whole inferences when all
side formulas of a one-premise rule, or at least one side formula of a two-
premise rule, were pruned. The remaining rules are in the same mutual position
as before, so the derivation remains nonsuperfluous if it was so before.

The next proposition is obvious and well-known in similar situations.

Lemma 4.4 Any derivation can be transformed into a nonsuperfluous one
by deleting some formulas and inferences.

Note 2 The derivations of the sequents (4.10) can contain sequents which do
not have the form

rrlt] = rglul. 4.12)

This is because the side formula of the rule introducing the main formula
ra-gls] = vz(ralz] D rpl(sz)]) is itself of the form ry[u] D rgl(su)], and sim-
ilarly for r_,[s] = vz P(z). However, by using the invertibility of —,D-rules
it is easy to ensure that this side formula would be split immediately, i.e. =,D-
rules would have the form:

T,rylz] = A, rgl(uz)] I'> A, rqlul; rgl(tu)], I' - A
I‘_>A, rADB[u] rADB[t]QI‘_)A
T, P(z)—> A T'— A, P[(tu)]
- A, ro,lu] r-plt], T - A

We shall always assume that this has been done.

(4.13)

The restriction on the depth of formulas in (4.10) will allow us to restrict
the complexity of terms occurring in a derivation.

The notation ¢ € k, t € xh has almost the same meaning as before: ¢ is of
the form xt¢, .. .t, where x is a variable but 0 < n < 2.

Lemma 4.5 Any sequent in the derivation of the sequent (4.10) has the form
re [x'], rel(x"t")], rgl(x”"t7t3)] - rglu]. 4.12)

Here rg/[x’] is a subsequence of the sequence rg [x],...,rg,[X].
rr[(x”t")] consists of formulas of the form rg,[(x;?)], where E; is of the form
A D F; and below the sequent in question there is a (V—)-inference applied to
the formula rg [x;] with the substituted term ¢. The sequence rg[(x"¢{'t3')]
consists of formulas of the form rg[(x;¢,%;)], where E; is of the form 4 D
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(B D H) and below the sequent in question there is a (v—)-inference with sub-
stituted term ¢, introducing rg,[x;] and another (v—)-inference with substituted
term ¢, introducing the side formula rg- g [(x;2;)] of the previous inference. The
formula G is of the form fD g, —f, f where f and g are propositional variables.

Proof: The proof is by an easy bottom-up induction over the derivation.

In the presence of negation the simple pruning used in Section 2 is insuffi-
cient to turn a classical derivation into an intuitionistic one, as the following
example suggested by T. Uustalu shows:

Tpog X1, raapogly] = 1 [(xx)], rg(¥x). 4.14)

The derivability of this sequent is immediate, but deleting any of its succe-
dent members turns it into an underivable one. So a deeper transformation is
needed.

Definition A derivation of the sequent
I' > A,P(u) 4.15)

is directed at the formula P(u), if it is an axiom (i.e., consists only of the
sequent (4.15)) or has (up to the thinning-inferences) one of the following forms:

« P(s)»P(u),s=u

. P(s)»P(u);s=u . (4.16)
V—

o- o-

V- V—

where the upper rightmost sequent is an axiom with succedent P(u), and the ex-
plicitly listed D,v-inferences lead immediately to this axiom; i.e., the main for-
mula of the upper rule is the side formula of the lower rule.

Note that if (4.15) is not the axiom on P(u) then in the case of our defi-
nition the main formula of the lowermost inference in (4.16) has the form:

rasplt] or reseopy 2] “4.17)

Lemma 4.6 Let some derivation of the sequent (4.10) contain an occurrence
of the sequent (4.15)

I' - A, P(u)

and let the derivation of the latter be directed at the formula P(u). Then u has
up to equality one of the forms

Xiy (Xit1), (Xit182). (4.18)
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Here if u = x; then E; = p. If u = x;¢, then the right branch of the deriva-
tion (shown explicitly in (4.16)) contains an (V—)-inference with substituted term
t; and main formula rg,[x;]. If u = (x;#,2,) then this branch also contains an
(v—)-inference with substituted term #, and main formula rg-,[(x;?;)], where
E; = A D (B D p), and the main formula of the lower mentioned v— is the suc-
cessor of the main formula of the upper v—.

Proof: Use induction on the given derivation and Lemma 4.5.

Lemma 4.7 Let a sequent
I'-> A, P(u) 4.19)

occur in a pruned nonsuperfluous derivation of the sequent (4.10), and let the
derivation of (4.19) be directed at a P(u) which is not an axiom. Then the succe-
dent formula P(u) (or more precisely, predecessors of the explicitly shown
occurrence in (4.19)) occurs only in the rightmost branch of (4.16), or, more pre-
cisely, is introduced into other branches by thinnings.

Proof: The derivation is directed at P(u), so by Lemma 4.6 the antecedent for-
mula of the axiom on P(u) is of the form P(s) where s = (x;¢;...t,),n <2,
and under this axiom there is a pair (v—,D—) with main formula E; and sub-
stituted term ¢;, and in the case n = 2 also the pair (v—,D>—) with main for-
mula 7g-,[(x;¢,)] and substituted term #,. In the case n = 2 the second of these
main formulas is the side formula of the rule introducing the first one (since the
derivation is nonsuperfluous). So u = s = (x;?, . ..t,) and any axiom with the
succedent P(u) should have the antecedent P(v) where v contains X;. In the
pruned derivation an atomic formula is not introduced into a sequent by thin-
ning if above it there is an axiom on this atomic formula (or rather its predeces-
sor). Let us investigate the successors of antecedent formulas P(v) in axioms

P(v) > P(u) (4.20)

having succedent P(u). These successors in the sequent (4.19) are positive occur-
rences of the formulas P(v). These are occurrences into succedent formulas
Ipoq[w] and into antecedent formulas of the forms r(,54)5/[W], r-p5r[Wl,
I'ropW1, Trseop) [W], r—s5p[w]. The first three types of occurrences (corre-
sponding to the succedent p O g and antecedent (p D g) Df, -p D f) are not
suitable: in the path leading from (4.19) upwards to the antecedent P(v) there
occurs an (—V)-inference introducing the new variable v which is not free in u.
So the equation v = u is impossible and P(v) — P(u) is not an axiom.

We are left with the antecedent formulas corresponding to f D (g D p),
S DO p, =f DO p. By Lemma 4.5 they have the form vz;(Fz; D Vz,(Fz; D
P(x;z1z2))) in the case of f D (g D p) or simpler in the other cases. Then the
term v from (4.20) has the form (x;w;...w,,), m < 2, and the equation u = v
implies i = j, m = n, t; = wy, t, = w, (if n = 2). So P(v) from (4.20) is the
result of splitting the very same formula which produced the antecedent of the
axiom in the rightmost branch of (4.16), and the substituted terms in V— are
the same up to equality.

Now we see that the nonsuperfluousness of the derivation prevents axioms
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of the form (4.20) outside of the rightmost branch of (4.16), which was to be
proved.

Lemma 4.8 Let sequent (4.19) occur in a pruned, nonsuperfluous derivation
of a sequent (4.10), where the explicitly shown occurrence of P(u) in (4.19) is
not introduced by thinning. Then, by permuting inferences in the (sub)deriva-
tion of (4.19) one can make it directed at P(u), and the whole derivation of
(4.10) will remain pruned and nonsuperfluous.

Proof: The proof is by induction on the given derivation. The induction base
is obvious.

To prove the induction step we consider cases depending on the rule L
introducing (4.19). Thinnings are understood to be included in the rule which
immediately follows them:

1. One-premise rule, that is, a pair (—V,—D) corresponding to the succe-
dent formula r;-,[s]:

’ — ’
I‘F A, P(u) w.
— A, P(u)

By the inductive assumption we have a derivation of the premise I'' - A’,
P(u) directed at P(u). Let us show that this premise is not an axiom. Indeed,
since P(u) is not introduced into the succedent by thinning, it would be the main
succedent formula of the axiom in question, and the corresponding antecedent
formula would be a side formula of the rule L. But ry—,[s] = vz(F(z) D
G (sz)) and that succedent formula contains a new variable b which is not free
in u, so the equation b = u is impossible. We see that the derivation of the prem-
ise directed at P(u) should have one of the forms (4.16). By Lemma 4.7 the
predecessors of P(u) occur (up to thinnings) only in the rightmost branch of
(4.16). Let us permute L with (4.16). In the case of the longest formula the trans-
formation is as follows:

v 4.21)
o—-

V—

L

The inference L is written over a node of the new derivation only in the case
when the preimage of that node in the original derivation contained at least one
of the side formulas of L, i.e., if not all of them were introduced by thinnings.

Note that the right figure in (4.21) can fail to be a derivation only in the
case if the proviso for variables is violated in the new L’s. This means that in
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the original figure (depicted here modulo thinnings using E for vz, (F(z;) D
vz3(G(z2) D P(xz2,22))) and E’ for vz,(G(z2) O P(xs,22))),

(u = x5,52) ILE,E',Alz] - Blz], G(s,); P(xs182) > P(u)
ILE,Alz] - B[z], F(s1); ILE,E’,Alz] - Blz], P(u)

ILLE,A[z] - B[z], P(u)
II,E— vz(A D B), P(u)

one of the terms s;,s, contains the variable z. The equation xs,s, = u together
with the fact that z is not free in u by the proviso for variables, allows us by the
Church-Rosser theorem to conclude that s; = s/ (i = 1,2) for some terms s;
which do not contain z. Replacing s; by s/ we can perform the required permu-
tation which concludes the treatment of Case 1.

2. L is a two-premise rule. (More precisely, L is a combination of the (V—)-
inference which will be inessential and the two-premise rule D— which will be
denoted by L.)

Using the induction assumption we assume that the derivation is directed
to P(u) in the premises where P(u) is not introduced by thinning. If the whole
derivation of (4.19) is already directed at P(u) we are done. Otherwise, if P(u)
is introduced by thinning in one of the premises, we proceed as in Case 1 (and
here one need not even bother about the proviso for variables).

Assume that P(u) is not introduced by thinning in any of the premises. We
shall now prove that the derivations of these premises directed at P(u) end in
one and the same rightmost branch of Figure (4.16) applied to one and the same
formula.

Indeed, the term u# from the directed derivation is equal to a term
Xity...t, (n =< 2), and rules explicitly shown in Figure (4.16) are applied either
to the formula E; itself or to its predecessors, and terms ¢; are substituted in the
corresponding rules ¥—. So relevant parts of Figure (4.16) situated over different
premises of L can be different only if in one of them (say the left one) the for-
mula E; itself is split, and in another one its predecessor is split. But then this
predecessor was itself introduced by splitting of E; (with the same substituted
term in ¥—), so its splitting over the left premise contradicts the derivation being
nonsuperfluous. Now we can perform the permutation:

- G(s2), A; P(xs;s3) - P(u) B- G(sy); P(xs;s3)— P(u)
E—-F(s)),A; E' - A, P(u) B—F(s)); E’,B— P(u)
E— A, P(u) E, B— P(u)
A D B, ¥z,(F(z1) D Vz2(G(22) D P(x2123))) = P(u)

Here L is written over a node of the new derivation (copied from (4.16))
only if in both preimages of that node (over both the left and right premise of
L in (4.16)) the corresponding side formula of L is not introduced by thinning.
Otherwise, take the derivation where it was introduced by thinning.

Theorem 4.1 Any derivation of sequent (4.10) can be transformed into an
intuitionistic derivation of that sequent.
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Proof: The transformation will be done in the unusual direction —bottom up —
and not from axioms. We apply Lemma 4.8 beginning with the lowermost
sequent (4.10). It seems that the termination of such a process is not guaranteed:
the part of the derivation which remains above and has to be transformed can
even increase. But since our transformation steps are only deletions, permuta-
tions, and replacements of terms by equal terms, the total supply of terms to
be used in the (v—)-inferences does not increase (up to equality) and the trans-
formed part of the derivation remaining below is increasing. So the process will
terminate in a finite number of steps. Let us see how such a strategy works.
Call a set ® of nodes in a derivation a bar if no two nodes from ® are in
the same branch and every branch of the derivation contains a node from ®.

Here a bar will form a boundary between the already transformed and the
remaining part of the derivation. By B~ we denote the part of the derivation
from & down. Inversion of the rule —V is by definition the passage from the
figure

I, Ala,] = B[a,], £ 0, Ala,] - Bla,], A

I->vx(ADB), L 0-vx(ADB), A
~— _—
~ .
I' > vx(A D B)

to the figure
II, Ala;] - Blay], £ O, Ala;] —» Bla)], A
\ /
/
~.—
I', Ala;] — Bla,]
I'->vx(ADB)

and similarly in the case of vx—A.

Note that if the upper figure is a nonsuperfluous, pruned derivation (as
always, with the strong pure variable property) then the lower figure is also such.
Let us prove a Lemma which allows us to move a bar upwards.

Lemma 4.9 Let D be a nonsuperfluous, pruned derivation of sequent (4.10)
and ® be a bar in this derivation, such that all inferences in ®~ (but not in D)
satisfy intuitionistic restrictions. Then applying the transformations from Lemma
4.8 and inversion of the rules one can construct a nonsuperfluous, pruned deri-
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vation D, of sequent (4.10) and a bar ®, in D, such that ®1 properly contains
®~ and all inferences in ® | are intuitionistic.

Proof: By the assumption &~ is properly contained in D, i.e., one of the upper
nodes of ® is not an axiom. Consider the rule L introducing that node. If L is
intuitionistic, it is sufficient to include its premise(s) into ®;. If the succedent
is not an atomic formula, use inversion and again extend ®. If the succedent
is atomic, apply Lemma 4.8 and note that by Lemma 4.7 the resulting Figure
(4.16) consists of intuitionistic rules. Now one can again extend ®.

Now we can finish the proof of Theorem 4.1. Consider a pruned, non-
superfluous derivation D of sequent (4.10). If one identifies the eigenvariables
of (—V)-inferences, then one can obtain only a finite number of new terms from
terms occurring in D. Only such terms (up to equality) can occur in the deriva-
tions obtained from the given one by transformations used in Lemma 4.9. So
these transformations can produce from D only a finite number of nonsuper-
fluous derivations, and the process of iterative application of Lemma 4.9 will
be finished in a finite number of steps. When this happens one has the required
intuitionistic derivation.

Theorem 4.2 If (4.10) is derivable, then the sequent (4.9)
E,..  ,E,—-»p

is also intuitionistically derivable.

Proof: Add —-cases to the proof of Theorem 2.1.

Theorem 4.3 The propositional formula F in the language (D,A,™) is intui-
tionistically derivable iff rg[u) is derivable in L for some term u.

Proof: In one direction this is Lemma 4.1(i). Assume now that rgz[u] is deriv-
able. Construct by Lemma 4.2 a standard formula S such that

F>S and S*DOF

are intuitionistically derivable for some substitution instance S* of S. The deriv-
ability of F O S implies, by Lemma 4.1(ii), the derivability of vVx(rg[x] D
rs[(vx)]) for some term v, which together with the derivability of r=[«] implies
the derivability of rg[(vu)]. Since S is of the form (4.3), the derivability of
rs[w] is equivalent to the derivability of sequent (4.10) for £ = (wx; ...Xx,). By
Theorem 4.2, sequent (4.9) is intuitionistically derivable, and so is the formula
S. Making substitutions and applying S* O F we obtain F as required.
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