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This book presents a positive point of view about non-well-founded sets.
Indeed, such sets usually arise in (more or less) marginal set theories (such as
Quine's NF), and are generally considered as curiosities or pathological objects,
in any case as useless and anti-intuitive. Here, they are given by a new axiom
AFA (anti-foundation axiom), which is added to ZFC~ (ZF with the axiom of
choice but without the foundation axiom), and are used to represent non-well-
founded structures by sets. Basically, the idea of modeling structures in set the-
ory is an old one. Ordinals, for example, are a natural representation of well-
ordering structures; another example is the Mostowski collapse, which allows
any binary extensiαnal well-founded relation to be represented by a transitive
set. The anti-foundation axiom's intention is to drop the "well-foundedness"
limitation. Some mathematicians have already considered the possibility of
replacing the foundation axiom by some "universality" axiom; the universality
axiom of Boffa is such an example (it states that every extensional structure is
isomorphic to a transitive set). But the interesting facts about AFA are that it
contains a uniqueness condition of the representation and that it has applica-
tions in different domains.

The book is divided into three parts, and contains two appendices, a fore-
word (by J. Barwise), a preface, and an introduction. Appendix B gives the nec-
essary background set theory. It should be remarked that the book does not
require very much familiarity with set theory, and is written in a clear and agree-
able style. The essential facts are proved and the routine arguments are left as
exercises. So this work can be directed to a large readership.

In Part One (containing Chapters 1, 2, and 3), the anti-foundation axiom
AFA is introduced. This axiom has been (independently) investigated (among
other anti-foundation axioms) by Forti and Honsell (1983), who gave a con-
sistency proof (relatively to ZFC~). The new features are:

(1) the elegant presentation of the axiom which allows it to be compared
easily with other anti-foundation axioms and to uniformize and simplify
the notations and the proofs

(2) the applications of the axiom.

Axiom AFA says that "every graph has a unique decoration (by sets)." A graph
is simply a set of nodes, with a set of edges; the notation for "(x,y) is an edge"
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is x-+y; a decoration of a graph is an assignment d of a set ί/(x) to each node
x in such a way that

d(y) = {d(x)\x+-y}.

So AFA extends the Mostowski collapse to all graphs.
After some examples of equations which have a unique solution when AFA

is assumed (for example, x - {x}), a general solution lemma is proved, which
shows that, for a large class of systems of equations, AFA allows the existence
and uniqueness of a solution. For example, the system

x0 = (ao,x{)

X\ = (auXi)
Xl = (f f 2 ,*3)

with an infinity of equations (the at are given sets (/EN) and (w, υ) is the usual
Kuratowski ordered pair) has a unique solution, which is the (strange) set x —
(#o> (0i > (#2> •••)))• Furthermore, the equivalence of the "local" version of AFA
and the "class" version of AFA is proved. The class version is as follows: Any
system has a unique decoration (a system is a class of nodes, with a class of
edges, and satisfies the condition that for any node x> {y\ y <- x] is a set).

In Chapter 2 AFA is studied with respect to its relation with the notion of
"bisimulation". As mentioned in Appendix A ("Notes towards a history"), the
notion of bisimulation appeared in the work of various authors, under differ-
ent names and with different motivations; it appeared both in set theory and in
the study of mathematical models for transitive (computational) systems. The
similarities between constructions worked out in distinct domains gave the ini-
tial impulse for this interest in non-well-founded sets, and provided the impe-
tus to Aczel to formulate axiom AFA (which he discovered to have already been
investigated by Forti and Honsell).

A binary relation R on a system M is a bisimulation on M iff

R c R+

9 with aR+b <=» [(v* <- a 3y <- b xRy)
Λ (Vy<- b 3x<r-a xRy)].

The + operator is monotone and it is proved that every system M has a unique
maximum bisimulation (written =M); this Ξ=M is always an equivalence and the
natural quotient M/= is extensional. This leads to a first definition of "strong
extensionality" (other notions of "strong extensionality" appear later in the
book): A system Mis said to be "strongly extensional" iff Ξ=M is the identity on
M. This notion leads to a new (local) formulation of AFA:

a graph G is isomorphic to a transitive set (seen as a graph, with x<- y
iffxEy) iff G is strongly extensional.

This chapter ends with an application: a simplified proof of a completeness the-
orem (Kanger 1957) and of a variant due to Gordeev (1982).

Chapter 3 gives a proof of the consistency of AFA relatively to ZFC~.
The inner model is the quotient =M of the class M of the apgs or "accessible
pointed graphs". A graph G is an apg if every node x is accessible from the dis-
tinguished point aG (this means that there is a finite path x<- xx <-x 2... <- aG)
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the edges in M are given by the rule Ga -> Gb iff a -> b (in G); for a system TV,
Nx is the apg whose nodes and edges are those of TV that lie on (descending)
paths of N starting from x; the distinguished point of Nx is x itself. The last the-
orem in this chapter states that this is the unique system (unique up to isomor-
phism) which is a full model (in the sense of Rieger) for ZFC~ -I- AFA.

Part Two is divided into two chapters (Chapters 4 and 5) and considers var-
iants of the anti-foundation axiom. These variants are instances of a family of
axioms AFA~, determined by a suitable equivalence relation - on the system
of the apgs; such a - determines a notion of —extensionality for systems: M
is —-extensional iff Ma ~ Mb -> a = b. The axiom AFA"' can then be described
as:

an apg G is isomorphic to a transitive set
iff

G is —-extensional.

AFA corresponds to AFA"' when ~ is =M (where Mis the system of the apgs).
The main theorems about AFA are generalized to AFA~ (for suitable ~).

In particular, axioms FAFA and SAFA are considered. FAFA is AFA~, where
the —extensionality is exactly the "downwards isomorphic" extensionality given
by axiom SEXT ("strong extensionality" studied by Von Rimscha), and inspired
by Finsler (1926). SAFA corresponds to a third notion of "strong extensional-
ity", due to Scott (here the tree obtained by unfolding an apg determines the
notion of extensionality). These three notions of strong extensionality are shown
to be effectively different, so that AFA, FAFA, and SAFA are pairwise incom-
patible axioms.

Chapter 5 discusses anti-foundation axioms of a somewhat different kind,
namely "universality" axioms introduced by Boffa. For example, the universality
axiom BA states that every extensional graph is isomorphic to a transitive set.
Here the representation of the graph by a transitive set is no longer unique.

Part Three (Chapters 6, 7, and 8) presents some interesting applications of
AFA.

Chapter 6 studies fixed points of "set continuous" operators. A class oper-
ator Φ (i.e., ΦX is a class for each class X) is said to be set continuous iff

VX(ΦX = U {Φa\a<S V^a^X}).

Different characterizations are given for this notion, together with properties and
examples. The main result states that every set continuous operator has a least
and a largest fixed point (for the order <Ξ), with an explicit description of these
extreme fixed points. It should be remarked that here the collection scheme is
used (and this fully justifies the formulation of ZFC~ used in Appendix B).

Finally, a useful theorem is proved, which localizes the unique solution of
a system of equations (as described in Part One, solution lemma) in the largest
fixed point of a set continuous Φ. An application of this is given in Barwise and
Etchemendy's The Liar, Oxford University Press (1987); perhaps this example
should have been described in more detail instead of being just mentioned at the
end of Appendix A. In this example the class of the propositions is seen as the
largest fixed point Xo of the (set continuous) operator Φ, where Φ(X) = B U
({T} xX)U ({F} x X) U ({Λ j x (X x X)) U . . . . The symbol U represents
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"disjunct union" here; T, F, Λ, . . . are constants with the classical meaning
(T = true, F = false, Λ = conjunction,...); and B is a set of basic propositions.
For example, if p E Xo, P can be of type (/\,P\,P2)> so it is the conjunction
"P\ Λ / V of P\ and/?2;

 o r P can be of type (T,q), so it is the proposition "q is
true", etc. Assuming AFA, there is a unique solution to the equation x = (F,JC)

and by the theorem just mentioned this solution is an element of the largest fixed
point of Φ, so it is still a proposition. This proposition ΛΓ0 is exactly "x0 is false",
and so is the liar's proposition.

Another important application of the last theorem of Chapter 6 is discussed
in Chapter 8 and briefly described below.

Chapter 7 gives a very general description of the extreme fixed points for
"standard" functors (which generalize the notion of "set continuous operator")
in terms of "initial algebra" (= the least fixed point) and "final co-algebra" (=
the largest fixed point), seen as objects in a (suitable) category. This shows that
the phenomenon of the existence of a least and a largest fixed point is in fact
a categorical one; it was discovered independently in the context of bisimulation-
techniques by different authors (see, inter alia, Forti & Honsell, Gordeev, Hin-
nion) mentioned in the references of the book.

Chapter 8 presents an application to communicating systems. A transition
system is a class X (of possible states) and a family of binary transition rela-
tions A between states, one for each possible "atomic action" a. When the
collection Act of the atomic actions is a singleton, the corresponding "transition
system" notion is exactly the "system" notion described before. In a transition
system distinct states of processes may have the same "external" behavior. This
notion of abstract behavior is captured by using the concept of a bisimulation
relation on a transition system; this was first considered by Park (1981) and de-
veloped by Milner (1983). The maximal bisimuiation is moreover an equivalence
relation (Milner calls this a "strong congruence"), and the quotient of the class
of "expressions" (intended to represent the possible states of systems that can
communicate with each other) by this maximal bisimulation is a model of
"abstract behaviors" for these computational systems. Here the same result is
obtained very easily (assuming AFA), as a simple application of the final co-
algebra theorem (Chapter 7) for a suitable "standard" functor

Φ(X) =pow(Act xX), where powF= {b\b e K Λ * C γ]m

One gets in this way a "complete" transition system P (= the largest fixed point
for Φ) such that x A y iff (a,y) E x (for x,y E P), and for each transition sys-
tem X there is a (unique) map π: X -» P such that V x G l

τx= {{a,τy)\x-^ymX}.

This map TΓ is the "behavior map" for X. So, if a transition system X constitutes
an operational semantics for a programming language, the behavior map for X
gives a canonical representation of the abstract behavior of the programs of the
language. Thus the complete P is a domain of mathematical objects which are
denotations of programs for such a programming language. This chapter ends
with the definition of operations on P, in particular of the four fundamental
combinators used by Milner to define the "expressions" of SCCS (Synchronous
Calculus of Communicating Systems).
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Appendix A ("Notes towards a history") is a very interesting survey of the
development in this century of the idea of a non-well-founded set. It is divided
into quarter century periods. The fundamental distinction between the well-
founded and the non-well-founded sets was formulated by Mirimanoff (1917).
The foundation axiom appeared somewhat later (von Neumann, Zermelo) and
in 1926 Finsler proposed an axiom system which corresponds to FAFA. Axiom
SAFA appeared in 1960 (Scott) and AFA in 1983 (Forti & Honsell).

Other applications of non-well-founded set theory are mentioned, partic-
ularly for the rich period after 1950. Finally, the application of AFA to situa-
tion semantics is mentioned (Barwise & Etchemendy 1987): A situation is
represented by a set of facts, and a fact is seen as a triple (R9a,σ), where R is
a relation, a is a triple of objects appropriated for the relation R, and σ is 0 or
1 (false or true). As situations are themselves objects they can occur as compo-
nents of facts, so circular situations arise, which can be set-theoretically modeled
only in a non-well-founded set theory. AFA provides such a natural and suffi-
cient context.

As mentioned, Appendix B gives the background set theory. Some remarks
are made about the global choice and its relation to the quotients (over classes)
which are worked out in the book. At last, Rieger's theorem (about full systems)
is stated and proved.

The best conclusion about this book may be found in the foreword by J.
Barwise: "The theory of circular and otherwise extra-ordinary sets presented in
this book is an excellent example of this synergistic process". The synergistic pro-
cess referred to is that of a convergence of similar ideas in distinct domains,
brought together here in a clear synthesis which is surely a starting point for fur-
ther investigations.
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