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Some Compactness Results for Modal Logic

GEORGE F. SCHUMM*

Abstract A modal logic L is said to be compact if every L-consistent set of
formulas has a model on a frame for L. Some large classes of compact (non-
compact) logics are identified, and it is shown that there are uncountably
many compact (noncompact) logics.

A modal logic L is compact if every L-consistent set of formulas has a
model on a frame for L, classically compact if a set of formulas fails to have
a model on a frame for L only if some finite subset fails to have a model on a
frame for L, canonical if determined by its canonical frame, and complete if
determined by some class of frames. These four properties are related in an obvi-
ous way:

CANONICALCY => COMPACTNESS => COMPLETENESS

CLASSICAL COMPACTNESS

Given the amount of attention that has been lavished upon canonicalcy and com-
pleteness, it is therefore mildly surprising that compactness has enjoyed relatively
little press. The first explicit mention of it would seem to be found in Corco-
ran and Weaver [1]. However, they were working with a different concept of
a model than the now standard one used here, and as a result the nice connec-
tion between canonicalcy and compactness is lost. (See [2], in which they show
that the canonical logics Γand B are, on their account, noncompact.) Fine raises
the issue of compactness at the end of [5], but his important work on this notion
did not appear in print until more than a decade later with the publication of
[6]. Even then, although he was undoubtedly aware that his argument could be
generalized, only one example of a familiar, noncompact logic is actually men-
tioned. Hughes and Cress well [10] go a bit further, giving several examples. Un-
fortunately, their proofs (and suggested proofs) contain a seductive error, and

*An earlier version of this paper was presented to the Annual Meeting of the Associa-
tion for Symbolic Logic held in Chicago, Illinois, April 26-27, 1985. With the excep-
tion of Theorem 4, these results were obtained before I saw [6], [10], and [11].
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correct proofs appear only in [11]. Finally, Fitting [8] and van Fraassen [9] show
how to obtain compactness without going through canonicalcy, though all of
the logics they consider are in fact canonical.

For complete logics compactness and classical compactness come to the
same thing. But in general the two concepts pull apart. In [13] it is shown that
there exists an incomplete logic L with the same frames as 54.3. Given the
canonicalcy, and hence classical compactness, of the latter, it follows that L is
also classically compact. Classical compactness therefore implies neither com-
pleteness, compactness, nor canonicalcy. Perhaps this helps explain why it is
compactness rather than classical compactness which is generally discussed in
modal contexts.

As we shall see, completeness fails to imply compactness or even classical
compactness —and fails with a vengeance. The tougher question, apparently still
open, is whether compactness implies canonicalcy. It is becoming increasingly
clear, however, that if there is a counterexample, it is not likely to be simple.
Fine (in [6] and [7]) has shown that the two notions are equivalent over two
broad and important classes of logics (the complete elementary and "subframe"
logics), and other results of this sort are also to be found in the literature. Here
I shall identify some additional classes, running across and up through the lattice
of modal logics, over which compactness and canonicalcy stand or fall together.

Let us say that a logic L is finitely accessible if no frame for L contains a
world having infinitely many worlds accessible from it.

Theorem 1 IfL is finitely accessible, then L is compact if and only ifL is
canonical.

Proof: It is enough to show that if L is finitely accessible and compact, then L
is canonical.

By compactness, every L-consistent set Γ has a model 2lr based upon a
frame for L. Form the "union" of these models. To be precise, where {(Wh

Ri>Φi)]i is a class of pairwise disjoint isomorphic copies of these Sir's, put
W = \J Wh R = (J Rh and φ = \J φh and set 21 = (W,R,φ). Define a

/ / i

function/from Wto the domain of %L = (WL,RL,φL), the canonical model
forZ,, by f(u) = [A\(%u) )rA}. Since g = (W,R) is a frame for L, to see that
%L — (WL>RL) is also a frame for L one needs only verify that %L is ap-mor-
phic image of § under /.

( l)/is onto.
(2) If uRυ, then f(u)RLf(v).
(3) Supposing thatf(u)RLa, we need to show that α =f(v) for some v,

where uRυ. Since (8lL,/(w)) \= 0 τ , (81,«) f= 0 τ . So u has at least one
world accessible from it under R. Let υu . . . , vn be all such worlds, and
suppose for a reductio that

(*) {VAHWiVj) M ~ ( a L , α ) ¥A)

for no Vi. Then, for each υh there is some At such that (21, Vj) N At

and (2ίL,α) ψ Ah But now

( 8 , « ) ^ U i v. .vA,),
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so

WLJ(u))tΠ(Aιv...vAn)9

so

WL,a)tAι v . . . v ^ ,

so (21 ,̂0:) YAi for some Ah and we have a contradiction. So (*) holds
for some υh whence it follows that a =f(Vj).

Let K[O] be the smallest extension of K to contain the formula

[O] Π(Ώ(p-»Up)-*p)^(Όp^p)9

where O is a finite string of D's and O's.

Theorem 2 Let O contain at least one 0. Then every logic between K[O] and
Sobociήski's K3.1 (Makinson's D*) is classically noncompact (noncompact, non-
canonical).

Proof: Suppose that L is any logic in question, and let Γ be the set containing

Op Λ ~p Λ q0

•'(#/ -> 0(/7 Λ #/+1)) (/ even)
•/(tf, -*0(~/7Λtfl + 1)) (/Odd)

where #/ =£/? for all / E ω. If 21 = (W9R,φ) is any model for Γ, then 21 contains
an infinite ascending sequence wo,wu... under R, where (21, w0) N Op and
(21, Wi) )rp «=» / is odd. Let 53 = (W,R9 ψ) be the model that is just like 21 except
that φ(p) = W — {W/1 / is even}. Then (93, vv0) t̂  [O]. So Γ has no model on a
frame for L. But every finite subset of Γ has a model on a finite linear order-
ing, hence on a frame for K3Λ and thus L.

This theorem generalizes the results of Hughes and Cress well [11] and
covers a number of familiar logics other than K3Λ itself, including Sobociήski's
54.02 (S4[D0D]), 54.1.1 (S4[0D]), 54.2.1 (54.2[0D]), 54.3.1 (Prior's A
Segerberg's S43GrZ, 54.3[<0Π]), K\Λ (Segerberg's S4Grz), K2Λ, Z3, Z5, ZΊ
and Segerberg's KW <$oo\os> G) and K4.3W. By contrast, we have the following
positive results. The first one, when combined with Theorem 2, shows that Â 3.1
"bounds" canonicalcy (compactness, classical compactness), thus answering a
question raised in [13].

Theorem 3 Every extension of S4.3.1 not contained in K3.1 is canonical
(compact, classically compact).

Proof: Using the fact that all extensions of 54.3.1 are complete, it is possible
to catalog those logics not contained in AT3.1 and then check to see that they are
all elementary, i.e., that their accessibility relations satisfy an elementary con-
dition. (The details can be culled from [12]). But every complete elementary
modal logic is canonical (compact, classically compact) by Fine [7],

Theorem 4 There exist 2K° canonical (compact, classically compact) normal
modal logics.
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Proof: Let An be the formula

0 Λ + 1 D ± -• D ( D * 0 τ -> D_L).

Where X <Ξ ω , let AΓ̂  be the smallest normal extension of K to contain y4Λ for
all n G X. Kx is canonical (compact, classically compact) —as, indeed, is every
normal extension of K whose proper axioms are variable-free. For the truth
value of a variable-free formula at a world in the canonical frame will be invar-
iant across valuations.

To see that these Kx's are all distinct, consider the frames %n = {Wn,Rn),
where

Wn = {0>...,/! + 2},
R n = { ( / , / + 1 ) | 0 < / < / I ) U i ( 0 9 n + 2 ) 9 ( n + 2,n + 2 ) } .

Suppose that n φ X and 21 is any model based upon %n. If j > n, then (21,/) ¥
0y'+1 D-L and hence (21,/) h Aj for all / G Wn. On the other hand, if j < n, then
(81,/) N 0J+ι Πi. only if / = π -y. Suppose that /ΛΛA:. Then fc = (Λ -y) + 1, so
(21, AT) HD^OT->D± since (21, (n - j) 4- 1) t̂  D '̂OT. So («,/) N D ( D y 0 τ - >
D.L), and again we have that (21,/) \=Aj for all / G W .̂ However, (2ί,0) ^^4,,.
%n is therefore a frame for Kx which fails to validate An. It follows that

An(ΞKx*=>n(ΞX

and thus that ϋΓ^ Φ Kγ when JT ̂  Y.

That there is an equal number of noncompact (noncanonical) modal logics
follows at once from Fine's observation (in [4]) that there are uncountably many
incomplete extensions of S4. The more interesting question in the present context
is the number of complete noncompact logics. Here, too, there are uncountably
many. The following quick proof of this fact shows that there are this many even
among the logics of width 2 and arbitrary finite depth.

Theorem 5 There exist 2K° classically noncompact (noncompact, nonca-
nonical) extensions of S4 with the finite model property.

Proof: Fine [3] constructs a sequence of frames (Figure 1), distinct sets of which
determine distinct (normal) extensions of S4. Let L be any logic determined by
an infinite class of these frames. (There are 2*° such logics, of course.) Every
%i validates the 54.02 axiom [DOD], so L contains 54.02. On the other hand,
AΓ3.1 is determined by the class of all finite linear orderings. Therefore, to show
that every nontheorem of 7Γ3.1 is also a nontheorem of L, it is enough to observe
that every finite linear ordering («,<) is a/7-morphic image of %m (m > n)
under/, where

{ j, if j < n - 1 and / = 2y or 2j - 1

n — I, otherwise.

This is shown diagrammaticalΓy in Figure 2.
It follows that L is intermediate between 54.02 and K3A, and hence clas-

sically noncompact (noncompact, noncanonical) by Theorem 2.
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3<j> < ? 4 5Q 06 7Q P 8

1 \ / 2 3<> Y 0 4 5KX/6

0 1 i ^ N> 2 3 / V\ 4
So \ / / \

o l K Ί> 2
δi \ /

0

Figure 1.

2m + 3 ^ Λ> 2m + 4

2/1 — 3 |<" ">[ 2/i - 2

1 < ^ N> 2 <• 1

\ / A o

0

Figure 2.
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