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Quadratic Residues and x3 + y3 = £

in Models of IEX and IE2

STUART T. SMITH

Abstract It is unknown whether the fragment of arithmetic IE\ (or even the
stronger system JΔo) proves that every odd prime has a quadratic nonresidue. We
show that one direction of the quadratic reciprocity law holds in ΪE\ when one of
the primes is standard. Thus an odd prime q which has no quadratic nonresidues

must satisfy ί * J = 1 for every standard prime p. We show that if q is a prime

Φ 2, 3 in a model of ΪE\ and n = 1, 2, 3, or 4, then q — x2 + ny2 for some JC, y

if and only if ί ~ j = 1. This result for n = 3 enables us to prove in /ϋ^ that

x3 + y3 = z3 has no nontrivial solution.

1 Introduction A number of articles have appeared which were motivated by the
question of how much induction is necessary in order to prove elementary results
in number theory. More precisely, axiom systems are considered which contain the
axioms for discretely ordered semirings (i.e, 1 is the least positive element) together
with the induction scheme for some class of formulas in the language £ = {+, , <
, 0,1}. Peano arithmetic (in which induction holds for all ^-formulas) is the best
known such system, but it is too strong for our purposes, as it proves all of the
results of classical number theory. We are interested in weaker systems, the so-called
fragments of arithmetic.

The weakest such system is open induction (IOperi), in which induction is as-
sumed only for quantifier-free formulas. Shepherdson showed in [7] that IOpen is
too weak to prove the irrationality of A/2, or to prove that x3 4- y3 = z3 has only trivial
solutions. The model he constructed contains no nonstandard primes, so in particular
the set of primes is not cofinal. In Wilkie [13], van den Dries [2], Smith [9], and
Smith [11], open induction is strengthened by the addition of algebraic axioms, such
as normality or the existence of g.c.d/s, but the resulting systems are shown still to
be very weak.
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A much stronger system is / Δ o , in which induction is assumed to hold for all
formulas having only bounded quantifiers. (See Paris and Wilkie [6].) As noted in
Macintyre and Marker [5], it is unknown whether 7Δ 0 proves the cofinality of the
set of primes, or the existence of quadratic nonresidues for all odd primes. It is the
latter question which interests us here.

We will in fact work in IEU an intermediate system between IOpen and 7Δ 0 .
IEU or bounded existential induction, was introduced by Wilmers in [14]. In IEγ we
assume induction holds for all bounded existential formulas. (Actually, as is noted in
[14], no proof is known that IE\ is strictly weaker than 7Δ0.) Some of the algebraic
properties of models of IE\ are developed in [9], Smith [10], and Smith [12].

In Section 2 we review the definitions and elementary facts about the systems IEn.
We show in Section 3 that we can use an inductive argument in IE\ on the modulus
m to show that certain finite elements are quadratic nonresidues for m, provided m
satisfies certain congruence conditions. This enables us to prove one direction of the
quadratic reciprocity law when one of the primes is standard. This in turn enables
us to place limitations on odd primes which have no quadratic nonresidues, if such a
thing is possible in a model of IE\.

In Section 4 we show that a result for H is provable in IEχ for small values of
n. Specifically, we show in IEX that if q is a prime Φ 2, 3 and n = 1, 2, 3, or 4, then

q = x2 4- ny2 for some x and y O ί — j = 1. Our descent argument breaks down

for larger n> and in any case this result does not hold in N for n = 5, since ( ^ ) = 1
but 7 is not of the form x2 + 5y2.

In Section 5 we use the above characterization of primes of the form x2 + 3y2

to show that in IE2, x3 + y3 = z3 has no nontrivial solutions. The proof is adapted
from an argument due to Browkin which appears in Sierpinski's book [8].

2 Preliminaries In this section we review the definitions of the axiom systems IEn

and list some basic results.

Definition 2.1 [14] Let £ be the first-order language {+, , <, 0,1}. Define

Eo — Uo = {θ(x) : θ(x) is an open formula},

£ n + i = {3y1 < h(x) '"3ym< tm(x)θ(x, yί. ym) :

θ eUn and h,..., tm are £ - terms},

Un+i = {Vyi < h(x) Vym < tm(x)θ(x, yi y«) :

θ e En and tu...,tm are & - terms),

Vw = {θ(x) : θ is logically equivalent to an ^-formula and to a

Un—formula}.

If T is an £-theory, the definition of Vn relativizes to T. Thus ψ(x) is provably Vn

over T if ψ(x) is equivalent over T both to an is^-formula and to a Un-formula.
We are particularly interested in formulas which are provably Vx over a given

theory T. For suppose ψ(x) is such a formula and suppose that φ (x) is some quantified
formula which contains ψ (3c) as a subformula. Then for purposes of determining the
quantifier complexity of φ we can regard ψ as though it were quantifier-free. For
example,

3y < t(x)ir and 3y < t(x)->ψ
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will both be equivalent over T to E\ -formulas. (Abusing terminology, we will refer
to them both as Ex -formulas.)

Definition 2.2 [14] (i) The system IEn consists of the axioms for discretely ordered
semi-rings, together with the induction schema for all ̂ -formulas θ:

Vy [(0(0, y) A Vx (0(χ, y) -* θ(x + 1, y))) —> Wxθ(xy y)].

(IE0 will be denoted by IOpen.)
(ii) The system LEn consists of the axioms for discretely ordered semirings,

together with the following least number principle for all En -formulas θ:

Vy [3xθ(x, y) —> 3x (0(χ, y) Λ Vz < x-0(z, y))].

Semirings which are models of IEn or LEn will be denoted by M, M\ etc. The basic
properties of IEn are developed in [14]. We will need the following two facts:

Theorem 2.3 [14] For every n > 0, we have

lEn+i = » IEn <=^ LEn.

Lemma 2.4 [12] Let θ(x, y) be an En-formula. Then

IEn h VyΓί 3wθ(w, y) A 3zVx(0(x, y) —> x < zΛ

—• 3 z ^ ( z , y) Λ VJC(0(JC, y) —• x < z)")l.

77zαί w, /£„ proves that any nonempty bounded En~definable set has a greatest ele-
ment

We also need to know that certain relations are provably Vi over 1E\ or IOpen.

Lemma 2.5 Kaye [4] x\y is provably Vi over IOpen.

Proof: Here x\y means x divides y, where 0|0 and Ofy for y φ 0. The formula x\y
has the Ex definition 3z < y(xz = y), and is equivalent over IOpen to the ί/i-formula

y = 0 v [ y > 0 Λ V z < yVr < y(y = zx + r —> r = 0)].

Lemma 2.6 [4] c = y mod z is provably Vi over IOpen.

Proof: The formula x == ymodz has the 2?i definition (3ιt; < x + y)[x = ŵ z + y v
y = wz + c], and is equivalent over IOpen to the formula (z = 0 Λ X = y) v [z >
0 Λ Vw < x 4- y((# = y + iϋV)/ = jc4-u)) -> z\w)]. This formula is J7i by Lemma
2.5.

Lemma 2.7 [14] IEX \- VJC[JC > 0 -> Vy((jc, y) = 1 -> 3z < x(yz = 1 mod x))].

Corollary 2.8 IfM (= /£i and /? w a prime in M, then M/pM is afield. More
generally, ifm e M, m > 1 and a e M is such that (a, m) = 1, ί/zen a w invertible
in M/mM.

Lemma 2.9 [9] (x,y) = z is provably Vi overlEγ.

Proof: If z = 1, this follows from Lemma 2.7. The proof for arbitrary z in [9] is a
generalization of Wilmers' proof for z = 1.

Finally, we note that one can prove in 72^ (in fact in IOpen) that x s y mod z
defines a congruence relation, and if z > 0 then every x is congruent to a unique w
such that w < z.
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3 Quadratic residues Let M \= IEX and suppose m e M,m > 1. For any a e M,
we can ask whether the congruence x2 = amodm has any solutions in M. As in
the case of N, if the answer is yes and (a,m) = 1, then we say that a is a quadratic
residue for m; otherwise a is a quadratic nonresidue for m.

We note some elementary facts.

Lemma 3.1 Let M |= ΪE\ and suppose m e M, m > 1. Then for any a,b e M,
we have:
(i) Ifx2 == amodm has a solution and x2 = bmodm has a solution, then x2 =

abmodm has a solution,
(ii) Ifx2 = amodm has a solution where we assume also that (a, m) = 1, and if

x2 = bmod m has no solution, then x2 = abmod m has no solution.
(Hi) Ifx2 ΞΞ a mod m has a solution and m'\m, then x2 = a mod mr has a solution.

Proof: (i) and (iii) are trivial. To prove (ii), suppose c e M i s such that c2 =
a modm. Since (α, m) = 1, clearly (c, m) = 1, so by Lemma 2.7, there is a d e M
such that cd = I modm. Then d2a = d2c2 = I modm, so if e e M were such
that e2 = abmodm we would have (de)2 = d2ab = bmodm, contradicting our
assumption on b.

When m e M is a prime, say m = q,v/e can define the Legendre symbol ί £ J

in the usual way:

[ ° i f «i c '
I - J = I 1 if q\c and c is a quadratic residue for q ,

^ I—1 if # {c and c is a quadratic nonresidue for q.

The generalization of this symbol to the case where q is composite (the Jacobi symbol)
does not have the properties we will need, so we will use only the Legendre symbol.

As is implied by the previous paragraph, we are particularly interested in the
case where m e M is prime. If m is a standard prime, say m = p e N, we have that
the usual results from N hold (in addition to those listed in Lemma 3.1). Specifically,
half of the elements 1, 2, , £γ- of M/pM are quadratic residues and the other
half are quadratic nonresidues; also the product of two quadratic nonresidues is a
quadratic residue.

The proofs of these facts use counting arguments which do not go over to the
non-standard case. Thus in [5] the question is raised as to whether one can prove in
7Δ 0 that every prime has a quadratic nonresidue. (They note that if we adjoin the
Δ0-Pigeonhole Principle to /Δ o , then the proof can be carried out.)

In N we have the famous law of quadratic reciprocity, which says that if p and

q are distinct odd primes then ( f ) = \Λ) unless both p and q are congruent to 3

modulo 4, in which case ί £ ] = — (^) The question arises as to what happens to this

law in M \= IEX (of course it continues to hold if both primes are standard). We will

show that if p is standard and q is an arbitrary prime, t h e n ί ^ j = 1 =^ ί5- J = 1 unless

both primes are congruent to 3 modulo 4, in which case (^ j = 1 =» (%.\ = _ i . in

particular, we will show that many elements (if not most primes) of M have quadratic

nonresidues.
Our first result in this direction is the following:
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Lemma 3.2 Let M |= IE\ and suppose m e M, m = 3 mod 4. Then - 1 w α
quadratic nonresidue for m.

Proof: Note that although our language £ does not contain a minus sign, the above
conclusion can be expressed as

-«3JC(JC2 + 1 Ξ = 0 mod m).

By the remark after Lemma 2.9, it suffices to consider those x for which x < m thus
—1 is a quadratic nonresidue for m if and only if

M \= ->3x < m(x2 + 1 = Omodm).

Using Lemma 2.6, we see that the set ofmeM such that m == 3 mod 4 and
—1 is a quadratic residue for m is £Ί -definable. If it is nonempty, it must have
a least element a e M. There is by assumption a b e M such that b < a and
b2 + 1 Ξ 0 mod α; replacing 6 by a -b if necessary, we can assume that b is even.
The above congruence implies

b2 + 1 = ac

for some c e M. Since b < a, we have «c = ft2 + 1 < a2 and so c < a. Now
ί)2 + l = I mod A because b is even, hence ac == Imod4. But α Ξ= 3 mod 4, so
c = 3 mod 4 as well. The equation b2 + 1 = ac implies that b2 4- 1 = Omod c, so

M \=Ίx(x2 + l==0modc)

where C Ξ 3 mod 4. This contradicts the minimality of a.

In particular, if M \= IEχ and q e M is an odd prime for which — 1 is a quadratic
residue, then q = 1 mod 4. We would like to prove the converse, which of course
holds when q is standard. The problem is that the analogous descent argument to
Lemma 3.2 does not work. Even in /Δo, where we can restrict this argument to
primes, there does not seem to be any contradiction to be derived from assuming that
q == 1 mod 4 is the minimal prime for which—1 is a quadratic nonresidue. Moreover,
the usual methods for finding a square root for - 1 modulo q involve functions, such
as the factorial function, which are not available to us even in / Δ o .

We can prove related results by a similar argument, where in general we will
have to consider more cases. For example, the following result (actually its corollary)
will be needed later in the discussion at the end of this section.

Lemma 3.3 Let M (= IE\ and suppose m e M, where m = 5, 8,10,11,16,17,
20, 22, or 23 mod 24. Then —3 is a quadratic nonresidue for m.

Proof: As in Lemma 3.2, we let a e M be the minimal counterexample for m and
we let b e M be such that b < a and b2 4- 3 = 0 mod α; replacing b by a - b if
necessary, we can assume that 3jb. Thus b2 + 3 == 4,7 or 19 mod 24.

Now b2 + 3 = ac for some c e M; since b < a and a > 5 (by the congruence
condition in the hypothesis), then b2 + 3 < a2 and so c < a. Obviously - 3 is a
quadratic residue for c; it remains only to show that c satisfies one of the congruences
in the hypothesis of the lemma, and then c will contradict the minimality of a. We
consider the three possible values for b2 + 3 modulo 24 in turn.
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(a) Suppose b2 + 3 = 4 mod 24. Since b2 + 3 = ac we have αc Ξ= 4 mod 24;
thus α φ 8mod24 and α # 16mod24. If α = 5,11,17, or 23mod24 then
c = 20 mod 24, and vice versa. If a = 10 or 22 mod 24 then c = 10 or 22 mod 24.
Thus c satisfies the hypothesis of the lemma.

(b) Suppose b2 + 3 = 7 mod 24, so αc = 7 mod 24; then a φ 8,10,16, 20 or
22 mod 24. If a Ξ= 5 mod 24 then c == 11 mod 24 and vice versa; if α = 17 mod 24
then c =Ξ 23 mod 24 and vice versa.

(c) Suppose b2 + 3 == 19 mod 24, so ac == 19 mod 24. Again a φ 8,10,16, 20, or
22 mod 24. If a = 5 mod 24 then c = 23 mod 24 and vice versa; if a ==11 mod 24
then c = 17 mod 24 and vice versa.

Corollary 3.4 Let M \= IEγ and suppose q e M, q > 3 is prime and —3 is a
quadratic residue for q. Then q = 1 mod 6.

We can similarly prove:

Lemma 3.5 (i) Let M (= IEγ and suppose m e M, where m === 3 or 5 mod 8. Then
2 is a quadratic nonresidue for m.

(ii) Let M (= IE\ and suppose m e Mf where m = 5 or 7mod 8. Then —2 is a
quadratic nonresidue form.

Corollary 3.6 (i) Let M \= IE\ and suppose q e M ispήme and 2 is a quadratic
residue for q. Then q == 1 or 7 mod 8.

(ii) Let M (= IEχ and suppose q e M is prime and —2 is a quadratic residue for
q. Then q = 1 or 3 mod 8.

We can continue in this manner, eventually salvaging one direction of the qua-
dratic reciprocity law when one prime is standard.

Lemma 3.7 Let M \= IEγ and let p e M be a standard prime such that p =
1 mod 8. Let m e M, p\m, be a quadratic nonresidue for p. Then p is a quadratic
nonresidue for m.

Proof: We first must show that the set of m e M for which the lemma does not hold
is El-definable. Because p is standard, the assumption -«3x < p(x2 === mmodp)
can be replaced by a finite disjunction of congruences, the choice of which varies
with p. For example, if p = 17 then m is a quadratic nonresidue for p if and only if
m Ξ= 3, 5, 6, 7,10,11,12, or 14 mod 17. By Lemma 2.6, this formula is provably Vi
over/Ei.

The set of counterexamples for m is thus Ei-definable, and we assume it is
nonempty. By LEX, it contains a least element a e M. We will show that a is infinite.

Clearly a > 1, so if a is finite we can write a = 2r >s, where r > 0 and s is odd.
Now 2 is a quadratic residue for p, hence so is 2 r; in order for a to be a quadratic
nonresidue for p, it must be the case that a (hence s) has an odd prime factor q which
is a quadratic nonresidue for p. Since q is standard, by ordinary quadratic reciprocity
we have that p is a quadratic nonresidue for q (and so for a). But then a is not a
counterexample.

Now for some b < α, we have

b2 Ξ pmoda,

where by replacing b by a - b if necessary we can assume that p\b. Thus

b2 = p ± ac
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for some c e M, c > 0. But a is infinite and p finite, so the sign above cannot be
negative, and we have b2 = p + ac. Furthermore, b < a and so c < a; also clearly
p\c. Looking modulo p, we have

0 φ b2 = acmod p,

where ( f ) = —1 Hence ( T ) = —1> whereas since b2 = p + ac we have that /? is

a quadratic residue for c. Since c < α, this contradicts the minimality of α.

The corresponding lemma for p == 5 mod 8 is more complicated, since in this

c a Se ( j ) = -i.

Lemma 3.8 Let M (= 7^i and let p e M be a standard prime such that p =
5 mod 8. Letm e M, p\m, satisfy one of the following conditions:

(a) m = 0 mod 8, or
(b) m = 1, 3,4, 5, or 7 mod 8 and m is a quadratic nonresidue for p, or
(c) m = 2 or 6 mod 8 and m fa a quadratic residue for p.

Then p is a quadratic nonresidue for m.

Proof: Clearly the set of counterexamples for m is Ex -definable, as in Lemma 3.7.
We assume that it is nonempty and we let a denote its minimal element. We show
that a is infinite.

Clearly a > 1, and if a is finite we can write a = 2r s with r > 0 and s
odd. If r > 3 then a = 0 mod 8; but since /? = 5 mod 8, we have that p is a
quadratic nonresidue for 8, hence for a. This contradicts the assumption that a is a
counterexample to the lemma. Thus r < 2.

If r = 0 or 2 then a = 1, 3,4, 5, or 7 modulo 8, so by assumption (jj = —1.

Moreover, α = s or α = 4s, so (j j = - 1 . In particular, s > 1 and s has an odd

prime factor q such that ί3- J = - 1 . By ordinary quadratic reciprocity, (^ J = - 1 ,

so p is a quadratic nonresidue for a. Again this contradicts the assumption that a is

a counterexample.
If r = 1 then a — 2s with s odd, so a ΞΞ 2 or 6 mod 8. By assumption, then,

ί - ) = 1; but ί - j = — 1 so ( - ) = —1 as well, and the argument continues as above.

Therefore a must be infinite.
As in Lemma 3.7, we have

b2 = p + ac

for some b < a,c < a such that p\b\ therefore p\c either. Modulo 8 we have

b2 ΞΞ 5 + αcmodδ,

so α # 0 mod 8. Therefore one of cases (b) or (c) applies. We deal with them in turn,

(b) If a ΞΞ 1, 3,4, 5, or 7mod 8 and (jλ = - 1 , then since b2 ΞΞ acmod p

we have ί - ] = — 1 as well. In the congruence b2 Ξ= 5 4- acmod8 there are two

possibilities:
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(1) Suppose b is odd. Then b2 = 1 mod 8, so ac = 4 mod 8. If a = 1, 3, 5, or
7 mod 8 then c = 4 mod 8 and vice versa, so c contradicts the minimality of a.

(2) Suppose b is even. Then b2 is even, so ac is odd. Thus a and c are both odd,
so again c satisfies the hypotheses of case (b) and contradicts the minimality of a.

(c)Ifα = 2or6mod8andί^ j = l,thensincefe2 = acmod p we have ( - ) = 1

as well. Now since a is even and p is odd, the equation b2 = p + ac implies that b is
odd. Thus b2 = 1 mod 8, and since p == 5 mod 8 we must have ac = Amod8. Since
a = 2 or 6 mod 8, then c Ξ= 2 or 6 mod 8 also, and so c contradicts the minimality of
a.

Lemmas 3.7 and 3.8 together enable us to deal with standard primes p such that
p = 1 mod 4. When we turn to the case where p = 3 mod 4, the situation becomes
more complicated; for instance, when m = q is a standard odd prime, we must
distinguish between the cases q == lmodA and # = 3 mod 4. The following two
lemmas provide the analogues to Lemmas 3.7 and 3.8.

Lemma 3.9 Let M \= lEχ and let p e M be a standard prime such that p =
7 mod 8. Letm e M, p\m, satisfy one of the following conditions:

(a) m = 0 or A mod 8 (i.e. 4\m), or
(b) m == 1, 2, or 5 mod 8 and m is a quadratic nonresidue for p, or
(c) m == 3, 6, or 7 mod 8 and m is a quadratic residue for p.

Then p is a quadratic nonresidue for m.

Proof: As in the previous cases, the set of m € M for which the lemma does not hold is
Eι -definable. Assume it is nonempty and let a e M be the minimal counterexample.
We show that a is infinite.

Since 1 does not satisfy any of the conditions in the hypothesis of the lemma,
we have a > 1. Suppose a is finite; then, we can write a = 2r s e N with r > 0
and s odd. If r > 2 then 4\a; but p = 3mod 4 so p is a quadratic nonresidue for
4, hence for a. This contradicts the assumption that a is a counterexample to the
lemma. Hence r = 0 or 1, and case (a) does not hold.

Now (jλ — 1. In case (b), then, we have that s == Ior5mod8(i.e. s = Imod4)

a n d ( ^ j = —1. Thuss > 1. Writes = t2u e N,whereuissquarefreeand(ί, u) = 1.

Then ί - j = —1, so M > 1. Also, since s = imodA and ί2 = imodA, we have

M =Ξ ImodA.

Suppose w has a prime factor # such that q = ImodA and ( p) = —1. By

ordinary quadratic reciprocity, p is a quadratic nonresidue for q, hence for a. This

contradicts the assumption that a is a counterexample.
Thus if we write u = vw e N where all of the prime factors of i; are congruent to

1 modulo 4 and all of the prime factors of w are congruent to 3 modulo 4, the previous
paragraph shows that υ is a quadratic residue for /?, hence w is not. (In particular,
w > 1.) Now υ = 1 mod 4, hence u; = 1 mod A as well; since w e N is squarefree,
it has an even number of prime factors. An odd number of them must be quadratic
nonresidues for p and an odd number must be quadratic residues for p. In particular,
there is at least one q == 3 mod A dividing w which is a quadratic residue for p. By
ordinary quadratic reciprocity, p is a quadratic nonresidue for q, hence for a; this
contradicts our assumption on a. Thus case (b) does not hold for a.
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We are left with case (c). Here we have 5 Ξ 3 O Γ 7 mod 8 (i.e. s == 3 mod 4, so

in particular s > 1) and ίηΛ = 1. Again writing s = ί2w, this time u = 3mod 4.

Let u = υw as before; again υ must be a quadratic residue for p, hence so is w. But

this time w = 3 mod 4 so w has an odd number of prime factors; therefore again w

has at least one prime factor q = 3 mod 4 such that (^ J = 1. As before, this leads

to a contradiction. We conclude that a must be infinite.

As in Lemma 3.7, we have

b2 = p + ac

for some b < a, c < a such that p\b, so p\c either. We consider the three cases in
the lemma in turn.

(a) If α Ξ 0 or 4 mod 8, then b must be odd, hence b2 = 1 mod 4. But then the
equation b2 = p + ac yields

1 = 3 + 0-cmod4,

which is impossible. Therefore this case does not apply.

(b) Suppose a = 1,2, or 5 mod 8 and (^ j = - 1 . Since

0 φ b2 = acmod p>

we also have that ί ^ j = —1. On the other hand, since &2 = p + αc, clearly p is a

quadratic residue for c. Considering the equation b2 = p + ac mod 8, there are three
possibilities for b2:
(1) Suppose b is odd. Then b2 = 1 mod 8, so 1 Ξ= 7+αc mod 8, hence αc = 2 mod 8.

Since α Ξ= l, 2, or 5 mod 8, we have that C Ξ 1 , 2 , O Γ 5 mod 8. Thus c contradicts
the minimality of a.

(2) Suppose 2\b but 4\b. Ήien 6 2 = 4mod 8, so 4 Ξ 7 + acmod 8, hence αc =
5 mod 8. This rules out the possibility that a = 2 mod 8, hence α = 1 or 5 mod 8.
We conclude that c == 1 or 5 mod 8, and again c contradicts the minimality of a.

(3) Suppose 4\b. Then 6 2 = Omod 8, so 0 = 7 + acmod 8. Thus ac Ξ= 1 mod 8, so
α # 2 mod 8. We therefore have α Ξ= 1 or 5 mod 8, so c = 1 or 5mod8. Thusc
contradicts the minimality of a.

We have shown that in case (b), the minimality of a is always contradicted by c.

Now we consider case (c).

(c) Suppose a = 3, 6, or 7mod 8 and ί ^ j = l. Since

0 φ b2 = acmod p,

we also have that ί - j = 1. Clearly p is a quadratic residue for c as well. We

againlookatthe threepossible values for b2 in the congruence fe2 == p-\-acmodS.
(1) Suppose fc is odd. Again ac == 2 mod 8. Since α Ξ= 3, 6, or 7 mod 8, we have

that c ΞΞ 3, 6, or 7 mod 8, so c contradicts the minimality of a.
(2) Suppose 2|fc but A\b. Then αc Ξ= 5 mod 8 as before, so a φ 6 mod 8.

Therefore a ΞΞ 3 or 7 mod 8, so c = 3 or 7 mod 8; so c contradicts the minimality of
a.
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(3) Suppose 4\b. Then b2 = Omod 8 so ac = 1 mod 8. Hence a φ 6mod 8, so
fl = 3or 7 mod 8. We conclude that c = 3 or 7 mod 8, and again c contradicts the
minimality of a.

In all cases we arrive at a contradiction, so the set of counterexamples to the
lemma must be empty.

Lemma 3.10 Let M \= IEX and let p e M be a standard prime such that p =
3 mods. Letm e M, p\m, satisfy one of the following conditions:

(a) m =Ξ 0 or 4 mod 8 (i.e. 4\m), or
(b) m == 1, 5, or 6 mod 8 and m is a quadratic nonresidue for p, or
(c) m = 2,3, or 7 mod 8 and m is a quadratic residue for p.

Then p is a quadratic nonresidue form.

Proof: The proof is analogous to that of Lemma 3.9 and is left to the reader.

If in the previous four lemmas we restrict our attention to the case where m is
prime, say m — q e M, we obtain one direction of the quadratic reciprocity law.

Theorem 3.11 Let M \= IE\ and let pyq e M bepήmes, where p is standard. If

I £ j = i, then ί ^ ) = 1 unless both p andq are congruent to 3 modulo 4, in which

case ( * ) = - 1 .

Suppose now that IEX cannot prove that every odd prime has a quadratic non-

residue. LetM \= IE\ and let q e M be a prime which has no quadratic nonresidues.

(Then q must be infinite.) In particular, (y- j = 1, so by Lemma 3.2 we must have

q = lmodi. (By Lemma 3.5 we in fact have q = Imods.) Then by Theorem 3.11,

ίsλ = i for every standard odd prime p.

The above condition enables us to place restrictions on the form of q. We know
from [12] that any odd m e M greater than 1 can be written as m = ab + 1, where a
is odd and b is a power of 2. (Recall that the relation "y is a power of the prime x"
can be expressed in IE\ via the formula Pow(x, y) defined as follows:

x > 1 Λ x\y A Vz < y ((1 < z Λ z\y -> x\z).

It is easy to see that x must be prime for this formula to hold.) If q — ab + 1 is
an odd prime with no quadratic nonresidues, we saw above that 8|fe. Note here that
there seems to be no way in IEχ of determining an exponent e of 2 such that "& = 2*"
holds in some sense, whereas in / Δ o it is well-known that this can be done.

Similarly, if q is as above then in particular - 3 is a quadratic residue for q, so
q ΞΞ 1 mod 6 by Corollary 3.4. This means 3\ab; but 3\b because Pow(2, b) holds
in M. Therefore 3|α.

The previous paragraph shows in particular that any Fermat prime q (i.e., any
prime q = b 4-1 where b is a power of 2) has quadratic nonresidues. In fact this holds
for any m = b+1 such that Pow(2,b), whether or not m is prime. The corresponding
result for Mersenne primes (i.e., primes q such that q + 1 is a power of 2) is even
easier, since we will have q = 3 mod 4 and so - 1 is a quadratic nonresidue for q by
Lemma 3.2. We leave it to the reader to find other restrictions on a; for example, a
must be congruent to either 0 or 3 modulo 5.
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In view of the fact that at least one of a, b must be infinite, we ask whether it is
possible to prove that both are infinite. For a, this would possibly involve extending
the above congruence restrictions to all the standard primes and showing that no finite
element of M can satisfy them all simultaneously.

The situation is different for b. In N we can prove that if m = 9 mod 16, then —1
has no eighth root in Έ/mZ. The proof involves examining the order of the group of
units of Z/mZ and noting that it is not divisible by 16. In IEχ one could attempt an
alternative proof along the lines of Lemma 3.2; the problem is that we can no longer
conclude that c < a. Thus we do not even know if IEχ proves that b > 3.

4 Representabilίty by quadratic forms In this section we treat some cases of the
following question: which elements (and in particular which primes) of a model
M (= IEi can be expressed in the form x2 + ny2 for a particular integer n? Some
results of this type for H go back to Fermat, and the problem for primes in N has been
completely solved for each n > 0 (cf. Cox [1]). The question is intimately related to
quadratic reciprocity since if q = x2 + ny2 then

x2 = —ny2modq>

implying that ί 1 ^ ) = 1. For certain values of n, this necessary condition is also

sufficient, even in IE\.

Before discussing this further, we note that when such representations of a prime

q exist, they are essentially unique. In fact we can show this to be the case in any

discretely ordered GCD domain. The following proof is taken from Sierpinski's book

[8].

Theorem 4.1 Let R be a discretely ordered GCD domain, leta,b e Rbe positive
elements of R, and let q e R be a positive prime element of R. If there exist x, y e R
such that both are nonzero and q = ax2 + by2, then x and y are unique up to sign
and up to the possibility of interchanging x and y in the case a = b = l.

Proof: If such x, y exist then clearly (a, b) — 1, for if d is a common divisor of a
and b then d\q. Clearly d = ±q is impossible because ay b, x, y are all positive,
therefore d = ± 1 . Similarly we can conclude (x, y) = 1.

Suppose in addition to q = ax2 -h by2 we also have q = ax2 + by2 for some
xu y\ e R. As above, we have (xly yx) — 1. We suppose for convenience that

χ,y,χi,yi > o.

We note that

(axxx + byyx) (xy1 + yxλ) =

(ax2 + by2)xxyx + (ax2 + by\)xy = q(xγyx + xy).

Therefore either q \axx\ + byy\ or else q \xy\ + yx\ (or both).
Suppose the former, that is suppose q \axx\ + byyx. From our two expressions

for q we can deduce that

q2 = (axxi + byyx)
2 + ab(xyx - yxx)

2,

so if q \axxχ + byyx we must in fact have axxx + byyx = ±q and so xyx - yxx = 0.
Therefore

χyi = yχi-
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Since (x, y) = 1, this implies x\xχ (cf. [9]), and similarly (jti, yι) = 1 implies y\ \y.
Therefore we must have x = X\, y = yγ.

Now suppose the latter possibility, i.e. q\xy\ + yx\. Our two expressions for q
also give us the equation

q2 = (axxί - byyx)2 + ab(xy1 + yxj2.

Now ab > 1; if q \xy\ + y*i, this equation implies that q2 > abq2, which can only
happen Ίϊa — b = l and

axxx - byyi = 0.

That is, xx\ — yy\ = 0, so xx\ = yy\. An argument similar to that in the previous
case yields x = y\ and y = x1.

We return to the question of which primes can be expressed in the form x2 + ny2.
We begin with the case n = 1.

Theorem 4.2 Let M (= #ϊΊ fl«d letq e M be an odd prime. Then q = x2 + y2 for

some x,y e M <=$> ί •— J = l.

Proof: ( = ^ ) Obviously, as remarked earlier.
( 4 = ) We adapt the proof of Theorem 20 of Gupta [3], Let q e M be an odd

prime such that ί γ j = 1. Then for some u e M such that u < q, we have

M2 + 1 = Omodq. Therefore M2-hl = m# forsomem G M, wherem < q. Thus the
set of elements m e M such that M f= 3w < #3υ < ^(m^ = u2 + υ2) is nonempty.
Since this set is also clearly is!-definable, it contains a minimal element mo. We must
show that m 0 = 1.

Suppose m0 > 1. We also have m0 < q because the above set contains an
element m < q. Choose x0, y0 e M such that x0 < q, y0 < q, and

moq = Xo+ )>o

lfmo\xo and mo\yo, then m\\x^ + yl so mo\q; this is impossible since q is prime and
1 < m 0 < q. Therefore we can find xi, y\ such that 0 < X\,yi < ^o and not both
of Xi, yi are zero, and such that

χ0 = x1 mod m0 and y0 = yx mod m0.

We are interested in x\ + yfmodm, therefore if X\ > \m§ we can replace it by
m0 - Xi without affecting the value of x\ modulo m0 (and similarly for y^. Thus we
can assume that we have found xu yι such that 0<xuyι < \m0 and such that

x2 + y\ = xl + yl = Omod m0.

The inequalities on xu yx imply

0 < x\ + y\ < -ml < m2

0.

Therefore x\ + y\ — m^rn^ for some mγ e M with 0 < mλ < m0. Thus we have:

m\mxq = (x2 + yl){x2 4- y2)

= Oo*i + yoyύ2 + (xoyι - xiyo)2.



432 STUART T. SMITH

(The second term might actually be x\ y0 — x0y\, depending on which expression
is nonnegative.)

Now modulo m0, we have

XoX\ 4- yoy\ = x\ + y\ = Omodm0 and

Xoyi —Xiyo = *iyi — *iyi = 0modm0.

Thus if we let α = ^ff 0 * and ft = ^ ^ ^ (or ^ ^ ° y i ) , we have mxq =
a2 + b2. Since mi < q we have a,b < q. But then mi contradicts the minimality of

m0. This contradiction shows that m 0 = 1.

In N, we have the additional equivalence for odd primes p that (^ J = 1 <<=$•

p ΞΞ 1 mod A, so Theorem 4.2 is usually expressed as p — x2 4- y2 for some

Λ:, y <£=£• p = 2 or p == I mod 4. As we remarked earlier, we do not know if

q = \modA = Φ ( v ) = 1 for odd primes r̂ in models of/Ei.

In order to deal with other values of n, we need the following identity from [1]:

Proposition 4.3 The following holds in any commutative ring:

(x2 + ny2)(z2 + nw2) = (xz + nyw)2 + n(xw - yz)2

=(xz - nyw)2 4- n(xw + yz)2.

We used this identity for n — 1 in the previous proof when we rewrote the product

(χ2o+y2o)(χ2 + yϊ)
Now we can extend Theorem 4.2 to the cases n = 2 and n = 3:

Theorem 4.4 LetM\= IEχ and letq e M be a prime φ 2, 3.

(i) q = χ2 + 2y2 for some x,y e M <=*• (γ\ = 1.

(ii) q = x2 4- Sy2 for some x,y eM <*=$• (γ\ = 1.

Proof: (i) We can adapt the proof of Theorem 4.2 here. We have

3
0 < x\ 4- 2y2 < -ml < m\,

so mi < m 0 as before.
(ii) Again the proof of Theorem 4.2 applies, but this time the inequalities for

x\ 4- 3y2 yield

0 < x2 4- Zy2 < -m2 4- -m2

0 = m2

0,4 4

implying mi < m0. Equality holds only if m 0 is even and X\ = yx — |mo We will
show that this cannot happen if mo is minimal.

Suppose mo is even. Since

moq =x% + 3 ^

and (XQ, y0) = 1 by the minimality of m0, we must have that x0 and y0 are both odd.
Therefore

mo# = 1 + 3 = 0 mod 4;
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since q is odd, we conclude that 4|m0, say m0 = 4m2. Thus

4m2q = x% + 3yl

Since x0 and y0 are both odd, there are two possible cases:
(a) Suppose x0 Ξ= y0 mod4. Then 4\x0 + 3y0 and 4\x0 - y0 (or 4\y0 - x0). By

Proposition 4.3 with « = 3, z = w = 1, we have

(*o + 3%2) 4 = (*o + 3y0)
2 + 3(x0 - )>o)2.

Therefore we conclude that

2 L Q 2 ^ Γ/^o-f-33^\2

 Q / Λ O - V \ 2 14m2ί = *o2 + 3yo

2 = 4 | j — J — J + 3 ( ^ — J J

and so we have
/Xo + 3 y o y , fχo-yo\

2

But then m2 contradicts the minimality of m0.
(b) If Xo = —y0 mod 4, then 4\x0 — 3y0 (or 4|3y0 — *o> depending on which one

is nonnegative) and 4\x0 + yo. This time we use the second formula in Proposition
4.3, i.e.

(*o + 3%2) 4 = (xo ~ 3)>o)2 + 3(x0 + Jo)2

and then continue as before.
We conclude that m0 must be odd, so 0 < x\ + 3yf < m^ and thus mi < m 0.

The rest of the proof now proceeds as in Theorem 4.2.

The previous argument indicates that we will not be able to extend these results
much past n = 3, because the proof that mi < m0 will break down. Note, however,
that the result for n = 4 is true:

Corollary 4.5 LetM \= IEγ and letq e M be an odd prime. Then q = x2 + 4y2

for some x,y e M 4=Φ- (-jp) = 1.

Proof: This is a corollary of Theorem 4.2; for if q = x2 + 4y2 then q is a sum of two
squares. Conversely, if the odd prime q is the sum of two squares x2 4- y2, then one of
x, y is even, say y = 2z. Thus # = x 2 + 4z2. Similarly, ί ^ J = 1 «=$• (~M = 1.

As for n = 5, it is well known that the corresponding result fails even in N. For
instance, if we let q = 7 then ( ^ ) = 1 since 32 = —5 mod 7, but 7 is not of the form
x2 + 5y2. The correct result for N is that a prime p has the form x2 4- 5y2 if and
only if /? == 1 or 9 mod 20. For a complete characterization of the primes of the form
x2 4- ny2 in H, where n > 0, see [1].

5 ΓΛe Equation x3 + y3 = z3 In [9] we showed that /£i proves that the equation
xn + yn = f1 has no nontrivial solutions for n = 4, 6, and 10. Thus Fermat's last
theorem is provable in IEX for certain even exponents. In this section we show that
the results in Section 3 enable us to prove that Fermat's last theorem for n = 3 is
provable in IE2. We do not know if this can be improved to IE\.

We adapt a proof by Browkin (which in turn is based on one by Carmichael)
which appears in [8].

The first result we need is the following:
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Lemma 5.1 LetM (= IE2 and suppose s,a,b e M are such that s is odd, (α, ft) =
1, and s3 = a2 + 3ft2. Γfte/i ίftere exist a, β e M of opposite parity such that
(α, 3/9) = 1 and

s = a2 + 3£2,

fl= | α 3 - 9 α £ 2 | ,

6 = |3α2y9-3y03 |.

Moreover, if a, β e M are arbitrary satisfying the conditions in the conclusion
and s, a, and b are defined as in the conclusion, then s is odd, (0, ft) = 1, and
s3 = a2 + 3b2.

Proof: We prove the second part first. Let M (= IE2 and let α, β e M be of opposite
parity such that (α, 3β) = 1. Define s, a, and ft as in the conclusion. Since a and
β have opposite parity, s = α 2 + 3β 2 must be odd. Also since the usual properties
of g.c.d.'s hold in IE2, in fact in ΪE\ (c.f. [9]), we have that (a, b) = (α(α 2 —
9yβ2), 3£(α2 - £ 2 )) = (α 2 - 9yβ2, α 2 - β2) because (α, 3)9) = 1, (α, α 2 - ^ 2 ) = 1,
and(3^,α 2 -9^ 2 ) = 1. N o w ( α 2 - £ 2 ) - ( α 2 - 9 £ 2 ) = Sβ2, 9(a2-β2)-(a2-9β2) =
8α2, so (a2 - 9β2

y a2 - β2) divides (8α2, Sβ2). But (8α2, 8y02) = 8(α2, β2) = 8
since (α, ̂ ) = 1; since α and β have opposite parity, α 2 — 9β2 and α 2 — β2 are odd,
so (α 2 - 9/32, a2 - β2) = 1. We conclude that (α, fc) = 1.

Finally, a straightforward substitution shows that s3 = a2 + 3b2 when s, a, and
b are as above.

Now we prove the main direction of the lemma. Suppose the set of counterex-
amples for s to the lemma is nonempty. The fact that s is such a counterexample can
be expressed as:

(3a<s3)(3b<s3)[s3 = a2 + 3b2Λ

(fl, b) = 1 Λ -«2|S]Λ

-«(3α < s)(3β < s)[s = a2 + 3β2A

(a = a3 - 9aβ2 va = 9aβ2 - a3)

A (b = 3α2y9 -3β3vb = 3β3 - 3a2β)

Λα φ βmod 2 A (a, 3β) = l ] .

This is an ̂ 2-definable set which we are assuming is nonempty; since IE2 is equivalent
to LE2i it has a least element which we also denote by s. Let α, b e M be such that
the first clause in the above formula is satisfied for this minimal choice of s.

Since s is odd, the smallest possible value it could have is 1, in which case
a — i, b — 0. But then a = 1, β = 0 contradict the assumption that s is a
counterexample. Thus s > 1.

It is easy to show in IE2 (in fact in /£Ί) that any s > 1 has a prime factor. For the
set of factors of s which are greater than 1 is E\ -definable and nonempty, therefore
it has a least element, which is then obviously prime. Let q be a prime factor of s.
Since s is odd, # is as well. Write s — qt.

We show that 3\s, thus in particular q > 3. If 3|,s then 31s3 = a2 4- 3fc2, and so
3|α. Then 91s3 and 9|α2, so 3|fc, contradicting the assumption that (0, ft) = 1. We
conclude that 3\s.

Since (α, 3ft) = 1 and s3 = a2 + 3ft2, then (sy a) = 1 and 0, 3ft) = 1. In
particular, (#, a) = 1 and (#, 3ft) = 1. Now α 2 + 3ft2 == Omodq, so 0 φ a2 =
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—3b2 modq. Therefore —3 is a quadratic residue for q. By Theorem 4.4 (ii),

q = a2 + 3β\

for some au βx e M. Clearly ax and βι have opposite parity and (ocu 3βx) = 1. By
the reverse direction ofthis lemma, which we have already proved, if c = \a3-9a1β

2\
and d = \3a2βx - 3/3f |, then (c, d) = 1 and q3 = c 2 4- 3d2.

For convenience, we continue the argument in R, the ring obtained from M by
adjoining negative elements. Thus we will not have to worry that all our expressions
are nonnegative. Also, since any or all of 0, b, c, or d can be replaced by their
negatives, we can drop the absolute value signs in the expressions for these elements.

We claim that ad — be and ad + be are not both divisible by q. For

(ad - bc)(ad + be) = (ad)2 - (be)2 = (a2 + 3b2)d2

-b2(c2 + 3d2) = t3q3d2 - b2q3 = qs(t3d2 - b2).

\iq\ad — be and q\ad + be, then q\2ad and q\2bc. Since q is odd, q\ad and q\bc.
But (q, a) = (q, b) = 1, so q\d and q\c. This contradicts the fact that (c, d) = 1.

Thus one of ad - be or ad + be is not divisible by q. But

(ad - bc)(ad + be) = q3(t3d2 - b2).

Therefore if q\ad — be then q3\ad -h be, and if q\ad + be then q3\ad — be. Now

ί V = s3q3 = (a2 + 3b2)(e2 + 3d2).

By Proposition 4.3,

ί V = (ac ± 3bd)2 + 3(ad T be)2.

Choose the signs so that the expression in the second set of parentheses is divisible
by q3. Then the expression in the first set of parentheses is also divisible by q3, so
for the appropriate choice of signs we have

ac ± 3bd
u = r — e R

q3

ad^-bc
and v — — e R.

q3

It then follows that
ί3 = M

2 + 3ιA

We claim that (w, υ) = 1. For uc + 3υd = ac^3ad2 = a, ud - υc =

±<3MW) = ± b a n d ^ 6 ) = L Therefor (M> „) = 1 as well.

Now s — qt so t < s. Since t3 = u2 + 3υ2 with (w, t>) = 1, the fact that s is the
minimal counterexample to the lemma implies that there exist α 2, ^2 Ξ M such that
α 2 # yβ2 mod 2, (α2, 3>02) = 15 and (replacing α 2, yβ2 by their negatives if necessary):

t = a2 + 3y02,

u = a\- 9a2β
2,

v = 3 α 2 ^ 2 - 3yβ2

3.
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We now combine our representations for t and q to derive a contradiction to the
assumption that s is a counterexample to the lemma. Let

a = 0Lχa2 + 3 ^ 2 ,

β =Oί2β! - β2θtχ.

Since otχ φ β\ mod 2 and a2 Φ β2 mod 2, we have a φ β mod 2. We have

s = q t = (a2 + Sβ\)(μl + 3β2) = a2 + 3£2

by Proposition 4.3. Also the proof that (M, υ) = 1 provides formulas for a and b:

a = uc + Zυd = (a3 - 9α 2 β 2 )(α 3 - Qotφ2)

+ 3(3a2β2 ~ Zβ\)^a\βι - 3/9f)

= < * 3 - 9 α £ 2 ,

±2? = M<J - vc = (α3, - 9α 2£ 2)(3α 2£i - 3yβ3)

- (3<*2& - 3β3)(a3 - torf)
= 3a2β - 3β3.

Since a\a and β\b and since (α, fe) = 1, we must have (α, )β) = 1. Replacing a, β
by |α | , |)β| respectively, we arrive at a contradiction to the assumption that s is a
counterexample to the lemma. This completes the proof.

Now we can prove Fermat's last theorem for exponent 3 in IE2.

Theorem 5.2 IE2 h VxVyVz(x3 + y3 = z3 -> (x = 0 v y = 0)).

Proof: Let M (= 7£2 and suppose Λf contains a nontiivial solution to the equation
x3 + y3 = ^3. Consider the set of elements m e M satisfying

m > 0 A3X < m3y < m3z < m(m = xyz A x3 + y3 = z3).

We are assuming this Et -definable set to be nonempty, therefore it has a least element
m. Let*, y, z e Λfbesuchthatm = xyzwidx3+y3 = z3. Clearly(JC, y) = (JC, Z) =
(y, z) = l, for any common divisor of two of them would also divide the third and
enable us to produce a smaller solution.

As in the previous lemma, we find it more convenient to continue the argument
in the ring R obtained from M by adjoining negative elements. Replacing z by -z in
R yields the equation x3 + y3 + z3 = 0, which is symmetric in JC, y, and z. Clearly at
least one of x, y, z is even, and since they are pairwise relatively prime we conclude
that exactly one of them is even. The aforementioned symmetry enables us to assume
that z is even and that x and y are odd. Rewrite the equation as x3 + y3 = z3, where
now JC, y, z e R, all are nonzero, z is even, and x, y are odd.

Thus x + y and c — y are even, say x + y = 2M and x — y = 2w. Therefore
x = u +w, y = u — w. Since (x, y) = 1 we conclude that (M, W) — 1. Also x and
y are both odd, so u φ w mod 2. Substituting the above expressions for x and y in
the equation JC3 + y 3 = z3 yields (w + w)3 + (w - w)3 = z3, or 2M (M2 + 3ω2) = z3.
We consider two cases, depending on whether or not 3 divides u.

(a) Suppose 3{M, SO (3, w) = 1. Then (M, M2 + 3w2) = 1, and since uφw mod 2
we have that M2 -I- 3w2 is odd. Therefore (2M, M2 + 3w2) = 1. But

2M(M2 + 3W 2 ) = Z 3,
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so 2M = t3 and u2 + 3w2 = s3 for some s,t e R. (This fact is provable in IEύ cf.
[9].) Since u2 + 3w2 is odd, so is s. By Lemma 5.1, there exist a, β e R such that
u = α 3 - 9αβ2, α ψ£ /3 morf 2, and (α, 3/9) = 1. Then

t3 = 2u = 2α(α - 3β)(a + 3/8).

Now α - 3)0 and α + 3)0 are odd and (α, 3)0) = 1, so the three elements 2α, a - 3)0,
and α + 3)0 are pairwise relatively prime. Therefore there exist σ, τ, and pinR such
that 2α = σ 3 , a -3β = τ 3 , and α + 3)0 = p 3 , and where t = στρ. But then

σ 3 = τ 3 + p 3

is a solution to the equation ofthe theorem, where \στp\3 = | ί 3 | = |2w| = |JC + y| <
\xyz\3, contradicting the minimality of \xyz\.

Actually we must justify this by showing that \στp\ > 0. But \στp\ = \x + y\'9
if\x + y\=0 then x = -y, in which case z = 0 which contradicts our assumptions
onx, y, z.

(b) Suppose 3|w, say u = 3υ. Substituting for M in the equation 2u(u2 + 3tt>2) =
z3, we have

6υ(9υ2 + 3w2) = z3 , or

18υ(3ι;2 + w2) = z3.

Now u φ wmod2 so v φ wmod2. Therefore 3υ2 + w2 is odd. Also (u,w) =
(3υ, w) = 1, so we conclude that (18υ, 3υ2+w;2) = 1. Thuslδi; = ί 3 and3υ 2 +iί; 2 =
s3 for some syt e R. Now s is odd because υ and w have opposite parity. Also
(υ, w) = l, so by Lemma 5.1 there exist a, β e R such that it; = a3 - 9aβ2,
v = Za2β - 3/93, aφβ mod 2, and (α, 3)0) = 1. Since 18υ = ί3, we have

18(3)0)(α2-)02) = ί3, or

27 2)0(α+)0)(α-)0) = ί3.

Now a+β and α—)0 are both odd and (oc, β) = 1, so 2)0, α+)β, and α—)0 are pairwise
relatively prime. Therefore there exist σ, τ, and p in I? such that 2β = σ 3, α+)0 = τ 3 ,
and a — β — ρ3, and where ί = 3arp. But then

σ 3 = r 3

 + /o
3

is a solution to the equation of the theorem, where |3στp| 3 = | ί 3 | = |l8υ| = |6w| =
3|JC + y\ < 3|jcyz|3. In particular, |στp | < \xyz\, and |στp | > 0 as in case (a). We
have thus contradicted the minimality of |xyz|.

6 Open questions

Question 5.1 Does IEX prove that if q = 1 mod 4 is prime then ί γ j = 1? Is this

provable i n / Δ o ?
Question 5.2 Is the converse to Theorem 3.11 provable in IE\ or in 7Δ 0 ? Can
anything be said about the case when p and q are both nonstandard?
Question 5.3 Does IEX (or JΔ 0 ) prove that if m = 5mod 8 then - 1 has no fourth
root modulo m? More generally, if m = 2r s with s odd and r finite, then —1 has
no 2r-th root modulo ml
Question 5.4 What can be said about primes of the form x2 + ny2 for n > 4 in
IEXΊ

Question 5.5 Can Fermat's last theorem for exponent 3 be proved in IEγΊ
Question 5.6 Does IE2 prove other cases of Fermat's last theorem for odd expo-
nents?
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