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Some Admissible Rules in
Nonnormal Modal Systems

ΉMOTHY WILLIAMSON

Abstract Epistemic logics for subjects of bounded rationality are in effect non-
normal modal logics. Admissible rules are of interest in such logics. However, the
usual methods for establishing admissibility employ Kripke models and are there-
fore inappropriate for nonnormal logics. This paper extends syntactic methods for
a variety of rules (e.g. the rule of disjunction) and nonnormal logics. In doing so it
answers a question asked by Chellas and Segerberg.

1 Introduction The admissibility of aruleby a logic depends only on the logic's set
of theorems. It does not depend on a choice of semantics or proof system (for which
reason the phrase "rule of proof" is not ideal; but see Humberstone [4]). However, the
usual methods of proving the admissibility of a rule in modal logic are semantic; they
use standard "possible worlds" model theory. This semantic treatment is applicable
only to normal model systems (see below). Thus the usual methods do not allow one
to prove the admissibility of a rule in a nonnormal modal system. The aim of this
paper is to extend the use of syntactic methods for proving admissibility, methods
applicable to both normal and nonnormal systems.

An important example is the rule of disjunction. A system S provides (admits)
this rule just in case for all formulas Ai , . . . , An\

if \-s DAi V . . . V UAn

then \~s At for some i (1 < i < ή).

Lemmon and Scott established the rule of disjunction for a variety of modal systems
by a model-theoretic technique that is now standard (Lemmon and Scott [9] pp. 44-46
and 79-81; Chellas [1] pp. 181-182; Hughes and Cresswell [3] pp. 96-100; see also
Kripke [5], Lemmon [8], McKinsey and Tarski [10] and Segerberg [13]). Powerful
though such techniques are, they are restricted to systems amenable to the model
theory in question. Thus if a modal logic is nonnormal, because it lacks the rule
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of necessitation RN (if I- A then h DA) or the K axiom schema (D(A ->• B) ->
(DA -» DB)), it cannot be shown in the standard way to admit the rule of disjunction.
Such a limitation is serious for two reasons.

(a) If the admissibility of a rule is preserved when a normal system is weakened
to a nonnormal one by the dropping of necessitation or the K schema (as is often the
case), a model-theoretic technique obscures the generality of the phenomenon.

(b) The formalism of modal logic is often applied to epistemic or doxastic issues,
with D read as "it is known that" or "it is believed that." Normality is then equivalent to
the closure of knowledge or belief under logical consequence: unbounded rationality.
If one wishes to avoid this idealization, one will use a nonnormal logic. Even if one
makes the idealization about individual subjects, but reads D as "someone knows that"
or "someone believes that," one may reject the schema (DA Λ ΠB) -> D(A Λ B) on
the grounds that the perfect logicians who know or believe that A may not include
any of the perfect logicians who know or believe that B, and normality is again lost.
Yet one would still like to know what rules are admissible in the nonnormal epistemic
or doxastic logic.

Standard "possible worlds" model theory can be generalized for systems without
the rule of necessitation by the introduction of nonnormal worlds at which everything
is possible. As abyproduct, Kripke showed that the nonnormal logics S2 and S3 admit
the rule: if h DA v D£, then either h DA or h ΠB (Kripke [6], p. 220). However,
this semantics still enforces the K schema and the rule RM that if h- A -> B then
h DA -> ΏB. A much wider generalization is to neighbourhood semantics or
minimal models, but this still enforces the rule RE that if h A = B then h D A == ΠB
([1] pp. 207-210; by definition, the classical logics of [13] admit RE). Similar remarks
apply to the use of algebraic semantics (for a recent example of its application to
problems of admissibility in modal logic see Rybakov [12]). Even this form of
deductive closure is too strong for many epistemic and doxastic applications. It is
avoided in the impossible worlds semantics of Rantala [11], but there the K schema
is valid; yet real knowledge or belief cannot be assumed to be closed under modus
ponens.

The proper response to the problem is not to seek further generalizations of the
semantics, not least because anything general enough may be too trivial to be of use
in establishing the admissibility of rules. It is more natural to develop a nonsemantic
approach.

2 Framework The language is standard, with a countably infinite class of propo-
sitional variables p0, pu P2> the only primitive operators are the 0-place _L (fal-
sity), the 1-place D and the 2-place -> (material conditional). Other operators are
treated as metalinguistic abbreviations, e.g. - Ά for A -> _L, T for -»J_, 0A for
-iD-«A. D°A = A; D ι + 1 A = D'DA. "A", " £ " , "C", . . . are metalinguistic
variables over all wff; "p", "q" and "r" are metalinguistic variables over propo-
sitional variables. A function σ from wff to wff is a substitution iff σ_L = _L,
σDA = DσA and σ(A -> B) = σA -* σB for all A and B. If X is a set
of wff, σX = {σA : A e X}. The modal degree # A of A is defined as usual:
#p = #_L = o; #(A -> B) = max{φA, # £ } ; #DA = # A + 1.

A theory is a set of wff containing all classical truth-functional tautologies and
closed under modus ponens (MP). A logic is a theory closed under the rule of uniform
substitution (US). A subtheory (sublogic) of a theory is a subset of it that is a theory
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(logic). PC, the set of all classical truth-functional tautologies, is the smallest theory
and the smallest logic. If S is a theory, \-s A just in case A € 5. If X is a set of wff,
X \~s A just in case \~s B -» A for some conjunction B of members of X, A logic is
normal just in case it contains schema K and is closed under the rule of necessitation.
The closure of a logic £ under a set of inference rules is the intersection of all logics
containing £ that admit those rules.

A rule is treated as a sequent X Ih Y, where X and Y are sets of wff (written
without {and}).

Definition 2.1 5 admits the rule X Ih Y just in case for every substitution σ, if
\~s σA for all A e X then hs σB for some B e Y.

Thus the rule of necessitation RN is treated as a sequent p Ih Up, the rule RE as
p == q Ih Dp = Dq9 and Lemmon and Scott's rule of disjunction (for fixed ή) as the
sequent

Πpt V... v D ^ l h /?i,..., pn.

A special class of rules is of particular importance:

Definition2.2 X Ih YisaD-mίrodMcίίtfnra/ejustincaseforsomewff G i , . . . , G*
and # , 7 = {(Λ/<* π G i ) -> D*} and X h-PC (Λ, <* Gi) -> #> where X, G, and
# are nonmodal (i.e., # A = 0 for A € X U {Gi , . . . , Gk, H}).

The special case k = 0 is allowed, where the rule is in effect X Ih ΏH, and
X h-pc H. Some D-introduction rules are:

RN p Ih D/>

RM p ^ q \h Up -> Πq

RR (/? Λ q) -> r Ih (D/? Λ D#) -> Dr

RE p = q\\-Ώp ^>>Ώq

Note that a theory admits p == q \\- Dp -> D^ just in case it admits p == q \\- Dp =
D#. The rule of disjunction is obviously not a D-introduction rule, even for n = 1;
nor are p v q Ih Up v D# and -•/> Ih -«D/?, for their conclusions are of the wrong
form.

The case X — {} is also allowed, where h P C (Λ/<A: Φ ) -> H. D-introduction
rules of this special kind will prove important, and deserve a special name:

Definition 2.3 X Ih Y is an axiomatic Π-introduction rule just in case it is a D-
introduction rule and X = {}.

Some axiomatic D-introduction rules are:

IhDT

Ih (D(/7 -> tf) Λ D/?) -> D^

Ih (D/7 Λ Dq) -> D(/? Λ q)

Ih DQ? Λ ^) -» D^

Ih D(^ Λ^) -> Dζ?

Ih D/7 is not an axiomatic D-introduction rule, since not h-pc p.

Proposition 2.4 A logic £ is normal just in case £ admits all Π-introduction rules.
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Proof: If £ admits all D-introduction rules, it admits RN and the rule If- (Π(p -»
q) A Dp) -> Πq, so every instance of the K schema is a theorem; thus £ is nor-
mal. Conversely, let £ be normal, X Ih (Λ*<* D ( ^ ) -* π # a D-introduction rule,
and σ a substitution. Suppose that h^ σA for all A e X. By definition of a
D-introduction rule, X h-Pc (Λi<jt^') ""* ^> s o σ ^ ^~PC σ((Ai<k^i) ~^ H)-
Hence f-χ cr((Λϊ<fc^) "^ #)> i e he ( Λ i < * σ ^ i ) -* σ # Since £ is normal,
h/: (Λj ^ΠσG,-) -> D σ # , i.e. h-χ σ((/\, <ΐΠGί) -* • # ) . Thus £ admits the
rule.

3 Cancellation rules The aim is to find ways of establishing the admissibility of
rules generalizable to theories in which not all D-introduction rules are admissible.
Chellas gives an example of the kind of proof we are after ([1] pp. 124-125), in
showing that the weakest normal logic K admits the rule

Dp -> Πq Ih p -> q.

In other words, for any wff A and B, if KK DA -* ΏB then h-χ A -> B (on an
epistemic reading, this rule has a constructivist flavor: if knowledge of A entails
knowledge of B then A entails B). Chellas uses a mapping r from wff to wff, defined
as follows:

τpi = Pi

τl = _L

τ(A-> B) = τA -> τ β

rDA = A

Consider an axiomatization of K with all truth-functional tautologies and all wff of
the form D(A - > £ ) - > (DA -* DB) as the only axioms and MP and RN as the
only primitive rules of inference (note that US is a derived rule). One can show by
induction on n that if 1-κ A with a proof of n lines then h κ r A, as follows. If A
is a truth-functional tautology, so is τA, for τ commutes with all truth-functional
operators. r(D(A -> B) -> (DA -• DB)) = (A -> £) -> (A -> B), a truth-
functional tautology. Thus τ maps axioms to axioms. Now assume the induction
hypothesis for all proofs of less than n lines, and that h-κ A with a proof of n lines.
If A is an axiom we are done. If A was derived by MP, then, for some B, h κ B and
l~κ B -> A with proofs of less than n lines; by induction hypothesis, h κ τ β and
h κ r ( £ -• A), i.e. h κ rB -> τA; by MP, h κ r A. If A was derived by RN, then
A = ΠB for some B such that h κ B; but τA = τΠB = £ . This completes the
induction. For any wff A, if l-κ A then h κ τ A; in brief, K is closed under τ . Thus
if 1-κ DA -* DB then h κ τ(DA -> DB); but τ(DA -> DB) = A -> β. Hence K
admits the rule Dp -> Πq \\- p -> q.

The aim of this section is to make a detailed case study of the mapping τ and its
use in proving results of this kind. Later sections study other mappings. Two kinds
of generalization of the result just proved are possible. We can generalize on the rule
Dp -> Πq Ih p -> <?, and we can generalize on the system K. We begin with the
former.
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The closure of K under τ implies that K also admits all of the following rules:

Dp -> Oq IH p -* q

Op -> Ώq IH p -» q

Op -> Oq IH p -> <?

D/? == Dtf IH /? == #

Πp = 0q\V p = q

§p = 0q\\- p = q

Πp\\- p

Op\\-P

The same proof technique works, for τφA = τ - D-iA = -i-»A, and it does not
matter what truth-functional operator takes the place of ->. Thus a general class of
rules needs to be studied.

Definition 3.1 σD is the substitution such that σπp = Dp for every propositional
variable p.

Definition 3.2 X IH Y is a cancellation rule just in case X = {σD A} and Y = {A}
for some nonmodal wff A (#A = 0).

Thus the following are cancellation rules: Dp -> Dq IH p -> #; D/? = D# IH
p = q, and Dp IH p. Dp -> 0# IH /? -> q, for example, is not a cancellation rule,
but is admitted by a theory whenever the cancellation rule Dp -> -<D# IH /? -^ - ^
is.

Proposition 3.3 If a theory is closed under τ then it admits all cancellation rules.

Proof: Let 5 be a theory closed under r , σDA IH A a cancellation rule and σ a
substitution. What needs to be shown is that if \~s σσπA then hs σA. Suppose
\-s σσπ A. By hypothesis, \~s τσσπA. Thus it suffices to show by induction on the
complexity of A that τσσ D A = σA. Now τσσDp = xσDp = τDσp = σp and
τσσπ± = _L = σ_L If τσσπB = σB and τσσDC = σC then τσσD(B -> C) =
τσσuB -> τσσ D C = σi? -• σC = σ(B -> C). This completes the induction; the
case of DZ? does not arise, for #A = 0 by definition of a cancellation rule.

We shall be concerned with proofs that a system admits all cancellation rules.
Proposition 3.5 shows that not every such result can be proved as for K, by means
of τ. Proposition 3.4 is a lemma of general use, formulated relative to a particular
choice of truth-functional primitives in the language.

Proposition 3.4 If θ is a mapping from wff to wff such that θ± = _L andy for all wff
B and C, Θ(B -> C) = ΘB -> ΘC, then PC is closed under θ.

Proof: If H-pc B then B = σ A for some substitution σ and some wff A such that
# A = 0 and hpc A. Define σ# as the substitution such that σePi = θσpt for all i.
One can then show that σ# A = 0σ A by induction on the complexity of A. Since PC
is closed under US, hpc σθ A, i.e. h P C θσ A, i.e. hpC 0 # .

Proposition 3.5 iNfoί every normal logic that admits all cancellation rules is closed
under τ.
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Proof: Let £ be the smallest normal logic containing p = ΠΠp. £ admits all
cancellation rules but is not closed under r. A semantic proof of this uses standard
correspondence theory: £ is the logic of a two-point frame in which each point is
accessible from the other but not from itself, but r (p == ΠΠp) = p = Πp, which is
not valid on that frame. However, in the spirit of this paper a syntactic proof of the
same result will be sketched. One first shows that he Π(p -> q) == (Πp -> Ώq)
and he D± = _L Then let σ π A Ih A be a cancellation rule and σ a substitution. By
induction on the complexity of A, h-χ σaA = DA; hence f-χ ΠσσΏ A = σA. Thus
if h-£ σσ D A, by RN f-£ DσσD A, so h-£ σA. Thus £ admits the cancellation rule
σD A If- A. To show that £ is not closed under τ , let σπ be the substitution such that
σ7ΐp2i = P21+1 and σjr/721+i = /?2* for all ί, and define a mapping π on wff by:

^7?* = P2i

π± = ±
τr(A-> 5) = πA^ πB

TtΠA = σ^-πA

Axiomatize £ with all theorems of PC and wff of the forms D(A -> Z?) -» (DA ->
DZ?) and A = DD A as axioms and MP and RN as the only rules of inference. By
induction on the length of proofs (using 3.4), if \-& A then h-pc π A (the converse also
holds, but need not be proved). Finally, if £ is closed under τ , 1-χ τ(p0 = ΠΠpo),
i.e. hjc po = D^o, so hpc TΓ(/?O Ξ Π/?o)> i.e. f-pc ^0 = ^1, which is absurd.

In spite of 3.5, there is a close connection between the mapping τ and the
admissibility of cancellation rules. A logic £ can admit all cancellation rules "because
it is weak," in the sense that every sublogic of £ (i.e. every logic all of whose theorems
are theorems of £ ) also admits all cancellation rules. This property of £ turns out to
be equivalent to the property that τ maps every theorem of £ to a theorem of PC. A
strongest logic with this "weakness property" will be identified. Normal logics, such
as K, lack this weakness property, for DDT is a theorem of K while τDDT = DT is
not atheorem of PC; correspondingly, the weakest logic containing DDT is included
in K but does not admit the cancellation rule Πp Ih p. However, it will be shown that
if £ has the weakness property, then the closure of £ under any set of D-introduction
rules is closed under r and therefore admits all cancellation rules. K and a number
of other normal logics are the closures of logics with the weakness property under
the set of all D-introduction rules. In this way we can achieve a wide generalization
of the result about K.

Some preliminary lemmas are needed for the proof of the results just mentioned.
In particular, it helps to consider wff without propositional variables, for if A is any
such wff, A is the premise and τ A the conclusion of an instance of a cancellation rule
(see 3.9). Wff with propositional variables do not in general have this feature: for
example, the proof of 3.5 shows that no cancellation rule has an instance of which
p = ΠΠp is the premise and τ(p = ΠΠp) = (p Ξ= Πp) the conclusion. 3.8 (for
which 3.6 and 3.7 are preliminaries) shows that if τ maps a theorem of some logic to
a nontheorem of PC, then it maps atheorem of that logic containing no propositional
variables to a nontheorem of PC.

For k > 0, let σk be the substitution such that for all /, σkpt = •C+1X*+2)_L.
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Define a mapping μk by:

μ-kPi = Pi

μ*± = ±
μ*(A -> £) = μkA -> μ*£

μ*DA = /?,- if A = DΛ_L where Λ + 1 < (i + ί)(k + 2) < Λ + 2

= DμfrA otherwise.

We must check that μk is well defined: if ft + 1 < (i + l)(ik + 2) < ft + 2 and
ft + 1 < 0" + l)(k + 2) < ft + 2 then / = . Otherwise (i + l)(k + 2) and
(J + 1 ) (it + 2) differ by at most 1 since they are both multiples of k + 2, they differ
by at least 2 if they differ at all; thus (ί + l)(]fc + 2) = ( + l)(Jfc + 2), so i = .

Proposition 3.6 If#A < k then μ^σ^A = A.

Proof: By induction on the complexity of A.

Basis. μkσjcPi = μ*IH^+ 1**+ 2*!. = />,-. The cases of _L and -> are standard.
Induction step forΠ. The induction hypothesis is that μ^k A = Aand#DA < k.

Suppose for a contradiction that σ* A = D Λ ± where ft + 1 < (ί + l)(fc + 2) < ft + 2.
If A contained ->, σ^A would contain ->, which is impossible, since ΏhL does not.
Thus for some m,n, either A = DmJ_or A = Umpn. In the former case, σ# A = Dm_L
In the latter, σk A = π ( w + 1 ) ^ + 2 ) + m ± . Henceft = morft = (n + l)(A: + 2)+/n. Since
A + 1 < (i + l)(it + 2) < ft + 2, either m + 1 orm + 2 is amultiple of fe + 2; since
m + 1 ^ 0 a n d m + 2 ^ 0 , A: + 2 < m + 2, s o i ^ < m + l = #DA. But #DA < k
by induction hypothesis, so the supposition cannot arise. Thus by definition of μ*,
μkσjcΠA = μicΠσkA = Πμkσjc A = DA by induction hypothesis.

Proposition 3.7 # # A < Jt + 1 then μkτσkA = τA.

Proof: By induction on the complexity of A.

Bαro. μkτσkPi = ^τD<<+1><*+2>± = ftD»+1»»+a)-1l = pt = τPi. The
cases of ± and -> are standard.

Induction step for D. The induction hypothesis is that μ r̂σA A = τA and
#DA < k + 1, so # A < A:. By 3.6, μkxσkUA = μkτUσkA = μjtσA A = A = τDA.

Proposition 3.8 If hpc τ σ β /or every substitution σ such that σB contains no
propositional variables, then hpc τB.

Proof: Let # 5 = k. By definition of α*, σ^B contains no propositional variables.
If hpc τσfcZ? then hpc μkτ&kB by 3.4, so hpc xB by 3.7.

Proposition 3.9 IfB contains no propositional variables, then there is a wffA such
that # A = 0 and a substitution σ such that σσΏ A = B andσA = τB.

Proof: Let "C" be the Godel number of the wff C on some standard enumeration
such that every natural number is the number of some wff. Let σ"" be the substitution
such that σ ""/?«c" = C for every wff C. Define a mapping λ as follows:

λpi = pi

λ± = ±
λ(C -+ D)=λC -* λD

λΠC = p«c">
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Evidently # λ C = 0 for any wff C. We now show by induction on the complexity of
B that if B contains no propositional variables then σ""σ D λ£ = B and σ""λθ =
τB. The only interesting case is the induction step for D, where σ""σπλΠB =
σ""σπp«B" = σ""D/?«zr = Dσ'">B» = ΠB andσ""λD£ = σ ' " > / r = B =
τΏB (without use of the induction hypothesis). Put A = λB and σ = σ "".

Proposition 3.10 Either #A = # τ A = 0 or #A = 1 + # τ A.

Proof: By induction on the complexity of A.

Proposition 3.11 If every sublogic of the logic £ admits all cancellation rules, then
hjc A implies h P c τA.

Proo/ Suppose that every sublogic of £ admits all cancellation rules. It suffices
to show that if A contains no propositional variables then h& A implies h P C τA.
For if hx B then f-χ σB by US for every substitution σ such that σB contains no
propositional variables, so it will follow that h P C τσB, so h P C τB by 3.8. We show
that if A contains no propositional variables then \-£ A implies h P C τ A by induction
o n # A .

Basis. Suppose that h/: A and # A = 0. Thus τA = A. Unless h P C A, & is
inconsistent (by US; A is nonmodal). If £ is inconsistent, K4 is a sublogic of £, and
does not admit all cancellation rules (e.g. Up -> Ώq Ih p -• q). Thus h P c A, i.e.
h> c τA.

Induction step. Suppose that # A = n + 1 , A contains no propositional variables
and hx A, and that for all B if #B < n and B contains no propositional variables
then he, B implies h P C τ θ . Put £* = {β : h P C (τA -^ A) -> B}. We first
show that £ * is a logic. It evidently contains all truth-functional tautologies and
is closed under MP. Thus we need only check that £ * is closed under US. Let
σ be any substitution. Suppose that h £ * B. Thus f-PC (τA -• A) -> B, so
H>c σ((τA -> A) -> B), i.e. h P C σ(τA -> A) -> σB. Since τA -> A contains
no propositional variables, σ(τA -+ A) = τA -+ A. Thus h P c (τA -> A) -> σB,
so h^* σ β . Thus £ * is a logic. Moreover, £ * is a sublogic of £ . For suppose
h^* B, so h P c (τ A -> A) -> θ , so h ^ (τ A -> A) -> β; but h^ A by assumption,
so h-£ τA -> A; thus h^ β. We can now show that h P c τA, as required to
complete the induction step. Since £ * is a sublogic of £ , by assumption it admits
all cancellation rules. By 3.9, there is a cancellation rule with an instance of which
τA -> A is the premise and τ(τA -> A) = ττA -> τA is the conclusion. Now
h P c (τA -> A) -> (τA -> A), so h^* τA -> A; since /C* admits the cancellation
rule, l-£* ττA -> τA, i.e.,

(1) h P C (τA -> A) -> (ττA -> τA).

Since >C is a sublogic of itself, by assumption it admits all cancellation rules. By 3.9
again, there is a cancellation rule with an instance of which A is the premise and τ A
is the conclusion. Since hx A, h-£ τA. But #A = n + 1, so by 3.10 # τ A = n.
Thus the induction hypothesis can be applied to τ A, yielding:

(2) h P C ττA.

By (1) and (2):

(3) h P C (τA -> A) -> τA.



386 ΉMOTHY WILLIAMSON

From (3) by truth-functional logic (Peirce's Law):

(4) h> c τA.

This completes the induction.

Proposition 3.12 If 1-χ A implies hpc r A for all A, then every sublogic ofίi admits
all cancellation rules.

Proof: By 3.3, since PC is a sublogic of £ .

3.11 and 3.12 imply that there is a largest logic £ 0 such that all its sublogics admit
all cancellation rules, for we can put &o = {A : hpc τσ A for every substitution σ}.
It is easy to see that £ 0 is a logic; by 3.12 every sublogic of £ 0 admits all cancellation
rules; by 3.11 every logic £ of which every sublogic admits all cancellation rules is
a sublogic of £ 0 (since £ must be closed under US). Note that £ 0 is not the same
as {A : hpc rA}. For example, τ(p -> Dp) = p -^ p is a theorem of PC, but
p -> Dp is not atheorem of £o, for it has the substitution instance Dp -> DDp, and
τ(Dp -* DDp) = p -• Dp is not a theorem of PC. The next task is to identify /Co-
Definition 3.13 If Ai , . . . , An are some wff, K~Aχ... Aw is the smallest logic con-
taining Au..., An and closed under all axiomatic D-introduction rules.

Proposition 3.14 K~A i . . . An is axiomatizable with MP as the only rule of inference
and the following axioms: B and DB for all B such that hpc B; (D(B -> C) Λ
DB) -> DC for all B, C; all substitution instances of Au ..., An.

Proof: The axiomatized system is clearly a logic; call it £ . £ is a sublogic of
K~Ai ...An, for if hpc B (#B — 0), Ih DB is an axiomatic D-introduction rule,
and Ih (DQ? -> q) A Dp) -> Dq is another such rule. To show that K~Aι... An is a
sublogic of £ , it suffices to show that £ admits every axiomatic D-introduction rule
Ih (f\i<kDGi) -> DH, i.e. \-& (/\i<kDσGi) -> ΏσH for every substitution σ.
Since hpc (Λ/<A: ^«) -^ ^ by definition of an axiomatic D-introduction rule, hpc
(/\i<kσGi) ->°H. Thus \-L D((/\^kσGi) -• σ//), so \-L D{/\iskσGi) ->
Dσi/ by the K axiom. Thus it suffices to show \-& (Dp A Dq) -> D(p A q), for then
h e (/\i<JcDσGi) -> •(Λi<jtGrG, ). Buth^ D(/? -> (q -> (p Aq)) and the result
follows by the K axiom again.

For example, Lemmon's system 0.5 is K~T, where T is the wff Dp -> p (Lem-
mon [7]). Note that K~Ai... An is not in general a normal logic (e.g. K~ does not
contain the theorem DDT).

D and Altl are the wff D-*p -> -«D/? and ->Dp -> D-^p respectively. It will
be shown that £o, the largest logic of which every sublogic admits all cancellation
rules, is K~DAltl. The crucial property of K~DAltl is that D commutes in it with
all truth-functional operators (see 3.16); KΓDAltl is in fact the smallest logic with
this property. Given 3.11, it suffices to show that for every logic £, he A implies
hpc x A for all A if and only if £ is a sublogic of K~DAltl. The next propositions
are preliminaries to this result.

Define two auxiliary mappings a and β on wff by:

apt = Pi βPi = Pi
αJL = 1 β± = _L

α(A -• B) = ccA -> OLB β(A -> B) = βA-+ βB
aDpi = pi βDA = DDA
αD A = DotA if A = pi for no i.
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Proposition 3.15 aσD A = A.

Proof: By induction on the complexity of A.
Basis. aσΏPi = ocUpi = pi. The cases of X and -> are standard.
Induction step for D. Suppose that aσΏA = A. Now σuA — pt for no i, by

definition of σD, so aσDΠA = aΠσΏA = Uaσπ A = DA by induction hypothesis.

Proposition 3.16 hκ~DAiti i- = Π-L; ^K~DAUI Π(p -> q) = (Dp -• Πq).

Proof: For the former, note that Ih D--J_ is an axiomatic D-introduction rule, so
l~κ~DAiti D - X, and ί~κ~DAiti D - X -> - Έ X by D. For the latter, left to right:
Ih (Π(p -+ q) Λ Dp) -> Dq is an axiomatic D-introduction rule. Right to left: note
that Ih Πq -> D(/? -> #) and Ih D-*/? -» D(/? -> #) are axiomatic D-introduction
rules and h-κ~DAiti -Ό/? -> •"•/* by Altl.

Proposition 3.17 /ΌΓ α// A, hκ-τ>Aiti α^rσ D A == A.

Proof: By induction on the complexity of A.
Basis. aβτσπpi = aβτΠpi = aβpi = apt = pif so h-κ~DAiti ocβτσπpi = pt.

aβτσD± = X, so hκ-DAiti ocβτσπ± = X.
The induction step for -> is standard. For D, there are four cases.

Case 1: D/>, : aβτσπΠpi = aβτΏσΏpi = aβσΏPi = α ^ D ^ = α D D ^ =
D α D ^ = Dp, . Thus hKτ>Aiti aβτσnUpi = D/?z .

C α ^ 2; DX: α£rσ D DX = αy9τDX = αyβX = X. The result follows by 3.16.

Case 3: ΠDB: aβτσπΠΠB = aβτUΏσπB = α/3DσD5 = aUΏσΏB = DαD,
σ D β = UUaσΏB (since σD jβ = /?,- is impossible) = ΏΏB by 3.15.

Case 4: Π(B -> C): Since DB and DC are less complex (shorter) than Ώ(B -> C),
i~KT)Aiti αyβτσπDB == ΠB and KK~DAUI aβτσπΠC == DC by induction hypothesis.
Now α^τσ D D(5 -> C) = α^rDσ D (β -> C) = aβσπ(B -> C) = α ^ σ D β ->
α^σ D C = aβτQσπB -> α^τDσ D C = αβτσ D Dβ -> α^τσ D DC. Hence hκ~DAiti
α β r σ D D ( β -> C) = (Dfi -^ DC) by hypothesis. Thus hκ~DAiti α^τσDα(i9 ->
C ) s D ( B - > C) by 3.16.

Proposition 3.18 If & is a logic such that h^ A implies hp C τA/or oil A, ίften /L
w fl sublogic of KT>A\tl.

Proof: Suppose that h ^ A implies hpc τA for all A, and l-£ B. Since C is a
logic, hjc σuB. By hypothesis, h P C τ σ G β . By 3.4, h P C aβτσuB. By 3.17,
hrDAiti aβτσπB = B. Hence hκ~DAiti ^

Proposition 3.19 If h-κ-DAiti B ίΛeπ ^~PC τB.

Proof: Axiomatize KΊDAltl as in 3.14, and use induction on the length of proofs.
If hpc B then h P C τB by 3.4; moreover τUB = B so h P C rDB. τ((D(B ->
C) Λ DB) -> DC) = ( ( θ - > C ) Λ β ) ^ C and r(--DB == D-iβ) = (-«B s - 5 ) .
The induction step (MP) is obvious.

Theorem 3.20 For a logic £, (i)-(iii) are equivalent: (i) Every sublogic ofk admits
all cancellation rules, (ii) h-£ A implies h P C τA/or all A. (Hi) £ is a sublogic of
KΓDAltl.

Prao/ (i) implies (ii) by 3.11; (ii) implies (i) by 3.12; (ii) implies (iii) by 3.18; (iϋ)
implies (ii) by 3.19.
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Proposition 3.21 If £ is the closure of a subtheory of K~DAltl under a set of
Ώ'introduction rules, then £ admits all cancellation rules.

Proof: Axiomatize £ with all theorems of the subtheory of KΊDAltl as axioms and
MP and all D-introduction rules in the set as the rules of inference, and show by
induction on the length of proofs that \-& A implies h^ τA. By 3.3 and 3.20,
it suffices to show that if σ is a substitution, X Ih ( Λ ^ D G / ) -> ΠH is a D-
introduction rule and for all A e X he σA then hx τσ((/\i<k π ^ « ) -> π # ) > i e

h& τdhi^ΠσGi) -> Dσ/f), i.e. h& (/\i<kσGj) -> σH. But by definition of a
D-introduction rule, X h-pC (Λι<fc Φ ) ~^ #> s o σ ^ *~PC if\i<kσ(^i) ~^ σH> s o

Recall that a modal logic is classical (monotone, regular) just in case it is closed
under the D-introduction rule RE (RM, RR) and normal just in case it is closed under
all D-introduction rules. 3.21 yields:

Proposition 3.22 If £ is the smallest classical (monotone, regular, normal) logic
containing a given sublogic 0/K~DAltl then £ admits all cancellation rules.

Note that if £ is axiomatized by the addition of all D-introduction rules to a
sublogic of K~DAltl, and £ ' is a normal sublogic of £ , it does not follow that £ '
can be axiomatized by the addition of some D-introduction rules to some sublogic of
KΓΌAltl. Consider, for example, KDG, the smallest normal logic containing the D
axiom, Ώ-*p -> -*D/?, and the G axiom 0D/? -> DO/?. KDG can be axiomatized
by the addition of all D-introduction rules to the sublogic of K~DAltl generated by
Up -+ Op and (0D/? -> DΠp) v DO p. Thus KDG admits all cancellation rules.
However, its normal sublogic KG does not, for I-KG DOT but not hKG 0T. Thus
KG cannot be axiomatized by the addition of any set of D-introduction rules to any
sublogic of K~DAltl.

4 Cancellation rules in systems with T axioms It is natural to study nonnormal
logics with the T axiom Dp -> p. For example, if D is read as "it is known that,"
the T axiom should hold, since knowledge entails truth, yet ordinary knowledge is
not closed under logical consequence. Logics with the T axiom are not in general
closed under the mapping τ, for although τ maps the T axiom itself to the PC theorem
p -+ p9 x maps its instance D-«D/? -> - D/? to -~*Ώp -> -i/?, whose addition to a
logic with the T axiom yields modal collapse. Indeed, logics with the T axiom do not
in general admit all cancellation rules. For example, we have h-κτ -Ή(p A -*Πp) but
not l~κτ -«(JP Λ -ΰ/O, s o Λat KT does not admit the cancellation rule -ΰ/? Ih -»/?.
Nevertheless, it is natural to ask whether logics with the T axiom admit modified
forms of cancellation rules. This section gives a limited positive answer to that
question.

We can adapt the mapping τ to logics with the T axiom by combining it with the
following mapping υ:

υpi = pi

υ _ L = _L

v(A -> B) = υA-+ vB

vΠA = vA Λ DA

Consider the mapping τv. τυDA = τ(vA A DA) = τvA A A; hence τυ(DA ->
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A) = (τvA Λ A) -> τvA. Thus τυ maps all substitution instances of the T axiom
to PC theorems. It will play the role played by τ in the previous section.

We begin with some consequences of closure under τυ for the admissibility of
rules (4Λ-4A) and then ask what logics are closed under τυ (4.6-4.15).

Proposition 4.1 If a logic £ is closed under τυ then £ admits the cancellation rule
y^ΏpiWy^piforallk.

Proof: For any substitution σ, τυ(\/i^k Ώσpϊ) = \Ji<k(τυσpi A σpt).

Note in particular the case jfc = 1, sometimes known as denecessitation: if
he DA then he A. If £ has the T axiom, it automatically admits that cancellation
rule. A wide class of logics without the T axiom were shown to admit all cancellation
rules in the previous section. 4.1 is useful in proving the admissibility of the rule
for logics with a weakened version of the T axiom. For example, Lemmon and
Scott discuss the schemata L (OT -> (DA -> A)), N (substitution instances of T in
which every occurrence of a propositional variable is within the scope of a D) and No
(D(DA v ΏB) -> (DA v ΏB)). A variety of logics with such axioms can be shown
to be closed under τυ. The next propositions concern less obvious rules.

Proposition 4.2 If a logic £ is closed under τ υ then £ admits the rule \Jt <k <)Upi I h
y^iPiVDp^forallk.

Proof: For any substitution σ, hpc τυ(\Ji<k§Ώσpi) = \fi<k((τυσpi A σpi) v

Ώσpi).

Proposition 4.3 Either #A = #τυA = θor#Ά = l + #τυA.

Proof: By induction on the complexity of A.

Proposition 4.4 If a logic £ is closed under τυ then £ admits the rule Up =

Ώq, Op = Oq IH p = q.

Proof: Suppose that £ is closed under τυ and he DA = DB and f-χ OA = <>#, so
he D-iA = Π- B. By assumption, he τυ(DA = ΠB) and he r u ( D - A = D->β),
i.e. \-& (τυA Λ A ) = (τυB A B) and \-& (--τuA Λ -»A) = (-*τvB A -^B). Thus
he (A Λ -i£) -> (->τυA A τυB) and h^ (-̂ A Λ B) -> (τυA Λ -^τυB), i.e.
h Λ ( A Λ - I B ) -> τυ(-iAΛβ)andl-£ (- .AΛB) -> τυ(AΛ- B). Let (τυ)°C = C
and (τυ)w + 1C = τυ(rυ)wC. By repeated use of closure under τυ, for all n, h^
(τυ)*(AΛ-£) -> (τυ) Λ + 1 (- AΛiϊ)aiιdl-Λ (ru)w(-AA5) -• (rυ)Λ+1(AΛ-iJΪ).
By 4.3, n can be chosen so that #(τυ)w(A Λ ->B) = #(τυ)w(-«A AB) = 0. Then,
by definition of τυ, (τυ)*+1(A Λ ^B) = (τυ)w(A Λ -*B) = (τυ)nA Λ ->(τυ)nB
and (τυ)n + 1(-A Λ D ) = (τυ)n(-A Λ « ) = --(τυ)nA Λ (τυ)nB. Hence \-L

((τυ)nA A ^(τυ)nB) -> (-(τυfA Λ (τυ)nB) and he (-(τυ)*A Λ (τυ)nB) ->
((τυ)wA Λ -π(τυ)"B). Hence h Λ -((τυ)wA Λ ^(τυ)nB) and h^ -<-.(τυ)nA Λ
(τυ)nB), i.e. h £ -<τυ)w(A Λ ^B) and h/: -»(τυ)w(-.A Λ 5). If n > 0, h Λ

(τυy-HAΛ-iβ) -> (τυ)n(-iAΛβ)andhΛ (τυf-^-ΆΛβ) -> (τυ)Λ(AΛ~ B),
soh,e -'(τυ^-^AΛ-iB^andhje -«(τυ)fl"1(" |AΛB). Continuing the process, he
-(τυ)0(AΛ-.£)andhe -i(τu)°(-«AΛJB),i.e. he --(AΛ- B ) andh/: - . (- .AΛB),

so h^ A = B.

See Williamson [14] for brief discussion of the philosophical interest of the
"double cancellation" rule established by 4.4 on an epistemic reading of D (the
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method of proof used for 4.4 can be seen as a generalized syntactic version of the
main semantic construction in [14]).

We now ask what logics are closed under τv. The role of K~DAItl, the largest
logic all of whose theorems are mapped by τ to PC theorems, will be played by
KTAK2, the smallest logic closed under all axiomatic D-introduction with as addi-
tional axioms T and the wff Alt2:

Definition 4.5 Alt2 is D(p -> q) v D(p -> -^q) v Up.

One can think of T and Alt2 as together saying that each world can see itself and
at most one other world, just as one can think of D and Altl as saying that each world
can see exactly one world, although this interpretation is of merely heuristic value
in the context of nonnormal logics. The point is not that Altl or Alt2 is plausible
on some reading of D, but that they are so strong that many systems of interest can
be axiomatized by the addition of D-introduction rules to sublogics of KΊDAltl or
K~TAlt2. The following propositions lead to a characterization of some interrelations
between KΊDAltl, K~TAlt2 and τv. After that, closure under τv will be used to
establish the admissibility of various rules.

Proposition 4.6 hpc τvσDA = τσDvA.

Proof: By induction on the complexity of A.
Basis: τvσaPi = τvΏpi = τvpiΛpi = pίApf, τσuvpι = τσπpi = τΠpi =

Pi. The cases of ± and -> are standard.
Induction step for D. Suppose that hpc τvσπA == τσπvA. τυσDΠA =

τvUσ^A = τvσuAAσ^A. ButτσπuDA = τσπ(υAΛDA) = τ(σQvAAUσ\jA) =
τσπvA A σπA. By induction hypothesis, hpc τvσΏUA == τσuvΏA.

Proposition 4.7 IfX is a logic and l-χ A implies h P C τvAfor all A, then l-£ A

implies f-κ~DAiti vAfor all A.

Proof: Suppose that l-£ A implies hpc τυA for all A, and \-& B. Since £ is
a logic, he σπB. By assumption, h P C τυσΏB. By 4.6, h P C τσDvB. By 3.4,
hpc ocβτσπvB. By 3.17, h-κ~DAiti ocβrσπυB = vB. Hence hK~DAiti vB.

The following mapping will be used to translate theorems of K~DAltl into
theorems of K~TAIt2:

ΨPi = Pi

φ± = ±
φ(A -> B) = φA ->• φB

φΠA = DA V (--A Λ HH-iA).

Proposition 4.8 //Ί-K~DAUI A then hκ~τAit2 <PA

Proof: Axiomatize KΓDAltl as in 3.14 and use induction on the length of proofs. If
hpc A then hpc φA by 3.4, so l~κ~TAit2 ψM moreover hκ~τAit2 DA since K~TAIt2
admits all axiomatic D-introduction rules, so l~κ~TAit2 φ^A by definition of φ. To
show hκ~τAit2 #>((P(A -> B) A DA) -> ΠB), consider the following sequence of
theorems of K~TAlt2:

(1) (D(A -> B) A DA) -• ΠB Ax D-int
(2) (D(A -^ B) A DA) -+ φΠB l,def φ
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(3) (DA Λ D-fi) -> D-i(A -• B) Ax D-int
(4) ((-(A -> B) Λ - D - ( A -> B)) Λ DA) -> (-B Λ -.D-.fi) 3
(5) ((-.(A -> B) A - D - ( A -> B)) Λ DA) -> <pDB 4,def φ
(6) 0?D(A -> B) Λ DA) -• <pDB 2,5,def φ
(7) <pD(A -> B) -> ((A ^ B)-> D(A -> B)) def φ
(8) <pD(A -> B) -> (-.A -* D(A -> B)) 7
(9) (D(A -> fi) Λ D-.fi) -> D-A Ax D-int
(10) (<pD(A -> B) Λ (-Ά Λ -D-A)) -> - D - B 8,9
(11) D(-A -> B) V D(-A -> -iB) V D-«A Alt2
(12) (D(A -+ B)Λ D(-«A -> B)) -> DB Ax D-int
(13) (<pD(A -> B) Λ (-A Λ -D-A)) -> (DB V D(-A -> -B)) 8,11,12
(14) D(--A -> - B ) -> (-IA -> - B ) T
(15) (<pD(A -> B) Λ (-.A Λ - . D - A)) -+ (DB V (- B Λ -iD-.fi)) 10,13,14
(16) (<^D(A -> B) Λ (-.A Λ -1D-.A)) -> ^DB 15,def ^
(17) (<?D(A -• B) Λ ̂ DA) -• <̂ DB 6,16,def ^

The proof that hκ~τAit2 <^(^DA = D-«A) is simpler and not given here. The induction
step for MP is standard.

Proposition 4.9 hκ~τAit2 A = {Pυ^-

Proof: By induction on the complexity of A. The only interesting case is the induction
step for D. Suppose that hKτAit2 A = φυA. Now < υ̂DA = φ(vA A DA) =
<puAΛ(DAv(--"AΛ-«D-Ά)). By hypothesis, hκ~τAit2 φvΠA= ( A Λ ( D A V ( - ^ A Λ
-iD-.A))). But hpc (A Λ (DA v (--A Λ - D - A))) -> DA, and since h κ τAit2 OA ->
A, l-κ~TAit2 DA ̂  (A Λ (DA v (-«A Λ -.D->A))). Hence hκτAit2 Π ^ = <^υDA.

Proposition 4.10 If \-K~TAUI A ίften hκ~DAiti ^A.

Proo/ Axiomatize K"TAlt2 as in 3.14 and use induction on the length of proofs. If
hpc A then hpc vA by 3.4, so hκ~DAiti vA\ moreover hκ~DAiti DA since K~DAItl
admits all axiomatic D-introduction rules, so l~κ~DAiti ^DA by definition of v.
u((D(A -^ B) Λ DA) -+ DB) = (((uA -> υB) Λ D(A -> B)) Λ (υA Λ DA)) ->
(uB Λ DB), which is a theorem of K~DAltl since (D(A -> B) Λ DA) -> DB is. For
the T axiom, υ (DA -> A) = ( U A Λ D A ) -> υ A, a PC theorem. For an instance X of
axiom Alt2, υ Z = υ(D(A -^ B)vD(A -> -«B)vDA) = ((uA -> U B ) Λ D ( A ->
B))v((υA -> - Ί U B ) Λ D ( A -> - ^ B ) ) V ( U A Λ D A ) . To prove hκ~DAiti υX, consider
the following theorems of KΊDAltl:

(1) DB -> D(A -> B) Ax D-int
(2) (-ΪUA Λ DB) -> ((υA -> υB) Λ D(A -> B)) 1
(3) (-.υA Λ DB) -> vX 2,def υ
(4) (-.υA Λ D-.fi) -> ((υA -> - υ B ) Λ D(A -> - B)) As 2
(5) - D B -> D-.fi Altl
(6) (-υA Λ -DB) -> ((υA -^ - υ B ) Λ D(A -> -B)) 4,5
(7) ( i u A Λ -DB) -> υX 6,def υ
(8) - υ A -> υ l 3,7
(9) -DA -» D-A Altl
(10) D-A -> D(A -> B) Ax D-int
(11) (υA Λ υB Λ -DA) -» ((υA -> υB) Λ D(A -> B)) 9,10
(12) (υA Λ υB Λ -DA) -> υX l l ,defυ



392 ΉMOTHY WILLIAMSON

(13) (υA A ->vB A -DA) -> ((uA -> -^vB) A D(Λ -> -.£)) As 11
(14) (vA A ^vB A -CIA) -* u l 13,def u
(15) (vA A -iDA) -• vX 12,14
(16) (υA Λ DA) -+ υX Def u
(17) vA -+ vX 15,16
(18) υX 8,17

The induction step for MP is standard.

Proposition 4.11 For a logic £, f-£ A implies hpc τvAfor all A if and only if£>
is a sublogic of K~ΎA\t2.

Proof: For the "only if," suppose that f-£ A implies hpC τvA for all A. If I-/: B
then by 4.7 l~κτ>Aiti ^Z?; so by 4.8 HrrAit2 (PV^> s o by 4 9 '~K~TAU2 #• Thus £ is a
sublogic of KTAK2. For the "if," what needs to be shown is that f-κ~TAit2 A implies
hpc τυA. But if Kκ~τAit2 A then by 4.10 f-κτ>Aiti vA; so by 3.19 hpC τvA.

Proposition 4.12 If fl is the closure of a sublogic 0/K~TAlt2 under a set of D-
introduction rules, then £ is closed under τv.

Proof: Axiomatize & with all theorems of the sublogic of K~TAlt2 as axioms and
MP and all D-introduction rules in the set as the rules of inference. We show by
induction on the length of proofs that l-£ A implies b-£ τυA. By 4.11, it suffices
to show that if σ is a substitution, Y If- ( / y ^ D G , ) -> UH is a D-introduction
rule, and for all A € Y both he σA and (tEe induction hypothesis) h& τυσA,
then he τυσ((Λ/<*ΠG, ) -> D/f), i.e. he (/\i<kτvΠσGi) -> τυΠσH, i.e.
he (/\i<k(τvσGi A σG/)) -> (τvσH A σH). For the latter it is sufficient that
he (f\ϊ<kσGi) -> σ ί ί and ̂  (/\i<kτυcfGi) -• τvσH. By definition of a
D-introduction rule, 7 hpc (Λι<* ^ 0 -^ ^» s o f°Γ s o m e members F i , . . . , F m of
F, hpc (Λi<m^ Λ Ai<fcGi) -> H, so hpc (/\iSmσFi A /\i<kσGi) -• σi7.
By assumption h,e Λi<mσ^'» s o '"^ ( Λ / < i t σ ^ ) ^ σ ^ Moreover, by 3.4 hpc
(/\i<mτvσFi A /\i<kτvσGi) -> τυσH. By assumption h/ : /\i<mτvσFi9 so

Proposition 4.13 /jf-C w /fte smallest classical (monotone, regular, normal) logic
containing a given sublogic 0/KTAH2 then £ w closed under τv.

Proof: From 4.12.

Proposition 4.14 If £ is the closure of a sublogic 0/K~TAIt2 under a set of D-

introduction rules then £ admits the rules \Ji<kUpi Ih \Ji<kPi> \Ji<kζ>Πpi Ih

Vi<k(Pi v DPi)> a n d DP = U(l^ 0p = 0q\\- p = q.

Proof: From 4.12 by 4.1,4.2 and 4.4.

Proposition 4.15 If L is the smallest classical (monotone, regular, normal) logic
containing a given sublogic o/K~TAlt2 then £ admits the rules \Ji<k ^Pi W \Ji<k Pi,
Vi<* OΠpi Ih \fi<k(Pi V Dpi), and Up = Πq, Op s 0q Ih p == q.

Proof: From 4.14.

The scope of 4.14 and 4.15 is quite wide; in practice, however, it is sometimes
easier to show directly that a logic is closed under τ υ than to show that it is the closure
of a sublogic of KTAH2 under a set of D-introduction rules (the normal logic KTG
is a case in point).
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5 Lemmon and Scott's rule of disjunction The mappings τ and τv allow one
to establish the admissibility of the special case of Lemmon and Scott's rule of
disjunction where n = 1, the rule Dp Ih p, in various systems. However, they do
not allow one to establish the rule for n > 1. If £ is closed under τ or τv and
hx DA v ΠB then h^ Aw B, but it does not follow that h^ A or he B. A
different mapping is needed; it is defined below. A detailed investigation like that
of the previous sections will not be carried out. Rather, a few typical results will
be given. They concern subsystems of the provability logics KW and KT4Grz (=
KGrz), where W is Lob's axiom D(D/? -> p) -> Up and Grz is Grzegorczyk's
axiom U(U(p -> Up) -> p) -> p.

Let S be a theory. Define a mapping δs:

δsPί = Pi

δs± = ±
δs(A -+ B) = isA -» i^fi

ί,yDA = T if h? A

= _L otherwise.

Proposition 5.1 If a theory S is closed under δs then S admits the rule of disjunction.

Proof: Suppose \-s Vi<* D ^ * BY assumption, h^ ^ V ^ DA, , which is to say,
ί-̂  V i < j t ^ D ^ - U n l e s s ^ Ai for some / < k, y^δsΠAi = V/<it - 1 - ' i n w h i c h

case 5 Γs inconsistent and hs At for any i < k.

Lob's rule is the rule Dp -* p\V p. It is well known that KW can be axiomatized
by the addition of Lob's rule to K.

Proposition 5.2 IfS is axiomatized by all PC theorems, MP, a set ofU-introduction
rules and possibly Lob's rule, then \~s A implies hpc δs A.

Proof: By induction on the length of proofs in the axiomatization of 5. If hpc A
thenhpc δsA by 3.4. The case ofMP is trivial. LetF Ih ( / \ ^ D G , ) -> D # beaD-
introduction rule and σ a substitution. We need to show that if hs σ A and h P C δsσ A
for all A e Y then h P C ^((Λ/^ΠcrG,-) -> D σ F ) , i.e. h P C (h^δsΠσGi) ->
(S^Dσif. There are two cases.

C α ^ 7: h,s σG, for all / < k. By definition of a D-introduction rule, Y hpc
(Ai<k°i) -+ H> s o σ y μPC (/\i<kσGύ -* σ ^ Since h^ σA for all A € F,
Ks ( Λ ϊ < i t σ ^ ) ^^ σ ^ > s o ^y assumption h^ σH. Thus ^ D σ G z = ^ D σ / ί = T
for/ < ̂ , so hpc (hi^δsΠσGi) -+ δsΠσH.

Case 2: \-s σG\ fails for some / < k. Then δsΠσGi = _L for some / < k, so

l-pc (hi^δsΠσGi) -> ί jDσJΪ.

For Lob's rule, we need to show that if 5 admits Lob's rule, \-s DA -> A and
hpc ^^ΠA -> <$sA then h P C ̂ .yA. But then \-s A, so ί̂ -DA = T, so h P C T -+ δsA,
so hpc δsA.

Proposition 5.3 IfS is axiomatized by all PC theorems, MP, a set ofΠ-introduction
rules and possibly Lob's rule, then S admits the rule of disjunction.

Proof: From 5.1 and 5.2.
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Many variations can be played on the theme of 5.3. For example, we can add
some or all substitution instances of the 4 axiom Dp -> ΠΠp to the axiomatization
of 5, provided that 5 admits the rule RN. Alternatively, we could add some or all
substitution instances of the 4 axiom and Lob's axiom, without insisting on RN, if
we revised the definition of δs so that the condition for δsΠ A = T was \-s DA rather
than \~s A; this would yield the rule \/i<k D/?z Ih [Πpt : i < k} rather than Lemmon
and Scott's rule of disjunction (neither πile need imply the other in the absence of
RN).

In order to cope with the T axiom in KT4Grz, we need a mapping that stands
to δs as τv stood to r in Section 3. The composite δsv would do, but an equivalent
variant of it is more concise:

*sPi = Pi

όs± = ±

δ*s(A -> B) = δ*sA -> δ*sB

δ^DA = δ$A if \-s A

= J- otherwise.

Proposition 5.4 If a theory S is closed under δ*s then S admits the rule of disjunction.

Proof: As for 5.1.

Proposition 5.5 If S is axiomatized by all PC theorems, any set of instances of
axioms T, 4 and Grz, with MP and some U-introduction rules including RN, then
\~s A implies hp C δ%A.

Proof: By induction on the length of proofs. The cases of PC theorems and MP are
as before. For T, ίJ(DA -> A) is either δ^A -> δ* A or _L -> δ$A. For 4, if \-s A
then \-s ΠA by RN, so ίJ(DA -> DDA) = δ*A -+ <5*DA = δ*A -> δ*sA; if not
\~s A then δ%(ΠA -> DDA) = 1 -> δ^ΠΠA. For Grz, suppose that hs D(D(A -+
DA) -> A) -> A. If 1-5 D(A -> DA) -> A then h 5 D(D(A -> DA) -> A) by
RN, so \-s A by MP, so \-s DA by RN again, so hs A -> DA; hence (5*(D(D(A ->
DA) -^ A) -* A) = <5*D(D(A -^ DA) -> A) -> ^ A = «J(D(A -* DA) ->
A) -> ^*A = (^D(A -> DA) -> ^*A) -• ̂ *A = (<5*(A -> DA) -• ̂ *A) ->
5*A = ((6*A -> 3*DA) -^ 6*A) -• 6*A = ((ί*A -> 6*A) -> 6*A) -^ 6*A, a
PC theorem. If not h 5 D(A -> DA) -• A then δ*(Π(D(A -> DA) -> A) -> A) =
X -* ^|A. Finally, let Y Ih (/\ i 5 J kDGi) -* US' be a D-introduction rule and σ
a substitution. We need to show that if \-s σA and h P C δ*sσA for all A e Y then
HPC (Λiot iJn^C?/) -> <5^Dσ7/. There are two cases.

Cαse 7: h^ σG^ for all i < k. As in 5.2, h,y σ/f. Thus <5£DσGz = ό^σG, for i < k
a n d ^ D σ ^ = &*sσH, so (^^δ^ΠσGi) -> ίjDσJ^ = (/\i<kδ*sσGi) -> ίJσfΓ.
As in the proof of 4.12, for some members Au . . . , Am of y,~hpc {/\i<m σA,) ->
((Λ^flrGi) -• σίΓ). By3.4,h P C (Λ^m^σA,) -• ((A^ *&&)'-* <5*σif).
By induction hypothesis, hpc Ai<m&sσAi> s o ^ P C (Ai<k^sσ^^ ~^ $sσH> ^
required.

C β ^ 2: \~s σGi fails for some i < k. The argument is as in 5.2.

Proposition 5.6 If S is axiomatized by all PC theorems, any set of instances of
axioms T, 4 and Grz, with MP and a set of U-introduction rules including RN, then
S provides the rule of disjunction.



NONNORMAL MODAL SYSTEMS 395

Proof: From 5.4 and 5.5.

As before, many variations are possible. For example, the use of <5| can be
extended to systems with instances of the D axiom, McKinsey's axiom M (DO/? -»-
ODp) and Lemmon and Scott's variant on it M°° (0 f\i<k(<)Pi -> •#•)> & > 1) as
axioms. The method subsumes many results in [9] on the^admissibility of the rule of
disjunction, e.g. in K, KD, KT, KN, KL, KM°°, K4, KD4, K4N (= KD4N0), K4L,
K4M (= K4M00), KT4M and KT4M (= KT4M00). Other examples are KM, KDM
and KTM. The method also applies to the smallest classical (monotone, regular)
systems containing the axiom sets in question.

6 Other rules Chellas and Segerberg [2] investigate what they call the Macintosh
rule:

p -> Dp If- 0/? -> p.

S provides the Macintosh rule just in case whenever 1-5 A -• DA then h? 0A -> A.
Chellas and Segerberg prove semantically that KD and KT provide the rule, and
ask for syntactic proofs. These are supplied below. As before, they extend to some
nonnormal logics with D or T as an axiom schema.

The Macintosh rule will be established as a corollary of the rule of margins:

p -> Dp If- p, -*p.

S provides the rule of margins just in case whenever \~s A -> D A then either \-$ A
or hs -Ά. Some applications of the rule of margins in epistemic logic are proposed
in Williamson [15] and [16]; they give reason to investigate the rule in the context of
nonnormal logics. The systems discussed below are quite natural ones, considered
as epistemic logics for subjects of bounded rationality.

The rule of margins will in turn be established as a corollary of the alternative
rule of disjunction, which for a fixed n is the sequent:

{po V \/ Umpi : j{i) > 0} If- {Pi : 1 < i < n).
\<i<n

S provides the alternative rule of disjunction just in case whenever h^ Ao v D J ̂  A i v
. . . v DJ^An for all j (1) , . . . , j (n) > 0, then h^ Az for some /. The rule of margins
and the alternative rule of disjunction are investigated in the context of normal logics
in [15] and Williamson [17].

For the case of KD, what is needed is a mapping $s,i that acts like δs after going
through i nestings of D, so that Ss,o is δs] the second subscript works as a delay
mechanism:

h%mPi = Pi

*S,m± = -1

δS,m(A " * B) = δS,mA -> δS,mB

8Si0DA = T if \-s A

— _L otherwise
δS,m+ιDA = ΠδS,mA

Proposition 6.1 Let S be axiomatized by all PC theorems and {->Dι± : / > 0}
with MP and a set of D-introduction rules. If^~s Aov Vi<i<it Π ; ' ^ A, for some
j (1), . . . , j(n) > #A 0 , then \~s At for some i(0 < i < ή).
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Proof:

Claim (i): \-s i^w-O'i . for all ι, m.

Proof of Claim (i): If i < m, ̂ - U J . = - ΰ <$<?,„,-* J- = -Cl'l.. If m < /,
Ss,m~<i -L = -•• m ^oDΠ I ~ m " 1 J-; but not l-5 π ' " " 1 " 1 J_ since it is easy to show that
if h-5 A then the result of deleting all modal operators in A is a theorem of PC; hence
i^oΠD 1 ' - " 1 " 1 ! = _L, so <$s,w-iDl'-L = -CΓ_L In both cases, \-s ί ^ - i ϋ ' l . .

Claim (ii): For all A, if h 5 A then \-s δs,mA.

Proof of Claim (ii): By induction on m.
Basis: m = 0. Since <5s,o is <$s, an argument like that for 5.2 can be used, with

Claim (i) supplying the only new point.
Induction step: Suppose that (ii) holds for m. We conclude that it holds for

m 4-1 by induction on the length of proofs in 5. Given (i), the only interesting case
concerns a D-introduction rule Y Ih (Λi<A:ΠGί*) -* Π j ^ u s e d i n ^ axiomatization
of 5. It suffices to show that if σ is a substitution, and \~s crB for all B e 7,
then \~s δs,m+i((Ai<k^σGi) ~^ ̂ σH). By induction hypothesis, \-s δs,mσB for
all B e Y. Let σΛ be the substitution such that σ*pi = δs,m&Pί- By induction
on the complexity of B, if φB = 0 then σ*B = Ss,m<yB. Now for all B e 7,
# β = 0, so σΛ£ = δs,mσB, so hs σAβ by the above. Since 5 provides the rule,
1-5- (A/<*n<y*G/) -• DσΛ/f. But#G f = #H = O ^ o σ ^ = ί ^ σ G f andσΛH =
ί S t m σJϊ . Thus \-s (/\i&n*stm*Gi) -• D ί ^ σ J Ϊ . B u t ί ^ w + i ί ί Λ ί ^ ^ ^ ) ^
DσJΪ) = (/\i^ΠSStmσGi) -> D ί ^ σ J Ϊ .

C/fl/m fmj: If #A < m then ̂ ,WA = A.

Proof of Claim (Hi): By induction on the complexity of A.

Claim (iv): S admits the rule of disjunction. 5 is closed under δs by (ii) for m = 0;
the result follows by 5.1.

Now suppose that \-s Ao v Vi<i<* Π 7 ' ^ / for some (1), . . . , j (n) > #A 0 .

Let m = #A 0 . \~s SSjm(A0 v V ^ ^ D ^ ' U ί ) by (ii). Now <$s,mA0 = Ao by

(iii); since ;(/) > m by assumption, δStmΠimAi = Bmδs,oΠ\J^i)-m'1Ai. Thus

^5 Ao v Vi<ι<* • m ^ , 0 Π Π / ( l ) " m " 1 A ί . There are two subcases.

Subcase 1: \-s U^'m-ιAi for no /. Thus for all ί, ί^oDD^')-"1-1 = ±, so

I-5 Ao v Vi</<* πm±- B u t h ^ - O m J-, so \-s Ao.

Subcase 2: \~s Πj^^m~1Ai for some ί. By repeated application of (iv), \-$ A, .

Proposition 6.2 7/"5 is the closure o/f- D'i. : i > 0} wnder w ^ Ώ-introduction
rules then S provides the alternative rule of disjunction.

Proof: Immediate from 6.1.

Proposition 6.3 If S is the closure 0/{-ΰ*_L : / > 0} under some UΊntroduction
rules including RM then S admits the rule of margins.

Proof: Suppose h? A -> DA. ByRM,hs D'Ά -> D ί + 1Aforall/,sol-5 A -> Π*A
and \~s -Ά v Dι A for all i, so h^ -iA or \~s A by 6.2.

Proposition 6.4 Tf 5 w the closure of{-^Πι± : i > 0} under some Ώ-introduction
rules including RM and RN then S admits the Macintosh rule.
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Proof: Suppose \-s A -> DA. By 6.3, either \-s A or \-s -Ά. If \-s A, then
\-s - O - A -> A. If \-s -«A, then (-<? D-«A by RN, so h 5 - D-«A -> A.

The next proposition shows that 6.3 and 6.4 would be false if the qualification
about RM were omitted.

Proposition 6.5 There is a set of Ώ-introduction rules including RN under which
the closure of{-*UlL : i > 0} admits neither the rule of margins nor the Macintosh
rule.

Proof: Let 5 be the closure of {--D'± : i > 0} under the D-introduction rules RN
and Ih D - T -> D(± v p). The weakness of S makes the latter rule quite different
from Ih D± -* Dp, since 5 is highly sensitive to syntactic differences between truth-
functionally equivalent wff. The proof will exploit this fact; the strategy is to show
that if 5 admits the Macintosh rule then \~s 0~ί~, but that the latter is impossible. Bythe
second rule, \~s Π-iT -> D(_LvD-«T),sol-s (±vD-«T) -• D ( ± v D - T). Suppose
that 5 provides the Macintosh rule. Then \-s -̂ D-«(JL v D-iT) -> (± v D-iT). By
the proof of 6.1, S is closed under 8s,o, i.e. 8s, so \~s ($ts-(- D - (_L v D- T) -»
(J_ v D-iT)), i.e. hs -HSJD-I(± v D-T) - > ( i v ^ D - T). Now ί ^ ϋ - T = ±,

for otherwise \~s -«T, which is impossible since the result of deleting all occurrences
of D in a theorem of 5 is a theorem of PC; hence hs ίsD-KJ. v D - T). Thus
^ D - - ( ± v D-iT) φ 1 , so hs --(1 v D-iT) by definition of δs; thus \-s ->D-iT.
Define a mapping η by:

rjPi = Pi

η± = ±.

η(A -» B) = ηA-+ ηB

ηΠA = ± if A = D*± for some i > 0

= T otherwise.

It is easy to show by induction on the length of proofs that if 1-5- Athenhpc ηA. Thus
since h^ ->D- T, \-s ij-CHT; but -«T φ Dz'± (J_ is primitive), so r/D-iT = T,
so ry-iD- T = -»T; thus \~s -«T, which is impossible. Thus S does not provide the
Macintosh rule. Since the argument from 6.3 to 6.4 used only RN, 5 does not provide
the rule of margins either.

The next proposition shows that 6.4 would be false if the qualification about RN
were omitted.

Proposition 6.6 The closure of {->Ώι _L : i > 0} under RM does not provide the

Macintosh rule.

Proof: Let the system be 5. Put vDA = _L for all A, and let v commute with the
other operators. It is easy to show by induction on the length of proofs in S that if
\-s A then hpc v A. Thus we cannot have \~s -O-ι_L -> 1 ; but 1-5- _L -> D JL

Examples like those in 6.5 and 6.6 can be given to show the need for the qual-
ifications to the propositions below. There is room for further investigation in this
area. For example, the system S in the proof of 6.5 does not provide the rule RE,
since not \~s DJ_ = D- T. Is there a set of D-introduction rules including RN and
RE under which the closure of {-OX : i > 0} does not provide both the rule of
margins and the Macintosh rule? In any case, some results are still obtainable when
RM is weakened to RE.
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Proposition 6.7 If S is the closure of {-*Πι ± : i > 0} under some Π-introduction
rules including RE then S admits the rule p = Πp Ih p> -*p.

Proof: Suppose that S admits RE and \-s A = DA. By RE, \-s Π* A = Πi+1A for
all i, so for all i \~s A = Π1'A and \-s -»A v D'A, so hs -*A or hs A by 6.2.

Proposition 6.8 #" 5 is the closure 0 / { - O ± : i > 0} under some Π-introduction
rules including RE and RN then S admits the rule p = Πp \\- <)p = p.

Proof: From 6.7 as 6.4 was proved from 6.3.

Proposition 6.9 77ze closure of{->Π±.} under some Π-introduction rules including
RE is the closure of {-dι_L : / > 0} wftder ίftose rwẐ  s1.

Proof: It suffices to show that if 5 admits RE and \~s - ΰ ± and h^ - D'_L then
\-s - ΠZ"+ 1±. But if \-s --ff-L then h 5 ± = ϋfl, so by RE h 5 D± = D z < + 1±, so
h ί - . D / + 1 ± i f l - s - i D ± .

Proposition 6.10 If >C w ίfte closure of the D schema DA -> <>A wnd^r ίomg D-
introduction rules including RM, ίften ίΛ r̂e is β ̂ ί of Π-introduction rules including
those rules under which £ is the closure of{-OL : i > 0}.

Proof: It suffices to show that {-O_L : i > 0} is a consequence of D by RM
and that D is a consequence of {-iD'JL : i > 0} by RM and the D-introduction
rule If- (Up A D-«/?) -> D_L. The latter is trivial. For the former, suppose that S
admits RM and contains D. Since hs -L -> -i±, \~s D_L -> D-«± by RM; but
\-s D J_ -> -1D-1J- by D, so \-s -»D±. The result follows by 6.9.

Proposition 6.9 allows {-ΰ J_ : i > 0} to be replaced by {^D±} in propositions
6.3, 6.4, 6.6, 6.7 and 6.8 (recall that any theory providing RM also provides RE).
Similarly, proposition 6.10 allows {-'DI_L : i > 0} to be replaced by the D schema (i.e.
the set of its instances) in propositions 6.3, and 6.4; it also gives modified versions
of 6.1 and 6.2 in which S is the closure of the D schema under some D-introduction
rules including RM.

We now turn to the T schema. Mappings <5£ m will be used that stand to the δs,m

mappings as δ$ stands to δ$ (thus δ% 0 = δ$):

δhmPi = Pi

Slm(A-+B) = δlmA^δlmB
δ*i0ΠA = δ*S)0A if \-s A

= ± otherwise

^ ) M + 1 D A = <5* 5 m + 1AΛD^mA

Proposition 6.11 Let S be axiomatized by all PC theorems and the T schema with
MP and a set of Π-introduction rules including RE. If \-s Ao v Vi<*<jt E 7 '^ A* for
some j (1) , . . . , j in) > #A o, then \~s A, for some i (0 < i < n).

Proof: The strategy is a variant of that used for 6.1.

Claim (i): If \~s A then \~s δ$ 0 A. Since <5J 0 = <5£, the argument is as for 5.5 (where
RN was not used at the relevant points).
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Claim (ii): For all m, if )τS A then \-s δ^mA. W e s ^ o w ̂ s by Eduction on the
length of proofs, assuming (i).

Basis. PC theorems are unproblematic. For the T axiom, <5| W + 1 (DA -^ A) =
(8*Stm+1AΛΠδlmA)^δlm+1A.

Induction step. MP is unproblematic. It suffices to show that if a D-introduction
rule Y Ih (ΛKA: Π ^ ) ""* E # * s u s e d * n ̂ e axiomatization of 5, σ is a substitution,
and both \-s σB and \-s δ$ mσB for all B e Y , then \-s δ*s m+1(0\*<fc ΠσG,-) ->
Dσ#),i.e. h* ( Λ / ^ ^ m + i ^ G / Λ D i ^ σ G O ) -* Qlm+^HΛΠδ*~mσH). Thus
it suffices to prove \-s (/\^k ί 5 f W + 1σσ,) -> ί• ? m + 1 σ # and h^ (Λ, <* DίJ^αGf)
-> D^J w σ/ί . The former can be proved by an argument like one in the proof of
4.12 (with iJ | J I I + 1 in place of τ υ), the latter by one as in the proof of 6.1.

Claim (Hi): For all m, if #A < m then \-s A = δ^mA. Proof by induction on the
complexity of A. The only interesting case is the induction step for D. Suppose that
#DA < m + 1, so #A < m. By the induction hypothesis, \-s A = <$£ mA. By
RE, h i DA = D ^ mA. By T, \-s DA -> A; again by the induction hypothesis,
y-s A EE ί*fm+1 A, so hs DA -• ί S t W + 1 A. Thus hs DA EE ( ί* f W + 1 A ΛD(5*WA),i.e.
h ^ D A Ξ ^ m + 1 D A .

Now suppose that hs Ao v Vκi<* π < / ( / ) ^/ for some (1), . . . , j (n) > #A 0 .

Let m = #A 0 . Thus h 5 <5*>m(A0 v V^</<*Π'"«A<) by (i) and (ii). Now h^ Ao =

<$£ WAO by (ϋi). Since ;(/) > m, it is also easy to prove that hs 5 £ m D ^ A / ->

D ^ o D D ^ 1 ) - ^ ^ , - . Thus h^ A O V V K ^ Π ^ O D D ^ 0 ' " 1 " ^ / . The rest is as

for 6.1, with T in place of (iv).

Proposition 6.12 IfS is the closure of the T schema under some U-introduction
rules including RE then S admits the alternative rule of disjunction.

Proof: Immediate from 6.11.

Proposition 6.13 IfS is the closure of the T schema under some U-introduction
rules including RE then S admits the rule of margins.

Proof: Suppose that \-s A -+ DA. By T, \-s DA -> A, so h 5 A = DA. The proof
then proceeds as for proposition 6.7, by appeal to 6.12 rather than to 6.2.

Proposition 6.14 IfS is the closure ofΎ under some Π-introduction rules including
RE and RN then S admits the Macintosh rule.

Proof: As for 6.4, by appeal to 6.13 rather than to 6.3.

If one considers the set of all D-introduction rules, propositions 6.4 and 6.14 say
that KD and KT respectively provide the Macintosh rule. These results were proved
syntactically, as requested by Chellas and Segerberg.
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