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The Strength of the Δ-system Lemma

PAUL HOWARD and JEFFREY SOLSKI

Abstract The delta system lemma is not provable in set theory without the
axiom of choice nor does it imply the axiom of choice.

/ Introduction A Δ-system 8 is a collection of sets such that there is a set
r with the property that (VA E S) (v£ G S) (A Φ B => A Π B = r). r is called the
root of S The A-system lemma is the statement:

ASL For every uncountable collection T of finite sets there is an uncount-
able subcollection 8 of T which forms a A-system.

ASL is provable in Zermelo Fraenkel set theory (ZF) with the axiom of
choice (AC) as shown by Kunen [3], [4]. We will investigate the strength of ASL
in ZF (without the axiom of choice). In this theory there are two possible defi-
nitions of Xis uncountable: \X\ φ Ko or Ko < \X\. These definitions are equiv-
alent if AC is assumed. In Section 2 below we will use the first definition
exclusively. In Section 3 we will investigate the consequences of using the sec-
ond definition.

We will also refine ASL in the following way: ASL(n) will denote, for each
positive integer w, the Δ-system lemma for families of AZ-element sets. We note
that ASL(l) is trivially true. Our main goal will be to prove that for any inte-
ger n > 2, ASL(n) is equivalent to ASL and also to the conjunction of the two
statements:

CU The union of a countable collection of countable sets is countable.

and

PC Every uncountable collection of countable sets has an uncountable sub-
collection with a choice function.

2 Using the first definition of uncountable We begin with:

Lemma 2.1 ZFV (yn E ω - {0})(ASL(n + 1) => ASL(n)).
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Proof: For any X, put X = {(X,0)} U (Xx {1}). Assume ASL(n + 1), and let
T be an uncountable collection of n element sets. Then T ' = {ΛΓ: A" G T} is an
uncountable collection of n + 1 element sets and if JC is any uncountable sub-
collection of T ' which is a Δ-system, then 9 = {X^ T : ^ E JC} is an uncount-
able Δ-system contained in T . Thus ΔSL(/z) holds.

Theorem 2.2 For έwiy n E ω , « > 2 , ΔSL(AZ) implies CU.

Proof: By Lemma 2.1, it suffices to show that Δ5L(2) implies CU. Assume
Δ£L(2) and let T be a countable collection of countable sets. We may assume
that the elements of T are pairwise disjoint. (If not let T ' = [A x [A] :A G T)
then the countability of (JT follows from the countability of l/F'.) Assume UT
is not countable and let

G = [{(a,0)9(A,l)):A GT ΛaGA}.

8 is uncountable since (JT is uncountable. Applying ASL(2) to Q gives an
uncountable subset JC of Q which is a Δ-system. Suppose that the root of JC
isr. If r =̂ 0 then for some A G T, (,4,l)Gror (3αG^)((α,0) G r). But this
would mean JC c [{(a,0), (A, 1)}: # G 4̂ j which implies JC is countable since A
is. Therefore r = 0 . This means that for each A G T, there is at most one # G
>1 such that {(#,0),(v4,l)} is in JC and again JC is countable since T is.

A similar argument gives

Theorem 2.3 For any « E ω , « > 2 ASL(n) implies PC.

Proof: As in 2.2 it suffices to prove that ASL(2) implies PC. Assume ASL(2)
and assume that T is an uncountable family of pairwise disjoint sets. Let

| T | φ Ko => | 8 | Φ Ko so 8 has an uncountable subset JC which is a Δ-system.
As in the proof of 2.2, the root A* of JC is empty. Therefore for each A G T there
is at most one a G T such that [(a,0)9(A,l)} is in JC. Therefore

[(A9a):{(a90)ΛA9l)}e3C)

is a choice function for an uncountable subset of JC of T.

Our final result of this section is

Theorem 2.4 CUΛPC implies (Vn G ω)(n > 1 =» ASL(n)).

Proof: Assume CUΛPC. The proof of ASL(n) for every n > 1 is by induction
on AZ. As noted above, the case n = 1 is trivial.

Assume AZ > 1, that the theorem is true for all m < n and that T is an
uncountable collection of n element sets. We define:

aι =

for each a GUT.
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If a1 is uncountable for some a E UT then, by the countable union theo-
rem, [A E T : a E A] is uncountable and therefore,

S = {A -{a}:AecΪΛaeA}

is an uncountable collection of n — 1 element sets. By ASL(n — 1), 8 has
an uncountable subcoUection JC which forms a Δ-system. Then the collection
{C U [a]: C E 3C) is an uncountable subcoUection of T which forms a Δ-system.

We therefore may assume # * is countable for every a E UT. Define (by
induction) for each k E ω, k > 1

Using the countable union theorem and mathematical induction, we see that for
each k > 1 and for each a E UT, #* is countable. It follows (from the count-
able union theorem) that [a] is countable where (letting a0 = [a])

[a] = U «
A:=0

*

Therefore/?(#) = ( ^ E T : > l c [ α ] ) i s countable since/?(#) is a subcoUection
of the collection of all ̂ -element subsets of [a].

We also claim that F = {p(a): a E T j is a partition of T and further that

/>(*) */?(*) => (yA Gp(a))(vBep(b))(A ΠB=0).

We leave the proof of this claim to the reader.
It follows that the collection F is uncountable since T is. By PC, F has an

uncountable subcollection E with a choice function/. The set {f(p(a)) :p(a) E
E) is therefore an uncountable subcollection of T which forms a Δ-system with
root 0 .

Combining the theorems above gives us:

Corollary 2.5 For each n E ω, n > 2, the following are equivalent.
(1) ASL(n)
(2) CUΛPC

(3) ΔSL.

Proof: All that remains to be shown is that (yn E ω)(ASL(n)) => ASL since for
each « G ω , Λ > 2 , Δ S L ( Λ ) implies CUΛ PC which implies (VΛ E CO)(ΔSL(Λ)).
But this follows easily from the countable union theorem, which implies that for
every uncountable collection T of finite sets there is an n E ω and an uncount-
able subcollection all of whose elements have cardinality n.

3 Comparing the two definitions of uncountable Up to this point the
meaning of X is uncountable has been \X\ φ Ko Sets which are uncountable in
this sense are clearly Dedekind infinite sets and the assertion that our two defi-
nitions of uncountable are equivalent is equivalent to the assertion W^o that
every infinite set is Dedekind infinite (this is the notation of Jech [2].) The asser-
tion W*o has been studied extensively. See for example Howard and Yorke [1],
[2], Spiδiak and Vojtaδ [6], and Truss [7].
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In this section we will use ASL(^ Ko) and ASL(jί K 0 ,Λ) for the statements
ASL and ASL(n) from the previous section and we will use ASL(> Ko) and
ASL(> K0,A2) for the corresponding statements using the second definition of
uncountable.

Theorem 3.1 For all n G ω, n > 2, ASL(> K0,A*) =» H^o.

Proof: Assume ASL(> Xθ9n) for some n > 2. Then by an easy argument sim-
ilar to the one in the proof of 2.1, ASL(> K0,2) holds. Now we argue that
ASL(> K0,2) implies that every Dedekind finite set is finite. Assume that A is
a Dedekind finite set which is not finite. We may also assume that AΠω = 0 .
LetcY = {lk,a}:keωΛaeA}. Then clearly | T | > Ko. If | T | =K o then \A\<
Ko contradicting our assumptions so we have | T | > Ko Applying ASL(> K0,2)
to T gives a subcollection 8 of T such that | S| > Ko and 8 is a Δ-system. If r
is the root of 8 then either | r | = 0 or \r\ = 1. If \r\ = 0 then

\A\ > \{aeA:(lxGQ)(aex)}\ = \Q\ > Ko.

On the other hand if r = {/} then there are two possibilities, either t G A or
/ G ω . If *G\4 then | 8 | ^ | {{k,t}:kGω} | = Ko which is impossible. If tGω
then \A\ > |{{/,^} :βr GA}\ > | 8 | > Ko a contradiction.

Corollary 3.2 For α«y AZ G ω, n > 2, the following are equivalent:

(1) ΔSL(>K0,rt)
(2) CUΛPCΛW*0

(3)

Proo/: Under the assumption WχQi ASL(£ X0,k) and ASL(> K0,A:) are
equivalent for every k G ω, k > 2, as are ΔSL(^ Ko) and ΔSL(> Ko). Since
Δ5L(> K 0 ,Λ) implies PΓKo, the corollary follows from 2.5.

We note that as a consequence of the corollary, ASL(> Ko) implies
ASL(£ Ko).

Finally, we show that ASL(£ Ko) => Δ5Z(> Ko) is not a theorem of ZF. We
will do this by showing that ASL(^ Ko) is true and ASL(> Ko) is false in the
ordered Mostowski model ([2], p. 49). This will give \fZFUASL(^i Ko) =>
ASL(> Ko) where ZFU is ZF weakened to permit the existence of atoms. We
will then appeal to the transfer results of Pincus [5] to obtain our desired re-
sult VZFASL{£ Ko) => ASL(> Ko).

We begin with a brief description of the construction of the ordered Mos-
towski model. Let M' be a model of ZFU + AC with a countable set A of atoms
and a linear ordering < of A with order type that of the rational numbers. Let
G be the group of all order preserving permutations of A and for each finite sub-
set EoΐA, let ϊ\x{E) = {φeG:(Vae E)(φ(a) = a)}. Let Γ be the filter of sub-
groups of G generated by (fix(F):E <Ξ A AE finite). The ordered Mostowski
model Mis the permutation model determined by Γ, that is

M={xeM':(Vy<Ξ {x} U trcl(x))(3i/G Γ)(Vφ G H)(φ(y) = y)).

In this formula, trcl(x) denotes the transitive closure of x. If x G M and E is a
finite subset of A, we say E is a support ofx if (Vφ G fix(E))(φ(x) = x). We
will make use of the following facts about M:
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(4) EveryλrEMhas aleast support, supp(Ar), which satisfies (Vφ E G)(φ(x) =
x <=> φ E fix(supp(jc)).

(5) W*o is false in Mbecause in M, \A\ φ Ko and \A\ ̂  Ko.
(6) If x E Mis finite, then supp(x) = \Jtex supp(ί)

Theorem 3.3 ASL(> Ko) is false in M.

Proof: This follows from 3.1 and (5).

Theorem 3.4 ASL( φ Ko) is true in M.

Proof: By 2.4, it suffices to prove ASL(φ K0,2). Suppose T E Mis a collec-
tion of 2 element sets such that, in M, | T | φ Ko.

We first handle the case where (VΛ: E T)(supp(#) c supp(T)). In this case
T is well-orderable in M since supp(T) is a support for any well-ordering of T.
This together with (| T | φ K 0 ) M implies that | T | > Ki in M. Therefore | T | > Ki
in M'. Hence, in M' (since M' satisfies AC) T has a subcollection g such that
g forms a Δ-system and 191 = Ki. But supp(T) is a support for g and for each
element of Q, therefore supp(T) is a support for a bijection between g and Klβ

It follows that S ^ M, | g | = $ι in Mand 8 is a Δ-system in M.
On the other hand if there is some x E T such that supp(x) ^ supp(T), sup-

pose that x = {̂ 1,̂ 2} and that supp(T) U supp(x) = [aι,a2,...,an} where
a 1 < < an. Fix ay such that α, E supp(λr) - supp(T). We will assume that
1 <j<n. The proof can easily be modified to handle the cases j = 1 andy = n.
Let E = (supp(T) U supp(Λr)) - [aj].

By (6) there are three possibilities:

case 1. OjG supp(^) - supp(ί2).
case 2. ctj E supp(^) - supp(^).
case 3. aj E supp(^) Π supp(ί2).

In case 1 we construct a subcollection g of T such that
(i) g has support c ,£"

(ii) I9J = \la:aj-ι<a<aHl)\ inM.
(iii) g is a Δ-system with root {t2}.

This will suffice since it follows from (ii) and (5) that | g | φ Ko in M.
g is defined by

(7) g = fφ(*):φEfix(£)}.

We first note that g c T since for any 0 E fix(£), Φ(T) = T and therefore
φ(x) E T . Part (i) is clear. For (ii) we claim that the s e t / = {(φ(x), Φ(aj)):
φ E fix(ii)} is a one-to-one function from g onto {a: tf,_i < a < aJ+i} with sup-
port E. It is clear that/ has domain g and that/ is onto {a: O/_i < a < aJ+ι}.
The relation/is one-to-one, for suppose that φ9φG ίix(E) and φ(θj) = ψ(θj)
then ψ^φiaj) = aj so that φ~xφ E fixCEU {αy }). It follows that ψ~ιφ(x) = x,
hence Φ(ΛT) = ^(A:). Similarly/ is a function since for φ9ψ E fix(£'),

=* Ψ~ιΦ(x) = ̂  which by (4) implies ψ~ιφ(aj) = #y. Hence </>(#/) =
(iii) follows since supp(/2) ^ ^ therefore for each φ Eΐix(E), φ fixes



THE Δ-SYSTEM LEMMA 105

Case 2 is similar to case 1. In case 3 we construct a subcollection 8 of T sat-
isfying (i), (ii), and

(iii') g is a Δ-system with root 0 .

As in case 1 we define 8 by (7). The proofs of (i) and (ii) are identical to the case
1 proofs. For (Hi7) we first note that for φ G fix(Zs) with φ(x) Φ x we can con-
clude by (4) that φ(aj) Φ aj and therefore by (4) that

(8) Φ(ti)*tιΛφ(t2)Φt2.

It follows from (4) that φ(supp(z)) = supp(φ(z)) for all z G Mand therefore

(9) Φ(tι)Φt2Aφ(t2)Φtι.

Combining (8) and (9) gives us (Vφ E fix(E))(φ(x) Φx=* φ(x) Π x = 0 ) . It fol-
lows that the elements of 8 are pairwise disjoint. This completes the proof of 3.4.

The proof that the independence results can be transferred to ZF will require
the following lemma.

Lemma 3.5 For any ordinal a, if a is a collection ofsetssuch that | β | < Kα+1

and (VxG Q)(\x\ < Kα) then | U β | £ K+2-

Proof: Assume the hypotheses and that | UQ| ^ Kα + 2. Let Z c (Jβ have car-
dinality Kα+2> then af = {x Π Z:x G.a} satisfies | G ' | < Kα+i and (Vx G
β ' ) ( | * | ^ K) and | U β ' | = Xα + 2. Let < be a well-ordering of U β ' For each
xsά', < Γ X is an ordering of type < Kα+1. From these well-orderings together
with a well-ordering of &' of type < Kα+1 it is easy to construct a one-to-one
function from \JQ' into Kα+1 X Kα + 1. But |K β + 1 X Kα + 1 | = Kα+1 (see [4],
p. 293). This contradiction completes the proof of the lemma.

Now we note that

(10) (vZ)( |Z |5έK 3 -^(vTe(P(P(Z))[(( |T |^Ko)Λ(V/eT)( | / |=2))

- (38 E 6>(P(Z))(S c T Λ ( |8 | ̂  Ko) Λ 8 is a Δ-system)])

(which is ASL( £ Ko) restricted to families T such that | (JT | ^ K3) is injectively
boundable in the sense of [5] since \Z\ ̂  K3 and | Z |_ < K2 are equivalent (see
[5].) Since -ιΔSZ(> Ko) is boundable (in the sense of [5]), we can use the trans-
fer results of [5] to obtain a model of ZFin which (10) is true and ASL(> Ko)
is false. Therefore to complete our argument it will be sufficient to prove the fol-
lowing lemma.

Lemma 3.6 ZFY (10) -• ASL(£ Ko).

Proof: Let T be a collection of pairs such that | (JT | > K3. Let X g UT sat-
isfy 1̂ 1 = K2 and let 8 = \Λ G T :A Π X Φ 0 ) . For each a G X let % =
{AeQ:(3b)(A = [a,b]Λb£X)). If for some a G X, | T β | ̂  Ko then % is
an uncountable Δ-system (with root {#}) and we are done. We may therefore
assume that for every x G X, | T α | < Ko. It follows that for every a G X,
| U % | <K 0 .By3.5 | U { U % : « G X] | ^ K3. If we let T ' = [v4 G T M c^r},

= T / C/(U{%:^G^})so | U 8 | ?έ K3. Also by 3.5 | 8 | ̂  Ko. There-
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fore by (10), Q has an uncountable subcoUection which forms a Δ-system. This
completes the proof of our independence result which we state as:

Theorem 3.7 ZF\tASL(£ Ko) => ASL(> Ko).
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