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Closed Categories and Categorial Grammar

DANIEL J. DOUGHERTY

Abstract Inspired by Lambek's work on categorial grammar, we examine
the proposal that the theory of biclosed monoidal categories can serve as a
foundation for a formal theory of natural language. The emphasis through-
out is on the derivation of the axioms for these categories from linguistic in-
tuitions. When Montague's principle that there is a homomorphism between
syntax and semantics is refined to the principle that meaning is a functor be-
tween a syntax-category and a semantics-category, the fundamental proper-
ties of biclosed categories induce a rudimentary computationally oriented
theory of language.

1 Introduction This paper presents some preliminary steps in an approach
to natural language via category theory. The proposal will be a conservative one
in the sense that we work within the tradition of interpreting meanings of phrases
as mappings, but the difference here is that we do not assume more than that —
in particular, meanings need not be standard set-theoretic functions. In fact, the
goal is to try to isolate the consequences of a weak claim about language (that
meanings behave like functions), by working in the most general theory of func-
tions: category theory. Issues of intensionality will not be addressed, but we do
not feel that this is an essential restriction on the approach.

Some of the novelties of this setting are:

• Types are considered as syntactic entities, eligible for semantic interpre-
tation. This allows a model-theoretic analysis of type shifting.

• The general character of the theory is computational and algebraic, rather
than set-theoretic.

• The goal is not an explication of what meanings are, but rather, how they
behave.

Our paper attempts to show how one might discover categories for language
by working from semantic intuitions, and further motivates the approach on
methodological grounds (see the discussion of "model-theoretic semantics" be-
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low). In this way, we attempt to consolidate the seminal insights of Lambek and
Montague [17],[18]. Montague's program for model-theoretic semantics is an ac-
tive area of investigation (Dowty [7] is an introduction).

The work described here was done in 1986, inspired by the early ideas of
Lambek [10],[11] on categorial grammar and the resurrection and development
of these ideas by van Benthem ([5], for example), but independently of Lambek
[14] (the record of a 1985 conference), in which he makes essentially the same
proposal. The presentations there focus on a syntactic calculus, whereas we con-
centrate here on categories as a foundation for interpretation. Needless to say,
the connection between the two is well known to Lambek, as the originator of
the notion that cartesian closed categories and typed lambda-calculi are the same
subject (Lambek [12],[13]). Nevertheless, we were persuaded that it is worthwhile
to present this account, which discovers closed categories by working directly
from the linguistic data, and emphasizes the model-theoretic consequences of the
approach.

Lambek's calculus describes a natural class of syntactic type-computations.
The ideas underlying this calculus have found application in the work of Ades
and Steedman [1], Partee and Rooth [19], Bach [3], and others.

We need to confront some unfortunate clashes of terminology between cat-
egory theory and categorial grammar. The term "category" will always have its
mathematical meaning (cf. MacLane [16]), while "syntactic category" will be used
to denote NP, VP, or their categorial grammar correlates. Fortunately, category
theorists say "categorical", while linguists say "categorial"—this will help.

The abstraction of type b over type a will be denoted by (b/a) (right-
searching), (a\b) (left-searching), or (a,b) (in an undirected system).

Montague's treatment of semantics is commonly described as "model-
theoretic", but this is true only in a weak sense. In that treatment, phrases
take their meanings in objects in the hierarchy of function spaces constructed
over a set of basic types. But note that once the sets interpreting the basic types
are chosen, everything else (the nature of the function spaces, the available map-
pings between them, etc.) is determined by set theory. Thus, of those facts which
are common to all Montague interpretations, there is no way to distinguish im-
plicit language universals from accidents of set theory. Indeed, given that one
of the features of an avowed model-theoretic semantics is that "true in all mod-
els" equals "true about language", embracing a strict set-theoretic framework
amounts to a claim that accidents of set theory are language universals.

As an example, note that in every Montague interpretation, the cardinality
of the set E of entities is strictly less than that of the set P = {p \p: E -> {0,1}}
of intransitive verb phrase denotations, which is in turn strictly less than that of
the set {g\g:P^> (0,1)} of generalized quantifier denotations. This is not mo-
tivated by any linguistic intuition, as far as we know. Of course, the type assign-
ments leading to the above are subject to dispute, but the point here is that if all
models are function hierarchies, a choice of type has as a side effect an asser-
tion about cardinalities.

Another drawback to a restricted notion of "model" is that it prevents us
from defining certain notions model-theoretically. Type-lifting is an example. In
order to reflect the similar syntactic behavior of proper names and quantified
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noun phrases, Montague assigned the same type to these classes in the lexicon.
This treatment is justified by the observation that elements of a set E naturally
give rise to (principal) ultrafilters. Similarly, the Geach Rule: "raise phrases of
type (a9 b) to type ((c, a), (c, b))" is justified by the canonical lifting of a func-
tion/in (A,B) to the function compose-with-f in ((C9A)9(C9B)).

But in every Montague interpretation, there will be (lots of very noncanoni-
cal!) functions from (A9B) to ((A, C),(B9 C)). Why then do we not agree to raise
phrases of type (a9b) to, for example, ((a9c)9(b9c))Ί The pretheoretic answer
is, "because there is no natural way to interpret such a shift". Lambek's calcu-
lus provides a proof theoretic answer —it is not derivable in the system.

A properly model-theoretic answer will define the notion of "valid" type shift
as one which obtains in all models and reject the shift proposed above since there
are models that provide counterexamples. For us, these models will be closed cat-
egories, and the type-shifts will be arrows in such categories. The Completeness
Theorem hinted at in the last section tells us that these answers agree—the Lam-
bek calculus generates precisely the valid shifts.

The categories presented in the present paper will not have enough structure
to reflect the subtler aspects of either syntax or semantics, but they do provide
a natural, flexible interpretation of abstraction, application, type-lifting, and the
like. Our claim is that categories for language should have at least the structure
of those presented here, and that these latter form a framework for future work.

Very little background in category theory is assumed; all of the definitions
and results about categories are standard, and proofs are omitted. In the con-
text of categories we treat the words "map" and "arrow" as synonymous.

2 Closed Categories In this section we try to motivate the ingredients that
should go into a categorical treatment of grammar and of meaning and arrive
at the notion of closed category, essentially due to Eilenberg and Kelly [8],

The fundamental assumption is Frege's compositionality principle. It is help-
ful to construe this as two assertions:

• Phrase meanings operate on phrase meanings.
• The meaning of a compound phrase is derived from the meanings of its

parts and the syntactic structure of the phrase.

The first assertion, innocently interpreted, leads to the doctrine:

"types denote sets, and meanings are functions on these sets".

We want to avoid jumping to such a conclusion, for the reasons discussed in the
introduction, and suggest the more general strategy:

"types stand for objects in a category and meanings are arrows".

This is a constraint on semantics. When we embrace that aspect of Montague's
methodology which proposes that meaning is a homomorphism from syntax to
semantics [17], we commit ourselves to the idea that syntax is a category as well.

So far, the outline of the categorical approach to categorical syntax is as fol-
lows. Types are objects (a9b9c9...) in a category, phrases are arrows, and com-
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plex phrases are built by composition. The first step is to uncover the nature of
these categories. The data for the syntax-categories we define will reflect the com-
binatorial principles of categorical grammar, and the semantics-categories, where
meaning computations are done, will need to have enough structure to interpret
the arrows of the syntax.

Ajdukiewicz's original system of categorial grammar in [2] had undirected
exponential types (a9b). Bar-Hillel [4] introduced directionality of the functions,
allowing the syntax to forbid transposition of elements. The use of undirected
functional types is sometimes presented as a simplifying assumption (e.g., in [5])
allowing a focus on mechanics of type shifting rather than syntax. For Ades and
Steedman [1] it reflects a claim that richer modes of combination can free the
grammar from consideration of order. We want to be as sensitive to the syntax
as possible and do not want to build a claim such as Ades and Steedman's into
the foundations, and so our syntax-categories will be general enough to encom-
pass each of these points of view.

Categorial grammar is a grammar of typed function application. Any such
system has a two-layered syntax, since there are rules for constructing types as
well as for building terms, the utterances of the language. (For example, the pure
typed lambda calculus builds types exclusively with an exponentiation operator,
whereas richer versions allow product types, sums, and even quantification.) We
first describe the nature of the objects in our categories, then discuss the arrows.

The first part of the functionality principle requires that meanings play two
roles: they must behave like functions and like inputs. Categorically, this means
that for objects a and b, the set of all arrows from a to b must also appear, in
some sense, as an object. This latter property is precisely what the definition of
"closed category" (Definition 2.1 below) is intended to capture. This requirement
is met by function spaces in the category SiϊT upon which Montague-style seman-
tics is founded—exponentiation is function-space construction. (Note that even
though SϋTdoes not distinguish between the interpretations of a\b and b/a,
categorial syntax does.)

Turning to the second of Frege's principles, a few words are in order about
the notion "syntactic structure of the phrase". Pure categorial grammar uses only
the exponentiation operators \ and / (or perhaps a single symmetric operator)
on types, and concatenation in the term syntax. It is natural to introduce a pair-
ing operator into the type syntax to construct a type for a pair of lexical items
(such an operator has been profitably added to the lambda calculus, for exam-
ple). After all, the syntax should be able to find a place for the pair aβ as a
phrase composed of type a and b items. Thus the objects of our categories should
be subject to a pairing operation. This signals a shift to monoidal categories. It
would be misleading to call the operation a product, as will be seen later.

Ajdukiewicz's categorial grammar, which allows only simple application in
its semantic component, could do without pairing in its syntax since two constit-
uents of types, say a and (a\b), are always immediately combined, and always
in the same way. For us, the most significant consequence of the introduction
of pairing will be that application can be represented as an operation in the sys-
tem, specifically as an arrow in the syntax category, out of a pair made from
types such as a and (a\b).
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When we look ahead to interpreting the types and phrases in a semantics-
category, we can see that in fact the operators *, \, and / should actually be
functors, that is, that they induce operations on arrows as well. Consider * first.
Suppose/: a -> a' and g: b -• b' are phrases. The map/ is an indication that there
is a computation from meanings of type a phrases to meanings of type a' phrases,
and similarly for g. The meaning of the map (/* g) can be thought of simply
as the joint computation. Functoriality requires that this pairing respects com-
position. This is nothing more than a weak version of compositionality (in this
instance, the confluence of mathematics and linguistics jargon is felicitous).

Exponentiations should naturally extend to functors as well that are, in a/b
and b\a, contraυariant in the argument b and coυariant in a. This means that
for/: b->a and g:c^dthere is an arrow (f\g) from (a\c) to (b\d)9 and an
arrow (g/f) from (c/a) to (d/b). The construction corresponds to the follow-
ing intuition. Suppose phrases of type b can shift to type a and that type c shifts
to d. Then a phrase γ of type (a\c) can be thought of as also belonging to
type (b\d): when such a phrase is presented with a type b item, that item can
be promoted to type a9 then y is applied, then the type c result shifted to type d.

It is convenient to recognize the empty string as the identity element for pair-
ing. This should live in some type: let 1 denote the categorical object interpreting
that type. Intuitively, we think of the empty string as being the only inhabitant
of that type, but all that is required is that the object 1 serve as the identity for
object pairing.

The final piece of data to go into the definition of closed category reflects
the insight that led to Lambek's revival and generalization of Ajdukiewicz's orig-
inal categorial grammar. We motivate it here by an example in the category of
sets. Suppose h is a function of two variables, from X x Y into A. Then for
a fixed y in Y one can define a function hy from Xto A9 defined by hy(x) =
h(x9y). We have just described a process (a function) by which elements of Y
yield functions from X to A. The process itself depended on Λ, and it is tradi-
tionally called curry(λ) after the logician Haskell Curry.

Definition 2.1 [Eilenberg and Kelly (1965)] A biclosed monoidal category (or
simply closed category) Q is a category with the following data:

Pairing: a functor from C X β to 6,
mapping X, Y to (X* Y).

Exponentiation: two functors from Qop x Q to β,
mapping X, Yto (X*> Y), and X, Yto (Y<= X), respectively.

Unit: an object 1, and for each X, two isomorphisms:
lux:(l*X)-+X, mdrux:(X*l)-+X.

Adjointness: a collection of natural isomorphisms:
curryXyY,A: Horn (X* Y,A) = Hom(Y9(X=> A))9 and
cιuτy'χ9γ%A:Hom(X* Y,A) s Hom(X9(Λ <= Y)).

As a first application of the axioms, consider the adjointness

Hom(X* Y9A) s Hom(Y9X => A)

and set Yequal to (X=* A). The conclusion is that

Hom(X* (X => A)9A) = Hom((X => A)9(X => A)).
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But the second Horn-set always has the identity map in it, so we conclude that
there is always a map in Hom(X* (X=> A),A), and a special one at that, since
it corresponds to an identity under a natural isomorphism. We shall call this map
appXiA- Clearly we could play the same game using the other adjointness, and
we would derive a map app'XA from (A «= X) * X t o A.

We can begin to support the claim that the objects (X =» A) "behave like"
function spaces. In the category of sets, each app is indeed application, and,
when h is a function from X x Y to A and curry (h) maps Y to the function-
space X => A, the application operator undoes the currying. This situation is
faithfully reflected in any closed category:

Proposition 2.2 (Universality of app and app') For each two objects X and
A in a closed category, there are maps

• appXA:X*(X=>A)-+A,and

• app'XiA:(A*X)*X-+A,

which are unique with respect to the following properties (respectively):

• for every h:(X*Y)-+ A, app <> (idx * curry (h)) = Λ, and
• for every h: (X* Y) -> A, app' <> (curry'(h) * idx) = Λ.

As it happens, the property above is equivalent to adjointness and so could have
been taken as the key defining property of closed categories.

Another interesting map is determined if one returns to the Horn-set equa-
tion and substitutes (X* Y) for A. We leave this to the reader.

Definition 2.3 A closed category is

associative if it has a collection of natural isomorphisms:
assocΆiBiC: (A*(B* C)) -• ((A *B)* C), and

symmetric if it has a collection of natural isomorphisms:
symAfB: (A*B)^> (B*A).

All of the data above is subject to a coherence restriction, which means that all
reasonable diagrams involving the maps defined above commute (cf. [16]).

Lemma 2.4 In a symmetric closed category, there are natural isomorphisms

absymXyY:(X=> Y)->(Y<=X).

It follows that in a symmetric closed category any maps to or from some (X=> Y)
induce maps to or from (Y<= X), by composing with absym or its inverse. So
an undirected system can be thought of as a choice of one of the operators,
say =>, and an automatic translation of any computation involving <= into one
involving =>. An undirected type syntax is the reflection of such a decision; the
symmetry is advertised by a notation such as (x,y).

The issue of associativity is related to the methodological question of whether
the input to the semantic component is considered to be an unstructured string
or a syntax tree. It turns out that associativity is needed in order to have a com-
position arrow from objects (A => B) and (B => C) to (A =» C). This latter is the
embodiment of a proposal made by several authors (for example, Ades and
Steedman's Forward Partial Combination).
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Examples Each of the following is a symmetric associative closed category.

• SET, the category of sets and functions between them.
• CAT, the category of all small categories (those with only a set's worth of

objects and maps), with functors between them.
• CL, the category of complete lattices and complete lattice homomor-

phisms. This suggests the intriguing possibility of using Scott domains for
natural language semantics. Related examples include the category of Bool-
ean algebras and the category of Heyting algebras. Keenan and Faltz [9]
have made a proposal making extensive use of Boolean-algebraic models.

• Generalizing all of the above, any cartesian closed category satisfies Def-
inition 2.1. In fact, the categories of Definition 2.1 will fail to be carte-
sian closed just when pairing is not a categorical product. This generality
is crucial for categories that are to serve for syntax, as will be seen in the
next section.

• The example which has been the motivation for this entire project is this:
the types in a lexicon serve as objects, and proofs in the Lambek calcu-
lus serve as arrows. The rules of the Lambek calculus correspond precisely
to the requirements for a closed category.

Horn-sets as objects. We have not yet made any use of 1. In the category
SET, when pairing is interpreted as cartesian product, any one-element set can
serve as 1; let us assume one has been fixed. Now note that arrows from 1 to a
set 5 pick out a single element of S, and indeed it is a standard trick to identify
elements in S£T with arrows from 1. Remarkably, the axioms for closed cate-
gories allow us to do that generally, as we now show.

The fact that 1 is the identity for * generates some natural isomorphisms be-
tween Horn-sets:

Proposition 2.5 For any X and A,

Hom(X,A) s Hom(l,X =» A) = Hom(l,A *=X).

This is an immediate consequence of the basic adjointness condition from Def-
inition 2.1 and the facts that 1 * Xand Λ> 1 are each isomorphic with X.

Notation Suppose/: X->A, and let g: 1 -• (X=> A) or g: 1 -• (A <= X). Then
we write

• \f:l-+(X=>A), and
• f]:l-+{A~X)
• \g:X-+A

for the maps given by the bijections from Proposition 2.5.

From now on, the phrase "1-element of A" will mean "arrow from 1 to A".
Now if h:X-> A, then \h: 1 -> (X => A). The sense in which the objects

(Xs* A) represent the Horn-sets Horn(X,A) can now be stated:

elements of Hom(X,A) correspond to 1-elements of (X => A).

As it stands, this is pure convention. We need to go further and justify our
earlier informal claim that the exponentiation objects behave like Horn-sets, now
better stated as "the 1-elements of (X=> A) behave like arrows from A" to A".
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Suppose x is a 1-element of X and h: X -» A. Then Λ <> x is a 1-element of A.
But in the category we can use our application arrow app on the pair h and x,
or more precisely, the 1-element (x* \h) of the object X* (X => A). This also
yields a 1-element of >1. The next lemma says that these will always coincide:

Proposition 2.6 Let x: 1 -• X and h:X^>A. Then

hoχ = appiXfΆ)o(χ* \h), and

hoχ = app'(XiA)o(h]*x).

If A: is a 1-element of X and h a map from X to A, then we will often think
of h oχ as the result of "applying" h to x—this usage is justified by the previous
lemma.

The essence of what has been abstracted from the category of sets is this very
fruitful ambiguity: we interpret types as certain objects (such as (A => B))9 but
these can also be regarded as collections of arrows (such as Horn (A,B)). Thus,
an individual phrase meaning can be treated as an element (e.g., when it is in-
put to another meaning), or as an arrow (e.g., when it is thought of as an op-
erator).

In the next section we show how phrases of basic types such as e, /, etc., may
now be interpreted as 1-elements of the appropriate category objects. In this way,
we uniformly treat all meanings as maps.

3 Syntax-categories The previous section defined and attempted to moti-
vate the kind of category structure which seems appropriate to syntax. In this
section we work out some small examples to get a sense of the phenomena our
program might cover.

Definition 3.1 Fix B9 a set of base type symbols.

• Typ is the set of type expressions generated from B and the constant sym-
bol 1 by the binary operations / and \.

• A lexicon is a set of entries of the form [a: a], where a is a lexical item
and a E Typ.

• A syntax tree is a binary tree whose leaves are lexical items.
• A phrase is a syntax tree with a linear ordering on its leaves.

Some notes: the lexicon is not assumed to be a function; that is, a given a
can be assigned different types. The order on the leaves of a phrase represents
the order of the words as an utterance; it need have no relation to the tree or-
der. The interior nodes of a phrase are not labeled, and in particular there are
no nonterminal symbols being used. We are laboring under one fairly large con-
straint on the notion of sentence structure, namely that our trees are binary. This
stems from the fact that the categorical pairing is a binary operation and ulti-
mately from the fact that function application, the true primitive operation, is
binary.

Example Let B= [e,t].
Take the lexicon L to contain the following (writing/? for (e\t)):
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• [John: e], [Ann: e],
• [walk:/?],
• [loves: (p/e)],
• [every :((t/p)/p)].

Both John loves Ann and Ann John walk are phrases, the significant difference
being that only the first will be naturally associated with an arrow from 1 to t
in every closed category (as we will demonstrate). This is what qualifies the
former phrase to be a sentence.

Definition 3.2 Let B be given and let Lex be a lexicon over B. A syntax-
category over Lex is a triple <β,ω,μ>, where

• G is a closed category,
• ω is a function from B to the objects of G, and
• μ is a function from Lex to the arrows of β, such that when [a: a] E Lex,

μ([oc :a]) is an arrow from 1 to ω(a).

Note that since Typ is freely generated over the type symbols B, any function ω
from B into a closed category G will extend uniquely to a homomorphism from
all of Typ (with / and \) to Q (with <= and =•). The same name, ω, will be used
for the extension.

Example Given a lexicon, there is a particular syntax-category which arises
naturally, called the syntax-category generated by that lexicon. The underlying
closed category is, informally, the smallest closed category containing the type
symbols from B as objects and the objects of Lex as arrows. In the notation of
the previous definition, we take ω and μ each to be the identity. We call this the
initial model for syntax given by the lexicon.

Using the lexicon of the previous example, let β be given, and consider the
initial model for syntax. Again writing/? for (e\t), we have the following:

• μ ([John: e]): 1 -»e, and μ([Ann: e]): 1 -• e,
• μ ([walk:p]):l-»A
• μ ([loves :p/e]): 1 -»(p/e)
• μ ([every]: (t/p)/p): 1 -> (t/p)/p

and so forth.

Notation Given a syntax category, let us call an arrow/: 1 -> A a term of
type A.

Unfortunately, phrases of length greater than 1 will be not associated with
terms without invoking a technicality. In any closed category, if / : 1 -+A and
g: 1 -• B, then the paired arrow (/* g) maps (1 * 1) to (A * B). Since (1 * 1) is
isomorphic to 1, we naturally get from/*g a 1-element, that is, a term.

Notation Use ( / * g) to stand for the term just described.

Now we are in a position to associate with phrases an arrow out of 1, in a
manner that extends the data in the lexicon:
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Definition 3.3 Let <G,ω,μ> be a syntax-category and Σ a phrase.
Then the term corresponding to the phrase Σ, μ(Σ), is defined by induction

on the tree underlying Σ:

1. if Σ is a single node, say [σ: a], then

μ(Σ)=μ(σ)

2. if Σ has Γ and Δ as its left and right subphrases, then

When a syntax-category is fixed, phrases determine terms uniquely, so we will
often speak of (for example) "the term John walks" rather than "the term cor-
responding to the phrase John walks".

Note that every string corresponds to a term, whether it yields an "interest-
ing" arrow in the syntax-category or not. For example, the phrases shown in the
example earlier are associated with terms as follows:

• John (loves Ann) corresponds to (j * (/ * m)), an arrow from 1 to the
object (e* (((e\t)/e)*e)).

• (Ann John) walk corresponds to (m * (j * w)), a term of type (e *
(e*(e\t))).

We have not yet explained the sense in which the first phrase qualifies as a sen-
tence and the second "doesn't parse". We prefer to present this in the context of
semantics, in the next section.

4 Semantics as a functor The reflection of Montague's idea of a homomor-
phism between syntax and semantics in the present setting is the notion of a func-
tor between a syntax-category and a semantics-category.

Definition 4.1 Let © be a syntax-category. A semantics functor is any func-
tor T : β -^ S from C to a closed category S which preserves the structure of
Definition 2.1.

The value of an arrow in © is the image of the arrow in S.
Informally, we will refer to the image of a semantics-functor as a semantics-

category. We naturally view the image of t under a semantics functor as the ob-
ject of truth values, and will designate it T. The value of a term will be an arrow
from the 1 of the semantics-category to T— such arrows are the meanings in our
semantics-category.

We now give some examples to indicate how computation in a semantics-
category might proceed, and in particular how some type shifting is inherent in
the structure of closed categories. Since semantics-categories are closed, they
come equipped with arrows app, curry, etc. These are crucial in computing mean-
ings for terms.

4.1 Some meaning computations Consider the lexicon of the previous sec-
tion, let © be the initial model for syntax, and fix a semantics-functor for β. To
simplify notation, suppose that the semantics-functor maps the syntax-object e
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to semantics-object E, etc., and that term./ is mapped to semantics-arrowy, and
so forth.

1. Consider John walks. The value of this term will be

y * w:l-> (E*(E=* T)).

We also have appEyT° (y * w): 1 -> T. So the value of John and the value of
walk combine via application to yield a T-value.

Another construction is to consider λy, which is explicitly an arrow from E
to T. This composes with w to yield an arrow from 1 to T. Proposition 2.5 as-
sures us that these are the same map.

2. Next consider (Every man) walks. This will have value

(v * m) • w: 1 -» ((((T<= P) «= P) * P) * P),

which reduces to a 1-element of Γby two uses of app'.

3. No type-lifting was involved in the first example above. The fact that the same
word can sometimes behave as a function and sometimes as an argument, with-
out changing type, is built into the system. Type-lifting is available, though, in
a natural way. We present Montague's treatment of names as an example. We
have already seen that Hom((E* (E => T))> T) is not empty—it contains appEtT.
Now by curry', we conclude that Hom(E,T*= (E =» T)) is not empty, in every
closed category.

Let us denote by mont the map which is carry'(appEyT). So mont °y: 1 ->
(T<= (E=> T)). This is the generalized quantifier meaning of John. We calculate:

(mont°j) + w:l-+ (Γ<= (E=> Γ))*(£<= T),

and so app' immediately returns a 1-element of T. The naturality of all of our
canonical arrows implies that this gives the same result as the first one. The use
of app' rather than app signals the fact that after the type-shift on John, the
function is on the left of its argument.

4. Finally, look at the term introduced earlier corresponding to the string (Ann
John) walk. This will get a value which is a map from 1 to ((E*E) * (£ <= T)).
There is no natural map that will interact with this. Of course one always has
"nonstandard models", categories in which there are arrows with which this
phrase's value may combine, even models in which this phrase may be a com-
ponent of a "truth value" arrow. But a string will parse correctly as a sentence
in the present conception precisely when there are maps in every model which
lead it to a truth value.

This last example indicates why we do not want to take cartesian closed cat-
egories for syntax, and in particular, why there should not be definable projec-
tions from (X* Y) to X and to Y. If there were, we could apply these to the type
(E*E) inside of ((E*E) *(E*=T)) above, shifting this type to (E)*(E*= T),
then evaluate to Γas usual. The effect of such a projection is to ignore one of
the words in the sentence. In general, if there is a projection map from a type
(X* Y)9 say to X, then a phrase of type y, when combined with an x-type, can
have no effect! This does not seem to happen with any regularity in language.
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4.2 The Lambek calculus Every model comes equipped with some arrows,
such as id, app, mont, etc., just by virtue of its being a closed category. We might
call these the valid, or the logical arrows. The lexicon determines other arrows
as interpretations of the "dictionary" values; these might be described as "con-
tingent". Meaning in a model is then computing with the arrows at hand—the
contingent meanings in the language interacting with the logical arrows.

The question naturally arises: what are the logical arrows? The answer is, pre-
cisely those derivable in the Lambek calculus. The argument is based on general
considerations of universal algebra, if we define the class of closed categories as
an equational variety. A very clear presentation of this point of view in the con-
text of cartesian closed categories will be found in Lambek and Scott [15]. The
modifications required to treat (simply) closed categories are routine.

Hint of proof of Completeness: For type expressions x and y, there will
be a map in all closed categories from ω(x) to ω(y) just when there is a closed
Σ-term of type x-+ y. But this is just what "valid" will mean when x and y are
(paired types corresponding to) the left and right sides of a Lambek sequent. The
result follows by a Curry-Howard style "types as formulas" observation: the rules
for building Σ terms mimic the proof rules exactly.

Completeness of the Lambek calculus for a different notion of semantics is
found in Buszkowski [6].

Thus the theory of syntax outlined here is first order, even equational (and
decidable, as shown by Lambek). Passing to viewing strings as arrows in a cat-
egory provides a refined point of view on the type shifting of categorial gram-
mar, in that the canonical type shifts whose existence is licensed there are all
definable by terms in the equational logic.

4.3 Richer categories The present paper has adopted a moderate approach;
we committed ourselves only to the assumptions necessary to make sense of the
notion of meanings as maps between types. In order for this setting to incorpo-
rate the insights of linguistics research, each of the syntax-categories and seman-
tics-categories will need to be enriched. Some initial ideas:

The interpretation of the basic types certainly will admit more structure.
Probably the closed categories serving for semantics should have a designated
object Ω to serve as the interpretation of the type t, and axioms formulated to
induce Ω to behave properly. The obvious way to arrange this would be to use
toposes as semantics-categories. In a topos, Ω is the subobject classifier, which
is the topos theory notion of "set of truth values".

To begin to treat intensionality, we might designate an object S in each cat-
egory to correspond to a possible worlds index type s in the lexicon.

Another idea for treating intensionality which is compelling at first glance
is to use functor categories. These are categories of the form SETa, where CE is
a small category. A standard intuition is to view the objects of β as states of
knowledge, and the objects of SETa as variable sets, with truth in SETa being
parameterized by the structure on the states imposed by Q. The nature of truth
in a functor category, however, is such that if we are to treat the objects of G
as possible worlds, there can be a map (in Q) between worlds A and B only if
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the true assertions in world A (as reflected in SETa) are contained in the true
assertions in world B. So, for instance, the maps in β should not correspond to
the passage of time.

On the syntactic side, the presence of a pairing operator in the type syntax
now permits a treatment of functions of more than one variable, for example
transitive verb phrases as functions of two e arguments, or determiners taking
two ((ί\e)\e) arguments. Our categories are already set up to interpret a word
whose intuitive type is, say, "from ((t\e)\e) and ((t\e)\e) to /", as an arrow
from ((Γ*= E) <= E) * ((Γ<= E) <= E) to T.

Extensions to the type-lifting mechanism may also be in order, especially in
the presence of several-variable functions. One deficiency of the Lambek calcu-
lus is that it does not provide for the shift of and or or to higher types. If we as-
sume that there is a diagonal functor 3D, sending object A'to (X* X) we can
justify type lifting on types that are (intuitively) functions of two variables. For
instance, maps such as and and or from (Γ* T) to T will then naturally lift

In any event, one of the key features of the program outlined in this paper

is that a change in one of syntax or semantics automatically has consequences

for the other if we require meaning to be a functor. The idea to build the nature

of this link into the foundations is Montague's, of course, but it came at the cost

of a somewhat rigid theory of syntax. We have tried to suggest a foundation with

enough structure to coordinate the insights of researchers in syntax and in se-

mantics.

Acknowledgment I owe a debt to F. E. J. Linton for many discussions about category
theory: errors or infelicities above are probably things we did not talk about and are cer-
tainly my responsibility.
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