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On the Question Όo We Need Identity?'
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Abstract Sommers posed the question 'Do We Need Identity?' and an-
swered in the negative. According to Sommers, the need for a special iden-
tity relation resulted from an arbitrary distinction between concept and object
introduced by Frege and retained in modern predicate logic (MPL). This is
reflected in the syntactic distinction between predicate and individual con-
stant. Traditional formal logic (TFL) does not respect this distinction and,
as a consequence, has no need for a special identity relation. But Sommers's
position has not gained wide acceptance. While it is conceded that TFL can
express the identity of individual constants, it is quickly pointed out that this
falls far short of providing the expressiveness of the logical identity relation.
But the precise extent of the deficit in expressiveness has not been deter-
mined. It appears that Sommers's position on identity has not been ade-
quately formalized to permit such a determination. This paper formalizes and
extends Sommers's position on identity. This formalization is compared with
MPL to define precisely the difference in expressive power. The formal lan-
guage defined for this investigation is similar to the language of MPL. The
similarity will not only facilitate comparison, but perhaps will also make this
formal language more palatable to readers whose experience and/or predis-
position favors MPL.

/ Introduction The question 'Do We Need Identity?' was raised by Sommers
[4],[5]. He answered that a special identity relation is not needed in traditional
formal logic (TFL), since predication and the laws governing it already allow
identity to be expressed. But Frege injected a new, and arbitrary, distinction
into modern predicate logic (MPL), which gave rise to the need for an identity
relation.

The new distinction is between concept and object, reflected in the syntac-
tic distinction between predicate and individual constant (or name). Its import
is that a predicate can predicate, but an individual constant cannot. Conse-
quently, two individual constants can be related only under a binary predicate.
In particular, two individual constants can be declared identical only by a binary
identity relation.
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TFL does not respect this distinction. In TFL an individual constant, denot-
ing an object, can occupy the predicate position. For example, Ήans is John'
predicates the property (concept) of being John to Hans. But if 'John' is a pred-
icate in Ήans is John', consistency dictates that it is a predicate also in 'John is
kind', and hence can be quantified. Thus 'some John is kind' must be well-
formed, and must assert that the denotations of the predicates 'John' and 'kind'
have a nonempty intersection. Since 'John' is singular (i.e., denotes a singleton
set), this is tantamount to asserting that the unique element in the set denoted
by 'John' is a member of the set denoted by 'kind'. Therefore, 'John is kind' can
be viewed as an abbreviation for 'some John is kind'. Because of the singular-
ity of the predicate 'John', 'some John is kind' is equivalent to 'all John is kind'.
To indicate that 'John' is thus simultaneously universally and existentially quan-
tified, Sommers writes '*John is kind'. This he calls 'wild quantity'. When the
arbitrary distinction between object and concept is eliminated, Sommers argues,
the need for a special identity relation disappears. Thus "Ήans is John' asserts
that the denotations of the predicates 'Hans' and 'John' have a nonempty inter-
section (equivalently, the denotation of Ήans' is a subset of the denotation of
'John'), that is, are identical. Sommers gives a demonstration that for individ-
ual constants a and b, the unary predication '*# is b9 in TFL has all the prop-
erties ascribed to the binary predication 'α = b' in MPL.

Sommers's position has not gained wide acceptance. Neither has it received
a full evaluation. This is at least in part due to inadequate formalization and/or
failure to completely exploit the potential of Sommers's views. The objective of
this paper, and the claim made for it, is a precise and complete explication of
Sommers's position on identity.

Sommers's theory of identity is formalized and extended, and then compared
with MPL to determine precisely the difference in expressive power. The formal
language defined for this investigation (hereinafter 'PCS') differs from the lan-
guage of MPL (hereinafter 'PCI') principally in that the distinction between pred-
icate and individual constant is not present; in other respects they are similar.
The similarity will not only facilitate comparison, but perhaps will also make
PCS more palatable to readers whose experience and/or predisposition favors
MPL.

In the following sections, the syntax and semantics of PCS are defined. Then
the essential properties of singular expressions are established. To facilitate com-
parison, a conventional definition of PCI is provided. Translation from PCS to
PCI demonstrates that PCS is equivalent to a subset of PCI. However, trans-
lation from PCI to PCS is only partial, suggesting a deficit in expressiveness of
PCS relative to PCI. It is shown that there are wffs in PCI for which there are
no semantically equivalent wffs in PCS.

It is further shown that these wffs are exactly those containing a subexpres-
sion of the form x = y (it is required that both arguments of the identity rela-
tion are variables) and for which no equivalent wff exists without such a
subexpression. Any wff in PCI not containing a subexpression of this form has
a semantically equivalent wff in PCS. This deficit is a fundamental limitation
of Sommers's approach, but a weaker one than generally attributed to it.

The use of schemas is considered as a way to overcome the deficit. This re-
veals another limitation of languages based on Sommers's approach. Those prop-
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erties not expressible by wffs in PCS cannot in general be expressed by schemas
either. The reason is that for a schema to be effective here, it is necessary that
all the elements of the universe of interpretation be named. Certain well-known
methods such as expansion of the language by adjunction of constants to name
the elements of the universe can be employed. Then, given a structure and an
axiomatization in PCI of the theory of that structure, the theory can be axioma-
tized with axiom schemas in an appropriate expansion of PCS. In this limited
sense, it is possible to compensate for the deficit in expressiveness. But these
methods are linked to the interpretation, and so do not constitute a general
solution.

The treatment throughout is semantic; however, an axiomatic treatment can
also be given (Purdy [3]).

2 Definition of PCS This section defines PCS, a first-order language that
formalizes and extends Sommers's ideas regarding singular terms. PCS resembles
PCI, the language of MPL, with the following difference. Singular predicates
supplant individual constants and functions. It is not unusual to treat individ-
ual constants as nullary functions, nor to treat π-ary functions as (n + l)-ary
predicates. But it appears that these devices have not been used together. When
they are, the result is a uniformity in the treatment of individual constants, func-
tions, and predicates. While PCS does not have an identity relation, identity of
singular expressions, which correspond to terms in PCI, can be expressed. More-
over, deduction with identicals can be performed conveniently in PCS.

2.1 Syntax The vocabulary of PCS is listed first. Let ω+ := ω - {0}.

1. Predicate symbols (P of two kinds
(a) ordinary predicate symbols (R = Uπeω+^«» where (Rn — [RfiiGω],

and
(b) singular predicate symbols S = \Jneω+&n> where Sn = [S?: / E ω)

2. Variable symbols V = {ι>,: / E ω}
3. Boolean operators Λ and -ι
4. Quantifier 3
5. Parentheses ( and )
6. Comma ,.

There are no terms in PCS. In their stead, singular expressions are used. These
are defined as follows:

1. If S1 G Si and x E V then Sι(x) is a singular expression.
2. If Sn+ι E S,H_i, x,X\,... ,xn E V are distinct and Sx,..., Sn are singular ex-

pressions, then 3XI(SI(XI)A Λ3xn(Sn(xn)ΛSn+ι(xi9... ,xn9x))- •)
is a singular expression.

3. Nothing else is a singular expression.

Expressions in PCS are defined as follows:

1. If Pn E ((Rn U SΛ) and xu... ,xn E V, then Pn(xu... ,xn) is an ex-
pression.

2. If φ is an expression then -ιφ is an expression.
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3. If φ,ψ are expressions then (φ Λ ψ) is an expression.
4. If φ is an expression and x G V occurs free in φ, then 3xφ is an expression.
5. Nothing else is an expression.

Free and bound variables are defined in the usual way. When a list of variable
symbols follows an expression symbol, e.g., φ(Xι,... ,xn), these variables are
all the free variables and only free variables in the expression. When the expres-
sion symbol is used without a list of variable symbols, it is left open which vari-
ables are free in that expression. As a general rule, it is assumed that all
expressions are rectified. Since the intended interpretation of lxφ{xι,... ,xn,x)
is identical to that of iyφ(xΪ9... ,xn,y), PCS expressions are defined to be
equivalence classes with each equivalence class consisting of all alphabetic vari-
ants. This equivalence can be defined formally (e.g., see Barnes and Mack [1]),
but this will not be done here. Any member of a given equivalence class will be
used to represent the class. Hence the two forms given above represent the same
PCS expression.

In the sequel, parentheses are dropped whenever no confusion can result.
Metavariables are used as follows: Rn ranges over (RΛ; S

n ranges over §„; Pn

ranges over (Rrt U Sn; x,y,Z range over V; S ranges over singular expressions;
and φ,φ,θ range over expressions. Applying subscripts to these symbols does not
change their ranges.

2.2 Semantics An interpretation of PCS is a pair β = <3D,S> where 2) is a
nonempty set and 8 is a mapping defined on (P satisfying:

1. IfRnE(Άn,thenQ(Rn)^£>n.
2. If Sn+ι G SΛ+i, then <3(Sn+ι) c X>n+ι such that for all du . . . ,dn G £>

there exists rfG3) with <du... ,dn9d) G Q(Sn+ι) and for all d' G 3D,
{du... ,dn,d

f) G Q(Sn+ι) implies d1 = d.

Let g G ΐ>v be an assignment of values to variables, and φ be an expression of
PCS. Then φ is satisfied by g in β (written β t= φ[g]) iff one of the following
holds:

1. φ = Pn(xu... ,xn) and (gix^,... ,g(xn)> G Q(P")
2. φ = -.ψand β ttψlg]
3. φ = φΛθand (β¥ψ[g] and β \=θ[g])
4. φ = 3xψ, where x occurs free in ψ, and there exists g' G 3DV that agrees

with g off x such that 3tψ[g'].

An expression φ is true in β, written β \= φ, iff for all g G 3DV, β \= φ[g]. φ is
υalid> written l=<p, iff φ is true in every interpretation.

2.3 Abbreviations It is convenient to extend PCS by introducing the follow-
ing abbreviations.

1. φvθ := - I ( - » ^ Λ -ι0)

2. φ^θ := - I ( I / Ά - « 0 )

3. ψ++θ := (ψ^>θ)Λ(θ-+ψ)
4. Vxψ := —I3ΛΓ—î .
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The semantics for these abbreviations can be given directly as follows:

1. Uφ = ψvθthenβ\=φ[g] iff (3 1= φ[g] o r3N0[g] ) .
2. If φ = ψ-+θthendtφ[g] iff{β£ψ[g] implies 3 ¥θ[g]).
3. lfφ = ψ++θthenβ\=φ[g] iff (β\=ψ[g] iff 3 ¥β[g]).
4. If φ = Vxψ, where x occurs free in ψ, then 3 t= φ[g] iff for all g' G 3DV

that agree with g off x, 3 1= ψ [g'].

3. Properties of singular expressions Singular expressions play a central role
in PCS. The denotation of a singular expression is a single (though not neces-
sarily unique) individual. Singular expressions commute in a certain way with the
Boolean operators. The principal result is that not only unary singular predicates,
corresponding to individual constants in PCI, but more generally singular expres-
sions, exhibit 'wild quantity'. These results are established in this section.

In the following, if φ(X\,... ,xn) is a wff, 3 N φ[du... ,dn] will abbreviate
3 \=φ[g] where g<ΞΏv such that g(xx) = du . . . 9g(xn) = dn.

Lemma 1 There exists d G 3} such that β t S[d] and for all dr G 3D, 3 t=
S[d'] implies d' = d.

Proof: Define the depth of a singular expression as follows: depthίS1^)) :=
0. d e p t h O x ^ U O Λ ••• Λixn(Sn(xn)ΛSn+ι(xl9...9xn9x)) )) : = 1 +
max{depth(S/(jt;)): 1 < / < / ! } . The proof is a straightforward induction on the
depth of S(ΛΓ).

In the following, L e m m a 1 will be abbreviated lid G3D:£ί 1= S[d].

T h e o r e m 2 β \= 3xx(Si(Xi) Λ ••• Λ 3xn(Sn(xn) A - > < p ( x u . . . , * „ ) ) • •) iff
β 1= -ιlXι(Sι(Xι) A Λ 3Xn(Sn(Xn) A φ{XΪ9. . . ,Xn))' •)•

Proof: 3 H 3jfi(SiUi) Λ Λ 3xn(Sn(xn) Λ - " ^ ( ^ i , . . . ,xΛ)) •) iff 3 ! ^
l\dn:(β h S 1 [ r f 1 ] ) Λ . Λ(0 NSΛ[rfπ])Λ(fl l = i ^ [ d i , . . . , r f Λ ] ) iff 3!di •••
3!rfΛ:(fll=S1[rf1])Λ Λ(3l=SΛ[ί/ I I])Λ(flfct^[rf l f...,rf I I])iff3lϊt3x1(S1(jf1)Λ
• Λ 3Xrt(5rt(XΛ) Λ (^(Xi, . . . ,Xn))' •) iff β 1= -i3*! (.Sj (Xι) A Λ 3XΛ(SΛ(XΛ) Λ
<p(*i,... ,*„))• •) (follows from the definition of satisfaction and Lemma 1).

Corollary 3 β \= ax^S^x^ Λ Λ lxn(Sn{xn) A φ(xu... ,xn)) •) ( ^ 3 1=
VJfi(SiUi) -* > VXn(Sn(xn) -+ φ(xu. . . 9Xn))'").

Using the notation of restricted quantification, this result can be recognized
as asserting the 'wild quantity' of singular expressions, e.g., (3x:S(x))(φ(x)) <-*
(vx:S(x)Hφ(x)).

Theorem 4 β \= 3xx(S{ (x{) A Λ 3xn(Sn(xn) A φ(xiι9... ,x/V) Λ ψ(xjι9...,
χjj)" ) iff <fl *= a^,(S/,U/,) Λ Λ 3^( s//(^v) Λ ^Uii» ^//)) * •) <wκ* 3 N
S ^ ί S / , ^ ) Λ Λ *Xjm{Sjm(xjm) Aψ(xjl9... 9xjm)) •••)), wΛere {/Ί,...,//} U

[Ju -'Jm) = {1,. . .,/!}.

Proo/: 3 N 3^!(S t(xi) Λ Λ 3x r t(SΛ(xΛ) Λ φ ( x i l 9 . . . ,x/V) Aφ(xjί9... ,*ym)) . . )
iff 3 Id, . . 3 !</„: (fl |= Si [dx]) A . •. Λ (3 |= SΠU/Λ]) Λ (3 H ( ^ U , . . . ,x,v) Λ
ψ(λ: y i , . . . ,Λ: y w ))[rf 1 , . . . ,rfJ)iff3!rf 1 . . .3!rf Λ :(5ίl=5 1 [rf 1 ])Λ...Λ(£ίNS Λ [^])Λ
(3 1= *[<//,,...,d/J) Λ (3 N ̂ [df y i > . . . ,df y j) iff (3 N 3 ^ ( 5 ^ ) Λ . . . Λ
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IXj^SitXi,) A φ(Xh9. . . ,*/,))• •)) Λ (β 1= IXj^Sj^XjJ Λ Λ 3*/m (Sym (X/J Λ
Φ(Xjι9 - >Xjm))'' •)) (follows from the definition of satisfaction and Lemma 1).

Thus singular expressions distribute over conjunction. Examples, using
the notation of restricted quantification, are: (3x:S(x))(φ(x) A ψ(x)) «->
((Sx:S(x))(φ(x)) A (lx:S(x))(ψ(x))) and (Vx:S(x))(φ(x) A φ(x)) ~
((VX:S(X))(*(X))Λ *(*)) .

4 PCS and PCI compared The expressiveness of PCS relative to PCI will
be investigated through the use of meaning-preserving translations between the
two languages. Translation from PCS to PCI is not surjective. The difference
of PCI and the image of PCS in PCI will give the deficit in expressiveness.

To facilitate definition of a translation function, a brief definition of PCI
will first be given. This definition is standard, but is chosen to parallel the def-
inition of PCS given in Section 2.

4.1 Definition of PCI The vocabulary of PCI consists of the following:

1. Predicate symbols (R = \Jn<=ω+(&n, where (Άn = {R?: i E ω}
2. Individual constant symbols 6 = {c, : / E ω}
3. Function symbols T = U^Gω+%^ where TΛ = ( / " : / € ω )
4. Variable symbols V = {Vj: i E ω}
5. Boolean operators Λ and ->
6. Identity relation =
7. Quantifier 3
8. Parentheses ( and )
9. Comma ,.

Terms in PCI are defined as follows:

1. Individual constant symbols and variable symbols are terms.
2. If fn E Trt and tu... Jn are terms, then/ π (f i , . . . Jn) is a term.
3. Nothing else is a term.

In the following, t will be used as a metavariable ranging over terms of PCI.
Expressions in PCI are defined as follows:

1. If Rn E (Άn and tu...,ίrt are terms, then Rn(t\,..., tn) is an expression.
2. If tι>t2 are terms, then t\ = ^ is an expression.
3. If φ is an expression then -\φ is an expression.
4. If φ,ψ are expressions then (<p Λ ψ) is an expression.
5. If φ is an expression and xEV occurs free in φ9 then a.xv> is an expression.
6. Nothing else is an expression.

An interpretation of PCI is a pair β = <3), g> where 3D is a nonempty set and
8 is a mapping defined on (P satisfying:

1. If Rn E (Rπ, then g(/?Λ) £ 3D".
2. If c E β , then 8 ( c ) E £ ) .
3. If f" E TΛ, then S(/") E Ώ ^ .
4. S( = ) is the diagonal relation on 3D.
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Let g G S)v be an assignment of values to variables. Define an extension g*
of g to the set of terms of PCI as follows:

1. I f jceV, then#*(x) :=g(x).
2. If c G e , then g*(c) := 9(c).

3. If fn G TΛ and tu . . . ,tn are terms, then g*(f"(tu.. .,tn)) := 9 ( / Λ )

U * U i ) , . . . ^ (/Λ)).

Let φ be an expression of PCI. Then φ is satisfied by g in β (written β f=
<p[g]) iff one of the following holds:

1. φ = Rn(tu. ..,/„) and <g*(tι), ,gVn)> e Q(Rn)
2. φ = (h = t2) and g*(tx) = g*(t2)
3. φ - -i^and β ttψίg]
4. φ = φAθand (β tψ[g] and β \=θ[g])
5. φ = axi/s where x occurs free in 0, and there exists g' G 3DV that agrees

with g off Λ: such that ϋtψ[g'].

The usual definitions and notational conventions defined for PCS carry over
to PCI.

4.2 Translation to PCI A translation function r from PCS into PCI is de-
fined as follows. For atomic expressions:

1. R?(xu...,xn)~R*(xu...,xn)
2. Sl(x)~Ci = x

3. SP+ι to,... 9xn,x) »f?(xu...,Xn)= X'

This definition for atomic expressions is extended to a <Λ,-ι,(3#)xeίv>"
homomorphism. Let £ί = <£>,S> and 0' = <2D,9'> be interpretations of PCS and
PCI, respectively, over the same universe. Then β and ϋ' are similar iff

1. 8W) = 8'W)
2. G(Sh = [<d» iff KM = d
3. <rfl5... ,dn,d> G S(^Γ+ 1) iff Q'(f")(du...,έ/Λ) = Λ

Lemma 5 Let β and βf be similar interpretations of PCS and PCI, respec-

tively, over universe £>. Let g G 3DV α/ίrf ^ G PC5. Then β \= φ[g] iff β' N

r ( ^ ) [ g ] .

Proof: The proof is a straightforward induction on the structure of φ.

Thus r is a mapping of PCS into PCI.

4.3 Translation from PCI Next consider a translation r' of PCI into PCS,
defined for atomic expressions:

1. d = x~SHx)
2. Cj = t» 3x(Sl(x) Λ τ'(t = x))9 where t φ. V
3. f?(xi,...,xn)=x~ S?+1 {xu... ,xn,x)
4. fP(xlt... 9xn) = t - ax(5f+1 (*i, ,xΛ,Jc) Λ τ'(t = x)), where t £ V
5. fP(tl9...,tn) = ί~ B ^ ί r ' ί ^ = ^ ) Λ - Λ 3 ^ ( r \ = ̂ J Λ

ajcίr'ίί = x) Λ 5f + 1 (x ! , . . . ,*„,*))•• •). where t9tkχ9. ..,tkm£V and
({tu...,tn}-itkι9...,tkJ)QV
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6. RUtu ... ,tn)»lxkι(τ'(tkι=xkι)Λ- - ΛlxkJτ'(tkm=xkm)ΛR?(Xu ,
xn)) -)f where tkχ,... ,tkm £ V and ([tl9... ,tn] - [tkι9.. .9tkj) c V.

As with r, this definition of r' for atomic expressions is extended to a
<A,-i,(3x)XG«y>-homomorphism. Note that τ' is partial since r'(xi = x2) is not

defined. Let PCIi be the domain of r'.

Lemma 6 Lei 0 and β' be similar interpretations of PCS and PCI, respec-
tively, over universe 3D. Let g E 3DV and ψ E PCIX. Then £Γ £ψ[g]iffβ\=
r'(ψ)[g].

Proof: The proof is a straightforward induction on the structure of ψ.

Therefore, PCS and PCIi are equivalent in expressiveness, and any deficit
in expressiveness of PCS is restricted to the difference PCI — PCIi. More pre-
cisely, any deficit in expressiveness of PCS is restricted to those wffs of PCI -
PCIi containing noneliminable occurrences of atomic expressions of the form
Xχ=x2. Occurrences of atomic expressions of the form xx = x2 in a wff ψ are
eliminable iff there exists a wff ψ' such that for any interpretation ϋ of PCI,
3 1= ψ' iff β f= φ. Let PCI2 be the set of wffs containing noneliminable occur-
rences of expressions of the form xx=x2. That PCI2 is not empty is shown next.

Consider the unary predicate RQ E PCI and let ψ = lx{ix2(Rl(x2) <-•
(x2 = ΛΓI)). Then in any interpretation SΓ = <£>,S> of PCI, β' N ψ only if
card(<3(Ro)) = 1. The next lemma shows that PCS is indifferent to this
property.

Lemma 7 There is no closed wffφ E PCS such that for every interpretation
β = <£>,S> of PCS, ϋ\=φ only if card{Q{Rι

0)) = 1.

Proof: Let φ E PCS and let n E ω such that if Sj occurs in φ theny < n. Let
#i = <ω,8i> and β2 = <ω,g2> be interpretations of PCS, where Si and Q2 are
defined as follows. S i ( ^ i ) = {<«>} and 82(^0) = {<">,<m>} for n < m, and for
all other predicates Rlj of PCS, 81 (Rj) = Qi{Rlj) = 0 . For all singular predi-
cates Sj of PCS, 81 (Sj) = Q2(SJ) = {</i,. Ji-uj) : h,... J1-1 e ω).

It suffices to show the following. If φ is any rectified wff of PCS with free
variables xx,... ,xh then a ι l s . . . , / / E ω: βλ (= φ[i\,...,//] iff 3yΊ,... ,j) E ω:
#2 Is <p[j\ > Jι\ The proof is by induction on the structure of φ.

For the basis, let φ = Pι(x\,... ,xί) where Pι is an ordinary or singular pred-
icate of PCS. First suppose that 3X 1= Pl[ix,...,//]. Define j \ , . . . Jι as follows.
For 1 < k < /, if ik Φ m then j k = ik and if ik = m then j k = m + 1. It follows
from the definitions of 81 and 82 that β2 N Pι[ji,.. ,y'/]. For the converse,
suppose that β2 1= Pl[ji9-. ,7/]. Define / Ί , . . . , / / as follows. For I < k < I, if
yV ^ m then ik =jk and if yV = m then /̂  = Λ. Again it follows from the defini-
tions of 81 and 82 that βλ \= Pι[ix,...,//]. Hence βx 1= Pι[iu...,//] iff β2 1=
P'UL . JI].

The induction step is straightforward.

It remains to show that the deficit in expressiveness of PCS relative to PCI is ex-
actly PCI2.
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Theorem 8 Let ΰ' and β be similar interpretations of PCI and PCS, respec-
tively, and let ψ be a wff of PCI. There exists a wff φ of PCS such that (<Γ h
Φlg]iff3£φ[g])iffΦ£PCI2.

Proof: The 'if direction is an immediate corollary of Lemma 6. For the 'only
if direction, suppose φ is a wff of PCS such that £Γ 1= ψ[g] iff β h φ[g]. By
Lemma 5, 3' 1= τ(φ) [g] iff β N φ[g]. By definition, τ(φ) has no occurrences of
atomic expressions of the form xx=x2. Therefore, ψ £ PCI2.

Theorem 8 shows that Sommers's theory of identity as implemented in PCS can-
not duplicate the expressiveness of the logical identity relation of PCI. A final
question is whether it is possible to compensate for this deficit through use of
axiom schemas. Consider the binary relation RQ defined by schema I:

[I.] 3Xι(S1(xι) A SX2(S2(X2)AR2

0(XUX2))) ~ 3X(S1(X)AS2(X)).

Theorem 9 Let β = <SD, 9> be a PCS model of schema I.Let£>' = {dG£>:
β 1= S[d], where S is a singular expression}. Then Q(Ro) restricted to 3D' is the
diagonal relation.

Proof: Let dud2e£> such that 3 t= Sx [dλ] and £J 1= S2[d2]. Then β l=Λ§[rfi,d2]
iff β 1= ix^S^Xi) A lx2(S2(x2) ARI(XUX2))) (definition of satisfaction) iff β \=
lx(Sx (x) AS2(x)) (schema I) iff 3IdG 3D : (β t= Sx [d]) A (β 1= S2[d]) (definition
of satisfaction and Lemma 1) iff d\ = d2.

3y is the subset of named elements of the universe 3). Theorem 9 shows that,
in the subuniverse of named elements, axiom schemas suffice to express any
property expressible in PCI. However, not all elements of the universe of a PCS
interpretation are named in general. The inability of PCS to predicate certain
properties of the unnamed elements of the universe, even with schemas, is a fun-
damental limitation inherent to languages based on Sommers's approach.

The need to name elements of the universe arises in many contexts. Two fa-
miliar ones are the method of diagrams and the standard model of arithmetic.
The following paragraphs will consider their connection with the present discus-
sion. For a more complete account of these topics, see Chang and Keisler [2],
Chapter 2.

The method of diagrams gives logical expression to certain model-theoretic
notions. Let β = <3D,T> be an interpretation of a language L and A <Ξ 3D. Then
LΆ := L U {ca: a E A} is an expansion of L, and βA := (0, a)a^A is the obvious
expansion of βtoLA. The diagram of β is the set of all atomic sentences and ne-
gations of atomic sentences that are true in $&. Expansion of L is necessary to
permit those properties of the structure to be expressed. In the present context,
all elements of the universe 3D are named in PCS^ := PCS U (Sj : a E 3D} un-
der the interpretation $&. Therefore, given a structure β and an axiomatization
Γ in PCI of the theory of β9 PCS can be expanded by adjoining unary singular
predicates to name the elements of the universe of β. Then the theory of β can
be axiomatized by a set Γ' of axiom schemas in the expansion of PCS. Of course,
this is not a general solution to the deficit in expressiveness of PCS, since the ex-
pansion is linked to the intended structure.

ω-logic originated in the study of the standard model of arithmetic. Let L be
a first-order language with individual constants {c,: / E ω). ω-logic is formed by
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adding to a first-order axiomatization of L the distinctness of the individual con-
stants and the ω-rule:

from φ(co),φ(cι),φ(c2),..., infer Vxφ{x)

and allowing infinite proofs. In ω-logic, an expression that is true of each of the
individual constants in L is true of everything. If the semantics of PCS were ex-
panded to require a distinct denotation for each Sj G Si and the condition that

if β N 3x(Sά(X) A φ(x)),β N IX(SHX) A φ(x))9 $ 1= *x(S}(x) A φ(χ))9

then β tvxφ(x)

then all interpretations of PCS would be countably infinite and all elements of
the domain would be named in PCS. In these interpretations, PCS can attain the
expressiveness of PCI through the use of schemas. But again, this is not a gen-
eral approach and so does not remove the fundamental deficit in expressiveness
of PCS.

5 Conclusion Sommers's position on identity has not received a full eval-
uation. Part of the reason is perhaps that his argument was presented in the con-
text of the Calculus of Terms (Sommers [6]), running counter to the prevailing
bias that only MPL can be taken seriously. Further, the formalization of his po-
sition was incomplete, dealing only with individual constants. This paper gives
a full answer to Sommers's question, 'Do We Need Identity?'. The argument is
couched in MPL, modified only as much as necessary to eliminate the distinc-
tion between concept and object.

The results show that when Sommers's approach is extended as much as it
can be, there still remain properties expressible in predicate calculus with iden-
tity that are not expressible in Sommers's approach. These are exactly those prop-
erties whose expression in PCI involves an occurrence of a subexpression of the
form x = y (where both arguments of the identity relation are variables), and for
which there exists no equivalent expression without a subexpression of that form.

In interpretations in which every element of the universe is named in the lan-
guage, this deficit can be overcome by the use of schemas. However, this tech-
nique cannot be said to eliminate the deficit because it is not general, being linked
to the particular interpretations.
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