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The Minimal System LΌ

XUEGANG WANG

Abstract In this paper, I consider a tense logic of the class of arbitrary or-
ders which has H,G,H',G' as its tense operators and has the usual formal
semantics. For the tense logic, a sound and complete axiomatic system L'o is
established, using the method of deductively closed sets and maximal consis-
tent sets.

1 Introduction The purpose of this paper is to present a sound and com-
plete axiomatic system L'o for the H\ G '-tense logic of the class of arbitrary or-
ders, which is a minimal system and can be seen as an intermediate system in a
sense. The completeness proof here will use the method of deductively closed sets
(DCSs) and maximal consistent sets (MCSs), first developed by Burgess [1] for
the 5, t/-tense logics of linear orders, and then applied by Ming Xu [3] to the S, £/-
tense logics of nonlinear orders. The concerns of this paper are primarily tech-
nical, although I think there are other motives for developing such tense logics.

2 Formal syntax The language for H\ G '-tense logic takes as propositional
variablesPo,P\,P2> The (well-formed) formulas are built up from the vari-
ables using connectives ~ (negation) and Λ (conjunction), and unary tense op-
erators H (strong past), G (strong future), H' (uninterruptedly past), and G'
(uninterruptedly future), where H, G, H', and G' can be read respectively as 'it
has always been the case that', 'it is always going to be the case that', 'it has for
some time been uninterruptedly the case that', and 'it is for some time going to
be uninterruptedly the case that'. Connectives v (disjunction), -> (material con-
ditional) and <-> (material biconditional), and constants T (truth) and ± (falsity)
are introduced as abbreviations in the usual way. Unary tense operators P (weak
past), F (weak future), P' (recently), and F' (soon) are introduced as abbrevia-
tions as follows: P for ~H~9 Ffor ~ G ~ , P' for ~H'~9 andF' for ~ G ' ~ , and
can be read respectively as 'it was the case that', 'it will be the case that', 'it has
arbitrarily recently been the case that', and 'it will arbitrarily soon be the case
that'. The mirror image of a formula is the result of replacing each occurrence
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of H and H' in the formula with G and Gr respectively, and vice versa. We use
α, |8,7,δ to range over formulas, and A,B,C9D (without or with superscriptions)
to range over sets of formulas.

3 Formal semantics A frame or order is a pair F = (X,R) consisting of a
nonempty set and a binary relation on it. A valuation in a frame F is a function
V assigning each propositional variable a subset of X. We extend V inductively
to a function (still called V) defined on all formulas as follows:

V(~a) =X- V(a)
V(a Aβ) = V(a) Π V(β)

V(Ha) = {xeX:Vye X(yRx-+yG V(a))}
V(GOL) = {xGX:Vye X(xRy - .y G V(a))}

V{H'a) = {xe X: ly G X(yRxΛVz G X(yRzAzRx^z G V(a)))}
V(G'a) = [x G X: 3y G X(xRyΛVz G X(xRz A zRy-+Z <Ξ V(a)))).

A formula a is valid in a frame F, in symbols, F ¥ a if V(a) = X for every
valuation Fin i7, and satisfiable in Fif V(a) Φ 0 for some valuation Fin F.
Further, a is valid over a class K of frames if it is valid in every F G K, and satis-
fiable over K if it is satisfiable in some F G /Γ. We use ΓΛ (#) to denote the set
of all formulas valid over K.

In this paper, what we are interested in is the class Ko of all frames.

4 Axiomatic system Our axiomatic system L'o takes as axioms all truth-
functional tautologies, called nontense axioms. In addition, L'o takes as axioms
the following list of extra schemas together with their mirror images (the latter
being labeled Alb-A7b)

(Ala) G(a -> β) -> (Get -• Gβ)
(A2a) ot^GPot
(A3a) GOL A G'β -> G'(a A β)
(A4a) G<xAF'β^F'(oLAβ)
(A5a) Ga -^ G/f'α
(A6a) F'a-+GPa
(A7a) G'otAF'yι A ... A F'yn^> F(H'a AP(OC Ayx) Λ . . . Λ P f α Λ γ J ) .

(π = 0,l,2,...)

As rules of inference we take modus ponens (MP) plus temporal generalization
(TG): From a to infer Ga and Ha, and (T1VΓ): from a -> β to infer G'α -> G'jS
and i/ 'α -^ /Γ0.

Basic notions (relative to L'o) such as thesishood, consequence, and consis-
tency can be defined in the usual way. For any formula a and set A of formu-
las, we write Va to indicate that a is a thesis of L'Oi A h a to indicate that α is
a consequence in Lό of A9 and C«(^4) to denote the set of all consequences in
L'0ofA.

5 Axiomatizability The result of this paper is the following theorem, which
says that the H\ G '-tense logic of Ko can be axiomatized by L'o.
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Theorem 5.1 (Axiomatizability) Th(Ko) = Cn(0).

Proof: It is easy to show by induction that Cn( 0 ) £Ξ Th(K0). In order to show
the opposite inclusion Th(K0) <Ξ: Cn(0) (i.e., L'o is complete for Ko), we must
show that every consistent formula a0 is satisfiable. For this we need several pre-
liminary lemmas and definitions.

Derived Rules 5.2 The following rules of inference preserve thesishood:

(a) from α:1,α2» >«« to infer any truth-functional consequence β
(b) from a -+ β to infer Fa -• Fβ and POL -» Pβ
(c) from a «-> |8 and 0(α/p) to infer fl(j3//?)
(d) from α to infer its mirror image.

Proof: Omitted.

Theses 5.3 We list some theses for future reference, but omit their deductions
in LQ (see Burgess [2]).

(a) GaAFβ^F(aAβ)
(b) GaΛGβ++G(cίΛβ)

(c) PGa^a

Consistency Criterion 5.4 For any MCS A, DCS B, and formula a we have:

(a) any consistent set of formulas can be extended to a maximal consistent
set.

(b) if a £ B, then there exists an MCS D such that B g D and a £ D.
(c) if Fa E A, then a is consistent.
(d) if Pa E A, then α is consistent.

Proof: (a) is Lindenbaum's Lemma, (b) follows from (a). For (c), if a is not con-
sistent, then — a is a thesis; so G ~ α = ~ F — — α is a thesis by TG; so —Fα is
a thesis by 5.2(c); so Fa is not consistent and therefore cannot belong to the MCS
A. (d) is the mirror image of (c), and so can be proved in the same way.

Definition 5.5 For any MCSs A, C, and formula 0, we let:

(a) r'(A,β,C) iff whenever Ha E C, a A G'(β A a) E A, and whenever
P'y G C9F{β Ay) G A;

(b) r'(A,B,C) iff B is a DCS and r'(A9β9C) for every β E B;
(c) R\A,B, C) iff r'04,5, C) and r'(,4,£', C) never holds for any proper ex-

tension B' of B.

Lemma 5.6 Let A, C be MCSs, B a DCS, β,d any formulas.
(a) lfr\A,β,C) holds, then there exists a DCS B' such that r\A,B', C) holds

and β E B'.
(b) Ifr\A,B, C) holds, then there exists a DCS B' such that R\A,Bf, C) holds

and B c B'.
(c) If R'(A,B,C) holds and δ £ B, then there exists a β0 E B such that

r'(A,β0 A δ, C) does not hold.

Proof: (a) Let B' = Cn(β); then B' is required. For (b), a required set can be
found using Zorn's Lemma. For (c), let B* = Cn(BU {δ}). B* is a DCS and a
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proper extension of B. If for every β G B, r'(A,β A δ,C) holds, then since for
every β* G B* there is a β G B with h/3 Λ δ -• β*, r'(;4,£*,C) must hold, con-
trary to the maximality of B with respect to the property r'(A,— ,C).

Lemma 5.7 Let A,Cbe MCSs. The following are equivalent for any formula β:
(a) r'(A,β,C) holds,
(b) whenever GaGA,aAH'(β Aa)GC,and wheneverF'y G A, P(β Ay)eC.

Proof: We only show that (a) implies (b). Assume (a). Let Ga G A. If a £ C,
then ~α G C. By 5.3(c), we get ~PGa = H ~ Got G C. By (a), we then get
~Gα G A, a contradiction. If i/'(/3 Λ a) £ C, then ~H'(β A a) = P' ~ (β A a) G
C. By (a), we get F(β Λ ~ (0 Λ a)) G A By 5.2(a) and (b), we then get F ~ a =
~Gα G ̂ 4, a contradiction again. So we have a A H'(β Aa) G C.

Now let F'y e A. If P(J3Λ 7) £ C, then ~P(βA y) = H~ (jSΛγjGC.By
(a), we get G'(β A - (β Ay)) G A. By TM', we then get G' - y = -F'y GA,a
contradiction.

Lemma 5.8 Let A9C be MCSs, and let β be any formula.
(a) If G'jS G A, then there exist an MCS D and a DCS B such that R'(A,B,D)

and βGB.
(b) IfH'β G C, then there exist an MCS D and a DCS B such that R'(D, B, C)

and βeB.

Proof: We only treat (a). As for (b), since it is the mirror image of (a), the proof
is similar throughout.

Let A)= {aAH'(βAa):GaGA} U {P(β Ay):F'y GA}. We claim that
Do is consistent. Clearly, it will suffice to show that whenever Ga G A, F'y\,
. . . ,F'yn G A, the following formula is consistent:

b = a AH\β ACL) AP(β Ayx) Λ . . . Λ P(βAyn).

For this, by 5.4(c), it will suffice to show that Fδ G A. When Ga G A, F'yl9

. . . 9F'yn G A, since G'β G A by hypothesis, (A3a) yields G'(β Aa)eA9 and
(A7a) then yields

F(H'(β A a) A P(β Act Ay x) Λ . . . Λ P(β A a A yn)) GA.

By 5.2(a) and (b) it follows that

F{H'(βAoc)AP(βAyx) A...AP(βAyn))GA.

And then by 5.3(a) it follows that Fδ GA, proving our claim.
Now we can get an MCS D extending Do by 5.4(a), and we have r'(A,β,D)

by construction using 5.7. Using 5.6(a) and (b) we then get a DCS B such that
R'(A,B,D) and βGB, completing the proof.

Lemma 5.9 Suppose we have R'(A,B, C). Then we have:
(a) α G B for every Ga G A,
(b) y G Bfor every Hy G C.

Proof: We only treat (a); (b) can be treated in a completely similar way.
Let Ga G A. If a £ B, then by 5.6(c) and 5.7 there exist β0 G B and Ga0 G

A with a0 Λ H'(β0 A a A a0) £ C, or there exist βo G B and F'y0 G A with
P(β0 A a A 70) φ C. But in the former case, since we have G(a Aa0) GA by
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5.3(b) and β0 G B, by 5.7, we then have α Λ α 0 Λ H'(β0 Λ α Λ α o ) E C , from
which a contradiction follows. In the latter case, since we have F'(a A yQ) G A
by (A4a) and β0 G B, we then have P ( j30 Λ « Λ 70 ) G C by 5.7,a contradiction
again.

Lemma 5.10 For any MCSs A,C, we have:
(a) If a G Cfor every GaGA, then r'(A9 T9C) holds.
(b) IfaGA for every Ha G C, then r'(A9 T9 C) holds.

Proof: We only treat (a); (b) can be treated in a completely similar way. By 5.7
we must show that whenever Got G A, a A H'OL G C, and whenever F'y G A,
PyGC.UGaEA, we have a G C by hypothesis, and //'α G C by (A5a) and
hypothesis; so we do have a A H'a G C. If F'y G A, we also have Pγ G C by
(A6a) and hypothesis, completing the proof.

Lemma 5.11 Suppose we have r'(A9B9C).IfG'β£AorH'β £ C, then there
exist an MCS D and DCSs B\B" such that β £ D, B c D and R'(A,B',D),
R'(D,B",C).

Proof: By 5.6(b) we can extend B to a maximal DCS B* such that
R'(A,B*,C). If G'βφA or H'β £ C, then we have β£B*by 5.5 or 5.7. Using
5.4(b) we can get an MCS D such that B*^D and β£D, from which it follows
that r'(A, T,D),r'(D, T, C) by 5.9 and 5.10. Now using 5.6(a) and (b) we can get
DCSs B',B" such that R'(A,B',D),R'(D,B",C), completing the proof.

Lemma 5.12 Let A, C be MCSs; let y be any formula.
(a) IfFy G A, then there exist an MCS D and a DCS B such that R'{A,B,D)

and y G D.
(b) IfPy G C, then there exist an MCS D and a DCS B such that R'(D,B, C)

and y G D.

Proof: We only treat (a).
Let Do = {7} U {a:Ga GA}. It is easy to verify that Do is consistent, so

there exists an MCS D extending Do. By 5.10 we have r'(A, T9D). By 5.6 there
exists a DCS B with R'(A9B9D), completing the proof.

Definition 5.13 A chronicle on a frame (X,R) is a pair (fg) satisfying:

(CO) / is a function from X to the set of all MCSs.
(Cl) g is a function from {(x,y) :x9y G XAxRy] to the set of all DCSs.
(C2) Whenever xRy9 then r'(f(x)9g(x9y),f(y)) holds.
(C3) Whenever xRy9 xRz, and zRy, then g(x9y) ^ / ( z ) .

A chronicle (fg) on a frame (X9R) is said to be perfect if it satisfies the fol-
lowing additional conditions, as well as their mirror images (C4b, C5b, and C6b
respectively):

(C4a) Whenever G'β G/(x), there is some y G X with xRy and β Gg(x,y).
(C5a) Whenever xRy and G'β £f(x)9 there is some z G X with xRz, zRy, and

β£f(z).
(C6a) Whenever Fy G/(ΛΓ), there is some y G X with xRy and 7 G/(j>)

Definition 5.14 Fix a denumerably infinite set W. Let M be the set of all qua-
druples (X9R9fg) such that:
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(a) X is a nonempty finite subset of W
(b) R is an antisymmetric binary relation on X
(c) (fg) is a chronicle on (X,R).

Chronicle Lemma 5.15 For any perfect chronicle (fg) on (X,R), define a
valuation Fin (X,R) by letting

(*) V(pi) = {x^X:pitΞf(x)}.

Then (*) in fact holds for all formulas α.

Proof: By induction on the complexity of α. Details are omitted.

By Lemma 5.15, in order to show that every consistent formula a0 is satis-
fiable, it will suffice to construct a perfect chronicle (fg) on some frame (X,R)
such that a0 Gf(Xo) for some x0 E X. Generally speaking, a chronicle (fg) on
a frame (X,R) with (X,R,fg) E Mis not a perfect chronicle; but we have the
following.

Counterexample Lemma 5.16 Let μ = (X,R,fg) E M and suppose x,β
(respectively, y, β) constitute a counterexample to (C4a) (respectively, (C4b)) for
μ. Then there exists an extension μ = (X', R', f\g')E:M of μ for which x9 β (y, β)
do not constitute a counterexample to (C4a) ((C4b))

Proof: The desired extension can be found by applying 5.8(a) to A =f(x) (re-
spectively, 5.8(b) to C = /(y)) .

Counterexample Lemma 5.17 Let μ = (X,R,fg) E M and suppose x9y,β
constitute a counterexample to (C5a) (respectively (C5b)) for μ. Then there ex-
ists an extension μ' = (X\R\f\g') EM of μ for which x,y,β do not constitute
a counterexample to (C5a) ((C5b)).

Proof: In either case, the desired extension can be found by applying 5.11 to
A = / ( * ) , B = g(x,y), and C = / ( y ) .

Counterexample Lemma 5.18 Let μ = (X,R,fg) E M and suppose x,y
(respectively, y,y) constitute a counterexample to (C6a) (respectively (C6b)) for
μ. Then there exists an extension μ' = (X',R',f',gf) GMofμfor which x,y (y,y)
do not constitute a counterexample to (C6a) ((C6b)).

Proof: The desired extension can be found by applying 5.12(a) to A =f(x) (re-
spectively, 5.12(b) to C =f(y)).

Proof of the Completeness ofL'0forK0: We will construct a perfect chronicle
(fg) on some frame (X,R) containing an x0 with a0 E/(x0) for any consistent
formula a0 to complete the proof. Fix an enumeration Xo,X\,x2, - - .of JFand
an enumeration cc0,ai,oc2> -of all formulas. We assign code numbers to the
conditions (C4a - C6b) as follows:

2 II1'. 13'. 17* to (C4a) with x = xh β = ak

3Λ\jΛyΛlk to (C4b) withy = xj9 β = ak

4 ll'" 13y". 17* to (C5a) with x = xh y = Xj, β = ak

5 II1'-13-7'-17* to (C5b) with x = xz, y = xj9 β = ak

6 II1'-13'" 17* to (C6a) with x = xh γ = α^
7 l l 7'. 13-7". 17* to (C6b) withy = xj9 y = ak.
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Fix an MCS Co with a0 E Co and let μ0 = {Xo,Ro,fo>go) where Xo = {x0},
R = 0 , / = {(Λro,Co)}, g = 0 . If μn is defined, consider the condition, which
among all those which are counterexamples for μn, has the least code number
(otherwise, (fn,gn) would be the desired perfect chronicle on (Xn,Rn)). Let
μn+ι be an extension of μn for which that condition is no longer a counterexam-
ple, as provided by the Counterexample Lemmas above. Let (X,R,f,g) be the
union of the μn = (XniRn,fn,gn). It is readily verified that (f,g) and (X,R) are
desired.
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