
383

Notre Dame Journal of Formal Logic

Volume 33, Number 3, Summer 1992

Relative Separation Theorems for <£*+*

HEIKKI TUURI

Abstract Let K be regular and λ = κ<κ. We prove a strong form of a sepa-
ration theorem for the language £κ+κ, where the separant is in cM\+x- We
also prove that cMχ+χ allows Lyndon and Malitz interpolation for £κ+κ. This
implies that every sentence of <£κ+κ preserved under submodels is equivalent
to a determined universal sentence of cMλ+λ From the separation theorem
we obtain the corollary that if a sentence φ ofcJ\Hκ+κ has a negation in <MK+K,
then there is a determined sentence ψ G cMχ+χ equivalent to φ. Using a result
of Mekler and Vaananen we show it consistent that the Δ-closure of £κ+κ

does not allow separation for £κ+κ, if K = μ+, μ a regular cardinal.

1 Introduction Hyttinen [3] and Oikkonen [7] have proved a separation the-
orem for £κ+κ, where the separant is in the infinitely deep language (Mκ+K, as-
suming K regular and κ<κ = K. (For the definition of <MK+K9 see Definition 1.7.)
They have also shown that cMκ+κ allows Beth definability for £κ+κ. In this work
we prove a stronger form of the separation theorem for £κ+κ (Theorem 3.5):

Separation Theorem for £κ+κ Let τ be a vocabulary. Assume K is regular
and λ = κ<κ. If φ and ψ are sentences of £κ+κ(τ), they have vocabularies μ
and v, and φ A ψ has no r-modeU then there is θ E cMχ+λ(r), such that for all
τ-models 9tt:

(i) the vocabulary ofθisμΓϊv;
(ii) ifiBltφthenΏltθ;

(iii) ifmtψthenWlt-θ.

~θ denotes the dual of θ (Definition 1.9). Since sentences in 3Dϊχ+λ are not al-
ways determined, 9ft (̂  θ does not always imply 3Dΐ N ~0. Thus our theorem is
stronger than Hyttinen's, because in Hyttinen's formulation (iii) above is replaced
by:

(iii') ifm\=ψthenm#θ.

The separation theorem above implies that 90?x+x allows separation also for
(Mκ+Ki and assuming κ<κ = K, <MK+K allows separation for itself.

Received February 13, 1991; revised February 2?\ 1992



384 HEIKKITUURI

The proof of the theorem is roughly the following: let Φ and Ψ be the Vaught
game sentences which code the Henkin constructions for φ and ψ, respectively.
Now Φ is a separant for φ and ψ. By playing the Henkin construction games si-
multaneously for φ and ψ, we find an approximation of Φ, θ — Φt G cMχ+λ,
which separates φ and ψ.

We prove two variants of the separation theorem, which are used to obtain
Lyndon and Malitz interpolation theorems for £κ+κ, where the interpolant is in
cΛΛλ+λ Keisler [4] contains the proofs for these results in the simplest case K =
ω, that is, £ ω i ω allows Lyndon and Malitz interpolation for itself. These clas-
sical results are obtained as a special case in this paper. We apply our Malitz the-
orem to show that the sentences of £κ+κ preserved under submodels are
equivalent to determined universal sentences of cMλ+λ From the separation the-
orem it also follows that if φ G <MK+K has a negation in <MK+K, then there is a de-
termined φ G cΛΛλ+λ equivalent to φ. We apply our results to generalized Borel
sets in the space 9tκ = κκ.

Using a result of Mekler and Vaananen [6] we show it consistent that the de-
termined part of cMκ+κ, which, assuming κ<κ = K is the Δ-closure of £κ+κ, does
not allow separation for £κ+κ, where K is a successor of a regular cardinal.

Notation 1.1 We denote by 12K| the universe of a model 2tt, by 12R| the car-
dinality of 13D?I and by r(3Jί) the vocabulary of 30?. If φ is a formula, then τ(φ)
is the set of all function, constant, and relation symbols that occur in φ. By tt(R)
we denote the arity of a relation symbol R, which may also be infinite. If C is
a set and c a sequence, then c G C means ran(c) c: c.

If r is a vocabulary, by Modτ(<p) we denote the class of r-models of φ and
by Str(τ) the class of all r-models.

In the definitions of concepts of abstract model theory we mostly follow Eb-
binghaus [1]. One exception is that when Ebbinghaus says L' allows interpola-
tion for L, we say 1/ allows separation for L.

Definition 1.2 (i) We define a logic as a pair (L,t=) which fulfills Definition
1.1.1 of [1]. (1.1.1 is a rather minimal definition for a logic.) Here L is a map-
ping defined on vocabularies r and L(r) is the class of τ-sentences.

(ii) Let L be a logic and M a class of r-models.
We say that Mis an elementary class (EC) in L iff there is φ G L(r) such that

M=Modτ(φ).
We say that M is a projectiυe class (PC) in L iff there is r' 2 r and a class

M' of r'-models EC in L, such that M = { 2 l t r | 2 l G M / j .
We say that Mis a relativized projectiυe class (RPC) in L iff there is r' Ώ r,

a unary relation symbol UGT' - r, and a class M' of r'-models EC in L, such
that A f = {(21 IT) \ U*\HeM'}.

We say that M is Δ in L iff M and Str(r) - M are PC in L.
(iii) Let L and 1/ be logics. We say that L and 1/ are equivalent, in symbols

L Ξ L ' , iff any class of models is EC in L iff it is EC in I/.

Definition 1.3 (i) The logic Σ} L is the logic which has as elementary classes
just the classes which are PC in L.

We define a canonical version of Σ{ L. Let Σ\ L(r) consist of all sentences
3Rφ, where R is a set of symbols, RΠτ= 0 , and φ G L(r U R).
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If 21 is a 7-model, then we let 21 N iRφ iff there is a r U .R-model 21', such
that 2ί = 21' Γ r and 2Γ N φ.

(ii) The Δ-closure of L, denoted by ΔL or Δ | L, is the logic which has as el-
ementary classes just the classes that are Δ in L.

We define a canonical version of ΔL. Let ΔL(τ) consist of all sentences 3Rφ
of Σ\ L(r) for which ModT(lRφ) is Δ in L.

Definition 1.4 (i) We say that L is closed under negation if for all r and
φ G L(r) there is φ e L(r) such that ModT{φ) = Str(τ) - Modr(<p). We say that
Φ is a negation of φ in L ( r ) .

(ii) If φ G L(r) and ^ G L'(r), then we say that φ and ^ are equivalent iff
Modr(<p) =Mod τ(ιA).

Definition 1.5 (i) If MUM2, and M3 are classes of r-models, MλΓ\M2= 0 ,
Mi c M 3 and M 3 Π M 2 = 0 , then we say that M 3 separates Mx and M 2 .

(ii) If <p, φ G L ( r ) , 0 G L'(τ) and the class ModT(0) separates Modτ(^>) and
Modτ(φ), then we call θ a separant of φ and ^.

(iii) Let L and 1/ be logics. We say that L' allows separation for L iff for any
r any two disjoint classes of r-models PC in L can be separated by a class of r-
models EC in L'.

In Definition 1.5(iii) we do not say "interpolation" because if L is not closed
under negation then separation and interpolation theorems are not necessarily
equivalent (see the remark after Theorem 3.11).

We shall next define the logics (or languages) £λκ and cMλκ. To avoid con-
fusion with vocabularies, in most of our results we fix a vocabulary r and work
with £\κ(τ), cMλ/c(r), and r-models.

Definition 1.6 Let K and λ be cardinals. A tree / is a λ, κ-tree, if / does not
contain branches of length > K, each node xGt has < λ immediate successors,
and for all x,y G t the following holds: if {z G t\z<x] = {zG t\z<y] and x
and y have no immediate predecessors, then x = y.

Definition 1.7 Let K and λ be cardinals. A formula of <M\K is a pair (t, I),
where t is a λ, κ-tree and / is a labeling function. The pair (t, I) must fulfill:
(1) t does not contain branches of a limit ordinal length;
(2) if x G t does not have any successors, then l(x) is either an atomic or negated

atomic formula;
(3) if x G t has exactly one immediate successor, then l(x) is of the form 3u or

Vw, u a variable;
(4) if x G t has more than one immediate successor, then l(x) is either V or Λ
(5) if x,y G t and x < y, then l(x) and /(y) must not quantify over the same

variable.

By (M\κ(τ) we denote the set of those sentences φ G cMλκ for which τ(φ) c r .
We define £λκ in the usual way, i.e., conjunctions and disjunctions of size <

λ and quantification over < K variables are allowed.
We have the following assumption: in £λκ and <M\K functions and relations

may have < K arguments.
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Definition 1.8 Let 21 be a r-model, φ G Λ\κ(τ) a sentence and φ = (ί, I).
The semantic game 5(21, φ) is a game of two players, V and 3. When the game
begins, the players are in the root of t, and during the game the players go up
the tree t. In each round the players are in some node x G t, and it depends on
l(x) how they continue the game. In a limit round the players start from the su-
premum of the nodes chosen before,

(i) If l(x) = V ( Λ ) , then 3 (V) chooses one immediate successor of x to be the
node where the players go next.

(ii) If l(x) = 3w (Vt/), then 3 (V) chooses an element u% in ||2ί|| to be the inter-
pretation of u. The players go to the immediate successor of x.

(iii) If l(x) = ψ(ΰ), then the game is over and 3 has won if 311= ψ(ύ%).

We write 21 h φ if 3 has a winning strategy for S(2I, φ).

Definition 1.9 (i) We say that φ G cMλκ(r) is determined if for every r-model
21, 3 or v has a winning strategy in S(2l, φ). We define cM"κ(τ) = {φE cΛ/lλκ(r) |
φ has a negation in <M\K(τ)j and M.\κ(r) = [φ G (M\κ(τ) \ φ is determined j .

(ii) If φ = (t, I) G CMXK, then the dual of φ is ~φ - (t, Γ), where for each
xGt:
(a) /'(*) = 3(V) if/(x) = V(3);
(b)/'(χ) = Λ (V)if/(*) = V (Λ);
(c) I'(x) = ψ(-*ψ)ifHx) = -iψ(ψ).

Obviously, 3 (V) has a winning strategy in S(2ft,~<p) iff V(3) has a winning
strategy in S(9D?, φ). Thus Wl \= ~φ => Wl # φ, but the converse implication does
not hold, if S(3Dΐ, φ) is nondetermined.

Definition 1.10 (i) Conjunctive \κ-Vaught sentences are of the form

Φ = vwo V Λ 3t7O...Vttα V Λ 3"«.. .
/θ^/θ JO^Jo tablet Jot^Ja

Λ <PioJo...ictJ«(Uθ9V0>> -',Ua>Va),
a < κ

where φioJQ iajci are conjunctions of atomic and negated atomic formulas and
141 > \Ja I < λ. The semantic game S(2l,Φ) is defined like for cMλκ, and it con-
sists of K rounds, where in round a the truth of <Piojo...iaja is tested. If 3 can
play all K rounds without losing, then he wins the game. We denote the logic of
conjunctive λκ-Vaught sentences by V\κ.

(ii) If G is a game and t a tree, then by Gt we denote a game which is like
G, except that before each round a, V must choose some xa G t. The elements
xa must form a strictly increasing sequence in t and if V runs out of t then V
loses. If Φ is the conjunctive λ/c-Vaught sentence from (i) and t a λ, κ-tree, then
by Φ' we denote the cM\K-sentence defined from Φ in the obvious way so that the
game S'(2l,Φ) is essentially the same as S(2I,Φ').

Definition 1.11 (i) We say that a formula of £λκ or c/i/lλκ is in the negation
normal form (NNF) if all negations in the syntax tree of φ occur immediately be-
fore atomic formulas. (In cΛ/lλκ all formulas are in NNF.) If φ is in NNF, by n-
subformulas of φ we mean the smallest set S such that:
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(a) φGS;
(b) if Vΰψ G S or lux// G S then ψ in 5;
(c) if Λ * G S or V * G S, then Ψ Q S.

(ii) If ̂  G <£\μ is a sentence, then we define sub(<ρ, K) = K + \ {ψ(c) \ ψ(ύ)
a sub formula of φ and c c C ) | , where C is a set of cardinality /c of new con-
stants.

2 A Henkίn construction In this section we apply a Henkin construction
also known as the Hintikka game to derive a separation theorem. To simplify
the proofs we consider in this chapter only relational vocabularies.

Definition 2.1 (Modified from Makkai [5].) Let K be an infinite cardinal. Let
3Rφ be a Σl<£κ+κ(τ)-sentence where r and R are relational and φ is in NNF.

Let C = [ca I a < κ\ be a set of new constants. Let Aφ(C) be the smallest
such that:

(i) φGAφ(C);
(ii) if φ(ΰ) is an n-subformula of φ with at most ΰ free and c <Ξ C, then

Ψ(c)EΔ,(C);
(iii) if c,,,^ G C, then (ca = cβ) G Aφ(C) and (-.cα = c )̂ G Δ^(C).

By the definition of an rt-subformula, R occurs positively (negatively) in φ iff it
occurs positively (negatively) in Aφ(C). Clearly, |Δ^(C)| = sub(φ9κ). Let ξ =
\\(C)\.

Let Φ be the following Fξ+κ(τ)-sentence:

Φ = VM0 V Λ 3υ0 Λ V V"i
rfoec e o e c δoeΔv(C) «oeΔv(C)

(hNd°«>s<>e°-e-(uo,Vo,...,uei,va)).
\<x<κ I

Denote Ha = {̂ , β 0 , . . . , θβ9... }̂ <α. Suppose:

(1) if π(ϋ) is an atomic formula with ΰ free, c = (Cβy)Ύ<δ and c' = (c€y)y<8

are constants of C, τr(c) G ίfα+1 and c^7 = c€y G //α +i for all y < δ,
then iχ(^)ί//«+!.

(2) if δα G ΛΓα and δa = V*, then 0α = ̂  for some 0 G Ϋ;
(3) if δα G Ha and δα = lΰψiΰ), then 0α = ̂ (c) for some c Q C;
(4) if Λ ^ G //« and δα G * , then 0α = δα;
(5) if VQψ(Q) G ̂  and δα = φ(c) for some c c C, then 0α = δα;
(6) if δα is of the form c = c', then 0α = (c = c') or θa = (~>c = c').

If (l)-(6) hold, then

Nd° θoί(uθ9v0,... ,«α,ι;α) = Λ{π(«o,yo> •>««>*>«) | π is an atomic or
negated atomic formula of r
and τc(do,eo,...,da,ea) eHa+ϊ}.

If (l)-(6) do not hold, then Nd° -'θθί is identically false.
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Let Φe be the following existential f^+κ(τ)-sentence:

Φ e = A 3 < Ό Λ V Λ •••

( /\Ne°ί">θ°-θ»(v0,vι,...,va)).
\a<κ I

Here Ne° θa is defined like Nd° θθί above with the following modification: if
(l)-(6) hold, then

N e ° θ < * ( v 0 , . . . , v a ) - Λ { 7 r ( ι > o , . . . 9 υ a ) I TΓ i s a n a t o m i c
or negated atomic formula of vocabulary τ
and τr(eθ9...9ea) EHa+ι}.

Theorem 2.2 Let 3R<p E Σ\£κ+K(τ) and Φ E Vξ+K(τ) be as in Definition 2.1.
Let Wl be a r-model.
(i) Assume K is regular, or K is singular and there is\< K such that φ E £κ+\.

IfWlϊlRφtthenWlϊΦ.
(ii) Assume sub(<p, K) = /c. // |2W| < K and Wl # iRφ, then 2ft 1= ~Φ.

Proof: As in [5].

Theorem 2.3 Let 3Rφ E Σ\£κ+K(τ) and Φe E Kξ+K(τ) be as in Definition 2.1.
Let Wϊ be a r-model.
(i) If K is singular, we assume there is\< K such that φ E £κ+χ] if K is regular

we do not assume anything. IfWl has a submodel 2Jί0 such that 2ft0 ^ 3̂ <P>
then mtΦe.

(ii) Assume sub(<ρ, κ) = κ.If$l has no submodel 2Jί0 such that 9JΪ0 1= 3Rφ, then
3Jϊt=-Φe.

Proof: (i) Suppose first that 3Dΐ has such a submodel $Bΐo The proof that 9DΪ 1=
Φe is exactly as in Theorem 2.2(i): 3 just lets W in the proof to be 9Jίo completed
to a model of φ.

(ii) Let V play 5(3DΪ,Φe) according to the strategy defined in the proof of
2.2(ii) ((SI) is not needed). If 3 can play all K moves against this strategy, then
exactly_as in 2.2(ii) we can prove that there is a submodel Wl0 £ 9ft such that
9Jίo N 3Rφ, a contradiction.

Definition 2.4 Let Φ and Ϋ be conjunctive λ/c-Vaught sentences and 9W a
model. We define a combined semantic game S2(2W,Φ,Ϋ), in which 3 and V
play the semantic games S(2ft,Φ) and 5(3Jf,^) at the same time. In round a
oΐS2

(i) players V and 3 first make the moves of round a in S(90ί,Φ),
(ii) then V and 3 make the moves of round a in S(3)ΐ,Ψ).

V wins S2 in round a if he wins either 5(2Jί,Φ) or S(2JΪ,^) in round a.

Definition 2.5 Let φ and ψ be £κ+κ(τ)-sentences in NNF, where r is re-
lational. They are also Σ}<£κ+K(τ), where the prefix 3Ϊ? is empty. Let C —
{ca I a < K j and C" = {c |̂ α < K j be disjoint sets of new constants. Let (see Def-
inition 2.1)
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Φ* = Vw0 V Λ *vo Λ V VWi...
doeC eo(ΞC δoGΔ^(C) θ0SAφ(C)

\Q!<K /

and

Ϋ = VM6 V Λ 3^6 Λ V VfiJ...
rfόec eόec" δί)GΔ^(C) 06eΔ^(C)

\α:<κ /

Ψ is defined from ψ as in Definition 2.1. In the definition of Φ* there is a small
difference. Here N^° θa is defined like Nd° ' θθί in 2.1 with the following ex-
ception:

(e) if R is a relation symbol that does not occur negatively (positively) in ψ, then
all positive (negative) occurrences of R are deleted from N*° θoc.

We define Φ* like Φe with the exception (e).

Note that in the following theorem and many others we have replaced a car-
dinal assumption (κ<κ = K) by an assumption on the number of subformulas of
φ and ψ.

Theorem 2.6 Let φ,ψ G £κ+κ(τ). Assume sub(<p, K) = sύb(ψ, K) = K. Lei
Φ*,Ψ G Kκ+K(τ) 6e as />2 Definition 2.5. //'^ Λ ψ (ioes «oί Λai e a τ-model 21, ίΛe«
/Λere is a κ+, κ-tree t such that V has a winning strategy in S ! (?1,Φ.MΫ) / ^ /̂/
τ-models 21.

Proof: Note that sub(<ρ, K) = sub(^, K) = /c implies #(R) < cf(/c) for any R G
r(^) U τ ( ψ ) . Let (ρa)a<κ be such that p α G Δ^(C), α < K, and sup{α|p α = }̂ =
K for all θ G Δ^(C). Here we need the assumption sub(<ρ, K) = \Aφ(C)\ = K. We
define pr

a G Δ ^ ( C ) , a. < κ9 in a similar way.
Let tf0 be an arbitrary fixed set (e.g. 0 ) . Without loss of generality we may

consider only models 2t such that a0 G ||2ί||. We describe V's strategy S v in
S2(2l,Φ*,Ψ). For all a < K, V chooses:

(51) w^ = (f^-i)5 1* if α is a successor, else u& = ao;
(52) eα = c α ;
(53) δα = P α ;

(54) (w;) a = t;*;
(55) β; = c;;
(56) δ'a = p ' a .

Suppose 21 is a model and in 21 3 plays against S v all rounds before round a
without losing. From this play we get a sequence

doeoδoθodoef

oδoθo.. .dβeβδβθβdβeβδfβθβ... 9β < a.

We denote by tn the set of all such sequences where 3 has not yet lost. Let / =
U {t% 121 a r-model j . We order t into a tree by the initial segment relation.
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Next we prove that if there is a branch of length K in t then φ A ψ has a model.
Assume

B = do...daea6aead'ae'aWa...9 ot<κ

gives s u c h a b r a n c h . L e t Hφ = { φ , θ0, θ\,...}, Hψ = {ψ, θ'θ9 θ[,...}, a n d // =
HφU Hψ. W e d e f i n e a r e l a t i o n - i n t h e f o l l o w i n g w a y :

(rl) ca ~ cβ iff (ca = ca) G H;
(r2) c^~c£ iff (c'Oi = c'β)eH'i

(r3) cα - c^ and c£ - cα iff there are 7,6, such that (cα = cy) G //, (c£ = φ G
//andtfΎ = φ

Note that in case (r3) for some ξ < κ9 N*° θξ contains the formula

va = vy

(from ca = cy) and Nd'° "θ^ contains

uy=v'β

(fromcg = c'β).

Lemma A The relation — is an equivalence relation.

Proof:

Reflexivity. Let a be arbitrary. By the choice of S v either (ca = ca) G H or
( i c α = cα) G H. But, if (-icα = cα) G //, then for some ξ, N2° θ* contains
-ιt;α = yα, which is identically false. Thus 3 would lose all plays of length ξ + 1
associated with the branch B. This contradicts our assumption about B. Case
c'a = c'a is similar.

Symmetry. Suppose ca - cβi i.e., (cα = cβ) G //. If (-^cβ = cα) G //, then
for some ξ, N*°"'θξ contains va = Vβ Λ -iVβ = va9 a. contradiction. Thus
(Cβ = cα) G // and Cβ ~ cα. Case c^ — c£ is similar, and the others are trivial.

Transitivity. Suppose ca - cβ and c^ - cΎ. As before we see (ca = cy) G //and
C α - Cy.

Suppose ca — c^ and c'β — c^. Let c'h be as in (r3). Now (c'δ = c'e) G //, and
thus ca - c€'.

Suppose caι — c^ and Cβ — cα 2. Let c 7 1, c'δι, c 7 2, c§2 be as in (r3). Assume for
a contradiction (-ιcα i = cα2) G //. Then for some £ < *, Λ^ί0 ^ and Λ^̂ 0 θ*
contain the formulas:

(fl) vaι = vyι, uyι = Vβ (from cai - c'β);
(f2) vU2 = y72, w;2 = Vβ (from cα 2 - c'β);
(f3) -n;α i = fα2.

Suppose 3 has played ξ rounds without losing in some model 21. Then (u'yι)
% -

(uy2)
% (from (fl)-(f2)), and ϋ« Φ v*2 (from (fl)-(f3)). But this is a contradic-

tion, because V always plays so that (u'a)® - v%.
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Suppose then cβι ~ ca9 ca~ cβl9 and -\c'βι — c'β2. Then we get the formulas:

(fl) va = vyι9uyι = v'βι;
(f2) υa = vΎ2, uyo = υ'β2;
(f3) π ^ = ^ 2 ,

Again we get a contradiction. This proves Lemma A.

We are now ready to define our model 3Dΐ of vocabulary T U C U C .

(Ml) 19ft|| = equivalence classes of ~.
(M2) If c G C and c' G C , then cm = [c] and (c' ) ^ = [c'].
(M3) If R G T and α7 G 2R, y < δ, then $Dΐ ϊR(a0,..., tfΎ<δ,...) if for some

(cay)y<δ, where cfj = ay9 y < δ,

Λ ( c α o , . . . , c α γ < ό , . . . ) EH

or for some ( c ; Ύ ) 7 < δ , where (cf

aηr)
m = ay9 y < δ,

Λ ( c ; 0 > . . . , c ; 7 < β , . . . ) G Λ

Leta» / = 2R Γ {cf | α < j c ) .

Lemma B Wit θ for all θ E Hφ and W ϊθfor all θ G //^.

Proof: By induction. We prove first SDΪ 1= θ for all fl G // (negated) atomic.
(al) If β = (cα = c )̂ then by definition ca - c^ and 2R t= fl. Case fl = (c£ =

c )̂ similar.
(a2) Suppose fl = (~«cα = c^). Then as before we see (ca = cβ) £ H. Case

fl = (-ιc^ = <:£) is similar.
(a3) Suppose fl = R(cao9..., c α τ < δ , . . . ) . Then by definition 2» t= fl.
(a4) Suppose fl = -ι/?(cα o,..., c α e < f , . . .) G i/^. Assume for a contradiction

9ft 1= -ifl. There are two cases. Suppose first there are (cβe)€<^ where c^ = cf^,
R(cβo,..., cβe<ί,...) G //^. This means (cae = cβe) G Hφ for all € < ζ. But now
we have a contradiction with Definition 2.1(1). Here we need #(R) < cf(κ)

Suppose then there are some (cβe)e<^, such that (c^)9^ = c ^ and R(cβo,...,
c^ e < r,...) G /fy. Thus c ê ~ cαe. Let γ€, e < f, be as in (r3). Then for some ξ,
Λ^° β« and A^̂ 6 ^ contain formulas:

(fl) -ιR(vao,..., fQίe<r,...) (remember Definition 2.5(e) and that R occurs
positively in ψ because it occurs positively in Hφ);

( f 2 ) υOίe = υΊe9e<ζ\
(f3) < = ^ , 6 < f ;
(f4) tf(^0,...,t4<f,...).

As before we get a contradiction, since v®e = (wTe)
H.

(a5) Case fl = -«/?(...) G /fy is similar (in (fl)-(f4) above -iΛ and ^ are
just exchanged).

Now we have treated the case θ (negated) atomic. Suppose then, for exam-
ple, fl = Vi/p(w), θEHφ.By our assumption W \=ρ(c) for all c c C. This im-
plies W f= Vwp(w). Note that every equivalence class of — contains an element
from C" (by (r3)). All other steps are similar. This proves Lemma B.

Lemma C W = 3DΪ, /.e., ei ery equivalence class of - contains an element
from C.
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Proof: Let c'a G C" be arbitrary. Let cβ = da+i and cy = d'β. Then c^ - c'Ί. We
show Cy~c'a9 which implies cβ~ c'a. Assume for a contradiction (-icj, = c'a) G
//. Then for some ξ < K, N?° •*« and Nd'° θ't contain the formulas:

(fl) ι/α+1 = ̂  (from C0 = c^);
(f2) ^u'β=υ'a (from i c ; = O .

This is a contradiction, because u®+ι = ( i ^ ) 8 and (uβ)
% - υf. This proves

Lemma C.

This ends the proof that SDΪ 1= φ A ψ. Thus there cannot be branches of
length K in the tree t. We describe V's winning strategy for S|(2l,Φ*,Ϋ). Except
for the moves in /, V just follows his winning strategy Sv If V has not yet won
in round α, then he moves d0... θβ<a . . . in t and makes his other moves ac-
cording to S v. This proves the theorem.

Theorem 2.7 Let φ, ψ G £κ+κ(τ). Assume sub(<ρ, K) = sub(^, AC) = K. Let
Φl,Ψ G Kκ+/C(r) be as in Definition 2.5. If there do not exist τ-models W Q Wl
such that W t= φ and Wl 1= ψ, then there is a κ+, κ-ίree ί 5wcΛ that V Λαs α wm-
ning strategy in S2(2I,Φ*,Ψ) for all τ-models 21.

Proof: If we look at the proof of Theorem 2.6, we see that ua and da are
needed in Lemma C only to prove W = 9ϊϊ.

3 Lyndon separation In this section we apply the results of the previous sec-
tion to derive Lyndon separation theorems for £κ+κ and <MK+K.

From now on we consider arbitrary vocabularies, not just relational ones.
To simplify notation we consider constants as functions without arguments.

Definition 3.1 Let r be a vocabulary, let τj contain exactly the function sym-
bols in r, and let φ be a formula of £\κ(τ) or <M\κ(τ). We say that φ is in a
function normal form (FNF) if φ is in NNF and function symbols occur only in
atomic formulas of the form

wo = / 7(t/ 1,w 2,...),

where u0, ui9... are variables.
We define an operation that canonically transforms functions to relations.

Let r' = RTf(τ) be a vocabulary such that r' is exactly like r, except that if FG
Tf is an α-place function symbol in r, then F is a 1 + α-place relation symbol
inr'.

If 9DΪ is a r-model, then we define W = Rτ/(Wl) as a r'-model such that W
Γ ( r - r / ) = 2R t (r - τf) and if FG r r, then W \=F(ao,au . . . ) iff 90ΐ htf0 =

If <p is in FNF, then we define φ' — RTf(φ) as a formula where each atomic
formula of the form u0 = F(u{,...), FE r/, is replaced by F(w 0 ,« ! , . . . ) .

If τ 0 is a set of relation symbols, then by pTQ we denote a sentence which
says that the relations in r 0 determine functions in the canonical way.

Lemma 3.2 Let r, rf and φ be as in Definition 3.1.
(i) If mis a τ-model and φ is in FNF, then m\=φ& i?T/(3K) H RTf(<p)

(ii) //2ft' is an RTf(τ)-model and W N p r /, ίΛe« ^"^aJΐ ') fe defined.
(iii) 7/V /5 βf̂ j RTf(τ)-formula in NNF, /Λe« R^f

l(<p') is defined.
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Lemma 3.3 / / ^ E £ λ / ( ( τ ) , λ > K, then there is φ' G £\κ(τ) in FNF such that
φ&φ' and for every relation symbol R, R occurs positively (negatively) in φ iff
it occurs positively (negatively) in φ'.

Proof: Suppose t(uu u2,...) is a r-term. We prove by induction that for the
formula u0 — t(ux, u2i...) there is φt(u0, ux,...) which is equivalent to it and
in FNF. Suppose

t ( u u u 2 , . . . ) = F ( t o ( u u u 2 , . . . ) , t i ( u l 9 u 2 9 . . . ) , . . . ) •

Then we let φt be

3 v o , ! > i , . ( « o = F ( v o , v u . . . ) A < p t o ( v 0 , u i f u 2 , . . . ) Λ • • • ) •

Now it is obvious how we can construct φ' by replacing atomic formulas in φ.

Lyndon Separation Theorem 3.4 Let K be infinite. Suppose φ and ψ are
sentences of £κ+κ(τ), they are in FNF, and φ A ψ has no r-model. Assume
sub(<ρ, K) = sub(\ίs K) = κ Then there is a sentence θ of J\l[κ+K(τ) such that for
every τ-model 2Jί:

(i) m£φ=>Wl\=θ;
(ii) 2»h^2ttN~0;

(iii) r(θ) c T(φ) Π τ(ψ);
(iv) if a relation symbol R occurs positively (negatively) in θ9 then it occurs pos-

itively (negatively) in φ and negatively (positively) in ψ.

Proof: We prove the claim first for relational vocabularies. Let Φ* and Ψ be as
in Theorem 2.6. For some κ+, κ-tree t, V has a winning strategy in SKϋDΐjΦ*,^)
for all a». Letέ> = Φi.

Let Wl be arbitrary. If 2W H φ9 then by Theorem 2.2(i) Wl \= Φ. Note that if K
is singular, we can apply 2.2(i) because sub(φ,κ) = K implies that φ E £κ+\,
where λ = cf(K) (if we remove from φ quantification over variables not occur-
ring in the scope of the quantifier). Since Φ* is a weaker sentence than Φ (see
Definition 2.5), 2)ΐ 1= Φ*. This implies Wl 1= θ.

Suppose then 9ft t= ψ. Then 3 has a winning strategy in S(3ft,Ψ). Since V
has a winning strategy in S2(2W,Φ*,Ψ), v must obviously have a winning strat-
egy in S'(2)ΐ, Φ*). This means Tϊ N ~θ.

If a relation symbol occurs positively (negatively) in Φ*, then it occurs pos-
itively (negatively) in Aφ(C) and thus in φ. By Definition 2.5 it must occur neg-
atively (positively) in ψ.

Suppose then r is not relational. Let μ = τ(φ) and v = τ(ψ). Let τf9 μ/9 vf

contain the function symbols in τ,μ,v9 respectively. Let r' = Rτ/(τ), φ' =
R7f(φ) and ψ' = RTf(ψ). Assume for a contradiction W is a r'-model of (φf A
βμf) Λ (ψ' A pVf). We redefine the relations Fm\ F G τf - (μf U vf)9 so that
9J} = R~f

ι(W) is defined. Then Wl\=φAψ, a contradiction.
Clearly, sub(φ'9κ) = sub(φ,κ) = K and sub(pμ/,κ) < sub(φ',κ) = K, and

similarly for ψ'. Let ̂ ' be the separant of φ' A pμ/ and ψ' A pVf. Let θ = R^(θ').
Suppose m is a r-model and 3DΪ N 0. Then ^^(2)?) 1= ψ' A pμ/ and i?τ/($Dί) t=

~θ'. By Lemma 3.2(i) Wl tR-f\~θ'), and obviously R-f

ι(~θ') = ~θ. Simi-
larly we get 9JΪ1= <̂> => 3)ΐ h fl.
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Lyndon Separation Theorem for £κ+κ 3.5 Let K be regular and λ = κ<κ.
Suppose φ and ψ are sentences of£κ+κ(τ) and φAψ has no τ-model. Then there
is a sentence θ o/cMλ+χ(τ) such that for every τ-model 2ft:

(ii) Wl\=ψ^Wl\=~θ;
(iii) τ(θ)Qτ(φ)Πτ(φ);
(iv) if a relation symbol R occurs positively (negatively) in 0, then it occurs pos-

itively (negatively) in φ and negatively (positively) in ψ.

Proof: Note that sub(<p,λ) < λ<κ = λ. Thus the claim follows from Theo-
rem 3.4.

If Theorem 3.5 holds with £κ+κ and cMλ+λ replaced by L t and L2, then we
say that L2 allows Lyndon separation for L t .

Lyndon Separation Theorem for £κ+ω 3.6 Ifκ is infinite, then <MK+K allows
Lyndon separation for £κ+ω.

Lemma 3.7 Let K be regular and λ = κ<κ. Let φ G Vκ+K(τ) orφG <MK+K(τ).
Then there is a Σ\£λ+K(τ)-sentence 3Pφ' which is equivalent to φ and such that
a relation symbol R G r occurs positively (negatively) in φ' iff it occurs positively
(negatively) in φ.

Proof: It is enough to treat the case φ G Vκ+K(τ) because essentially
<MK+K(τ) c Vκ+K(τ). The proof is done by Skolemization, as in Proposition 5.1
of [5]. We just have to add some sentences there to ensure that 3 can move also
in rounds α, where a is a limit.

Lyndon Separation Theorem for <MK+IC 3.8 Let K be regular and λ = κ<κ.
Then cMλ+λ allows Lyndon separation for (Mκ+K.

Proof: Let φ, ψ G cM^+^r). Let iRφ', iSψ' G Σ}<βλ+K(τ) from Lemma 3.7 (R Π
S = 0 ) be equivalent to φ and ψ. We may assume that φ' and ψ' are in FNF.
Now φ' A φ' does not have a τ U ^ U 5-model. We can apply Theorem 3.4 be-
cause sub(^,λ) = sub(ψ λ) = (κ<κ)<κ = λ. Let θ be the separant of φ' and ψ'.
Suppose 2)ϊ is a r-model and 9tt N φ. Then 3ft can be extended t o a τ U i ? U S -
model W, for which W 1= φ'. Thus W 1= θ and 3DΪ 1= θ. Case 9K t= ψ is similar.

Separation Theorem for ΣΪcΛll^ 3.9 Let K be regular and λ = κ<κ. If iRφ
and 3Sφ are Σ\(MK+K(τ)-sentences and iRφ A 3Sψ has no τ-model, then there is
θ G (M\+\(τ) such that for all τ-models Wl:
(i) a»N3Λ^=>a»Nfl;

(ii)9DΪ 1= lSψ^m\=~θ;

Corollary 3.10
(i) Let K be regular and λ = κ<κ. If 3Rφ is in A\MK+K(T), then there is deter-

mined θ G Mχ+λ(τ) which is equivalent to 3Rφ.
(ii) Let K be regular and λ = κ<κ. Then cΛ/lχ+χ allows separation for (Mκ+K and

(iii) Assume K regular and κ<κ = K. Then A£κ+K = A<MK+K = cM"+fC s cΛ/l̂ +#c.
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Lyndon Interpolation Theorem for £κ+κ 3.11 Let K be regular and λ = κ<κ.
Suppose φ,φe £κ+«(τ) and for all τ-models 2ft, m N φ => 3ft N ψ. Then there is
a sentence θ E (M\+\(τ) such that for every τ-model 9DΪ:

(ii) Wlϊθ^Wlϊφ;
(iii) τ(θ) c r(^) Π r(ψ);
(iv) z/α relation symbol R occurs positively (negatively) in θ then it occurs pos-

itively (negatively) in both φ and φ.

In the proof of the interpolation theorem 3.11 above we need the fact that
Φ has a negation in £κ+κ(τ). We cannot prove 3.11 this way for <MK+K(τ) be-
cause it is consistent that there are sentences of cMκ+κ(r) with no negation in
<MK+K(τ) (see Corollary 6.6). The problem whether Theorem 3.11 holds with
£κ+κ replaced by <MK+K is open.

Beth's Theorem for (Mκ+K 3.12 Let K be regular and λ = κ<κ. Suppose that
φ(P) G cMκ + κ(r U {P}) and for all 2»,

an ι= φ(P) Λ φ(P') => an ι= VHPW & P\U)).

Then there is a formula θ G cΛ/lλ+λ(r) such that ifWl (= φ(P), then
(i) Wl)rVΰ(P(ΰ)&θ(Q)),

(ii) 2ϊll=Vw(-nP(w)^-^(i/)).

Proof: Let c be new constants. Then

(φ(P) A P(C)) A (φ(P' ) A -iP'(c))

does not have a model. Let θ(c) be the separant of the conjuncts.

4 Malitz separation In this section we apply the results of Section 2 to de-
rive Malitz separation theorems for £κ+κ and cNiκ+κ.

Malitz Separation Theorem 4.1 Suppose φ, φ G £κ+κ(τ) are in FNF, τ(φ) —
μ, τ(φ) — v and μΠ v = η. Assume sub(<p, K) = sub(^, K) = K.

Suppose there do not exist r-models W and 9W such that W t η ̂  5DΪ Γ η,
W N φ and ΉlVφ. Then there is a sentence θ in J\l[κ+K(τ) such that for every r-
model Wl:

(i) m£<p=>Wl\=θ;
(ii) Wltφ^Wlϊ-θ;

(iii) θ is existential;
(iv)r(θ)^τ(φ)Πτ(φ);
(v) if a relation symbol R occurs positively (negatively) in θ, then it occurs pos-

itively (negatively) in φ and negatively (positively) in φ.

Proof: Consider first relational vocabularies. Then the assumptions imply that
the conditions in Theorem 2.7 hold. Let t, Φ*, and Ψ be as in Theorem 2.7. Let
θ = (Φe*y. If 2R t= *>, then by Theorem 2.3(i) 3R N Φe, 3R N ΦJ, and a» N β. If
yjl\=φ, then 9ϊί N Ψ and V must have a winning strategy in S'(9ft,Φ*). This
means 3Dΐ 1= -0.

Consider then arbitrary vocabularies. Let ry, μ/, iy contain the function
symbols in r, μ, ̂ , respectively. Let r' = RTf(τ), φ' = RTf(φ), and ^ ' = RTf(φ).



396 HEIKKITUURI

Assume for a contradiction Wo and 9ft0 are r'-models, Wo \ η^Wlo \ η, Wo 1=
φ' A pμ/, and 9fto t= ψ' A pVf. We may redefine the relations FWo, F G τf - μ/, so
that 9ft' = Λ^ίaWΌ) is defined. Similarly, we can make 9ft = R7f

ι(Wlo) defined.
Then 2ft' t= φ and 9ft 1= ψ. Obviously 9ft' t TJ c 2tt Γ η, a contradiction. Let 0'
be the separant and 0 = R~*{θ'). Suppose 93Ϊ is a τ-model and 9ft (= 0. Then
ΛT/(2K) 1= ^ ' Λ p, / f ΛT/(S») N ~θ', and 2ft μ ̂ 6>. Case 3» t= ̂  is similar.

The restriction to r? in W [ η c 2ft Γ r/ above is necessary if we allow func-
tion (or constant) symbols, as the following example shows. Let r = {c0, cx, c2}.
Let <P = VU(U = CQ) and ̂  = (ci Φ c 2 ). Then there are no r-models W c gjj such
that 2)?' 1= ̂  and m H ^. Assume 0 is existential, r(0) = 0 , 2W 1= >̂ =* θ and 9ft 1=
ψ=> ~θ for every r-model 9ft. Then θ is true in every model of power 1, and since
θ is existential, also in every model of power 2, a contradiction.

Malitz Separation Theorem for £κ+κ 4.2 Let K be regular and λ = κ<κ. Sup-
pose φ and φ are sentences of £κ+κ(τ), τ(φ) = μ, τ{ψ) = v, and μ Π v = η.
Suppose there do not exist τ-models 9ft' and 9ft such that 9ft' Γ η Q 9ft \ η,
9ft' 1= φ and 9ft 1= ψ. Then there is a sentence θ in cMλ+χ(τ) such that for every
T-model 9ft:

(i) 3»hί*=>2»l=0;
(ii)9fth^2tth~0;

(iii) 0 /s existential*,
(iv) 7(0) c r ( ^ ) Π r ( ^ )

If Theorem 4.2 holds with £ κ + ί C and cMχ+λ replaced by Lj and L 2 , then we
say that L 2 allows Malitz separation for L!.

Malitz Interpolation Theorem for £>κ+κ 4.3 Let K be regular and λ = κ<κ.
Suppose φ, φ G £^+^(7), where T is relational, φ is preserved to extensions, and
for every r-model 9ft, 9ft N φ =» ̂ . 7%e/i ^Λere fa 0 G CMX+X(T) ^MCΛ that for ev-
ery r-model 9ft:

(i) 9ftH^^9Wt=0;
(ϋ) 9ftH0^9ftN^;

(iii) 0 is existential',
(iv)τ(ί)cτ(^nτW.

Malitz Separation Theorem for c/Ŵ-j.̂  4.4 Zβί K be regular and \ = κ<κ. Then
cMx+λ allows Malitz separation for <MK+K.

Malitz Separation Theorem for ΣicΛlliC+JC 4.5 Let K be regular and λ = κ<κ.
Suppose 3Rφ, 3Sψ G Σ}cM_κ+κ(r) and there do not exist τ-models 9ft' £Ξ 9ft such
that 9ft' 1= iRφ and 9ft f= iSψ. Then there is θ G cM λ + λ (r) such that for every T-
model 9ft:

(i) 9ftMi<V=>9ftl=0;
(ii) 9ftN3S^=^9ftt=-0;

(iii) 0 is existential.

Proof: We assume that R and S are disjoint. We may assume that τ^τ(φ)U
τ(φ), and by adding dummy sub formulas to φ and ψ, we may extend τ(φ) and
τ(φ)jo that T = τ(φ) Πriψ). Now we can apply Theorem 4.4 to φ and ψ as
T U ^ U S-sentences, yielding 0.
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Corollary 4.6
(i) Let K be regular and λ = κ<κ. IflRφ G A\<MK+K(τ) is preserved to extensions

(submodels) then it is equivalent to a determined existential (universal) sen-
tence of cΛ/lλ+λ(r).

(ii) Let K be infinite. If 3Rφ G A\£κ+ω(τ) is preserved to extensions (sub-
models) then it is equivalent to a determined existential (universal) sentence
o/cMκ + κ(r).

Proof: (i) Let sSψ be a negation of 3Rφ. Then we can apply Theorem 4.5 and
get the separant 0. The submodels case is dual,

(ii) Follows from Theorem 4.1.

Next we shall give an application of Corollary 4.6.

Definition 4.7 (i) If 21 and S3 are r-models and/ is a partial injection 2ί —> 93,
then/ is a partial isomorphism if for all atomic and negated atomic r-formulas
φ holds: 21 (= φ(au... ,an) iff S3 N φ(f(aι)i... J(an)), where au... ,an are
any elements from dom(/).

(ii) Let λ, K be cardinals and t a λ, /c-tree. The Ehrenfeucht-Fraϊsse game
approximated by / between models 21 and S3, G'(21,33), is the following. At each
move a:

(a) player V chooses xa G /, and either aa G 21 or ba G 33;
(b) if V chose aa G 21 then 3 chooses ba G S3 else 3 chooses α^ G 21.

V must move so that (Xβ)β<a form a strictly increasing sequence in t. 3 must
move so that {(aβi bβ) \ β < a} is a partial isomorphism 21 -> 33. The player who
first has to break the rules loses. By G{(2ί,33) we mean a game where V is only
allowed to choose elements in 21.

Definition 4.8 Suppose / and /' are trees. We define the game G< (/,/'). In
this game in each round player V first picks an element in t and then 3 must
choose an element in t\ The choices of each player must form a strictly increas-
ing sequence. If 3 cannot choose his move according to rules, then 3 loses, and
similarly if V cannot choose, then V loses. We denote t < /' (t» /') if 3 (V) has
a winning strategy. It is easy to show that ί » t' => t' < /.

4.9 Definition. (i) Let t, t' be trees. For simplicity we assume t and t' are dis-
joint.

The sum t © V is defined as the disjoint union of t and t', except that the
roots are identified.

The domain of the product t" = t x /' is {(x,f, y) \ x G t\ f a function from
the predecessors of x to the branches of t9 y G t j . Here (x,f y) < (x\f\ y') iff
either

(a) χ = χ',f = f9 and y<y\ or
(b) * < * ' , / < = / ' , and j/G/'(*).

(ii) We say that / is special if there is a mapping/: / -> ω such that for all
x,ye t, iϊx<y9 then/(*) Φf(y).

(iii) Let tQ = {s | s :α -» ω, 5 is an injection and α < ωi is successor). Let
s < s' if 5 £Ξ s1'. Then it is very easy to show that tQ is special and for every spe-
cial t holds / < tQ.
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(iv) If / is a tree then by σt we denote the tree which consists of all initial seg-
ments of branches of t. It is quite easy to prove (see [3]) that σt» t. Thus σtQ

is not a special tree.
(v) Suppose φ = (t, I) is a sentence of cMx*. Let t' be the restriction of t

to those nodes x, for which l(x) = 3u or Vw. We write that the quantifier rank
qτ(φ) = t'. Let JA'λκ = [φ G cMλίC|qr(^) < ί ) .

Note the following easy facts. If 3 has a winning strategy in G'(2l,33), then
21 ΞΞ 93 relative to all φ G c/Vllκ. If θ = (t91) G Λλκ9 211= θ and 93 N ~0, then V
has a winning strategy in G/(2l,33). Furthermore, if θ is existential, then V has
a winning strategy in G[ (21,93).

Example 4.10 Let φ = Vw0... un<ω . . . 3wω ΛΛ < ω«ω Φ un. Thus ψ says that
a model is uncountable. Clearly, φ G £ ω 2 ω i ( 0 ) is preserved to extensions and
φ is equivalent to a Δ}<£ω2ω( 0)-sentence.

Let 9Ko and StXϊi be models of empty vocabulary, 13W01 = ω and 12Bi | = ω2.
Using the Ehrenfeucht-Fraϊsse game G{Q (Definition 4.7) it is easy to see Wl0 =
3D?i relative to all existential <£ω2C0l ( 0 ) sentences and actually relative to all ex-
istential sentences of cM^ωi ( 0 ) .

But let φ be the following existential sentence of c/ft̂ ξ,, ( 0 ) :

Φ= Λ 3«o( Λ 3 « I ( « I ^ W O A Λ •••))•
Xθ(Ξσtζ) \Xo<Xι€:σtQ \ X\<X2 I I

It is easy to see that ψ is determined. We show that ψ is equivalent to φ. Clearly
cMi 1= ψ. Assume for a contradiction 3 has winning strategy in 30to ^ Ψ Then the
winning strategy of 3 gives a specializing function/: σtQ -> ω, a contradiction.

It is an open problem whether there are sentences of £ω2ωι (r) preserved to
extensions but not equivalent to existential sentences o f M ^ f r ) , assuming
CH.

5 Generalized Borel sets We apply our results to generalized Borel sets. It
is quite straightforward to show that the following definition agrees with Halko's
[2] and Vaananen's [9] topological definition of generalized Borel sets, and in
the classical case K = ω it agrees with the usual Borel sets. Vaananen [9] has to-
pological proofs for the results below.

Definition 5.1 Let r, | τ \ < K, be a vocabulary and C = {ca | a < K j a set of
new constants. Let %(τ) = [ίΰl\ϊ0l a r-modeland ||2)ϊ|| =κ}. If Jlίe?fκ(r) then
2)tc is a T U C-model such that 3»c Γ r = 9ft and cfc = a for all a < K. Suppose
<^GcMK+K(rU C). Let

£, = {a»e9Uτ)|aRcM.
We say that Bφ is a^Borel set in 9?K(r). We denote the complement 9lκ(τ) - B
by -ιA Suppose 3^^ is a ΣlcΛ/lκ+/f(τ U C)-sentence. Let

^ 3 ^ = {3)?G^(r) |9W c N3^j .

Then we call A^φ a Σ}-set. If A and -î 4 are Σ\, then we say that A is Δ}.
Let ψc denote the sentence (vwVα<κu = cα) A (AαΦβ<κcα Φ cβ)-
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Separation Theorem for Σj-sets 5.2 Assume K regular and κ<κ = n. If
A3RφΠA3sφ= 0 , then there is θ such that A3R-φ c Bθ and A^sψ ^ #-<?•

Proof: Let θ be the separant of φCΛ φ and φ from Theorem 3.8.

Corollary 5.3 Assume K regular and κ<κ = K. If A3R-φ is Δ} then there is θ
such that A3Rφ = Bθ and -<A3R-φ = B^θ.

6 Counterexamples to separation In this section we prove negative results
about relative separation of £κ+κ in several logics. First we prove an undefina-
bility theorem analogous to the undefinability of well-orderings in £ ω , ω .

Lemma 6.1 Let K be regular and let u, t' be trees with no > κ-branches (/. e.9

branches of length >κ).lfv has a winning strategy S in Gf((κ,<), t')9 then
t = (®a<κa) X w » ί ' .

Proof: We show that V has a winning strategy in G<(t, f). As V plays G<, he
also simulates Gf. Suppose S gives a E K and x G u as V's first move in Of.
Then V moves (x,g,β), β < a, where g is arbitrary and β are in some single
branch of ®a<κ«, in the first a + 1 rounds of G<.

Suppose 3 does not lose yet in G< and let his moves be yβ G t', β < a. We
define/(jS) = yβ for β < a. N o w / is a partial isomorphism (κ,<) -• ^ and V lets
3 move/(α) E ί' in Gf. Since 5 is a winning strategy, V can continue this way
extending / until 3 loses in G<.

Proposition 6.2 Assume K is regular and κ<κ = K. Assume that T is a class
of trees with no > κ-branches and T is RPC in <MK+K. Then there is a κ+, κ-tree
t such that t > t' for every t' E T.

Proof: We denote μ = {<, U). Suppose T= [(21 r {<}) Γ U%|2l t= ̂ ,« a r-
modelj, where φ E cMκ + κ(τ), r 5 μ. Let C = {cα | α < /c) be new constants and

<p= Λ ^(Cα)Λ Λ ^α<C j 8 ,
α</c a<β<κ

φ E ^K+^ίr U C). Clearly, we can apply Theorem 4.4 to φ and ψ as T U C-sen-
tences. Let θ E (Mκ+K(μ) be existential and such that for all r U C-models 9ft,

Let 33 be an arbitrary r-model of φ. Let 2ί be a r U C-model of φ, such that
||2l|| = K, c* = a, 21 Nα < /3 iff a < β and t/* = K. Since 21 Nfl and 33 1= ~θ, we
know that V has a winning strategy in Gf (21 Γ μ, 33 Γ μ), where θ = (w, /) . Let
f = (35 r {<}) \ £/ β . Then V has a winning strategy in Of ((*,<), V) and by
Lemma 6.1 t = {®a<Ka) xw>t\

Our version (suggested by Oikkonen) of Proposition 6.2 above is slightly
stronger than Hyttinen's [3] corresponding result. Hyttinen's version says that
there is t such that for all t' E T, t φ t'.

Proposition 6.3
(i) Assume that K is regular and κ<κ > K. Then (Mκ+K does not allow separation

for£κ+κ.
(ii) Assume K regular and κ<κ = K. Then for no κ+, κ-tree t, (Mί+K allows sepa-

ration for £κ+ω.
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Proof: (i) Let l&φ G Σ\£κ+K(0) be a sentence such that 5Dΐ 1= sRφ iff λ<Λ'_< λ,
where |3K| = λ. Let aSψ E ΣJ£«+ / f(0) be a sentence such that 9Dΐ f= iSψ iff
19K| = /c. By our assumption 3Rφ and iSψ determine disjoint classes of 0-mod-
els PC in <£*+*, but using Ehrenfeucht-Fraϊsse games we trivially see that these
cannot be separated by an cΛ/lκ+κ( 0 )-sentence.

(ii) By Tuuri [8] in this case there exist r-models 21,33, such that |2l| =
I S31 = K, 21 φ S3, and 3 has a winning strategy in G'(2l,33). Let iRφ and 3Sψ be
Σ\£κ+ω(τ)-sentences (describing the diagrams) which characterize 21 and 33 up
to isomorphism. If θ G cM^+κ(r), then 211= θ iff 33 N θ. Thus there cannot be a
separant in cM£+/c.

Next we prove the consistency of a situation where <M"+K (see Definition 1.9)
does not allow separation for £K+K9 though κ<κ = K.

Let K > ω be regular. If A <Ξ K, then by t(A) we denote the tree of all closed
increasing sequences of length < K of elements of A. By an ω-cub subset of K we
mean a set 4̂ which is unbounded and closed under supremums of countable sub-
sets of A. These notions are defined in the same way for any well-ordering of
type K.

Let φκ be a sentence of £κ+κ which says that < well-orders the universe of
a model and the order type is K and P and Q are complementary unary relations
in the ω-cofinal elements of the universe. Let p(P) be the sentence

vu(βυo...vun<(βvn<ω...lυω

Λ vn> unΛ Λ vω>vnA (vu<υω V vn>u\ ΛP(υω)\.
Ln<ω n<ω \ n<ω / J

It is easy to prove that if Wl £ φκ, then 3D? 1= p(P) iff P ^ contains an ω-cub
subset.

Theorem 6.4 (see [6]) Assume K = λ+, λ regular, λ < λ = λ, #«d 2 λ = K. ΓΛe«
there is a forcing extension which preserves all cardinals and in the forcing ex-
tension 2 λ = K and for all K +, κ-trees t there is stationary A <Ξ [a E κ\cf(a) — ω},
such that B= {a G κ\cf(a) = ω} -A is stationary and t(κ — A) φ t and t(κ -
B)φt.

Proposition 6.5 Let τ= {P,Q,<}. In the forcing extension of Theorem 6.4
the <MK+K(τ)-sentences φ — p(P) Λ φκ and ψ = p(Q) /\φκdo not have a separ-
ant in cM^+κ(τ).

Proof: Note that in the extension κ<κ = K. Clearly φ and ψ do not have a com-
mon τ-model. Assume for a contradiction θ E cM£+κ(τ) is a separant. Let

7\ = {ί(|a»|| - Pm) \m a r-model and 3» N (9 Λ <̂ K}

and

T2 = {t(\\Tl\\ -Q^JlaWar-modelandaih-if lΛ^}.

It is not hard to see that both Tγ and Γ2 are RPC in JAK+K. Thus also Γ = 7\ U
T2 is RPC in c/Λlc+iC.

If t G 7\ then ^ cannot have a /c-branch because then Qm would contain an
ω-cub subset and Wlbψ Λφκ. Similarly for Γ2. Let t be an arbitrary κ+, κ-tree.
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Let A, B be from Theorem 6.4. Now it is easy to see that either t(K - A) G 7\
or t(κ - B) e 7*2. Thus Γ contains a tree ί' such that f φ t. This contradicts
Proposition 6.2.

By Lemma 3.7 Modτ(γ?) and Mod τ (^) in Proposition 6.5 are PC in £κ+κ,
and they cannot be separated by any class EC in <M"+K = A£κ+K. So we get the
following corollary.

Corollary 6.6 Let r, φ, and ψ be as in Proposition 6.5. In the forcing exten-
sion of Theorem 6.4:

(i) φ,ψ E cMκ+κ(τ) do not have a negation in <MK+K{τ);
(ii) (Mκ+K allows separation for £κ+κ;

(iii) (M"+κ does not allow separation for £κ+κ;
(iv) A£κ+K does not allow separation for £κ+κ.
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