383

Notre Dame Journal of Formal Logic
Volume 33, Number 3, Summer 1992
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Abstract Let « be regular and \ = k<*. We prove a strong form of a sepa-
ration theorem for the language £,,,, where the separant is in My,,. We
also prove that &M, allows Lyndon and Malitz interpolation for £, . This
implies that every sentence of £,,, preserved under submodels is equivalent
to a determined universal sentence of M, ). From the separation theorem
we obtain the corollary that if a sentence ¢ of M, has a negation in M,,,
then there is a determined sentence y € M, ., equivalent to ¢. Using a result
of Mekler and Vddnidnen we show it consistent that the A-closure of £,
does not allow separation for £,,,, if x = 4™, u a regular cardinal.

1 Introduction Hyttinen [3] and Oikkonen [7] have proved a separation the-
orem for £, ,, where the separant is in the infinitely deep language M, ,, as-
suming « regular and « <* = . (For the definition of M,.,, see Definition 1.7.)
They have also shown that M, , allows Beth definability for £, ,. In this work
we prove a stronger form of the separation theorem for £,,, (Theorem 3.5):

Separation Theorem for £, , Let 7 be a vocabulary. Assume « is regular
and \ = «<*. If ¢ and { are sentences of £,..(7), they have vocabularies p
and v, and ¢ Ay has no T-model, then there is 6 € My, (7), such that for all
7-models M:

(i) the vocabulary of 0 is p N v;

(i) if M E ¢ then M E 0;
(iii) if M E Y then M F ~06.

~0 denotes the dual of 6 (Definition 1.9). Since sentences in I, ., are not al-
ways determined, It ¥ 8 does not always imply I F ~6. Thus our theorem is
stronger than Hyttinen’s, because in Hyttinen’s formulation (iii) above is replaced
by:

(iii’) if M E Y then M K 6.

The separation theorem above implies that I, ., allows separation also for
M, 1., and assuming k<% = «, M, allows separation for itself.
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The proof of the theorem is roughly the following: let & and ¥ be the Vaught
game sentences which code the Henkin constructions for ¢ and ¢, respectively.
Now & is a separant for ¢ and y. By playing the Henkin construction games si-
multaneously for ¢ and ¥, we find an approximation of ®, § = ® € My ),
which separates ¢ and y.

We prove two variants of the separation theorem, which are used to obtain
Lyndon and Malitz interpolation theorems for £, ., where the interpolant is in
My ;. Keisler [4] contains the proofs for these results in the simplest case xk =
w, that is, £, , allows Lyndon and Malitz interpolation for itself. These clas-
sical results are obtained as a special case in this paper. We apply our Malitz the-
orem to show that the sentences of £,,, preserved under submodels are
equivalent to determined universal sentences of &M, . From the separation the-
orem it also follows that if ¢ € M, has a negation in M, ,, then there is a de-
termined ¥ € M, ) equivalent to ¢. We apply our results to generalized Borel
sets in the space N, = «*.

Using a result of Mekler and Véadnénen [6] we show it consistent that the de-
termined part of M, ,, which, assuming « <* = k is the A-closure of £, ., does
not allow separation for £,,,, where « is a successor of a regular cardinal.

Notation 1.1 ~ We denote by | 9% the universe of a model I, by || the car-
dinality of |M%| and by 7(IN) the vocabulary of M. If ¢ is a formula, then 7 (¢)
is the set of all function, constant, and relation symbols that occur in ¢. By #(R)
we denote the arity of a relation symbol R, which may also be infinite. If C is
a set and ¢ a sequence, then ¢ € C means ran(¢) < C.

If 7 is a vocabulary, by Mod”(¢) we denote the class of -models of ¢ and
by Str(7) the class of all 7-models.

In the definitions of concepts of abstract model theory we mostly follow Eb-
binghaus [1]. One exception is that when Ebbinghaus says L’ allows interpola-
tion for L, we say L’ allows separation for L.

Definition 1.2 (i) We define a logic as a pair (L,F) which fulfills Definition
1.1.1 of [1]. (1.1.1 is a rather minimal definition for a logic.) Here L is a map-
ping defined on vocabularies 7 and L(7) is the class of 7-sentences.

(ii) Let L be a logic and M a class of 7-models.

We say that M is an elementary class (EC) in L iff there is ¢ € L(7) such that
M = Mod"(y).

We say that M is a projective class (PC) in L iff there is 7/ 2 7 and a class
M’ of 7-models EC in L, such that M = (U | 7|A € M"}.

We say that M is a relativized projective class (RPC) in L iff thereis 7' 2 7,
a unary relation symbol U € 7’ — 7, and a class M’ of 7’-models EC in L, such
that M= (A | 7) I U¥|AeM].

We say that M is A in L iff M and Str(7) — M are PC in L.

(iii) Let L and L’ be logics. We say that L and L’ are equivalent, in symbols
L = L/, iff any class of models is EC in L iff it is EC in L.

Definition 1.3 (i) The logic I} L is the logic which has as elementary classes
just the classes which are PC in L.

We define a canonical version of L} L. Let L} L(7) consist of all sentences
aRe, where R is a set of symbols, RN 7= &, and ¢ € L(7 U R).
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If 9 is a 7-model, then we let ¥ F 3Ry iff there is a 7 U R-model ¥’, such
that Y =’ I 7and A’ F o.

(ii) The A-closure of L, denoted by AL or A}L, is the logic which has as el-
ementary classes just the classes that are A in L.

We define a canonical version of AL. Let AL(7) consist of all sentences 3R¢
of Z1L(7) for which Mod”(3R¢) is A in L.

Definition 1.4 (i) We say that L is closed under negation if for all 7 and
¢ € L(7) there is Y e L(7) such that Mod”(y) = Str(7) — Mod"(¢). We say that
¥ is a negation of ¢ in L(7).

(ii) If ¢ € L(7) and ¢ € L'(7), then we say that ¢ and y are equivalent iff
Mod"(¢) = Mod"(y).

Definition 1.5 (i) If My, M,, and M; are classes of 7-models, M; N M, = &,
M, € M; and M; N M, = O, then we say that M; separates M, and M,.

(ii) If ¢, ¥ € L(7), 6 € L'(7) and the class Mod"(6) separates Mod’(¢) and
Mod"(y), then we call 0 a separant of ¢ and .

(iii) Let L and L’ be logics. We say that L’ allows separation for L iff for any
7 any two disjoint classes of 7-models PC in L can be separated by a class of 7-
models EC in L.

In Definition 1.5(iii) we do not say “interpolation” because if L is not closed
under negation then separation and interpolation theorems are not necessarily
equivalent (see the remark after Theorem 3.11).

We shall next define the logics (or languages) £, and M,,. To avoid con-
fusion with vocabularies, in most of our results we fix a vocabulary 7 and work
with £3,(7), My,.(7), and 7-models.

Definition 1.6 Let x and \ be cardinals. A tree ¢ is a \, k-tree, if t does not
contain branches of length = «, each node x € ¢ has < A\ immediate successors,
and for all x, y € ¢ the following holds: if {z€ t|z<x} ={z€t|z<y}and x
and y have no immediate predecessors, then x = y.

Definition 1.7 Let x and A be cardinals. A formula of JM,, is a pair (¢,/),

where ¢ is a A, k-tree and / is a labeling function. The pair (¢,/) must fulfill:

(1) ¢ does not contain branches of a limit ordinal length;

(2) if x € t does not have any successors, then /(x) is either an atomic or negated
atomic formula;

(3) if x € ¢ has exactly one immediate successor, then /(x) is of the form 3u or
VYu, u a variable;

(4) if x € t has more than one immediate successor, then /(x) is either V or A;

(5) if x,y € t and x < y, then /(x) and /( y) must not quantify over the same
variable.

By My, (7) we denote the set of those sentences ¢ € JM,, for which 7(¢) S 7.
We define £, in the usual way, i.e., conjunctions and disjunctions of size <
A\ and quantification over < « variables are allowed.
We have the following assumption: in £, and /M, functions and relations
may have < k arguments.



386 HEIKKI TUURI

Definition 1.8 Let A be a 7-model, ¢ € M,,(7) a sentence and ¢ = (¢,/).

The semantic game S (%, ¢) is a game of two players, Vv and 3. When the game

begins, the players are in the root of #, and during the game the players go up

the tree ¢. In each round the players are in some node x € ¢, and it depends on

/(x) how they continue the game. In a limit round the players start from the su-

premum of the nodes chosen before.

@) If /(x) =V (A), then 3 (V) chooses one immediate successor of x to be the

node where the players go next.

(i) If /(x) = 3u (Vu), then 3 (V) chooses an element ¥ in | Y| to be the inter-
pretation of u. The players go to the immediate successor of x.

(iii) If /(x) = Y (i1), then the game is over and 3 has won if % E y (i2¥).

We write 9 F ¢ if 3 has a winning strategy for S(%, ¢).

Definition 1.9 (i) We say that ¢ € M, (7) is determined if for every 7-model

9, 3 or V¥ has a winning strategy in S(, ¢). We define M5, (7) = {¢ € My, (7) |

¢ has a negation in My, (7)} and M%, (7) = {¢ € My, (7) | ¢ is determined }.
@ii) If ¢ = (¢,1) € My, then the dual of ¢ is ~p = (¢,1’), where for each

xet:

@ I'(x) =3(v)if I(x) =v(3);

) I'(x) = A (V)ifI(x) =V (A);

©) I'(x) =¢ (7)) if I(x) = ¢ (¥).

Obviously, 3 (V) has a winning strategy in S (I, ~¢) iff ¥(3) has a winning
strategy in S(IN, ¢). Thus M F ~p = M ¥ ¢, but the converse implication does
not hold, if S(IM, ¢) is nondetermined.

Definition 1.10 (i) Conjunctive \k-Vaught sentences are of the form

=vuyo \V A 3o...Vu, V A 3Fu,...

io€ly joEJo €1y ju€EJy

N Pigjo. . .inju(H05V0s - - - 5 Ug Ug),

a<k
where ¢;,;, .. i, j, are conjunctions of atomic and negated atomic formulas and
[1,],]|J| < N. The semantic game S (2, ®) is defined like for /M,,, and it con-
sists of k rounds, where in round « the truth of ¢; ;.. j, is tested. If 3 can
play all « rounds without losing, then he wins the game. We denote the logic of
conjunctive Ak-Vaught sentences by V.

(ii) If G is a game and ¢ a tree, then by G’ we denote a game which is like

G, except that before each round «, V must choose some x, € ¢. The elements
X, must form a strictly increasing sequence in ¢ and if v runs out of 7 then v
loses. If ® is the conjunctive Ak-Vaught sentence from (i) and ¢ a A, x-tree, then
by &’ we denote the M, -sentence defined from ® in the obvious way so that the
game S/(, ®) is essentially the same as S(¥, ®*).

Definition 1.11 (i) We say that a formula of £, or JM,, is in the negation
normal form (NNF) if all negations in the syntax tree of ¢ occur immediately be-
fore atomic formulas. (In M, all formulas are in NNF.) If ¢ is in NNF, by n-
subformulas of ¢ we mean the smallest set S such that:
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(@ ¢ €S;
(b) if vaiy € S or 3y € S then ¢ in S;
) if A VeSor VY €S, then ¥ CS.

(i) If ¢ € £,,, is a sentence, then we define sub(p, k) =« + | {¥/(¢) [ ¢ (@)
a subformula of pand ¢ S C } |, where C is a set of cardinality x of new con-
stants.

2 A Henkin construction In this section we apply a Henkin construction
also known as the Hintikka game to derive a separation theorem. To simplify
the proofs we consider in this chapter only relational vocabularies.

Definition 2.1 (Modified from Makkai [5].)  Let « be an infinite cardinal. Let

IR be a L1 L, (7)-sentence where 7 and R are relational and ¢ is in NNF.
Let C = {c,|a < «} be a set of new constants. Let A,(C) be the smallest

such that:

D) v €A,(0);

(ii) if Y (@) is an n-subformula of ¢ with at most & free and ¢ € C, then
¥(8) € A,(C);

(iii) if ¢y, cs € C, then (¢, = ¢g) € A,(C) and (¢, = ¢) € A,(C).

By the definition of an n-subformula, R occurs positively (negatively) in ¢ iff it
occurs positively (negatively) in A, (C). Clearly, |A,(C)| = sub(e,«). Let £ =
|A,(C)].

Let ® be the following V., (7)-sentence:

<I>=Vu0V /\EUO /\ V Yu;...
do€C egeC 80€EAL(C) pEAL(C)

( /\ Ndoeosoao. ..Oa(uo, UO’ R ua’ vﬂ)) .

a<k
Denote H, = {¢,0g,...,0g,... }g<s. Suppose:

(1) if w (&) is an atomic formula with # free, ¢ = (cg ),<; and ¢’ = (¢, )y<s
are constants of C, () € H,4; and ¢g = ¢, € H,y, for all y < 6,
then =7 (¢’) & Hyy ;.

2) if 6, € H, and 6, = V V¥, then 6, = ¢ for some y € ¥;

3) if 6, € H, and 6, = 3ay (it), then 8, = ¢y (¢) for some ¢ < C;

@) if A¥Y € H, and 6, € ¥, then 0, = 6,;

(5) if vay (i) € H, and 6, = ¢ (¢) for some ¢ < C, then 6, = 6,;

(6) if &, is of the form ¢ =c¢’, then, = (c=c")or 6, = (-c=c’).

If (1)-(6) hold, then

NPy, vg,. .., Uy, V) = A {7 (g, Vo, . . ., Uy, Vy) | T is an atomic or
negated atomic formula of 7
and 7l'(d0,€0, N ,da,ea) € Ha+l}-

If (1)-(6) do not hold, then N%---% is identically false.
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Let ¢ be the following existential V;,,(7)-sentence:

¥=ANw AV A

eoeC BoeAw(C) 9o€A¢(C) e eC

( /\ Neoéoeo.‘.ﬂa(vo, Upyenny vcx)) .
a<k

Here N®---% s defined like N% - -% above with the following modification: if
(1)-(6) hold, then

Ne-ba(vg, ..., 0,) = A{7(vg,...,0,) | is an atomic
or negated atomic formula of vocabulary 7
and 7(eg,...,e,) € Hyyy).

Theorem 2.2 LetaRp € L1L, ., (1) and ® € Vi+x(7) be as in Definition 2.1.

Let M be a -model.

(i) Assume « is regular, or « is singular and there is N < k such that ¢ € £,
If M E 3Ry, then M E &.

(ii) Assume sub(p,«) = k. If |M| < x and M ¥ 3Ry, then M F ~d.

Proof: Asin [5].

Theorem 2.3 Let 3Ry € L1L,,(7) and ®° € V., (1) be as in Definition 2.1.
Let M be a T-model.

() If k is singular, we assume there is \ < k such that ¢ € £,.,y; if « is regular
we do not assume anything. If WM has a submodel M, such that My E AR,
then M E °.

(ii) Assume sub(e, k) = k. If M has no submodel My such that My F IR ¢, then
M E~PC.

Proof: (i) Suppose first that I has such a submodel IM,. The proof that M F
&€ is exactly as in Theorem 2.2(i): 3 just lets ¥ in the proof to be M, completed
to a model of ¢.

(ii) Let v play S (I, ®¢) according to the strategy defined in the proof of
2.2(ii) ((S1) is not needed). If 3 can play all x moves against this strategy, then
exactly as in 2.2(ii) we can prove that there is a submodel 9, € I such that
Mo E IR, a contradiction.

Definition 2.4 Let & and ¥ be conjunctive Ak-Vaught sentences and It a
model. We define a combined semantic game S, (I, ®,¥), in which 3 and Vv
play the semantic games S(I,®) and S(IMN, ¥) at the same time. In round «
of Sz

(i) players Vv and 3 first make the moves of round « in S(I,®),

(ii) then v and 3 make the moves of round « in S(I, ¥).

V wins S, in round « if he wins either S(I, ®) or S(M, ¥) in round «.

Definition 2.5 Let ¢ and ¢ be £,,.(7)-sentences in NNF, where 7 is re-
lational. They are also L!£,.,(7), where the prefix IR is empty. Let C =
{co]a <k} and C’" = {c;| a < k} be disjoint sets of new constants. Let (see Def-
inition 2.1)
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«=Vug \/ A\ v A V Vu...

do€C egeC S0EAL(C) 6oEA,(C)

doegdolp . . .0y
</\ N*oeo ovo (uO’ Vo, - - -,ua’va)>

a<k

and

Y=vuy, \V A 35 A V  Vuj...

dyeC’ eheC’ S0EAL(C) BHEAL(C)

< N\ N800y, g, ..,u;,u;)).

a<k

V¥ is defined from ¢ as in Definition 2.1. In the definition of ®, there is a small
difference. Here N2 --% is defined like N%---% in 2.1 with the following ex-
ception:

(e) if R is a relation symbol that does not occur negatively (positively) in ¥, then
all positive (negative) occurrences of R are deleted from Ngo---be,

We define ® like ¢ with the exception (e).

Note that in the following theorem and many others we have replaced a car-
dinal assumption (k<* = ) by an assumption on the number of subformulas of
¢ and Y.

Theorem 2.6 Let o,y € £,,,(7). Assume sub(p, k) = sub(y,«k) = «. Let
®,.,V € V,,.(7) be as in Definition 2.5. If ¢ Ay does not have a T-model ¥, then
there is a k*, k-tree t such that ¥ has a winning strategy in S5(U,®.,¥) for all
7-models Y.

Proof: Note that sub(e, k) = sub(y, k) = « implies # (R) < cf(«) for any R €
7(p) U 7(¥). Let (pg)a<, be such that p, € A,(C), a <k, and sup{a|p, =0} =
k for all # € A, (C). Here we need the assumption sub(e, k) = |A,(C)| = k. We
define p;, € Ay (C’), o < k, in a similar way.

Let aqy be an arbitrary fixed set (e.g. &). Without loss of generality we may
consider only models ¥ such that ao € |%|. We describe V’s strategy Sy in
S, (A, P, ¥). For all o < k, V chooses:

S ud = (v,_;)Y, if « is a successor, else u2 = ay;
(82) e, =cq;
(S3)  bu = pas

(84 (u)¥=vY
(S5) eg=cy;
(S6) 6, =npg.
Suppose U is a model and in ¥ 3 plays against Sy all rounds before round o
without losing. From this play we get a sequence
dyeqdobodyeqdpby . . . dﬁ@ﬁ&ﬁ@ﬁd[geéabeé. ...B<a.

We denote by #y the set of all such sequences where 3 has not yet lost. Let # =
U{fy|% a -model}. We order ¢ into a tree by the initial segment relation.
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Next we prove that if there is a branch of length « in # then ¢ A ¢ has a model.
Assume

B=dy...dye,0,0,d,e,8,0,..., a<k

gives such a branch. Let H, = {¢,00,60,,...}, Hy = {¥,00,0],...},and H=
H,U H,. We define a relation ~ in the following way:

(rl) ¢, ~cgiff (¢, =¢,) € H;

(2) ¢/, ~ cgiff (¢, =cp) € H;

(r3) ¢, ~ cgand cg~ c, iff there are v, 4, such that (¢, =c¢,) € H, (c;=¢p) €
H and d}, = c;.

Note that in case (r3) for some £ < k, N% % contains the formula
Vo = 0y
(from ¢, = ¢,) and N%---% contains
Uy =g

(from ¢ = cp).

Lemma A The relation ~ is an equivalence relation.
Proof:

Reflexivity. Let a be arbitrary. By the choice of S, either (¢, = ¢,) € H or
(¢, = ¢,) € H. But, if (-1¢, = ¢,) € H, then for some £, N&---% contains
-, = v,, which is identically false. Thus 3 would lose all plays of length £ + 1
associated with the branch B. This contradicts our assumption about B. Case
¢, = ¢, is similar.

Symmetry. Suppose ¢, ~ cg, i.€., (¢, = ¢g) € H. If (—¢g = ¢,) € H, then
for some &, N2 % contains v, = Ug A TUg = U,, a contradiction. Thus
(cg = ¢,) € H and cg ~ c,. Case c; ~ cjis similar, and the others are trivial.

Transitivity. Suppose ¢, ~ ¢g and ¢g ~ c,. As before we see (¢, = ¢,) € H and
Co~ C,y.

Suppose ¢, ~ cgand cg ~ c;. Let c; be as in (r3). Now (c; = ¢/) € H, and
thus ¢, ~ ¢{.

Suppose ¢,, ~ cgand ¢z ~ c,,. Let ¢, ¢5,, C,,, €5, be as in (r3). Assume for
a contradiction (—¢,, = ¢,,) € H. Then for some ¢ < k, N&---% and N%---%
contain the formulas:

(1) vy, = v,,, u;, = vz (from c,, ~ cp);
t2) vy, =v,,, u;, = vg(from c,, ~ cp);
(f3) vy, = Vg,

Suppose 3 has played £ rounds without losing in some model 9. Then (u.'“)” =
(u5,)* (from (f1)-(f2)), and v¥ # v (from (f1)-(f3)). But this is a contradic-

2
tion, because v always plays so that (u,)¥ = v2.
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Suppose then ¢z, ~ ¢4, ¢, ~ ¢g,, and —cg, ~ cg,. Then we get the formulas:

(1) vy, =v,, uél = vél;
(f2) v, = Uyzs Uy, = Up,;
(f3) g, = Uﬁz’

Again we get a contradiction. This proves Lemma A.
We are now ready to define our model I of vocabulary 7 U C U C".

M1) M| = equivalence classes of ~.
(M2) Ifce Candc’ € C’, then ¢c® = [c] and (¢")™ = [¢’].
M3) IfRe€randa, €M, vy <9, then M F R(ay,...,a,s,...) if for some

(Ca)y<s> Where ¢ =a,, v <8,

R(cyy,---»C ...)EH

t Tay<s)?
or for some (c;7)7<5, where (c(;v)Em =a,,y<5,

R(clys- .., ¢ ...)EH.

ag? Uy<s?

Let W' =M {2 <k]}.
Lemma B M F0 forall 6 € Hyand W' F 6 for all 6 € H,.

Proof: By induction. We prove first I F 0 for all # € H (negated) atomic.

(al) If 0 = (¢, = cp) then by definition ¢, ~ cg and M F 6. Case 0 = (¢, =
cg) similar.

(a2) Suppose 6 = (—¢, = ¢g). Then as before we see (¢, = cg) & H. Case
6 = (¢}, = cp) is similar.

(a3) Suppose 6§ = R(Cqys - - -5 Ca,eys - - - )- Then by definition I F 6.

(a4) Suppose 6 = " R(Cqps - - - »Cqr s - - - ) € H,,. Assume for a contradiction
M F —6. There are two cases. Suppose first there are (cg )¢, Where car = c3,
R(cgys -+ -5 oys- - - ) € Hy. This means (¢, = cg.) € H, for all e < {. But now
we have a contradiction with Definition 2.1(1). Here we need #(R) < cf(k).

Suppose then there are some (cj_ )<, such that (c(;e)Sm = cg? and R(cgy, . - -,
cé(q, ...)€ H,. Thus ¢ ~ c,,. Let v, e < {, be as in (r3). Then for some &,

Ngo---9% and N%---% contain formulas:

(f1) —R(Vags- - - Vaeys - - - ) (remember Definition 2.5(e) and that R occurs
positively in ¢ because it occurs positively in Hy);

(f2) v,,=v,,e<{;

f3) w, =v,e<;

(f4) R(vgys--->Vp,ps---)-

As before we get a contradiction, since vfﬁ = (u.’,e)m.

(asS) Case 6 = = R(...) € H, is similar (in (f1)-(f4) above =R and R are
just exchanged).

Now we have treated the case 6 (negated) atomic. Suppose then, for exam-
ple, 8 = vizp(i1), 6 € H,. By our assumption I’ F p(¢) for all ¢ < C. This im-
plies W F viip (i) . Note that every equivalence class of ~ contains an element
from C’ (by (r3)). All other steps are similar. This proves Lemma B.

Lemma C WM =M, i.e., every equivalence class of ~ contains an element
Jrom C.
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Proof: Let c,, € C’ be arbitrary. Let c¢g = d,; and c; = dg. Then ¢z ~ ¢;. We
show c;, ~ ¢/, which implies cg ~ c,. Assume for a contradiction (—c; =c;) €
H. Then for some ¢ < k, N % and N%---% contain the formulas:

(fl) Uy+1 = U (from g = CB);
(f2) —ug=v, (from ¢, = c,).

This is a contradiction, because ¥, ; = (v})¥ and (up)¥ = vj'. This proves
Lemma C.

This ends the proof that It F ¢ A . Thus there cannot be branches of
length « in the tree . We describe v’s winning strategy for S5 (%, ®.,¥). Except
for the moves in ¢, V just follows his winning strategy Sy. If v has not yet won
in round «, then he moves dy . . .04, . .. in ¢ and makes his other moves ac-
cording to Sy. This proves the theorem.

Theorem 2.7 Let o, ¢ € £,,.(7). Assume sub(ep, k) = sub(y, k) = k. Let
&%,V € V(1) be as in Definition 2.5. If there do not exist T-models W' < M
such that W' F ¢ and I E ), then there is a k™, k-tree t such that V has a win-
ning strategy in S (N, S, ¥) for all --models U.

Proof: If we look at the proof of Theorem 2.6, we see that u, and d, are
needed in Lemma C only to prove ' = IN.

3 Lyndon separation In this section we apply the results of the previous sec-
tion to derive Lyndon separation theorems for £,,, and JM,,,.

From now on we consider arbitrary vocabularies, not just relational ones.
To simplify notation we consider constants as functions without arguments.

Definition 3.1 Let 7 be a vocabulary, let 7, contain exactly the function sym-
bols in 7, and let ¢ be a formula of £,,(7) or M,,(7). We say that ¢ isin a
function normal form (FNF) if ¢ is in NNF and function symbols occur only in
atomic formulas of the form

Up =F(u,,u2,. .. ),
where ug, u;,... are variables.

We define an operation that canonically transforms functions to relations.
Let 7" = R, (7) be a vocabulary such that 7’ is exactly like 7, except that if F €
7y is an a-place function symbol in 7, then Fis a 1 + a-place relation symbol
in 7’

If I is a 7-model, then we define I’ = R, () asa 7’-model such that I
P(r—77) =M (7 —77) and if FE 7/, then M’ EF(ag,a,,...) iff MEay =
F (a 15« - )

If ¢ is in FNF, then we define ¢’ = R, (¢) as a formula where each atomic
formula of the form uy = F(uy,...), F € 7y, is replaced by F(ug, uy,...).

If 74 is a set of relation symbols, then by p,, we denote a sentence which
says that the relations in 7o determine functions in the canonical way.

Lemma 3.2 Let 1, 75 and ¢ be as in Definition 3.1.

() If M is a -model and ¢ is in FNF, then MF ¢ & R, (M) F R, (¢).
(i) If M’ is an R, (r)-model and W' k p,,, then R (M) is defined.
(iii) If ¢’ is any R, (7)-formula in NNF, then R;fl(go’) is defined.
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Lemma 3.3 If o € £3,(7), N =k, then there is ¢’ € £,,(7) in FNF such that
¢ & ¢’ and for every relation symbol R, R occurs positively (negatively) in ¢ iff
it occurs positively (negatively) in ¢'.

Proof: Suppose t(uy, u,,...) is a 7-term. We prove by induction that for the
formula uy = t(uy, u,,. .. ) there is ¢, (uy, u;, . . . ) which is equivalent to it and
in FNF. Suppose

t(uy, up,. .. ) = F(to(up, Uy, .. ) (U sy ), .0l ).
Then we let ¢, be
vy, V1,. .. (Ug = F (g, V15 .. ) A @y (Vo, Uy, Upy ot ) A 220 ).
Now it is obvious how we can construct ¢’ by replacing atomic formulas in ¢.

Lyndon Separation Theorem 3.4 Let « be infinite. Suppose ¢ and Y are
sentences of £,,,.(7), they are in FNF, and ¢ A Y has no 7-model. Assume
sub(e, k) = sub(y, k) = k. Then there is a sentence 6 of M, (1) such that for
every t-model IMN:

Q) MEe=>MED;

() MEY=>ME~0;
(iii) 7(0) = 7(p) N 7(¥);
(iv) if a relation symbol R occurs positively (negatively) in 0, then it occurs pos-

itively (negatively) in ¢ and negatively ( positively) in .

Proof: We prove the claim first for relational vocabularies. Let &, and ¥ be as
in Theorem 2.6. For some « ™, k-tree ¢, V has a winning strategy in S%(I, ®.,¥)
for all It. Let 6 = &L,

Let 9 be arbitrary. If M E ¢, then by Theorem 2.2(i) I F . Note that if «
is singular, we can apply 2.2(i) because sub(¢, k) = « implies that ¢ € £,,,,
where \ = cf(k) (if we remove from ¢ quantification over variables not occur-
ring in the scope of the quantifier). Since ®, is a weaker sentence than & (see
Definition 2.5), I F ®.. This implies M F 0.

Suppose then M F . Then 3 has a winning strategy in S(I, ¥). Since V
has a winning strategy in S(It, ., ¥), v must obviously have a winning strat-
egy in S'(I, ®,). This means M F ~6.

If a relation symbol occurs positively (negatively) in ®., then it occurs pos-
itively (negatively) in A,(C) and thus in ¢. By Definition 2.5 it must occur neg-
atively (positively) in y.

Suppose then 7 is not relational. Let p = 7(¢) and » = 7(¥). Let 7¢, us, vf
contain the function symbols in 7, u, », respectively. Let 7" = R, (7), ¢’ =
R, () and ' = R, (¥). Assume for a contradiction I’ is a 7'-model of (¢’ A
) A (¥’ Ap,,). We redefine the relations F®, F € 7, — (us U »y), so that
m = R;,‘(sm') is defined. Then I F ¢ A ¥, a contradiction.

Clearly, sub(¢’, k) = sub(e,«) = « and sub(p, ., k) < sub(¢’,k) = «, and
similarly for y". Let §” be the separant of ¢’ Ap,.and " Ap,,. Let 6 = R,‘fl(O' ).

Suppose M is a 7-model and M F . Then R, (M) FY’ Ap,, and R, (M) F
~0’. By Lemma 3.2(1) I k R;f‘(~0’), and obviously R,‘f‘(~0’) = ~@. Simi-
larly we get M E o = MM EO.
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Lyndon Separation Theorem for £, ,, 3.5 Let « be regular and \ = k<*.
Suppose ¢ and  are sentences of £, (1) and ¢ Ay has no T-model. Then there
is a sentence 0 of My, (7) such that for every r-model IM:

A MEe=>MED;

@) MEY=>ME~0;
(ii) 7(0) € 7(p) N 7(Y);
(iv) if a relation symbol R occurs positively (negatively) in 0, then it occurs pos-

itively (negatively) in ¢ and negatively ( positively) in .

Proof: Note that sub(¢,\) < A<* = \. Thus the claim follows from Theo-
rem 3.4.

If Theorem 3.5 holds with £, , and M, replaced by L; and L,, then we
say that L, allows Lyndon separation for L,.

Lyndon Separation Theorem for £, , 3.6 If « is infinite, then M, allows
Lyndon separation for £,..,.

Lemma 3.7 Let k be regular and A = k<*. Let ¢ € V(1) or ¢ € M, (7).
Then there is a 1L, (7)-sentence 3Py’ which is equivalent to ¢ and such that
a relation symbol R € 1 occurs positively (negatively) in ¢’ iff it occurs positively
(negatively) in o.

Proof: It is enough to treat the case ¢ € V,,.(7) because essentially
M, (7) E Vi (7). The proof is done by Skolemization, as in Proposition 5.1
of [5]. We just have to add some sentences there to ensure that 3 can move also
in rounds o, where « is a limit.

Lyndon Separation Theorem for M, , 3.8 Let « be regular and \ = k=*.
Then M, .\ allows Lyndon separation for M,,.

Proof: Let ¢,y € M, (7). Let 3R, 38y’ € L1 L), (7) from Lemma 3.7 (R N
S = @) be equivalent to ¢ and y. We may assume that ¢’ and y’ are in FNF.
Now ¢’ Ay’ does not have a 7 U R U S-model. We can apply Theorem 3.4 be-
cause sub(¢,A\) = sub(¥,\) = (k<*)<* = \. Let 0 be the separant of ¢’ and y".
Suppose M is a 7-model and I F ¢. Then M can be extended toa 7 U R U §-
model N, for which M’ F ¢". Thus W’ F 6 and I F 6. Case M F ¢ is similar.

Separation Theorem for Z1M,., 3.9 Let « be regular and \ = «<*. If 3R
and 35y are LI M, (7)-sentences and ARp A 38y has no t-model, then there is
0 € My, (7) such that for all T-models MN:

@) MEIRp = MEG;

(i) M F aSy = M E ~0;

Corollary 3.10 B
(i) Let k be regular and N\ = k=*. If 3Ry is in A{MK+K(T), then there is deter-
mined § € M, (1) which is equivalent to 3R,,.
(ii) Let k be regular and \ = k<. Then M, allows separation for M., and
£K+K’
(iii) Assume « regular and k<* = k. Then AL, ,, = AM,4, = M",, = M7,,.
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Lyndon Interpolation Theorem for £, ., 3.11 Let k be regular and \ = k<.
Suppose ¢,y € £,..(7) and for all -models M, M E ¢ = M E Y. Then there is
a sentence 0 € My, (7) such that for every T-model M:

G MEe=>MED;

() MEG=>MEY;
(iii) 7(0) € 7(e) N 7(¥);
(iv) if a relation symbol R occurs positively (negatively) in 0 then it occurs pos-

itively (negatively) in both ¢ and .

In the proof of the interpolation theorem 3.11 above we need the fact that
¥ has a negation in £,,,(7). We cannot prove 3.11 this way for M, ,(7) be-
cause it is consistent that there are sentences of JM,,,(7) with no negation in
M,4.(7) (see Corollary 6.6). The problem whether Theorem 3.11 holds with
£,4, replaced by M, , is open.

Beth’s Theorem for M, , 3.12 Let « be regular and \ = x<*. Suppose that
o(P) € M4, (7 U {P)}) and for all M,

MFEe(PYA(P’) = MEVa(P(i1)  P'(i1)).

Then there is a formula 6 € M\ (7) such that if M E ¢(P), then
@) MEvVa(P(ir) © 6(n)),
(i) M Evia(~P(ir) & ~0(ir)).

Proof: Let ¢ be new constants. Then
(¢(P) AP(C) A (p(P") A P(C))

does not have a model. Let 6(¢) be the separant of the conjuncts.

4 Malitz separation In this section we apply the results of Section 2 to de-
rive Malitz separation theorems for £,,, and M, ,.

Malitz Separation Theorem 4.1 Suppose ¢,y € £,,.(7) are in FNF, 7(¢) =
w, T(Y) =vand p N v =n. Assume sub(p, k) = sub(y, k) = k.
Suppose there do not exist r-models W' and I such that W <IN | 9,
W E o and M E . Then there is a sentence 0 in M, (1) such that for every 7-
model M:
Q) MEe=MED;
@) MEY = ME~0;
(iii) 6 is existential,;
@iv) 7(0) S 7(p) N T(Y);
(v) if a relation symbol R occurs positively (negatively) in 0, then it occurs pos-
itively (negatively) in ¢ and negatively ( positively) in .

Proof: Consider first relational vocabularies. Then the assumptions imply that
the conditions in Theorem 2.7 hold. Let ¢, ®5, and ¥ be as in Theorem 2.7. Let
0 = (®3)". If M E ¢, then by Theorem 2.3(1) M E ®¢, M F &S, and M F 0. If
M E 4, then M F ¥ and vV must have a winning strategy in S*(M, ®¢). This
means IN F ~6.

Consider then arbitrary vocabularies. Let 77, us, v, contain the function
symbols in 7, u, v, respectively. Let 7" = R, (1), ¢" = R, (¢), and ¥’ = R, (V).
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Assume for a contradiction I, and I, are 7’-models, My Fn S Mo [ 7, My F
@' Ap,,, and Mo E Y’ A p,,. We may redefine the relations F¥, F € 77 — py, so
that I’ = R:fI(ED%) is defined. Similarly, we can make It = R,"fl(f))?o) defined.
Then M’ E ¢ and I E ¢. Obviously M’ [ 5 < M [ 4, a contradiction. Let 6’
be the separant and 6 = R,_fl(e’ ). Suppose I is a 7-model and I F . Then

R, (M EY Ap,, R, (M) F ~6’, and MM F ~0. Case M F ¢ is similar.

The restriction to  in M’ [ 7 S I I n above is necessary if we allow func-
tion (or constant) symbols, as the following example shows. Let 7 = {¢o, ¢;, C2}.
Let ¢ = Vu(u = cg) and ¢ = (c; # ¢;). Then there are no -models I’ < I such
that I’ F ¢ and M F . Assume 0 is existential, 7(0) = T, MFeo =60 and M E
¥ = ~0 for every 7-model IR. Then 6 is true in every model of power 1, and since
0 is existential, also in every model of power 2, a contradiction.

Malitz Separation Theorem for £, ,, 4.2 Let k be regular and \ = «<*. Sup-
pose ¢ and  are sentences of £,,,.(7), T(¢) =u, 7T(¥) =v,and p N v = 1.
Suppose there do not exist r-models W' and M such that W t y < M | 9,
W E @ and M E . Then there is a sentence 6 in My (7) such that for every
7-model M:

D) MEe=>MEO;

(i) MEY =>ME ~0;
(iii) 6 is existential,

@iv) 7(0) S 7(p) N 7(¥)

If Theorem 4.2 holds with £, , and -M,, replaced by L and L,, then we
say that L, allows Malitz separation for L;.

Malitz Interpolation Theorem for £, ,, 4.3 Let « be regular and \ = k<.
Suppose ¢,y € £, ,(7), where 7 is relational, ¢ is preserved to extensions, and
for every -model M, M E ¢ = . Then there is § € My, (7) such that for ev-
ery -model IN:

Q) MEe=>MED;

i) MEO=>MEY;
(iii) 0 is existential;

(iv) 7(8) = 7(0) N 7(Y).

Malitz Separation Theorem for M, , 4.4 Let « be regular and \ = k=*. Then
M+ allows Malitz separation for M, ,.

Malitz Separation Theorem for LiM, ., 4.5 Let k be regular and \ = k=*.
Suppose AR, 3SY € LiM, .. (7) and there do not exist r-models W' < M such
that W' E 3Ry and M E 3SY. Then there is 6 € My, (7) such that for every 7-
model IN:

@) MEIRe = MED;

(i) M FaSy = M E ~0;
(iii) 0 is existential.

Proof: We assume that R and S are disjoint. We may assume that 7 € 7(¢) U
7(¥), and by adding dummy subformulas to ¢ and y, we may extend 7(¢) and
7(¥) so that 7 = 7(¢) N 7(y¥). Now we can apply Theorem 4.4 to ¢ and ¢ as
7 U R U S-sentences, yielding 6.
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Corollary 4.6

(i) Let « be regular and \ = k<*. If 3R¢ € AiM () is preserved to extensions
(submodels) then it is equivalent to a determined existential (universal) sen-
tence of My \ (7).

(ii) Let « be infinite. If 3Rp € Al L, . (7) is preserved fo extensions (sub-
models) then it is equivalent to a determined existential (universal) sentence

Of (‘]mK+K(T)-

Proof: (i) Let 35y be a negation of 3R¢. Then we can apply Theorem 4.5 and
get the separant 6. The submodels case is dual.
(ii) Follows from Theorem 4.1.

Next we shall give an application of Corollary 4.6.

Definition 4.7 (i) If A and B are 7-models and f is a partial injection I — B,
then f is a partial isomorphism if for all atomic and negated atomic 7-formulas
¢ holds: A F ¢(ay,...,a,) iff BF o(f(ay),...,f(a,), where ay,...,a, are
any elements from dom( f).

(ii) Let N, x be cardinals and ¢ a \, k-tree. The Ehrenfeucht-Fraissé game
approximated by ¢ between models ¥ and B, G'(%,B), is the following. At each
move a:

(a) player v chooses x,, € ¢, and either a, € U or b, € B;
(b) if v chose a, € U then 3 chooses b, € B else 3 chooses a, € Y.

vV must move so that (xg)s<, form a strictly increasing sequence in ¢. 3 must
move so that {(ag, bg) |8 < o} is a partial isomorphism % — 8. The player who
first has to break the rules loses. By G{ (%,8) we mean a game where V is only
allowed to choose elements in .

Definition 4.8 Suppose ¢ and ¢’ are trees. We define the game G (#,¢'). In
this game in each round player V first picks an element in ¢# and then 3 must
choose an element in ¢”. The choices of each player must form a strictly increas-
ing sequence. If 3 cannot choose his move according to rules, then 3 loses, and
similarly if ¥ cannot choose, then V loses. We denote ¢ < ¢’ (¢>>¢') if 3 (V) has
a winning strategy. It is easy to show that > t' = ' < t.

4.9 Definition. (i) Let ¢, t’ be trees. For simplicity we assume ¢ and ¢’ are dis-
joint.

The sum ¢ @ ¢’ is defined as the disjoint union of ¢ and ¢’, except that the
roots are identified.

The domain of the product ¢” =¢ x ¢’ is {(x, f, ¥) | x € t, f a function from
the predecessors of x to the branches of ¢, y € t}. Here (x, f,y) = (x, f,y") iff
either

@ x=x,f=f,andy=y’, or

(b) x<x,fSf,and y € f'(x).

(ii) We say that ¢ is special if there is a mapping f: ¢t = w such that for all
X,y €t,if x <y, then f(x) # f(»).

(iii) Let tp = {s|s:a = w, 5 is an injection and a < w; is successor }. Let
s<s’if s S 5" Then it is very easy to show that ¢ is special and for every spe-
cial # holds ¢ < #,.
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(iv) If ¢ is a tree then by of we denote the tree which consists of all initial seg-
ments of branches of ¢. It is quite easy to prove (see [3]) that o7 > ¢. Thus o7y
is not a special tree.

(v) Suppose ¢ = (¢,!) is a sentence of /M,,. Let ¢’ be the restriction of ¢
to those nodes x, for which /(x) = 3u or Yu. We write that the quantifier rank
ar(e) =t" Let M, = {¢ € My,|ar(e) = t}.

Note the following easy facts. If 3 has a winning strategy in G*(%,8), then
A = B relative to all p € M4,. If 0 = (£,]) € My, A EO and B F ~0, then v
has a winning strategy in G*(%,8). Furthermore, if 0 is existential, then Vv has
a winning strategy in G/ (%,B).

Example 4.10 Let ¢ =Vug...Upcy - - - Uy, A\ <oty # U,. Thus ¢ says that
a model is uncountable. Clearly, ¢ € £,,,, (D) is preserved to extensions and
¢ is equivalent to a A} £, (D)-sentence.

Let M and I, be models of empty vocabulary, |My| = w and |M | = w;.
Using the Ehrenfeucht-Fraissé game G{2 (Definition 4.7) it is easy to see M, =
I, relative to all existential £, (J) sentences and actually relative to all ex-
istential sentences of M2, (D).

But let ¥ be the following existential sentence of MZ2, (D):

x//= /\ 3“0( /\ 3“1(141#:”0/\ /\ ))
Xo€olg Xo<x)Eo0lg xX1<X2

It is easy to see that ¥ is determined. We show that y is equivalent to ¢. Clearly

M, E . Assume for a contradiction 3 has winning strategy in I, F ¢. Then the

winning strategy of 3 gives a specializing function f: 6fp — w, a contradiction.

It is an open problem whether there are sentences of £, (7) preserved to

extensions but not equivalent to existential sentences of MJ (7), assuming
CH.

5 Generalized Borel sets We apply our results to generalized Borel sets. It
is quite straightforward to show that the following definition agrees with Halko’s
[2] and Vaddndnen’s [9] topological definition of generalized Borel sets, and in
the classical case k = w it agrees with the usual Borel sets. Vddnénen [9] has to-
pological proofs for the results below.

Definition 5.1  Let 7, |7| <k, be a vocabulary and C = {c,| o < «} a set of
new constants. Let %, () = {I|M a 7-model and | M| = «}. If M € N,(7) then
Mcis a 7 U C-model such that M | 7= I and c2*¢ = « for all & < k. Suppose
¢ E CM,H.K(T U C) Let

B¢= [WEG‘RK(T)|§JRC|=¢}.

We say that B, is a Borel set in N, (7). We denote the complement N, (7) — B
by —B. Suppose 3R is a ZiM,, (7 U C)-sentence. Let

Aszg, = (M€ RN(7) | Mc EIRp).

Then we call Az, a L}-set. If A and —A4 are L], then we say that 4 is A].
Let o denote the sentence (VuV o< # = o) A (A awp<cCa # Cg)-
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Separation Theorem for I}-sets 5.2 Assume « regular and k<* = k. If
Asp, N Aagy = O, then there is 0 such that Azg, S By and As5y € B_y.

Proof: Let 0 be the separant of ¢c A ¢ and ¥ from Theorem 3.8.

Corollary 5.3 Assume « regular and k= = k. If Asg, is Al then there is 0
such that Asg, = By and ~Asg, = B_y.

6 Counterexamples to separation In this section we prove negative results
about relative separation of £, in several logics. First we prove an undefina-
bility theorem analogous to the undefinability of well-orderings in £, .

Lemma 6.1 Let « be regular and let u,t’ be trees with no = k-branches (i.e.,
branches of length = k). If VY has a winning strategy S in G{((x,<),t’), then
t=(Ppc ) Xu>t.

Proof: We show that v has a winning strategy in G (#,¢'). As V plays G, he
also simulates Gy. Suppose S gives o € k and x € u as V’s first move in G{.
Then vV moves (x, g,8), 8 < «, where g is arbitrary and 3 are in some single
branch of @, @, in the first « + 1 rounds of G<.

Suppose 3 does not lose yet in G and let his moves be y; € ¢/, 8 < a. We
define f(8) = yg for 8 < . Now f is a partial isomorphism (x,<)— ¢’ and V lets
31 move f(a) € ¢’ in G{'. Since S is a winning strategy, ¥ can continue this way
extending f until 3 loses in G..

Proposition 6.2 Assume « is regular and k<* = k. Assume that T is a class
of trees with no = k-branches and T is RPC in M, .. Then there is a k™, k-tree
t such that t = t’ for everyt’' € T.

Proof: We denote p = {<,U}. Suppose T = {(A I {<}) I U¥|AFy,Aar-
model}, where Y € M,4,(7), 72 p. Let C = {c,|a < «} be new constants and

Y= /\ U(ca)/\ /\ ca<cﬁa
a<k a<fB<k
¢ € £,,.(7U C). Clearly, we can apply Theorem 4.4 to ¢ and ¢ as 7 U C-sen-
tences. Let § € M, (u) be existential and such that for all 7 U C-models I,
MEe=>MEG, MEY=ME~0.

Let B be an arbitrary 7-model of y. Let % be a 7 U C-model of ¢, such that
1A =, cd=a,AFa<Biffa <pBand U¥ = «. Since A FH and B F ~H, we
know that v has a winning strategy in G{*(¥  u, B [ u), where 0§ = (u,/). Let
t'= (B! {<})) ! UB Then Vv has a winning strategy in G{((x,<), ?’) and by
Lemma 6.1 1= (B, ) X u>t"

Our version (suggested by Oikkonen) of Proposition 6.2 above is slightly
stronger than Hyttinen’s [3] corresponding result. Hyttinen’s version says that
there is # such that forall ¢’ € T, t £ 1"

Proposition 6.3

(i) Assume that « is regular and k<* > k. Then M, does not allow separation
f or £K+K’

(ii) Assume « regular and k<* = k. Then for no x*, k-tree t, M, allows sepa-
ration for £,,..



400 HEIKKI TUURI

Proof: (i) Let 3Ry € L1 L, . (D) be a sentence such that N k IRy iff A< < \,
where || = \. Let 38y € L{L,..(D) be a sentence such that I F Sy iff
|M| = k. By our assumption 3Ry and 35y determine disjoint classes of &-mod-
els PCin £, ,, but using Ehrenfeucht-Fraissé games we trivially see that these
cannot be separated by an M, ,(J)-sentence.

(ii) By Tuuri [8] in this case there exist 7-models %,%, such that || =
|B| =k, A % B, and 3 has a winning strategy in G*(%,B). Let 3Ry and 35Sy be
1L, .. (7)-sentences (describing the diagrams) which characterize % and 9B up
to isomorphism. If § € ML, (1), then A F 6 iff B F 6. Thus there cannot be a
separant in M%,,.

Next we prove the consistency of a situation where M7, , (see Definition 1.9)
does not allow separation for £,,,, though «<* = «.

Let k > w be regular. If A € «, then by #(A) we denote the tree of all closed
increasing sequences of length < « of elements of A. By an w-cub subset of « we
mean a set A which is unbounded and closed under supremums of countable sub-
sets of A. These notions are defined in the same way for any well-ordering of
type k.

Let ¢, be a sentence of £,,, which says that < well-orders the universe of
a model and the order type is k and P and Q are complementary unary relations
in the w-cofinal elements of the universe. Let o (P) be the sentence

Yuygdvg. ..V, A0y, . . . 30,

[ N\ Un>upA N\ U,>U,A (Vu< v, V v, > u) /\P(vw)].
n<w n<w n<w

It is easy to prove that if M F ¢,, then M E p(P) iff P™ contains an w-cub
subset.

Theorem 6.4  (see [6]) Assume k = \*, \ regular, \"* = \, and 2™ = «. Then
there is a forcing extension which preserves all cardinals and in the forcing ex-
tension 2* = « and for all k™, k-trees t there is stationary A € {a € k|cf(a) = v},
such that B = {a € k|cf(a) = w} — A is stationary and t(k — A) £ t and t(k —
B) £1t.

Proposition 6.5 Let 7= {P,Q,<}. In the forcing extension of Theorem 6.4
the M, (7)-sentences ¢ = p(P) A ¢, and Y = p(Q) A ¢, do not have a separ-
ant in M%, (7).

Proof: Note that in the extension k <* = k. Clearly ¢ and ¢ do not have a com-
mon 7-model. Assume for a contradiction § € MY, (7) is a separant. Let

T, = {t(|M]| — P™) |M a 7-model and M F 6 A ¢, }
and
T, = {t(|M]| — Q™) |IM a 7-model and M F -0 A o, }.

It is not hard to see that both 7; and 7, are RPCin M,,,. Thusalso T=T; U
T, is RPC in M, .

If ¢ € T, then ¢ cannot have a «-branch because then Q™ would contain an
w-cub subset and M E ¥ A ¢,. Similarly for 75. Let ¢ be an arbitrary «*, k-tree.



RELATIVE SEPARATION THEOREMS 401

Let A, B be from Theorem 6.4. Now it is easy to see that either f(k — A) € T}
or t(k — B) € T,. Thus T contains a tree ¢’ such that ¢’ £ ¢. This contradicts
Proposition 6.2.

By Lemma 3.7 Mod”(¢) and Mod”(¢) in Proposition 6.5 are PC in £,,,
and they cannot be separated by any class EC in M7, , = AL, ... So we get the
following corollary.

Corollary 6.6 Let 7, ¢, and Y be as in Proposition 6.5. In the forcing exten-
sion of Theorem 6.4:
(i) ¢, ¥ € M, (1) do not have a negation in M, (7);
(i) M, allows separation for £, ;
(iii) M7, does not allow separation for £, ;
(iv) AL, does not allow separation for £, .
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