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Cut-Free Systems for Three-Valued Modal Logics

MITIO TAKANO

Abstract Cut-free formal systems for some of the three-valued modal prop-
ositional logics are given. This refines Morikawa's work.

Introduction In [1] Morikawa introduced (the three-valued version of) the
sequent calculi for the three-valued modal propositional logics 3-K3, 3-K2, 3-M3,
3-M2, 3-S43, 3-S42, 3-S53, and 3-S52. But, as he showed in [1] (Theorem 1),
none of them enjoys the cut-elimination property. So we will formulate, in this
paper, another sequent calculi (for those logics) which admit elimination of cuts.
In the first section, we introduce among others the notion of validity in those
logics; to make this article self-contained, we will repeat here many of the def-
initions in [1]. In the next section, our formal systems are presented in the style
of (the three-valued version of) the sequent calculi. The facts that provability im-
plies validity and that the latter implies cut-free provability will be shown in Sec-
tions 3 and 4, respectively. In view of the equivalence between validity and
cut-free provability of our systems, decision procedures for those logics are eas-
ily obtained.

We let G be a variable varying through the logics 3-K3, 3-K2, 3-M3, 3-M2,
3-S43, 3-S42, 3-S53, and 3-S52. Then, put i(G) = 3 or i(G) = 2, according as
G G {3-K3,3-M3,3-S43,3-S53} or G G {3-K2,3-M2,3-S42,3-S52}.

1 Preliminaries We put T= {1,2,3), and will use Γas the set of truth val-
ues. Intuitively, the truth values 1, 2, and 3 stand for 'true', 'undefined', and
'false', respectively. We let λ, μ, v,... denote truth values. We mean by μΛ the set
T-iμ}.

Formulas are constructed from propositional variables by means of propo-
sitional connectives and the necessity operator D we assume that for each prop-
ositional connective F, the arity a (F) > 0 and the truth function fF: τa{F) -> T
are predetermined. Subformulas of a formula are defined as usual. We use
A, By C , . . . as syntactical variables which vary through formulas.
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Definition A matrix is a finite set consisting of valued formulas, where a val-
ued formula is any pair of a formula and a truth value.

A matrix represents a generalized disjunction of constituent formulas. In [1],
it has been defined to be a triplet of finite sets of formulas, as the three-valued
version of Gentzen's sequent. But for convenience we modify the definition as
above. Thus a matrix is a set of the form:

{M 1 , l), . . . ,(Λ,D,(^i,2), . . . ,(5 m ,2),(C 1 ,3), . . . ,(C Λ ,3)},

and this corresponds to the matrix in the sense of [1]:

[Au...9Aι}ι\J{Bu...9Bm]1Ό[Cu...,Cnh9

where l,m,n> 0. When S is a subset of Γ, the matrix {(A,μ)\μE S}is abbre-

viated as (A, S); the matrix L U {04, μ)} is written simply as L U (A, μ). We use

K,L,... as syntactical variables which vary through matrices.

Definition A(three-valued) Kripke frame is the triplet (W,R, φ), where W
is a nonempty set, R a binary relation on W9 and φ a mapping which assigns a
truth value to each pair of a propositional variable and an element of W.

Definition Suppose that (W, R, φ) is a Kripke frame and i G {3,2}. We call
the triplet (W,R, φ*) a (three-valued) Kripke structure of type i (generated from
(W,R, φ)), if φι is the mapping which assigns a truth value to each pair of a for-
mula and an element of W, and is defined by recursion as follows:

<pι(p,s) = φ(p,s), where p is a propositional variable;

φi(F(Au... ,AaiF)),s) =fF(φi(Aus)i...,^(A*(F),*));

{ 1, if sRt implies <ρ3(A, t) = 1 for every / e W\

2, if sRt and φ3(A, t) = 2ϊor some t G W\

3, otherwise;

Γ 1, if sRt implies φ2(A, t) = 1 for every t G W\
φ2(ΠA,s) =\ #

(̂ 3, otherwise.

Definition Models of G are defined as follows. Models of K, are nothing but
the Kripke structures of type /; whereas a model of M, , S4, , or S5/ is a Kripke
structure (W, R, φι) of type / such that R is reflexive, reflexive and transitive, or
forms an equivalence relation, respectively.

Definition A Kripke structure (W, R, φ*) of type / certifies (rejects) a matrix
L at s G W, when (B, <pι(B,s)) G L for some formula B (for no formula B,
resp.).

Definition A matrix is valid in G if it is certified by every model
(W,R, φi{G)) of G at every element of W.

2 Formal systems for three-valued modal logics In this section, we intro-
duce our formal systems for the logics 3-K3, 3-K2, 3-M3, 3-M2, 3-S43, 3-S42,
3-S53, and 3-S52.
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Beginning matrices and structural rules Each of our systems has (A, T) as
the beginning matrix (namely, the 0-premise rule), where A is any formula, and
the following rules as the structural rules:

Weakening: — , where L <Ξ K.
K

LU(A,μ) KU(A,v)
Cut: μ' κ—^- , where μ Ψ v.

L UA

Propositional rules The following rule (F; μ) is used in each of our systems
as the propositional rule, for every propositional connective F and every μ E T.

i U ( 4 ^ Γ ) U . . . U (AaiF),va(Ff)
for every (vu . . . , va(F)) effι(μ*)

l μ ) : LU(F(Aι,...iAa(F)),μ)

Ώ-operation and modal rules To formulate the modal rules of our systems,
we need the D-operation on matrices. The definition of the Π-operation is taken
from the following list depending on logics; the choice for each logic is described
later.

(Dl) Lπ = [(B92) I (ΠB,2) G L] U {(B,3) \ ( D £ , Γ ) £ L).
(D2) Ln = [(B9v)\vel\(nB,3)eL}.
(D3) Lu = [(ΠB,2) I (D5,2)GLj U [{ΠB,3) \ (ΏBX) £ L).
(D4) Lu = \{ΠB,3)\(ΠB93)EL}.
(D5) Lπ = \(ΠB,v)\ve T,(ΠB9r)GL).

Some of the following rules are selected as the modal rules of our systems;
the list of the rules for each logic is specified later as well.

I°UM,1)
1 ' ) - LU(ΠA,1)'

L U M,2)
( D > 2 ) IU(Π/4,2)

( D ; 3 ) i : £U(DΛ3)

( D > 3 ) 2 l U ( D ^ ) '

( D ; 3 ) 3 : LU{ΠA,3)

(••!> LU(At3)
( U > K Z U ( D Λ Γ ) '

/r_, „ I U M,J'*) for every r £ Γ
( D ; / 1 ) : LU(CL4,μ)
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Now the choice of the definition of the D-operation and the modal rules for
each logic is made as follows:

3-K3: (pi);(Π;l)9(a;3h.
3-K2: (D2);(D;1).
3-M3: (Dl); (D l), (D;2), (D;3) l f (D; Γ) .
3-M2: (D2);(D;1), (D;3)2.
3-S43: (D3); (D l), (D;2), (D;3)lf (D Γ).
3-S42: (D4);(D;1), (D;3)2.
3-S53: (D5); (D l), (D;2), (D;3)3, (D μ)* for every μ G Γ.
3-S52: (D5); (D l), (D;3)2, (O μ)* for every μ G Γ.

Definition A matrix improvable {strictlyprovable) in G, when it is obtained
from beginning matrices by a finite number of applications of rules (rules except
cut, resp.) of our system for G.

Note that the modal rule (D; μ)* is derivable by means of cut and weaken-
ing. But it is included in our systems for 3-S53 and 3-S52 to eliminate cut.

Hence the main theorem of this article, which claims the deductive complete-
ness and the cut-elimination property of our systems, is formulated as below. It
will be routine, by this theorem, to decide whether a given matrix is valid in G
or not.

Theorem Let G be 3-K3, 3-K2, 3-M3, 3-M2, 3-S43, 3-S42, 3-S53, or 3-S52.
The following properties on any matrix L are mutually equivalent:
(a) L is valid in G.
(b) L is provable in G.
(c) L is strictly provable in G.

Clearly, (c) implies (b). We will show in Section 3 that (a) is a consequence
of (b), and in Section 4 the fact that (c) follows from (a) will be proved via a (gen-
eralized) canonical model construction.

3 Soundness of our systems In this section, we will show the soundness
property of our systems, that is, the fact that every provable matrix is valid. We
will first prove the following lemma.

Lemma 1 LetΛ = {W,R, φi(G)) be a model of G. IfsRt, and cM certifies
Lπ at t, then it certifies L at s; in other words, ifsRt, and <M rejects L at s, then
it rejects Lu at t.

Proof: We suppose that sRt9 and cM certifies Lπ at t.

Case 1: G G {3-K3,3-M3), so that i(G) = 3 and the D-operation is defined by
(Dl). By the assumption, either φ3{B, t) = 2 and (BB,2) G L, or φ3(B, t) = 3
and (ΠB, 1") £ L, for some B. Since φ3( ΠB, s) = 2 in the former case, whereas
<P3(ΠB,s) Φ 1 in the latter, it follows (ΠB, φ3(ΠB,s)) G L in either case; so cM
certifies L at s.

Case 2: G G {3-K2,3-M2}, so that i(G) = 2 and the D-operation is defined by
(D2). By the assumption, φ2(B,t) Φ 1 and (D£,3) G L for some B. Since
φ2(ΠB,s) = 3, it follows {ΠB, φ2{ΠB,s)) G L; so cM certifies L at s.
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Case 3: G E {3-S43}, so that i(G) = 3, the D-operation is defined by (D3), and
R is transitive. Since φ3(ΠB,t) = 2 {<p3(ΠB,t) = 3) implies φ3(ΠB,s) =
2(φ3(ΠB,s) Φ 1, resp.), one can manage this case similarly to Case 1.

Case 4: G E {3-S42}, so that i(G) = 2, the D-operation is defined by (D4), and
R is transitive. Since φ2(ΠB, t) = 3 implies φ2(ΏB9s) = 3, one can manage this
case similarly to Case 2.

Case 5: G E {3-S53,3-S52}, so that the D-operation is defined by (D5), and R
is symmetric and transitive. By the assumption, <ρ'(G)( ΠB, t) = v and (ΠB, P)GL
for some B and some v E T. Then by a simple calculation, it follows that
φi{G)(ΠB,s) = v. Hence (\3B,φi{G)(ΠB,s)) E L; so <M certifies L at s.

Now we will demonstrate the following lemma, which states that the prop-
erty (b) formulated in the Theorem implies the property (a).

Lemma 2 If a matrix is provable in G, it is valid in G.

Proof: The proof is by induction on the length of the proof of the matrix. It
is clear that any beginning matrix having the form (A, T) for some A is valid,
and that the structural rules (namely, weakening and cut) preserve the validity
of matrices. So we are left to mention the propositional and the modal rules in
the following.

It suffices to show that, if a model (W9R9 φi{G)) of G rejects the lower ma-
trix of a propositional or a modal rule at some element of W, then it also rejects
some upper matrix of the rule at some element of W. Hence, we let cM =
(W9R, φι(<G)) be a model of G, and assume that cM rejects at s E Wthe lower
matrix of a rule.

Case 1: Propositional rule (F; μ) with the upper matrices LKJ {Auvx ) U . . . U
(Aa(F)9 ί>α(/τ) ) for each (v\9..., va(F)) ^fFι(μ ) and the lower matrix L U
(F(AU . . . ,Aa{F))9μ). By the assumption, φi(G)(F(Au... ,Aa{F)),s) Φ μ. Put
vk = φW)(Ak,s) ίork= l , . . . , α ( F ) . Then it follows fF(vu . . . , va{F)) Φ μ.
Hence L U (AΪ9 v\ ) U . . . U (Aa(F), va^F) ) constitutes an upper matrix and
is rejected by cM at s.

Case 2: Modal rule (D; 1) with the upper matrix Lπ U (̂ 4,1) and the lower
matrix L U (D.4,1). By the assumption, φi(G)(BA,s) Φ 1, so sRt and
φι(ίG)(A,t) Φ 1 for some t E W. Hence cM rejects the upper matrix at t by
Lemma 1.

Case 3: Modal rule (D;2) with the upper matrix L U (A,2) and the lower ma-
trix L U (ΠA92), and moreover G E {3-M3,3-S43,3-S53} so that i(G) = 3 and
R is reflexive. Since <p3(ΠA,s) Φ2by the assumption, <p3(A,s) Φ 2. Hence cM
rejects the upper matrix at s.

Case 4: Modal rule (D;3)! with the upper matrices LΏ U (^4,2^) and L U
(D^4,2) and the lower matrix L U (D^4,3), and moreover G E (3-K3,3-M3,
3-S43) so that i(G) = 3. By the assumption, <p3(ΠA,s) Φ 3. If <p3(ΠA,s) = 1,
then cM rejects the upper matrix L U (D^4,2) at s; whereas if <p3(\3A,s) = 2,
then sRt and <p3(A, t) = 2 for some t E W, hence cM rejects the upper matrix
Lπ U (AX) at t by Lemma 1.
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Case 5: Modal rule (D 3)2 with the upper matrix LU (A, 1 ) and the lower ma-
trix L U (Q4,3), and moreover G G {3-M2,3-S42,3-S52) so that i(G) = 2 and
R is reflexive. Note that φ2(ΠA,s) Φ 3 implies φ2{Λ,s) = 1. Hence, cM rejects
the upper matrix at s.

Case 6: Modal rule (D;3)3 with the upper matrices Lu U (AX) and L U
(v4,3) and the lower matrix L U (D^4,3), and moreover G G {3-S53} so that
i(G) = 3 and R is reflexive. Note that φ3(Π\A,s) = 1 implies φ3(A,s) = 1. Then
one can manage this case similarly to Case 4.

Case 7: Modal rule (D; 1 ) with the upper matrix L U (̂ 4,3) and the lower ma-
trixL U {ΠAX), and moreover G G {3-M3,3-S43} so that i(G) = 3 and/? is
reflexive. Similar to Case 3.

Case 8: Modal rule (D; μ)* with the upper matrices L U (A, / ) for each v G
Γand the lower matrix L U (ΠA,μ), and moreover G G {3-S53,3-S52}. Put
v = φi(G)(A,s). Then cM rejects the upper matrix L U (A, / ) at s.

Since models of G certainly exist, it is not the case that the empty matrix
(namely, the empty set as a matrix) is valid in G. Hence the following corollary
holds.

Corollary The empty matrix is unprovable in G.

4 Strict completeness of our systems In this final section, we will prove fol-
lowing Schiitte [2] the strict completeness property of our systems, that is, the
fact that every valid matrix is strictly provable.

Definition A matrix K is G-subsidiary to a matrix L, when for every valued
formula (A, μ) in K, the matrix L contains a valued formula (B, v) such that A
is a sub formula or a proper sub formula of B according as G G {3-K3,3-M3,
3-S43) or not (that is, (D;3)i is a rule of G or not).

Definition A matrix L forms a partial valuation of G, when (i) L is not
strictly provable in G, and (ii) if K is G-subsidiary to L, but the matrix LU K
is not strictly provable in G, then K ^ L.

Lemma 3 Suppose that s forms a partial valuation of G.
(1) If(F(Au... ,AaiF)),μ) es, then (Auv^) U . . . U (Aa(F)9pa(F)*) ^sfor

some (vlf...9va{F)) effι(μ*)>
(2) LetGG {3-M3,3-S43,3-S53}. If (ΠA,2) G s, then (A,2) G s.

(3) LetGG {3-M2,3-S42,3-S52}.//(D,4,3)Gs, then (AX) g 5.
(4) LetGG {3-M3,3-S43}.//(D^,Γ)c5, then (.4,3) Gs.
(5) LetGG {3-S53,3-S52}. If(ΠA,μ) G s, then (A,ι>*) ζs for some vG T.

Proof: (1): Note that (F μ) forms a rule of each G. Suppose (F(AΪ9...,
Aa(F)),μ) G s. It follows that s U (Auv^) U . . . U(AaiF), pa(F)*) is not
strictly provable in G for some (*>i,..., va(F)) GfF

 ι(μ ), since otherwise 5* be-
comes strictly provable in G by means of the rule (F μ). Hence (Auvx ) U
. . . U (Aa(F), pa{F)

 A) is included in s, for it is G-subsidiary to s. (2)-(5): Note
that (Π;2), (D;3) 2, (D; 1 *), or (D; μ)* forms a rule of G, respectively. Then one
can manage these similarly to (1).
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Lemma 4 Suppose that G G {3-S53,3-S52}, and s forms a partial valuation
of G. If (B, μ) G s, and C is a proper subformula ofB, then (C,v ) <Ξ sfor some

Proof: We prove this by induction on the construction of B.

Case 1: Bis & propositional variable. This is impossible, since B must have a
proper subformula C.

Case 2: B has the form F(A i , . . . , Aa(F)). Since C is a proper subformula of B,
it is a subformula of Λk for some k=\,.. .,a (F). From (B, μ) G s, it follows
by Lemma 3(l)that, (Auv^) U . . .U (Aa{F),va{F)*) g s for some (vu...,
Va(F)) €ffι(μ*)9 especially (Ak,vk*) g s . Hence if C is Ak itself, the conclu-
sion of the lemma has been obtained; whereas if C is a proper subformula of
Ak, the conclusion follows from the hypothesis of induction.

Case 3: B has the form ΠA. Similar to Case 2 by Lemma 3(5).

Lemma 5 Suppose that L is not strictly provable in G. Then, L can be ex-
tended to a partial valuation t of G. Moreover, ifGG {3-S53,3-S52}, t maintains
the following additional property: if s forms a partial valuation o/G, s D g L,
and the matrix L — sπ is G-subsidiary to sπ, then sπ = t u .

Proof: Let Kx,..., Kn be the matrices which are G-subsidiary to L. We define
L\,...,Ln,Ln+χ by recursion as follows. Put L\ — L. If 1 < k < n and Lk has
been defined, we let Lk+i be the matrix Lk or Lk U Kk according as Lk U Kk is
strictly provable in G or not.

Now we shall show that Ln+i constitutes the desired matrix. Clearly, L =
Lγ <= L2 <Ξ . . . <Ξ Ln+ι and none of Lχ,L2,..., or Ln+ί is strictly provable
in G. Suppose that K is G-subsidiary to Ln+Ϊ, but Ln+χ U K is not strictly prov-
able in G. It is easy to see that K is also G-subsidiary to L, so K = Kk for some
k = 1,..., n. Then Lk U K is not strictly provable in G, since Lk Q Ln+ι. Hence
Lk+ι = Lk U K, so K £Ξ Ln+λ. Thus Ln+\ constitutes an extension of L and a par-
tial valuation of G.

Now we suppose G E {3-S53,3-S52} and will show the additional property
of Ln+i. Assume that s forms a partial valuation of G, s° ^ L, and L — s D is
G-subsidiary to s D . Recall that the D-operation is defined by (D5). Clearly,
sπ c Lπ c L° + 1 . Hence to derive sπ = I ° + 1 , it suffices to deduce a contradic-
tion from the assumption (C,λ) G L°+i - s D . Since Ln+Ϊ - L is G-subsidiary
to JL by the construction of Ln+ι, it follows that there is a valued formula
(B, μ) Gsπ c s such that C is a proper subformula of B. Then by Lemma 4,
(C, / ) g s for some Ϊ> G T. If λ = Ϊ>, then from (C, *>) = (C,λ) G LΛ + 1 and
(C, v ) <Ξ 5 α <Ξ //„+!, it follows (C, Γ) c Ln+γ and so L Λ + 1 becomes strictly
provable in G, which is a contradiction. On the other hand, if λ Φ v, then
(C,λ) G (C,v ) Q s, which contradicts the assumption. Hence sπ = L° + 1 .

Lemma 6 Suppose that s forms a partial valuation of G.
(1) If(ΠA,l)<Ξs, thensu ^tand (A,l) G t for some partial valuation t of G.

Moreover, ifGe {3-S53,3-S52}, then t can be taken so that sπ = tπ.
(2) Suppose G G {3-K3,3~M3,3-S43}. If (ΠA,3) G s, then either sπ g t and

(A,2 ) <Ξ ί/or some partial valuation t of G, or (Q4,2) G s.
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(3) Suppose G E {3-S53}. If (UA,Z) E s, then either su = tu and (AX) C t
for some partial valuation t of G, or sπ = tπ implies (A,3) E t for every
partial valuation t of G.

Proof: (1): Note that (D; 1) forms a rule of each G. Suppose (ΠA, 1) E s. It fol-
lows that sπ U (A, I) is not strictly provable in G, since otherwise s becomes
strictly provable in G by means of the rule (D; 1). Hence su Q t (and sπ = tn

when G E {3-S53,3-S52}) and 04,1) E ί for some partial valuation t of G by
Lemma 5.

(2): Note that (D;3)i forms a rule of G. Suppose (CM,3) E s. It follows in
view of the rule (U\3)x that, at least one of sπ U (AX) ands U (ΠA,2) is not
strictly provable in G. In the former case, sπ <Ξ: t and (AX) <Ξ t for some par-
tial valuation t of G by Lemma 5; whereas in the latter, (C\A,2) E s since the
matrix {(Dv4,2)} is G-subsidiary to s.

(3): Note that (D;3)3 forms a rule of G and the D-operation is defined by
(D5). Suppose (ΠA,3) E s. If sπ U 04,2*) is not strictly provable in G, then
sπ = tπ and 04,2) Q ί for some partial valuation t of G by Lemma 5. So we
assume that sπ U (AX) is strictly provable in G. We claim that sπ = tu im-
plies (.4,3) E f for every partial valuation t of G. To show this, let t be a par-
tial valuation of G such that s D = tπ. Then (D.4,3) E t, and ίD U 04,2^) is
strictly provable in G. It follows in view of the rule (D;3)3 that t U 04,3) is not
strictly provable in G. Hence (̂ 4,3) E t, since the matrix {(̂ 4,3)} is G-subsidiary
to t.

Definition The Kripke frame (WG,RG, φG) is characterized as follows:
(i) WG is the set of partial valuations of G. By Lemma 5 and the corollary of

Lemma 2, WG is nonempty,
(ii) For any sj E WG\sRGt iff su c f, when G E {3-K3,3-K2, 3-M3,3-M2,

3-S43,3-S42}; whereas si?Gί iff sπ = tπ

9 when G E {3-S53,3-S52}.
(iii) Let 5 E JFG a n ( l /? be any propositional variable. Since s is a matrix that is

not strictly provable, it is not the case that (/?, T) c s. So, we let φG(p,s)
be one of the truth value μ such that (p,μ)^ s.

Lemma 7 The Kripke structure (WGyRGiφ
ι

G

G)) oftype i(G) generated from
(WG,RG, φG) forms a model of G.

Proof: We will prove this by cases.

Case 1: G E {3-K3,3-K2). Nothing is left to be proved.

Case 2: GG (3-M3). Since the D-operation is defined by (Dl), it follows that
RG is reflexive by Lemma 3(2) and (4).

Case 3: G E {3-M2}. Similar to Case 2 by Lemma 3(3).

Case 4: G E {3-S43,3-S42}. Since the D-operation is defined by (D3) or (D4)
respectively, RG is clearly reflexive and transitive.

Case 5: G E {3-S53,3-S52}. The binary relation RG clearly forms an equiva-
lence relation.

Lemma 8 In the model (WG,RG, φ^G)) of G, (B, φ£G)(B,s)) £ sfor every
formula B and every s E WG.
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Proof: We prove this by induction on the construction of B.

Case 1: B is a propositional variable. Clear by the choice of φG.

Case 2: B has the form F(ΛU... ,Aa(F)). Suppose (B9μ) E s, where μ =
φ%G)(B,s). It follows by Lemma 3(1) that (Auv^) U . . . U (Aa{F),va{F)*) c
s for some {vu..., va{F)) E / ^ H / O Then vk Φ φ£G)(Ak9s) for some k =
1,... ,α(F), since μ = / f ( ^ G ) μ l 5 5 ) , . . . , ^ G ) ( A , < * ),*)) So (Λ*,^ ( G )

(Ak, s)) E (̂ 4A:> ̂  ) ^s, which contradicts the hypothesis of induction. Hence

Case 3: B has the form Π\A. It suffices to derive a contradiction from the as-
sumption (B, μ) E s, where μ = φι

G

G)(B,s).

Subcase 3.1: μ = 1. From the assumption (ΏA, 1) E s, it follows by Lemma
6(1) that sRGt and (A, 1) E / for some / E JFG Since μ = 1 and si?G/, it follows
that 0$ G ) C4,0 = 1. So M, <PG

G)(A9 0 ) ^ 5 , which contradicts the hypothesis
of induction.

Subcase 3.2: μ = 2 and G E {3-K3,3-M3,3-S43,3-S53), so that i(G) = 3.
From μ = 2, it follows that sRGt and <PG(A, t) = 2 for some ί E WG. Then since
(O4,2) E 5 and 5D g ί (and by Lemma 3(2) when G E {3-S43,3-S53}), it fol-
lows that (A,2) Gt and so (A, φ^(A, t)) E £, which contradicts the hypothesis
of induction.

Subcase 3.3: μ = 2 and G E (3-K2,3-M2,3-S42,3-S52}, so that /(G) = 2.
This is impossible, since ΨQ(ΏA,S) does not take the value 2.

Subcase 3.4: μ = 3 and G E {3-K3,3-M3,3-S43}, so that /(G) = 3. Since
μ = 3, s i?Gί implies <£>G(A0 ^ 2 for every t E WG> whereas sRGt0 and
9? (̂>1, ί0) = 3 for some t0 E WG. From (D^4,3) E 5, it follows by Lemma 6 (2)
that, either sRGt and 04,2A) c t for some ί E WG, or (Dv4,2) E 5. In the first
case, it follows that (A,φG(A,t)) E (A,2 ) <Ξ t, which contradicts the hypoth-
esis of induction. So in the meantime, we suppose (ΠA,2) E s. Then since
(BA, Γ ) c ^ and sΏ c /0 (and by Lemma 3(4) when G E (3-S43}), it follows
that (̂ 4,3) E ô and so (A, φG(A, t0)) E t0, which is a contradiction, too.

Subcase 3.5: μ = 3 and G E {3-K2,3-M2,3-S42,3-S52}, so that /(G) = 2.
From μ = 3, it follows that si?G/ and φ2

G{A, t) Φ 1 for some t E W .̂ Then since
(D.4,3) E 5 and sπ g r (and by Lemma 3(3) when G E {3-S42,3-S52}), it fol-
lows that (A, 1 ̂ ) Q t and so (̂ 4, φG(A, t)) E ί, which contradicts the hypothe-
sis of induction.

Subcase 3.6: μ = 3 and G E {3-S53}, so that i(G) = 3. From (D^4,3) E 5,
it follows by Lemma 6(3) that, either sRGt and (A,2 ) <Ξ £ for some ί E WG> or
sRGt implies (̂ 4,3) E / for every t E WG. In the former case, from μ = 3 and
^ G / , it follows that (A, φG(A, /)) G (AX) C /, which contradicts the hypoth-
esis of induction. So in the meantime, we consider the latter case. From μ = 3,
it follows that sRGt and <^^(^1,0 = 3 for some tGWG. Then (,4,3) E / and so
(A,φ3

G(A,t)) E /, which is a contradiction, too.

At last, we are prepared to prove the following lemma, which states that the
property (c) formulated in the Theorem is implied by the property (a).
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Lemma 9 If a matrix is valid in G, it is strictly provable in G.

Proof: Assume that a matrix L is not strictly provable in G. Then L <Ξ s for some
5 6 WGby Lemma5. Hence in the model (WG,RG9<p%G)) of G, (B9φ%G)(B,s)) G
L for no formula B by Lemma 8. So L is not valid in G.
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