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The Cαtegoricity Spectrum of

Pseudo-elementary Classes

MICHAEL CHRIS LASKOWSKI

Abstract Given a pseudo-elementary class JC we investigate the associated
class of cardinals where JC is categorical. We show that any such class must
be closed and if it is nonempty then there is an ordinal δ Φ 0 so that { K : K <
Dδ.α and JC is κ-categorical} is closed and unbounded in Dδ.α for all a > 0.
Also, assuming the consistency of a huge cardinal, we show that the state-
ment "JC K2-categorical implies JC K3-categorical" is independent of ZFC.

/ Introduction In [8] Morley proved that if an elementary class in a count-
able language is categorical in some uncountable power, then it is categorical in
all uncountable powers. The result was extended to elementary classes in un-
countable languages by Shelah. The aim of this paper is to explore possible gen-
eralizations of these results to pseudo-elementary (PCΔ) classes (i.e., reducts of
an elementary class to a smaller language).

In [1] Keisler proved that one direction of Morley's theorem extends to
pseudo-elementary classes. He showed that if a PC Δ class in a countable lan-
guage is Ki-categorical, then it is categorical in every uncountable power. How-
ever, Silver gave an example of a PC Δ class that is ^-categorical if and only if K
is a strong limit cardinal. The other known positive result was proved indepen-
dently by Keisler [4], Cudnovskiί [2], and Shelah [11]. Suppose JC is a PC Δ class
whose underlying language has power λ and Ώδ is the Hanf number for omitting
a type in a first order language of power λ (e.g., if λ = Ko then Dδ = D ω i ). They
showed that if JC is categorical in some power > λ, then JC is categorical in all
powers Ώδ.a for a G ORD, a > 0.

In Section 2, we obtain two new positive results. First, we show that for any
pseudo-elementary class JC, the class of cardinals K where JC is /(-categorical is
closed in the order topology. Next we extend the result above by showing that
if JC is a pseudo-elementary class whose underlying language has power λ and
JC is categorical in some power > λ then {β < δ-a: JC is Ώβ-categorical) is closed
and unbounded in δ α for all a > 0. In particular, if the underlying language of
JC is countable and JC is categorical in some uncountable power, then \{μ <
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3 ω i : JC is μ-categorical) | > Klβ Silver's example demonstrates that this result is
the best possible.

In Section 3 we obtain a number of negative results about specific cardinals.
We first obtain a converse to the theorem of Keisler, Cudnovskii, and Shelah.
If, for all PCΔ classes having a countable underlying language, categoricity
in some uncountable cardinal implies κ-categoricity, then K = Ώωι.a for some
a > 0. Next we ask whether JC being /(-categorical implies 3C being λ-categori-
cal for specific values of K and λ. There are a couple of cases that are still open,
but our results indicate that very few (if any) transfer results are provable in ZFC
other than the two mentioned above. As so little can be proved even in the case
where 3C has a countable underlying language, we make this assumption through-
out this section.

Concerning the question of whether 3C being Kα+2-categorical implies
JC Kα+3-categorical (i.e., Kα+2 -» Kα+3 in the notation of Definition 3.1), we find
that, assuming the consistency of a huge cardinal above Kα, the question is in-
dependent of ZFC. One direction simply amounts to translating results of Mitch-
ell [7] on special Aronszajn trees to our context. The other direction comes by
showing that the relation κ + -> κ++ follows from a generalization of Keisler's
two-cardinal theorem. Then, given a huge cardinal above κ9 we employ a con-
struction of Kunen [5] to establish the consistency of this generalization for reg-
ular K.

Next we explore other instances of K -> λ and find that most of these are ei-
ther refutable or independent of ZFC. (A few are still open.) For example, most
instances of K -> λ with λ < K are refuted by employing Morley's notion of a car-
dinal being char act erizable. We also show that many instances of K S* λ follow
from certain properties of cardinal exponentiation that are at least relatively con-
sistent with ZFC. We conclude this survey by investigating the consistency of
V/c < 2κ°(κ -* 2K°) for various choices of the continuum.

Our final topic of this section is to show by a routine Hanf number argument
that there is a cardinal κ0 large enough to determine the full categoricity spec-
trum of a PCΔ class from its initial segment below κ0. However, we show that
there is no provable upper bound on κ0 in the D-hierarchy. In Section 4 we state
a few problems that are still open.

As for notation, κ,λ, μ,p always denote infinite cardinals. In Section 3 we
insist that they be uncountable as well, a, β, γ,δ, η denote ordinals. If φ(x) is a
formula, φMdenotes (άG \M\n\MVφ[a]}.

If a first order theory has a distinguished unary predicate U, we say M is a
(κ,λ) model if M has power K and | UM\ = λ. M is (κ,< K) if M is a (κ,λ)
model for some λ < K and in this case, we call M a two-cardinal model.

SL(B) denotes the set of complete one-types in the language L with param-
eters from the set B. (B will always be a subset of the universe of an L-structure.)
When L is understood we simply write S(B). If a G \M\,pGS(B), we write
a Yp to denote MYp[a],

Sl(B) denotes the set of complete strong types in one variable in the lan-
guage L with parameters from B. If p E S*(A) and p is based on B, thenp \ B
denotes the unique q E S*(B) parallel to p.

Formally, for p E S*(B), (aa: a < λ> is a Morley sequence over B built
from p if for all a < λ, aa N p \ B U {aβ: β < a}. However, by symmetry, the
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order of the aa is irrelevant so we will call the set U {aa '• α < M a Morley se-
quence of length λ over B built from p if the above property holds.

2 Positive results

Definition 2.1 For L a first order language, a class JC of L-structures is
pseudo-elementary (PCΔ) if there is a language LXDL with |Li | = | L | and an
Lx -theory Tx such that

JC = {L-structures M:M = MX \ L for some Mj 1= Γj}.

Note that Z^ and 7̂  are not determined by JC. When Lx and 7\ are known, we
write JC = M o d ^ ) \ L. If | |£ | | = Ko, we call JC a P Q 0 class.

Definition 2.2 For JC a PCΔ class, let L( JC) denote the underlying language,
let |JC| = ||£(JC)|| and let

Γ(JC) = ΠfTh^ίM) : M E JC and Minfinite).

JC is κ-categorical if JC contains exactly one model of power K up to isomorphism.
Spec(JC) = {K > I JC|: JC is K-categorical}.

The definition of T(K) is chosen to satisfy completeness in Lemma 2.3. Our
first goal is to achieve a workable characterization of K E Spec( JC) for JC a PCΔ

class with a nonempty spectrum.

Lemma 2.3 7/* Spec(JC) Ψ 0 /ΛeΛ Γ(JC) is complete, superstate and stable
in all λ > |3C|.

Proo/: If Γ(5C) is not complete then there are infinite Mx, M2 E JC with Af! ^
M2 so by Lόwenheim-Skolem there are nonelementarily equivalent models in JC
of every cardinal > | JC|, contradicting Spec(JC) Φ 0 . Γ(JC) is super stable and
stable in each λ > | JC| by VIII, 4.1(2) of [11].

Lemma 2.4 If Spec( JC) * 0 then for all λ > | JC |, /Λm? /.s ύr saturated model
Mλ E JC of power λ.

PAΌO/: Suppose JC = Mod(Tx) \ L. Γ(JC) is λ-stable, so by III, 3.12 of [11]
there is a saturated model M λ \= T( JC) of power λ. Now Tx is consistent and M λ

is saturated so by I, 1.13 of [11] there is an expansion 7Vλ 1= Tx with 7Vλ ί L =
M λ . Hence M λ EJC.

Note that the above lemma asserts the existence of a saturated model in the
restricted language. However, it should be noted that the Lx -models of which
JC are the reducts can be quite wild.

Conclusion 2.5 // Spec( JC) Φ 0 then for all\> | JC |,

λ E Spec(JC) iff every model in JC of power λ is saturated.

Proposition 2.6 Suppose λ E Spec(JC), K > λ. Then every ME: JC of power
K is λ-saturated.

Proof: Suppose JC = Mod(Tx) Γ L. Let M E JC be of power K. Let N\=Txbe
such that M = 7Vrz,. Let,4g |Af|, |Λ| < λ, and let/? E SL(A). ChooseΛΓ <
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N, \\N' || = λ, A c \N' I and let M' =N' ΐ L. As M' E JC is of power λ, M' is
saturated. Pick a E \M'\ realizing/?. By elementarity, a realizes/? in M.

The following corollary says that any spectrum is closed in the order to-
pology.

Corollary 2.7 Let I be a nonempty index set. Assume {λ, : / e /} £ Spec( JC),
α/irfλ = sup{λ, : / G / J . Then λeSpec(JC).

Proof: Let M E JC be of power λ. From above, M is λrsaturated for each
/ E /. As λ = sup(λ, : / G /}, M is saturated. Thus λ E Spec(JC) by Conclu-
sion 2.5.

Thus the categoricity spectrum of any PCΔ class is closed. Our next goal is
to see that if it is nonempty then it forms a rather large class of cardinals. The
following definition is classical.

Definition 2.8 For λ > Ko, the Hanf number of omitting types Λ(λ) is the
least cardinal K satisfying: for all first order theories Γin a language of power
λ and all types /?,

if there is a model Mκ (= T of power K omitting p,
then for all μ > K there is a model N1= T of power μ omitting /?.

The crucial facts about Λ(λ) and the corresponding ordinal δ(λ) are sum-
marized in the following theorem of Morley [9]. Schmerl and Shelah [10] inde-
pendently proved (a) for λ > Ko. The proofs of these facts can be found in [1]
for λ = Ko and in VII, 5.4 and 5.5 of [11] for arbitrary λ.

Theorem 2.9
(a) For all λ > Xo> Λ(λ) = 3$<\) for some ordinal δ(λ).
(b) For all λ > Ko, δ(λ) is a limit ordinal of cofinality > λ.
(c) δ(K0) = ω lβ

In fact, the ordinal δ(λ) can be characterized as the least ordinal δ such that
for all first order theories Γin a language of power λ that interpret a linear or-
dering and all one-types p(x), if for all a. < δ there is a well-ordered model Ma

of T omitting p of order type > a, then there is a non-well-ordered model TV f=
T omitting /?. We will not use this fact.

The following theorem (when λ = Ko) is a combination of Morley's omitting
types theorem [9] and Vaught's two-cardinal theorem for cardinals far apart [13].
The hypotheses simply ensure (via the Erdos-Rado theorem) that there is a two-
cardinal model omitting/? containing an infinite set of order-indiscernibles. A
proof can be found in VII, 5.3 of [11].

Theorem 2.10 Let \\L\\ < λ contain a distinguished unary predicate U, Tan
I^theory and p(x) a one-type.

Assume that for all a < δ(λ) there is a cardinal χa and a model Ma 1= T
omitting p with

\\Ma\\ >Dα(χJtfm/|£/M«|<χα.

Then for all /c > λ there is an MY T of power K omitting /?, but \ UM\ < λ.
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Fix JC a PCΔ class with 13C| = λ, let M G JC, A g \M\ finite, and let p G
Sl(K)(A) be nonalgebraic. Define

fp: ORD -> ORD

by/p(c0 = the least ordinal β such that there is Ma G JC, .4 g |Afα|, | |Mα | | >
Ώa and every Morley sequence /<Ξ \Ma\ built fromp over A has length < 3.0.

It is easy to see thatfp(a) < a for all α and that 7^ is monotone increasing.

Proposition 2.11 Suppose | JC| = λ, Spec(JC) * 0 , andy> O.LetMG JC,
feί v4 g |Λf I be finite, and let p G S£(3C)04) 6e nonalgebraic. Thenfp \ δ(λ) γ
is cofinal in δ(λ) γ.

Proof: By absorbing 4̂ into L(JC), we may assume that A — 0 . Let 17 = δ(λ) γ
and assume that JC is ^-categorical where K > λ. Assume by way of contradic-
tion thatfp Γ η is bounded by β < η. Then for each a < η with Dα > λ, there is
Mα G JC, !Mα I = Ώa and /α c= |Mα |, /α a maximal Morley sequence built from
p over 0 with | / α | < 3^. Now suppose JC = Modί^) ί L. For each such a
choose Na N 7Ί with Λ^ Γ L = Ma. Let

F£ = {^(x,y):EG L, T(JC) h "E is an equivalence relation
with finitely many classes"}.

For each E G FE, let n(E) denote the number of classes, and let C(E) =
{CQ, .. ,c/f(j£ )_1}, be a set of n(E) new constant symbols. Let C = U ί C ί i i ) :
EGFE}.

Let L* = Lγ U {C/} U C, where (7is a new unary predicate symbol. For each
a < δ(λ) with Ώa > λ, expand Λ^ into an L*-structure N* as follows:

UN* = {ee\Na\:eeJa},

and for each £" G Fϋ", choose (arbitrarily) a set [do,..., dn(E)-ι) °f represen-
tatives of £"s equivalence classes in Na and assign

(cf)^=df

for all/ <n(E).
For each α, let ̂ α denote the unique nonforking extension of p to SL(\Ma |).

Now, by the Finite Equivalence Relation theorem, pa is stationary over
{(cF)N« :EGFE,i<n (E)}, so by the Definability of Types theorem, for each
formula φ(x, y) G L there is a formula dpφ(y) G I U C such that for all e G
|Afα|,

N*\=dpφ[e] iϊfφ(x,e) Gpa.

Let ΓΓ = Π{Th(7V*):α<δ(λ),3α>λ} and let

^W = fyy Λ U(yi)^(dpφ(y)^φ(x9y))\:φ(x9y)GL\
v Li<m J J

where y = yOi...,^m_i (i.e., ^ is the nonforking extension of p to the set of re-
alizations of U).

So, for each a satisfying β < a < δ(λ), the maximality of each Ja implies
that TV* is a (3α,< Ίβ) model of T* omitting q.
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Thus, by Theorem 2.10, there is a (κ,< λ) model TV* of T* omitting q. Let
M*=N* Γ L and let / = UN\ Now M* G 3C, | |M* || = κ> and JC is κ-categor-
ical, so M* must be saturated by Conclusion 2.5. We will contradict this by
showing that M* omits

r(x) = {φ(x,b):φ(x,y)eL,b<ΞJ,N* ¥dpφ[b]}.

Let us first show that r is consistent with Th(TV*). Certainly since

Tΐ \-vy(dp(φι(y) Λφ2(y)) ~ (dpφι(y) Λdpφ2{y))),

r is closed under finite conjunctions. So it suffices to show that

(1) N* N vj^Λ U(y)Λdpφ(y) - ixφ(x,y)\

for all φ(x,y) G L. To show this, fix a < η with Ώa > λ, φ(x,y) G L and choose
b from Jα such that TV* h rfp^[δ]. Then, by definition of dp(y)9 φ(x9 b) G
p I Ja which is consistent as p is nonalgebraic. So

77 h vjί Λ U(y)Λdpφ(y) -+ ixφ(x,y)J

and (1) holds.
Finally, to show that M* omits r, assume by way of contradiction that a G

I TV* I realized r. Then fix φ(x,y) G Land 5 from |7V* | such that TV* (= Λ ί/(^).
Now if TV* Mp<β>[5], then Â * \=φ[a, b] by definition of r. But if TV* N ^dpφ[b],
then TV* h dp^φ[b] (as Γf h vy{dp-*φ(y) « ^dpφ(y)))> so Â * |= -i?[β, 5] .
Thus, ύr realizes ^, which is a contradiction.

Proposition 2.12 Let \ JC| = λ, Spec(JC) ^ 0 , rarf Dα > λ. LetMGjK, be
any saturated model and assume that fp(a) — a for every finite A <Ξ \M\ and
every p G S*,(5C) (^4). Then JC is ^-categorical.

Proof: It follows from the saturation of Mthaty^(α) = a for any Z(JC)-type
over any finite set of parameters. Now let M G 3C, | | M | =D α , /?G SL{3Q) (B),
with B <Ξ | M | , | 5 | < 2 α . We must show thatpis realized inM. First, ifp is al-
gebraic then it is trivially realized in any model containing B, so assume that p
is nonalgebraic. Let q G SL{K) (|Af |) be any nonforking extension of p to \M\.
As Γ(JC) is superstable, we can choose A c | M | finite so that q is based on A.
Now as/^μία) = α, there is /<Ξ | M | , | / | = 3 α , / a Morley sequence over A
built from q\A.

But now, as Γ(JC) is superstable, there is Jo c /, | / 0 | < | £ | + κ 0 such that
(J\Jo) is a Morley sequence over 5 built from # | B. Thus every element of 7\/0

realizes/?, as desired.

Theorem 2.13 Suppose Spec(JC) Φ 0 , |3C| = λ and y > 0. ΓΛe« {α <
δ(λ) γ : JC is Dα-categorical) is α closed, unbounded subset ofd(λ) γ.

Proof: First of all, { α < δ ( λ ) γ:3Cis Dα-categorical) being closed in δ(λ) γ
follows immediately from Spec(JC) being closed. Let η = δ(λ) γ. Note that it
certainly suffices to prove the theorem for γ a successor ordinal, so we may as-
sume that cf(τ/) > λ by Theorem 2.9(2).
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It is immediate from the definition of fp that if p G S*(A), p' G S*(Ά)9

b t=A b' Yp' and stp(Ab/0) = stp(A'b'/0) then/p =fp>. With this in mind,
let M G JC be any saturated model and define g: ORD -• ORD by

g(a) = mm{fp(a) :p G S*(A)9 A^\M\9A finite).

As T( JC) is λ-stable g is the minimum of at most λ distinct functions, each of
which is monotone increasing and satisfies fp(a) < a for all a. Thus, g inher-
its each of these properties. Further, as each fp t η is unbounded in η by Prop-
osition 2.11, and as cf(rj) > λ by Theorem 2.9(2), g \ η is also unbounded in η.

But now, as cf(r/) > λ > Ko, if [a < η :g(a) = a] were bounded in η then
by Fodor's lemma there would be an element β G η and an unbounded subset
S c: η such that g Γ S = {β}. However, this together with g monotone increas-
ing implies that g is bounded, which is a contradiction. Thus [a <η:g(a) = a]
is unbounded in η. Therefore, [a < η : JC is !Dα-categorical} is unbounded in η
by Proposition 2.12.

The following theorem of Keisler, Cudnovskii, and Shelah now follows as
an immediate corollary.

Corollary 2.14 Let \ JC | = λ, Spec( JC) Φ 0 and let y > 0. Then JC is 3 δ ( λ ) .7-
categorical.

Proof: By Theorem 2.13 and Corollary 2.7.

3 Negative results Whereas the theorems in the previous section indicate
that a nonempty spectrum is rather large, the theorems are not very specific about
which cardinals must be included in a nonempty spectrum. Our first result will
show that Corollary 2.14 is the best possible. That is, the only cardinals included
in any nonempty spectrum of a PCK o class are 3 ω r 7 for y > 0.

A related question one can ask is for which pairs of cardinals does categoric-
ity in one cardinal imply categoricity in the second cardinal? This suggests the
following definition.

Definition 3.1 K -> λ denotes the following statement: for all P Q 0 classes
JC, KG Spec(JC) implies λ G Spec(JC).

An example of such a transfer is due to Keisler. He showed Vλ > Ko(^i -*
λ). We will prove a slight generalization of this in Proposition 3.14.

Unfortunately, the results of the subsequent subsections indicate that almost
all instances of this relation are either independent of or refutable in ZFC. As
there is so little that is provable in ZFC, we assume throughout this section that
all classes JC have a countable underlying language.

The starting point of our investigations is a nice characterization of the re-
lation K -• λ due to Shelah. A proof appears in VIII, 4.3 of [11].

Theorem 3.2 For κ,λ > Ko the following are equivalent:
1. κ->λ
2. For all first order theories T in a countable language containing a distin-

guished unary predicate U and all one-types p, if there is a (λ,< λ) model
MYT omitting p then there is a (κ,< K) model N\= T omitting p.
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3.1 Computing Π{Spec(JC):Spec(JC) Φ 0 }

Definition 3.3 For a > 0, define res(α) to be the least ordinal y such that
3δ < a(δ + γ > a).

Intuitively, res(α) is the last term of the Cantor normal form of α. It is easy
to see that res(α) = 1 for any successor ordinal. The following lemma is also
easy.

L e m m a 3.4 If r e s ( α ) > β then a = β-y for some ordinal y.

Proof: Choose 7 least such that a < β -7. 7 must be a successor ordinal, so as-
sume 7 = r -I- 1. By hypothesis, β r < a and β r + β > a, so res(a) < β as de-
sired.

The theories and the types used in the following proposition are a slight mod-
ification of those used by Morley in showing that the Hanf number of omitting
types is at least Dωi.

Proposition 3.5 Let a and β be nonzero ordinals satisfying res(α) < min{ ωi,
res(jS)}. ThenΏβ^χ.

Proof: First note that the hypotheses require β to be a limit ordinal. Let η =
res(α). Let

L = {U, W] U { < , V) U ( e ) U {cy:y < r;}

where Uand Ware unary predicates, < and Fare binary relations, 6 is a ternary
relation, and [cy:y < η] are constant symbols. Note that L is countable as
η < ωi.

Let p(x) = I W(x)} U {x =£ cΊ: 7 < η} and let T consist of the following
axioms:

For notation let Vx = [y: V(x,y)}.

1. W(cΊ) for all 7 <η.
2. cΊ < cδ for all 7 < δ < η.
3. < is a linear ordering on W.
4. Vxcvy for all x < y in W.
5. vy(V(co,y)++U(y)).
6. Vy(V(cη9y)).
7. vx(W(x) A (x a limit) - Vx = \J[Vy\y < x}).
8. Vxy(W(x) A (x a successor of y) -•

Vuv[V(x,u)AV(x,υ)A{\fw(V(y,w)-+(e(x,w,u)++e(x,w,v)))}-+u = v]).

Models of T omitting p are subsets of the cumulative hierarchy of sets up
to η + 1 over the set of urelements UM. The elements of WM are the 'ordinals'
and Axiom 8 is 'comprehension'.

It is easy to prove by induction on 7 < η that for any MY Tomitting/?,
that I VCy\ < Ώy(\ UM\). As \M\ = \ VCη\ it follows that for any cardinal K,

there is a (κ,< K) model MN Tomitting/? iff (3λ < κ)Oη(λ) > K).

Thus, taking λ = Dδ for any δ < a satisfying δ + res(α) > α, there is a
(Dα,< 3α) model of Γ omitting p. However, there is no {Ίβf< Ώβ) model of Γ
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omitting /?. To see this, suppose there were a λ < Ώβ with 3reS(α) (λ) > Ώβ. Now
as β is a limit ordinal, there would be a r < β such that λ < Dτ < Ώβ. So

^res(α)(^r) ^ ^res(a)(M ^ 2/?

which implies r + res(α) > |8, contradicting res(α) < res(β). Thus *2β -h Dα by
Theorem 3.2.

The following corollary provides a converse to Corollary 2.14.

Corollary 3.6 For all cardinals K, KG Spec( JC) /or α// PCK o classes JC Λ#ι>-
/>ẑ  nonempty spectra if and only if K — tΏωι.afor some a > 0.

Proof: First of all, it suffices to consider only strong limit cardinals, as we will
see in Subsection 3.5 an example of a PCχ0 class whose spectrum is exactly the
class of strong limit cardinals. So assume that K = Ώβ for some ordinal β > 0.
Now if β = ωι -a for some a > 0 then K is in every nonempty spectrum by Cor-
ollary 2.14. On the other hand, if K were in every nonempty spectrum then cer-
tainly 3 ω i -• K, so by the proposition above res(β) > ω lβ Thus, β = ω^a for
some a > 0 by Lemma 3.4.

3.2 The consistency of Kα+2 ^ Kα+3 In [4], Keisler proved that Ki -• λ for
all uncountable λ. It is natural to ask whether the cardinal Ki can be replaced by
any other cardinal. Via Shelah's characterization given above, it follows imme-
diately that λ -fr K i for any λ > K ι. (Just take T and p to have a model of T of
power Kt omitting/?, but all models of Γof larger powers realize/?, see e.g., [9].)
However, the question of whether Vλ > K2(K2 -* λ) is consistent is more deli-
cate. In this section, we show that consistency is the best we can hope for.

Specifically, we show that if there is a Mahlo cardinal > Kα, then it is con-
sistent that Kα+2 ^ Kα+3 By w^y of contrast, in the next subsection we will see
that K +̂2 -* N«+3 is consistent with the existence of a huge cardinal above Kα.

In this section we show also that among the cardinals {KΛ: 2 < n < ω), given
any X c ω \ {0,1} it is consistent with the existence of Ko Mahlo cardinals that
there be a PCX o class Kx such that

n G X iff KΛ G Spec(OC )̂

for all 2 < n < ω.
Our results are simply restatements of Mitchell's work on special Aronszajn

trees into our context.

Definition 3.7 A κ-Aronszajn tree is a κ-tree having no branch of length K.
A κ+-Aronszajn tree is special if it is embeddable in the tree

T= (J {f:a^>κ,f is one-one),

with / <τ g iff / Q g as functions.

Aronszajn showed that there is an ω!-special Aronszajn tree. Later Specker
proved that if K is regular and 2<κ = K then there is a κ+-special Aronszajn tree.
The following two theorems are due to Mitchell and can be found in [7].
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Theorem 3.8 Assume K = Kα +1, V N GCH and there is a Mahlo cardinal > K.
Then there is a forcing notion (P preserving cardinals < K with (P Ih κ+ = 2K and

(P Ih There are no special κ+ Aronszajn trees.'

Combining this with Specker's theorem yields the consistency of ZFC plus
"There is no Kα+2 special Aronszajn tree but there are special Kα+3 Aronszajn
trees" from the consistency of ZFC plus the existence of a Mahlo cardinal > Kα.

The following theorem, also due to Mitchell, follows by iterating the forc-
ing used above ω times.

Theorem 3.9 For Y c ω \ {0,1},

Con(ZFC + 3X0 Mahlo cardinals)
-* Con(ZFC + Vn G ω\ {0,1} [3 an K^-special Aronszajn tree iff n e Y]).

To obtain results about PCK o classes, we need some way of describing a
special Aronszajn tree as an element in a PCNo class. Fortunately, this is given
to us by Silver and Rowbottom. They independently found a sentence σ in a lan-
guage with a distinguished predicate U so that for all K,

There is a κ+ special Aronszajn tree iff there is a (κ+, K) model Q N σ.

A suitable definition of σ can be found in [7]. Now, just let L — {U}, Tx = {σ},
and JC = Mod(Γj) I L. Thus for all cardinals K,

κ+ E Spec(3C) iff there is no κ + -special Aronszajn tree.

So by Theorem 3.8,

Con(ZFC + 3 Mahlo > Kα) -• Con(ZFC + Kα+2 * ^α+3).

Also, by taking Y — (ω\ {0,1})\X in Theorem 3.9 we have the following
proposition.

Proposition 3.10 Let X c ω \ {0,1}. There is a PCKo class 3ίx such that

Con(ZFC + 3K0 Mahlo cardinals)
-+ Con(ZFC + Spec( Kx) n κ ω = ( ^ : « G l ! ) .

5.5 The consistency of Kα+2 -> Kα+3

The major result of this subsection is that if there is a huge cardinal above
Kα then it is consistent that K +̂2 -> Kα+3. This theorem can be proved directly
from CC(Kα+3, Kα+2)» but it is of interest that it also follows from the weaker
assumption of KT(Kα+3, Kα + 2). (CC and KT are defined below.) It follows
from Proposition 3.14 that all of the negative transfer results of the preceding
and following subsections can be viewed as counterexamples to generalizations
of Keisler's two-cardinal theorem to larger cardinals.

Each of the next two definitions assumes that the underlying language is
countable and contains a distinguished unary predicate U.

Definition 3.11 For K an infinite cardinal, CC(κ++

9 κ+) denotes the follow-
ing statement:

For every (/c++, κ + ) model there is a (κ+, K) elementary submodel.
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Definition 3.12 For all infinite λ > κ\ KT(λ,κ+) denotes the following
statement:

For every (λ, μ) model Gί with κ+ < μ < λ
there is a (K, K) elementary submodel (B and
a (κ\ K) model C with (B < β and (7® = £/e.

CC(κ+ +, κ+) states that a particular instance of Chang's conjecture holds.
As for the second definition, note that Vλ > Kt (KT(λ, K^) is a restatement of
Keisler's two-cardinal theorem. That CC(/c++, κ+) implies KT(κ++, κ+) is im-
mediate by the Downward Lόwenheim-Skolem theorem. However, the converse
fails as L N KT(K2, Ki) Λ ->CC(K2, KI) as is witnessed by the existence in L of a
Kurepa family of subsets of K2

We need one lemma that is a slight strengthening of Theorem 3.2.

Lemma 3.13 For uncountable cardinals K and λ, the following are equivalent:
(a) κ-»λ
(b) For every theory Tin a language containing a distinguished unary predi-

cate U and for every one-type p with U Gp9

if there is a (λ,< λ) model M (= T omitting p
then there is a (κ,< K) model N\= T omitting p.

The only difference between this result and Theorem 3.2 is the extra assump-
tion of U G p. Its proof simply translates an arbitrary T and p into T* and q in
an expanded language L* with UG q.

Proof: (a) => (b) is immediate via 3.2. For the converse, assume that cardinals
K and λ satisfy (2). Let T be an L-theory, p (x) = {φn (x): n G ω} (with U £ p
else we are done), and let M1= T, M a (λ,< λ) model omitting p. By Theorem
3.2 we must produce a (κ,< K) model omitting/?.

Let L* = I U [cn:n Gω] U [V,R], where Fis a new unary predicate and
R is a new binary relation. Let

T* = TO {V(cn) :nGω}U {Vx(F(x) -> £/(*))} U [VxVyR(x,y) -> V(x)}

U {vy(R(cn9y)++φn(y)):neω]Ulvyix(^R(x9y)}.

Letq(x) = [V(x)} U {χΦcn:nGω}.
As M omits p9 there is a natural expansion of Mto M* t= Γ*, M* omitting

q. As UG q, by (b) there is a (κ,< K) model iV* 1= T* omitting q. Now iV* ί
L N Γand omits p9 as desired.

The following proposition follows immediately.

Proposition 3.14 KT{ λ, K+) implies K + -> λ.

Proof: We use the lemma above. Let (1 be a (λ,< λ) model of Γomitting JP with
U G /?. There are two cases. If | Ua\ < AC then simply by the Downward
Lόwenheim-Skolem theorem there is a (κ+,< K) elementary submodel that
surely omits p. If | Ua \ > K then choose (B and β as in the definition of KT.
Now C is (κ+, κ)9 β 1= Tand C omits /? as desired.

As a corollary, we get the following theorem of Keisler.
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Corollary 3.15 For 3Z a PCKo, if*ι G Spec(JC) then Spec(3C) consists of all
uncountable cardinals.

Proof: Immediate, as Vλ > X^KTίλ, Ki)) is simply Keisler's two-cardinal
theorem.

As far as the consistency of these notions is concerned, we recall Kunen's
method for producing κ++-saturated ideals on κ+ for regular K. (In [5] he gives
the construction for K = Ko, but the generalization is straightforward. The de-
tails of the generalization are discussed in Donder and Koepka [3].) He starts with
a model of ZFC + GCH + 3λ(λ a huge cardinal > K) and then collapses λ down
to κ+ +. (The forcing preserves all cardinals < κ++.) In the process, Kunen ob-
serves that in this model, CC(κ++,κ+) holds. The reader is referred to [5] and
[3] for a thorough description of the forcing. Thus for all a G ORD,

Con(ZFC + 3κ(κ huge and K > KJ) -• Con(ZFC + CC(Kα+3, Kα + 2)).

So, by Proposition 3.14,

Con(ZFC H- 3/c(/c huge and K > Kα)) -> Con(ZFC + Kα+2 -• Kα + 3).

3.4 Other (non-) transfer results

In this section we survey a number of instances of the relation K -• λ and find
that either they are outright refutable in ZFC or they are refutable using some
extra set-theoretic assumptions. Our first goal is to show that most instances of
K -> λ where λ < K are refuted in ZFC. We recall the following definition of
Morley.

Definition 3.16 μ is characterizable if there is a theory Γin a countable lan-
guage and a type/? such that for each η < μ, Γhas a model of power η omitting
p but T has no model of power μ omitting p.

It is shown by examples in [9] that Ko and Xi are characterizable. Further,
if κ+ is characterizable, then so are κ++ and (2")+. Also, if K = sup{/cΛ: n G ω}
and κn is < K and is characterizable for each n G ω, then both K and κ+ are
characterizable as well. It follows that the set of characterizable cardinals is cofi-
nal in Ώωι and under GCH, every infinite cardinal below Dωi is characterizable.

However, it follows immediately from Theorem 3.2 that if λ < μ < K with
μ characterizable, then K -fi* λ. (Simply take the theory T witnessing μ characteriz-
able and affix a "dummy" predicate U.) These easy observations yield the fol-
lowing proposition.

Proposition 3.17
(a) 7/λ < 3 ω i < K then κ^\.
(b) (GCH) 7/λ < K < 3 ω i , then κ^λ.

Our discussion now splits into a number of cases depending on whether K and
λ are limit cardinals, successors of limits, or successors of successors. We will
see an example in Subsection 3.5 of a PCK o class JCLIM whose spectrum is ex-
actly the class of uncountable limit cardinals. So trivially K •/> λ when K is a limit
cardinal and λ is a successor. Also, in Subsection 3.5 there is an example of a
PCKo class whose spectrum is exactly the class of strong limit cardinals. So if K
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and λ are both limit cardinals with K < λ, then it is relatively consistent with ZFC
that K -^ λ, as it is relatively consistent for the GCH to hold for all cardinals be-
low κ+ but 2K+ > λ.

If a < β, then by modifying Mitchell's construction so as to kill all special
Kα+2-Aronszajn trees but requiring that 2K/3 = Xβ+1 we obtain the consistency
of Kα+2 ̂  N/3+2 from the consistency of a Mahlo cardinal above Kα. To consider
the case where K and λ are both successors of limits we begin with the follow-
ing lemma.

Lemma 3.18 Suppose μ+ is characterizable and κ> μ. Then there is a the-
ory Tand a typep such that Thas a (κ,< K) model omittingp iff (3λ)(K0 <
λ<KΛλ'i>iί).

Proof: Let To be an Lo -theory and let/?0 be an Z,0-type such that there exists a
model of To of power μ omitting p0, but every model of To of power μ+ realizes
A).

Let L = Lo U { U, V9f) where Uand Fare new unary predicates and/ is a
binary function symbol. Let T consist of the axioms of To relativized to the
predicate V, together with the axioms

Vx(f(x, ):V-+U)

and

vχvy[vz{V{z)^(f{x,z)=f(y,z))}^x = y].

Let p be p0 relativized to V.
If & f= jPthen associated to every element a G | β | there is a unique function

/(α, ) : F-> U. So if | |β | | = K then certainly | Ua\\ya\ > K. However, if a
omits /?, then surely | Va \ < μ, so | Ua \μ > K. The converse is clear.

The following corollaries are now immediate.

Corollary 3.19
(a) (CH) For 2 < n < ω, Krt ̂  κ ω + 1 .
(b) (GCH) // cf(λ) < min{cf(ιc),aωi} then κ+ A λ+.

Proof: Under CH, for 0 < n < ω, K£ = Kπ by Hausdorff's lemma. It follows
from the lemma above by taking μ = ω that there is an (Kω+1, Kω) model of T
omitting/?, while every (Kn,< Kπ) model of Trealizes/?. So Kπ -^ Kω+1 by The-
orem 3.2.

To prove (b), take μ = (cf(λ))+. As μ < 3 ω i it follows from the GCH that
μ is characterizable. So from the lemma above, for all p > μ, there is a (p,< p)
model of T omitting p if and only if p = η+ and cf (p) < cf (λ).

Thus there is a (λ+,λ) model omitting/?, but no (κ+, K) model omitting/?,
so κ+ y^λ+ again by Theorem 3.2.

As for the case when K is the successor of a limit cardinal and λ is the suc-
cessor of a regular cardinal we offer the following. Litman and Shelah [6] have
announced the consistency of ZFC + GCH plus "The existence of a first order
theory Γthat has two-cardinal models but no (Kω+1, Kω) model", assuming the
consistency of ZFC -I- the existence of a super compact cardinal. This example
can be easily modified to have no (Kω + 1,< Kω+1) models. Then, by Chang's
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two-cardinal theorem, Γhas two-cardinal models in all cardinals λ+ for λ reg-
ular. So, by Theorem 3.2, we have

Con(ZFC + 3fl supercompact cardinal) -> Con(ZFC + Kω+1 -fr λ+)

for any regular λ.
Finally, as an illustration of the dependence of these notions on set-theoretic

assumptions beyond ZFC, we investigate the consistency of the statement V/c <
2*°(/c -• 2K°). Not surprisingly, the truth of this statement depends heavily on
the value of the continuum. If 2K° = Kj it holds vacuously. If 2*° = K2 then it
follows by Corollary 3.15. If 2K° > Kω and is a successor, then the statement is
refuted by 3CLIM (see the proof of Proposition 3.22 for a definition). However,
using a theorem of Solovay, we note that it is consistent with the existence of a
measurable cardinal that 2*° be weakly inaccessible and (VK < 2*°)(κ -> 2K°).
To see this, we need the notion of a Rowbottom cardinal.

A cardinal λ is Rowbottom if every theory Γin a countable language and ev-
ery (λ,< λ) model of Γhas a (λ, Ko)-elementary submodel. The following
lemma is almost immediate.

Lemma 3.20 Ifλ is Rowbottom then VK < λ(κ -• λ).

Proof: Fix κ<λ. Assume Γhas a (λ,< λ) model d omitting p. Then λ Row-
bottom implies Γ has a (λ, Ko) model (B omitting p. So by Downward
Lowenheim-Skolem, there is a (κ9 Ko) model C omitting/?, so K -> λ by 3.2.

But now, Solovay [12] has shown that it is consistent with the existence of
a measurable cardinal that 2K° be weakly inaccessible and Rowbottom.

3.5 Determining Spec(3C)/rom an initial segment

Definition 3.21 κ0 is the least cardinal K such that for all PCK o classes JCi
and 3C2,

if Spec(JCi) Dκ = Spec(JC2) Π K, then S p e c ^ ) = Spec(JC2).

As there are only 2*° such spectra, κ0 exists. However, the following prop-
osition, suggested by Hrushovski, shows that the value of κ0 is nonabsolute in
a very strong sense.

Proposition 3.22 Working in ZFC + GCH, for each β e ORD there is a forc-
ing notion (P that preserves cardinals and Θ Ih κ0 > Ώβ.

Proof: Let 3ίSL be the P Q 0 class suggested by Silver having

Spec(JCSL) = {all uncountable strong limit cardinals}

and let JCLIM be a PC^0 having

Spec(3€LIM) = {all uncountable limit cardinals}.

Specifically, LSL = {U}, L'SL = {U,ej) and

T'SL = If is a one-one function,/: £/-*-•£/}
U {VxVy(xe>'-> Ux)}
U {vxvylvz(zeχ++zey)-+χ = y]}
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andL L I M = [U}9 LLIM = iU9f9g,*} and

ΓLIM = (/is a one-one function,/: ί/-> -ιί/}
U {< is a linear ordering)
U {vxg(x, ):{y:y*x}-+1-1 U).

To compute Spec(JCU M) note that for all cardinals κ9 /c G Spec(3CLIM) iff
(d 1= Γ L I M implies | Ua | = K) iff (for every linear ordering on K and every λ <
K, there is an element having more than λ predecessors) iff K is a limit cardinal.

Now, given β E ORD, let λ = 3J, μ = Kω(λ), and 17 = μ+. Let (P denote the
partial order of functions from subsets of λ x μ of power < λ to 2. Now (P Ih
2 λ = η9 so

(P Ih μ is a limit cardinal but not a strong limit.

That is, β> Ih μ G 3eL I M\3e5 Z,. However, Spec( JC5Z/) Π ^ = Spec(JCL I M) Π 3^,
so (P Ih κ0 > Ώβ, as desired.

4 Open problems In Section 3 we considered a great many instances of the
relation K -+ λ and obtained a number of partial results about their consistency.
The major remaining cases are those where K is a successor and λ is a limit car-
dinal with K < λ. Lemma 3.18 is a source of negative information in the case
where a cardinal of cofinality ω is strictly between K and λ and 0# exists. (By Jen-
sen's Covering Lemma, it is easy to see that at least the existence of 0# is nec-
essary for what follows.) For example, we might have K — p+ with ρω = p while
μω > λ for some μ < λ, so K -^ λ by Lemma 3.18 and Theorem 3.2. Arguments
such as this establish the consistency of, say, K2 ̂  Kω + ω. However, nothing of
this sort can work when λ = Kω(κ). In particular, whether K2 -• Kω is open.

Our second open question is whether K -• Dω(κ). If we ignore the necessity
of omitting a type in Theorem 3.2 then this transfer would follow immediately
from Vaught's theorem on two cardinals far apart. However, as Dω(κ) is less
than the Hanf number of omitting types, we cannot hope to produce a two-car-
dinal model containing an infinite set of order-indiscernibles that omits a given
type as well.

Our final question is to look at all of these transfer questions in L. In par-
ticular, whether K2 -> K3 holds in L is open.
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