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Generic Models of the Theory of Normal Z-rings

MARGARITA OTERO

Abstract A normal Z-ring Mis a discretely ordered ring, integrally closed
in its fraction field and such that for each positive integer n, M/nM- Z/nZ
as rings. Here we study some properties of finite generic normal Z-rings. We
give a uniform universal definition of N in them. And we separate existen-
tially closed normal Z-rings via generics.

/ Introduction and preliminaries Let <£ denote the first order language
of ordered rings based on the symbols 0, 1, + , —, , <. The theory of normal
Z-rings (NZR) consists of the following axioms:

(i) OR: the theory of ordered rings;
(ii) D: VΛ:-I (0 < x < 1) (the discreteness of the order);

(iii) N: for each n E N

vzi,...,Znxy(x,y±o*xn + zχχn~ιy + ••• + zny
n = 0 - > a w ( x = wy))

and the Z-ring axioms:

(iv) Z: for each n E N, n Φ 0 Vxvyz(x = ny + z Λ 0 < z < n).

The theory of normal Z-rings plays a relevant role in the study of the frag-
ment of arithmetic Normal Open Induction (NOI). NOI is the V3-theory in the
language <£ which consists of NZR together with

Vx((0(x,O) Λ My > O(0(x,y) - 0(x,y + 1)) - Vy > O0(x,y))

for every quantifier-free <£-formula 0(x, y) (x denotes an «-tuple (xϊ9... ,xn)).

In [7] Shepherdson gave the following useful characterization of models of
NOI:

Let M be a normal discretely ordered ring. Then M is a model of NOI if and
only if for every element a of the real closure of the fraction field of M there
is an element amMsuch that |a - a\ < 1.

From this several corollaries are deduced. Let us mention some of them. Let
M b e a model of NOI. Then every quantifier-free definable set in M i s a finite
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union of intervals and points; for every x and y Φ 0 in M there are q and rinM
such that x = qy + r and 0 < r < y; and the fraction field of Λf, F(M) is dense
in its real closure RC(M).

Using Shepherdson's characterization Wilkie proved in [8] that every model
of NZR can be extended to a model of NOI. From this and the well-known char-
acterization of substructures of Z-rings we get that if M is a normal discretely
ordered ring for which there is defined a ring homomorphism φ:M^Z (where
Z is the product ofp-adic integers ΐlp Zp)9 then Mean be embedded in a model
of NOI.

One of the main problems in NOI is to know which Diophantine equations
have solutions in a model of NOI. Wilkie's result tells us it suffices to study the
problem for NZR. Another property of NOI (and also of NZR) which makes the
study of this problem easier is that normal Z-rings have the joint embedding
property (JEP).

The aim of this paper is on one hand to study some properties of generic
models (see definition below) of NZR. The class of generics is a subclass of the
existentially closed models of NZR. Asking whether a Diophantine equation is
consistent with an <£-theory T, that is, if it has a solution in a model of Γor not,
it suffices to consider existentially closed models of T because if there is a model
solving a given equation, then (and only then) there is an existentially closed
model also solving it. JEP in NOI gives us that in this case the given equation
has a solution in every existentially closed model.

On the other hand we shall see that there is not a unique theory of existen-
tially closed models via the generics.

Notation If M is a domain, F(M) denotes its fraction field, and if M is an
ordered domain, RC(M) denotes the real closure of F(M).

A boldface letter such as x denotes an /z-tuple (x{,... ,xn) where n should
be clear from the context or arbitrary. And in this case, if Mis any set x e M
denotes x GMn.

2 Existentially closed models of NZR

Definitions Let Γbe a theory, Στ denotes the class of substructures of mod-
els of T. An element A of Στ is said to be an existentially closed structure of T
if for any B E Στ extending A, any existential formula φ(x) of the language of
T, and any a G A, B \= <p(a) implies A 1= <p(a). Eτ denotes the class of existen-
tially closed structures for T.

Note first that Σ N Z R has the following explicit universal axiomatization:
Let Mv denote the normalization of M, that is, the elements of F(M) which

are roots of a monic polynomial with coefficients in M.
Then M G Σ N Z R is equivalent to Mv N NDOR and there is a ring homomor-

phism φ\Mv -+ Z.
Now we see that the last assertion is universally axiomatizable. First, for each

/ > 1 let Φι express that every positive element of ¥(M) which satisfies a monic
polynomial over M of degree / is > 1, i.e.,

Φi = v * i -Xiuv (u, v > OΛ uι + XχUι~xυ + ••• -I- X/i/ = 0-> v < u).
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Then, clearly M1= OR + {̂ /}/:>i if and only if Mv t= NDOR. Making use of the
usual characterization of the above ring homomorphism we get the following:

First, let vmj(u, v) (where u = (uu...9 um) and v = (vu . . . , υm)) express
that each (Wj/t̂ Hl < / < m) satisfies a monic polynomial of degree < /, i.e.,

Γ m -
*V/(u,v) = V Λ (υiΦθΛix[...x}i)

i < / i , . . . , / m < / L/=i

- ( ( S M S Γ •-•<-)]•
Next we want to express that for a fixed n > 2 and each m > 1 if (U\/vι)9

• - 'Λum/υm) e Mv then there is a map from \ux/vu..., um/υm] to Z/nZ pre-
serving + and , and then by a compactness argument we get a ring homomor-
phism φ :MV -> Z. So let T^(uu. ..,um,vι,...,vm) express the existence of
such a map and S£,/(u, v) = ̂ ,/(u, v) -> Γ^(u, v).

Therefore M G Σ N Z R if and only if

M ( = { ^ w : m > l } U O R U { S £ } / : m > 1,/>1, Λ > 2 ) .

Note also that because of Wilkie's result above and the fact that NOI is an
V3-theory, existentially closed normal Z-rings are (existentially closed) models
of NOI.

Let us mention here two results which we shall apply to existentially closed
models of NZR.

In their paper [3] on the behavior of primes in models of NOI, Macintyre
and Marker prove that the concepts of irreducible, prime, and maximal element
do not coincide in models of NOI. Recall that an element q of a domain M is
said to be irreducible (respectively prime or maximal) if a has no proper factor-
ization (M/qMis respectively a domain or a field). On this line they prove the
following.

Theorem 2.1 (Macintyre-Marker) Let Mbea normal Z-ring. Then M can be
extended to a normal Z-ring in which the only irreducible elements are the stan-
dard ones.

They also prove that there are models of NOI which do not satisfy the the-
orem of Lagrange which says that every nonnegative element can be represented
as a sum of four squares. However we have the following (see Otero [5]).

Theorem 2.2 Every normal Z-ring can be embedded in a normal Z-ring which
satisfies Lagrange9s theorem.

This last result is based on the following lemma which we shall also use later onx.

Lemma 2.3 Let M be a discretely ordered ring. Let a> 0 be a nonstandard
element of M. Then the ring M[x,y] with x transcendental over the fraction
field of M and x2 + y2 = a can be discretely ordered with an order extending
that ofM.

Returning to existentially closed models we have the following.
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Corollary 2.4 Let M be an existentially closed model of NZR. Then
(i) the only irreducible elements of M are the standard ones, and

(ii) M is uniquely orderable.

Proof:
(i) Suppose q is an infinite prime in M. Then by Theorem 2.1 there is a model

M' of NZR extending M such that M' 1= 3x, y (1 < x, y < q Λ xy = q). Now <?
is in M and the above sentence is existential, therefore must be true in M.

(ii) By Theorem 2.2 those elements which are a sum of (four) squares are the
nonnegative part of any order.

Remarks 1. An ordered field F has the Hubert property if any rational func-
tion/ with coefficients from F and nonnegative on F is a sum of squares of ra-
tional functions with coefficients on F. By a result of McKenna (see [4]) we know
that an ordered field has the Hubert property if and only if it is uniquely order-
able and dense in its real closure. Therefore (ii) of the corollary gives us that the
fraction field of any existentially closed model of NZR has the Hubert property.

2. The above (i) gives us a uniform definition of N in £ΉZR : f°r> if M E
^NZR a nonegative element of M is standard if it is bounded by an irreducible
element, i.e., for every a in M

a E N <=» 3xVz, y(a > 0 Λ X > 1 Λ ( 1 < z,y < X-+ zy Φ XΛa < X)).

This is a 3V (existential bounded universal) definition; modifying Lemma 2.3 we
can improve this to get a (bounded) universal formula uniformly defining N in
existentially closed models of NZR. (This is clearly the lowest possible com-
plexity.)

Proposition 2.5 Let M E £NZR> then N is definable in M by a bounded
universal formula without parameters.

Proof: It suffices to prove that, given ME ENZR, there is M' V NOI, extend-
ing Mand a bounded universal parameter free formula θ(u) such that for all a
in M, a E N if and only if M' V θ (a) for M E £NZR and θ (u) universal implies
for all a in M, M tθ(a) if and only if M' V θ(a).

To get this it suffices to prove that given M V NOI, a EM with a > n for all
n E N, there is M" V NZR extending M such that

M" t3x,y,z<a(x2 + y2 = 3z2ΛX,y,z*0).

Then by the usual union of chains of argument we get M' as above with

θ(u) = Vxyz< u(u > 0 Λ (x,y,z> 0-+x2 + y2 Φ 3z2)).

For x2 + y2 = 3z2 clearly has no nontrivial solution in N.
So, fix M t= NOI, a EM with a > n for all / iGN. First we extend M to

M[z] with z transcendental over M and the order given by (a/2) - b < z <
(a/2) - n for all n E N, and bEMwith b > m for all m E N.

Then M[z] t= DOR for, if 0 <f(z) < 1 for s o m e / W E M[X], then by
quantifier elimination for RCF, there are AΊ, r2 E RC(M), rΪ9 r2 > 0, rx < n for
some « G N and r2 > n for all n E N such that W E [(a/2) - ru(a/2) - r2]
0 < f(t) < 1. L e t n o w m EN a n d bEM w i t h (a/2) - rx < b < (a/2) - m
(given by Shepherdson characterization) and get a contradiction.
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Now recall that given a discretely ordered ring M and a ring homomorphism
<p:M->Z, the ring

Mφ = \-:aGM9nGNnΦθ and n\φ(a) in Z

is a model of NZR extending M.
Recall also that ifM and φ are as above and furthermore the localization of

M atZ,Z~ιM is normal (integrally closed in its fraction field), then Mφ is also
normal.

To finish the proof we need the following further result. Let Rbea normal
domain. Let a be a nonzero element ofR and m a nonzero integer. Suppose 2 and
m are units in R. Then R[x,(a + mx2)ι/2] is also normal. (See chapter 2 in
Otero [6] for proofs of these two last results.)

We go back to our proof. Since Mis a Z-ring there is φ: M-> Z attached to
it. We extend φ by sending z to 0 in Z. Now consider the normal Z-ring Mo =
M[z]φ and the positive infinite element 3z2 of it. By Lemma 2.3 Mλ =
M0[xy(3z2 - x2)ι/2] can be discretely ordered. By the results above we get first
Z~XMX normal and hence (Mλ)φ a normal Z-ring, where φ is the extension of
the homomorphism from M\ to Z obtained by sending x to 0 in Z.

Finally note that since z < (a/2) hence 3z2 < 3#2/4 < a2 so x2 + y2 < a2,
we can indeed take x, y, z > 0, therefore x, y, z < a; also z Φ 0 by construction,
x transcendental over Έ(M)(z) hence x,y Φ 0.

Note that we can interpret Th(N) in every M E UNZR (as in any class of
models where N is uniformly definable): for any (first order) sentence φ we have

N 1= φ & M 1= φθ

where θ is any formula uniformly defining N in £ΉZR5 and φθ relativizes φ to θ.
Next we are going to apply the fact we have JEP in NZR. We begin with an

obvious corollary of JEP, which is actually equivalent to it.

Corollary 2.6 Let M be an existentially closed normal Z-ring. Then M solves
all the Diophantine equations consistent with NZR.

Proof: Indeed, for every/(x) G Z[x] and every M E UNZR

f(x) = 0 is consistent with NOI <=» M t= 3x/(x) = 0.

Fix such/ and M. The // part is clear. For the only if get M' 1= NOI such that
M' N 3x/(x) = 0, jointly embed M and M' in M" h NOI then M t= 3x/(x) = 0,
forME£ N zR.

The corollary above gives us that all the existentially closed models satisfy
the same existential sentence. This implies (in general for V3-theories), that if
MUM2 E iΪNZR then Mγ Ξ V 3 M2 (see Macintyre [1]). However, as we shall see
later, not all existentially closed models of NZR are elementarily equivalent.

We end this section by considering coding properties of existentially closed
models of NZR which we shall use later on.
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Definition Let P denote the set of prime elements in N. Given XcP and a
characteristic zero domain M, we say M codes X if there i s α G M such that for
allp E P, p E Xif and only if M V 3z(pz = a).

Lemma 2.7 Let M be a normal Z-ring.
(a) For every X c P there is M' 1= NZR extending M and coding X.
(b) For efβry family of subsets of P, ί/zere is an M' 1= NZR extending M and

coding all the elements of the family.

Proof: It is trivial by taking an elementary extension of M. Below we give an
alternative construction we shall use later on.

1. Extend M to M[x] with x > a for all a E M; then clearly M[x] 1=
NDOR. Extend the attached φ :M-> Z in the following way: for each p E P
<£>(*) = 0 if p G Λf and <?(*) = 1 if/? £ Whence M[x]φ N NZR and also M[x]φ
codes X For, if p E X, <p(x) = 0 hence (x/p) E M[x] φ, and if p £ X, <p(x) = 1
hence (x/p) £ M[x]φ since l/£> £ Z^.

2. NZR is a V3-theory, hence the union of a chain of models of NZR is also
a model of NZR. Thus by iterating 1 we get the result.

3 Generic models of NZR Our next aim is to prove, via finite generic mod-
els, that the theory of existentially closed models of NZR is not complete.

We begin by recalling the concept of finite forcing and some basic proper-
ties (see [1] for proofs). £ will denote a countable language and Γa first order
theory in <£. We assume Γto be V3 so we have Eτ C Mod(Γ).

Definitions Let C be a set of new constants for <£. We say that a sentence
is basic if it is either atomic or the negation of an atomic sentence in <£ (C).
A T-condition (or a condition if Γis clear from the context) is a finite set of basic
sentences q such that q U Γis consistent. In what follows we fix Γand <£.

Given a condition q and φ E Sent(£) we say q forces φ and write q Ih φ if
either (i) φ atomic and φ E q, or (ii) φ = -ψ and Vq' D q q' \\t ψ, or (iii) φ =
ψι v φ2

 a n d (qIh Φ\ or qIh ψ2)> or 0v) Ψ = 3*0(.x:) and #Ih ̂ ( 0 for some closed
term of £(C) .

Basic Lemma For any condition q and any φ E Sent(<£(C)) we have either
q¥ φ or q\\f -yφ, and if q Ih φ andq' D q then qf Ih φ.

Definitions Let M be an ^-structure and C a set of new constants such that
each element of Mis named by a closed term (infinitely many of them) of £(C),
as usual we write a for the name of a.

Let M E Στ, φ(x) a formula of <£ and a E M. We say M forces <p(a) and
write Mlh <ρ(a) if there is #(a, b) C Δ(M) (open diagram of M) such that
#(a,b)lh^(a).

Mis said to be finite generic if for every formula of <£, φ(x) and every a E
MM 1= φ(a) if and only if Mlh φ(a). F Γ denotes the class of finite generic struc-
tures for T. We shall see the elements of Fτ are also models of Γ, and hence they
are called finite generic models of T. In general we have the following:

Theorem 3.1 Let T be an £-theory. Then Fτ C Eτ and Fτ Φ 0 . Moreover,
we can construct MGFT satisfying some fixed existential sentence φ consistent
with T.
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The proof is based on the construction of a complete sequence of conditions, that
is, an ascending chain of conditions [qn:n E ω} such that for every φ E
Sent(£(C)), qn Ih φ or qn Ih -\φ for some n < ω.

As usual associated with Ih we have a notion of weak forcing Ih* which is
closed under deduction. Let φ be an <£(C)-sentence and q a condition q Ih* φ if
and only if q\V -ι-ι^.

The forcing-companion of Γis the theory Tf = {φ E Sent(<£) . 0 Ih* φ\.
Then one can easily prove that Ύh(Fτ) = T*.

Next we state an easy result which dominates the whole theory of finite
forcing.

Lemma 3.2 Let C be a set of new constants. Let q(co,Cι) be a condition and
φ(c\) a sentence in £(C). Then

q IH* φ(Cχ) &Tf\- Ww[Λg(v, W) -» φ(w)]

where Λq denotes the conjunction of the formulas in q.

Finally, for a theory T, JEP is equivalent to saying that the union of two Γ-con-
ditions with no new constants in common is a Γ-condition:

Proposition 3.3 Let T be a theory. T has JEP if and only if Tf is complete.

Using the methods of Macintyre [2] we are now ready to prove the following.

Proposition 3.4 Let XdP (= primes in N). If X is not recursive then there
is ME F^ZR which does not code X. Furthermore, if X is definable in N then
it is not coded in any finite generic model.

The proof is based on the following:

Lemma 3.5 Let XcP be nonrecursive. Let C be a new set of constants, t(c)
a closed term of£(C) and q a NZR-condition. Then there is q' D q and IE P
such that: either
(i) leX and q' Ih Vw(/w Φ t(c))
or

(ii) l£Xandq'U-lw(lw = t(c)).

Proof: Let

σι (/, t(c)) = Vxy(0 <x<l->Iy + χΦ t(e))9 σ2(/, t(e)) = Vz(fe Φ t(e))

and

i4 / =(/GP:?Pσ / (/,ί(c))) / = 1,2.

First note that

^ / = {/EP:NZR/hVvw(Λ^(v,w)-σ/(/,r(w)))}

= {/GP:NZRhVvw(Λβr(v,w)-*σ/(/,/(w)))}.

The first equality is by Lemma 3.2, the second one because the relevant sentence
is universal and the theory of finite generics has the same universal consequences
as NZR.
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Hence both A\ and A2 are recursively enumerable, since hypothesis AMs not
recursive so either X Φ Λx or Xc Φ A2. There are four cases:

(l)X(£Au {2)AX£X\ (3)XC(£A2; and (4) A2 φ Xc.

(1): Take / G X, I £ Ax. Hence q 11/* σx(/, t(c)) so there is r D q such that
r Ih -*σι (/, f (c)). On the other hand in any generic we have

M \= Vw( π σ , (/, /(w)) -> Vz(fe gfc ί(w)))

hence the sentence belongs to NZR/, therefore by JEP there is q' D r satisfying
(i) above.

(2): Take leAl9l£X. Hence q Ih* σ{ (/, t(c)). Also

M t= vw(σi (A t(w)) -> 3z(fe = ί(w)))

(as in (1)), so by JEP we have q' D q and satisfying (ii) above.
(3): Take l£X,l£A2. Hence

q¥*Vw(IwΦt(c)),

so there is q' D q satisfying (ii) above.
(4): Take leA2,leX. Then there is a q' D q such that

q'\\-vzUz*t(c))9

and hence qr satisfies (i) above.

Proof of Proposition 3.4: Suppose X is not recursive. We shall construct a com-
plete sequence of conditions generating a generic model which will not have a
code for X.

Let [σm:m < ω] be an enumeration of the sentences of <£(C), and {tm:
m < ω) an enumeration of all closed terms of £(C) . Assume first we have al-
ready constructed [qm:m<ω] a complete sequence of conditions and {lm: 0 <
m < ω] an enumeration of P such that

(a) either qm+ι Ih σm or qm+ι Ih -ισm; and

(b) either

lmeX and qm+i Ih Vz(/mz * fm),

or

/ W £ X and ^ + 1 l h a z ( / z = / m ) .
Then, let M G F N Z R be generated by {qm: m < ω) (hence the universe of M

is generated by the constant terms), suppose M codes X and let tm be a code of
Xin M. If /m G ̂  then M1= 3z(imz = tm) by definition of code, then (a) implies
there is an s such that qsIh 3z(lmz = / m ) . And (b) implies #m+i Ih Vz(/mz = ίm).

Now consider qs. where 5' = max(w -I- 1, J ) and get a contradiction. The
case /m £ X is similar.

To prove the first assertion of the proposition, it remains to construct the
above complete sequence of conditions and {lm: 0 < m < ω}. Take q0 = 0 and
/o = 1. Suppose we have found qm and lm with the required conditions, consider
first qm and σm. Define q D # w as follows: if gw 11/ σm and <7W 11/ -«σw get qD qm
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such that q Ih σm otherwise let q = qm. Now consider q and tm and apply the
lemma to get lm = / and qm+\ = q'.

This finishes the construction of

{qm:m<ω} and { / m : 0 < m < ω } .

Finally, to get the second assertion, note that if φ(u) defines Xin N then
φθ( u) defines XinM (where θ defines N in ENZR). To say M codes X is equiv-
alent to

M\=3xVu(pr(u) -> {φθ(u)++ u\x))

wherepr(u) is Vxy(w> 1 Λ I <x,y< u-+xyΦ u). Hence, for ̂ definable, there
is M E FNZR coding X if and only if all M E FNZR code X, by completeness of
NZRΛ

Corollary 3.6 ΓΛere are 3V3V-sentences of £ wΛ/cΛ separate existentially
closed models of NZR, i.e., which hold true in some of those models and fails
to hold in others.

Proof: Let A" be a Σλ -subset of P and nonrecursive. Let ψι be an existential for-
mula defining X in N. Let θ be the universal formula defining N in E N Z R (see
Proposition 2.5). Then the relativization ψf defines X in each existentially closed
model of NZR. Let

ψ = 3xvu(pr(u) -> (φ!(u) +>U\X)).

Note that φ is 3V3V.
X is arithmetical and nonrecursive, hence by the theorem, Jfis not coded in

any generic. Let Mi E FNZR- On the other hand, by Lemma 2.7 X is coded in
some M2 E £NZR Hence Mι#φ and M2 1= φ.

Therefore Mi Φ3M Λf2.
(My thanks to R. Kaye for drawing my attention to an error in the proof of

this corollary.)

We end this section with an easy extension of Theorem 1 in [2] for V3-
theories in a countable language satisfying JEP.

Definition Let L be a countable language and T a theory in L. Let 3ΛF<£ de-
note the set of existential formulas in £ with at most n free variables. A subset
r(v) of 3nF£ is said to an 3n-type of 7*if τ(v) is consistent with Γand any sub-
set of lnF£ extending r(v) is inconsistent.

Proposition 3.6 Let T be an V3-theory in a countable language £ and τ(v)
an 3n-type. Then, if τ(\) is omitted in some M E Eτ then it is also omitted in
some finite generic M'.

Proof: This is similar to the proof of Proposition 3.5; here the key result is the
following: assume there is an Min £NZR omitting r(v). Then for any «-tuple of
£(C)-terms t(c) = (t\ ( c ) , . . . , tn(c)) (where C is a countable set of new con-
stants) and any Γ-condition q, there is a Γ-condition q' Dq and φ(\) E τ(v) such
that #Ίh-κp(t(c)).

To see this let ,4 = [φ(\) E 1"F£ : q(t(c), d) Ih* <p(t(c))} Hence A = [φ(\) E
3ΛF£:Γ^hVvw(Λ^(t(v),w)^^(t(v)))j.
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The above sentence in £ is V3 so if it is true in all finite generics M', it is also
true in M and vice versa.

Hence τ(v) Φ A for, q is a Γ-condition so M1= Λ#(t(a),(b)) for some a, b
in M ( b y JEP) hence τ(v) = A would imply M realizes r(v). By maximality of
r(v) it must be φ(\) G r(v) with φ(y) $. A and reasoning as in Lemma 3.5 we
get the required q'.
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