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A Diophαntine Definition of Rational Integers

over Some Rings of Algebraic Numbers

ALEXANDRA SHLAPENTOKH

Abstract The author considers the rings of algebraic numbers integral at all
but finitely many primes in the number fields, where it has been previously
shown that Hubert's Tenth Problem is undecidable in the rings of algebraic
integers, and proves that the problem is still undecidable in the bigger rings
by constructing a diophantine definition of rational integers there.

/ Introduction Hubert's Tenth Problem can be phrased as the following
question. Is there an algorithm to determine, given an integer polynomial equa-
tion f(x\9... ,xn) = 0, whether this equation has integer solutions? This ques-
tion was answered negatively by Davis, Robinson, Matijasevich, and Putnam.
(See Davis et al. [2] and Davis [1].) One of the major and still unresolved prob-
lems in the area is the same question applied to rings of algebraic integers of a
general number field as well as number field itself. The problem is also still un-
resolved for Q.

The present paper can be a step in the direction of resolving the problem for
some number fields. Instead of the rings of algebraic integers, the author con-
siders the Diophantine problem over the rings of algebraic numbers where finitely
many primes are allowed to appear in the denominators. Using the Pell equa-
tion technique similar to the one introduced in a proof of the original problem
(see [1]) and extended by Denef in [5], the author shows that in all the fields
where Hubert's Tenth Problem is known to have no solution in the rings of al-
gebraic integers, with the exception of the case of the extensions of degree 4 with
no real subfield, the problem is still unsolvable in the bigger rings described
above.

Besides the ring of rational integers, the Diophantine problem is known to
be undecidable in the rings of algebraic integers of all the totally real fields, fields
of degree 2 over totally real fields, fields with one pair of complex conjugate
embeddings, fields of degree 4 with a subfield of degree 2, and all the subfields
of the above-mentioned fields. These subfields include all the abelian extensions
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of the rationals. (For proofs of these results see Denef [3],[5], Denef and Lip-
schitz [4], Pheidas [8], Shlapentokh [10], Shapiro and Shlapentokh [9].)

In a preceding paper the author has constructed a Diophantine definition of
rational integers over subrings of Q where only finitely many primes are allowed
to appear in the denominators (see Shlapentokh [11]). The present paper extends
the result to the analogous rings of all the other above-described fields.

The notion of a Diophantine relation between two sets is central to the dis-
cussion. It is defined as follows.

Definition 1.1 Given K, M rings, KcM,we will say that M is Diophantine
over K (Dioph(M/K)) if there exists a polynomial equation f(t, Xι,..., xn) = 0
with coefficients in M, which has solutions t, Xγ,..., xn in M if and only if t is
in K. The polynomial f(t,xΪ9... ,xn) is called a Diophantine definition of K
over M.

It is not hard to show that if Mis not algebraically closed a Diophantine def-
inition can be allowed to consist of finitely many polynomials without chang-
ing the relation, and expressions like "A(xx,..., xn) = 0 AND g(yx,...,ym) =
0" and "Λ(X\,..., xn) = 0 OR g(yx,...,ym) = 0" can be substituted by a single
polynomial equation (see [2]). Finally, for any integral domain M containing
Z, Dioph(M/Z) implies that there is no solution to Hubert's Tenth Problem
in M (see [2]).

2 The Pell equation over number fields with one pair of complex conjugate
embeddings

Definition 2.1 Let K be a number field and let S = {px,..., ps} be a set of
its finite primes. Then define a ring OKSC K to be

(2.1.1) OKtS ={x<ΞK\Vq£S ord ĵc > 0}.

In other words OKt s is the ring of all the elements of K integral at all the finite
primes of K outside S.

Notation Let Oκ C Oκs denote the ring of algebraic integers of K. In this
paper we shall often refer to divisibility conditions in Oκ and Oκs- To distin-
guish the two, we will reserve the symbol " | " for the regular divisibility in Oκ.
Divisibility in Oκs will be denoted by " | 5 " . We will use the same notational
scheme with respect to modular equivalencies: "=s" will denote equivalence in
Oκs and " = " will denote equivalence in Oκ.

As has been mentioned in the introduction, the Pell equation plays a prom-
inent role in the proofs presented in this paper. What follows is the examination
of properties of the Pell equation in the rings Oκs.

Definition 2.2 Let dG Oκs> be a nonsquare of Kand define HKtdjSto be
a following subset of M = K(dι/2)

H κ , d , s = {x~ dι/2y, x,yt Oκ,s\x2 -dy2 = l ) .

Lemma 2.3 HKt d,s^sa group under multiplication. Moreover, ifx — dι/2y E
HK, d, s and (Xk - dι/2yk) = (x - dι/2y)k then the following statements are true:

(2.3.1) xm±k = xmxk ± dymyk, ym±k = xkym ± ykxm\
(2.3.2) ifm = kj then y3 \sym\
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(2.3.3) ifm = 2kjthenxj\sym\
(2.3.4) if m = 2jk and m = rxj then xf \sym;
(2.3.5) ifm = (2k + \)j then Xj\sxm;
(2.3.6) x(2k+\)j =s ~(2k + l)xj mod (xf);
(2.3.7) Vη G OKtS 3m G IN SΉCΛ ίλύtf T/|5J>W.

Proof: For the proof of the fact that HκdySis a group, see Lemma 2.1 of [11].
(2.3.1)-(2.3.6) follow from binomial theorem, and for the proof of (2.3.7) see
Lemma 1 of [5].

Lemma 2.4 Let τu . . . , τk be all the real embeddings of K, such that
Ti(d) < 0. Then, assuming x - dι/2y is not a root of unity:
a. given any constant 0 < CΊ < 1 andx- dι/2y G HKtdfS, Vz G IN 3m G IN such

that (xm - dU2ym) = (x - dι/2y)m, m = 0 mod z and 3C2 < 1, depending
on CΊ and x - dι/2y, such that Vrz

Ci< |Ti(*w)| < C 2 ;

b. ifK is totally real, k<n,Vi=l,..., k\ T, (JC)| > £, | τ, (rf)| > | , and for all
the other embeddings ofK into C, τ(d) > 22n then \NK/Q(x)\ > \NK/Q(y)\.

Proof: Let ω, = r z(x — ί/1/2^) and note that |ω, | = 1. Further, consider the
multiplicative group Ω generated by [ωι,... ,ωk}. Renumber ω's so that {ωy},
j — 1, . . . , t is the smallest subset of {ωi,..., ω }̂ such that the multiplicative
group generated by {ωy }y=lj } t is of finite index in Ω. Then v/ = 1,...,/: we
have the following equality:

(2.4.1) ωϊ' = ϊ[ω$v,

where bt > 0, and not all Z?//s are zero. To get the construction under way, let
0 < 0maχ < ^Π be such that Re(e^m a x) = cos 0m a x > Cx. Let cx,..., ck G IN - {0}
be such that v/ = 1,. . . , k, j = 1, . . . , t Σ Ciby Φ 0. Next if for some / Σ c, Zty <
0, then substitute ω" 1 for ω7 and replace by by —b^. Thus, without loss of gen-
erality, we can assume that Σ C/δ^ > 0. Let

(2.4.2) 5 = max|Z?/7|;
ij

(2.4.3) C = msLXCiJ;
ij

(2.4.4, .,.|fe.

Then

0(/fy - 0max 2 J ̂ ^ •

Since Σ 6,ycy > 0, 2 fy/fy > 0, and by definition of B and C,

2 ^ α 2/'
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so that

and consequently,

0<bΓιΣbiJθj<12θmaκ.

Finally, consider the following family of linear functions

(2.4.5) Mxi,...,xt) = bΓι ΣbijXj.

If |*7 -xj\<εthen \f,(xu. ..,xt) -fi(x[,...,x't)\ < Btε. Let

(2.4.6) ε m i n = min(min (θmax - bfι Σ bυ

θj) > m i n ibTl Σ bυ

θj))
i i

(2.4.7) β m i n = i π i i n ( f t Γ 1 Σ M y ) ί

and denote θj = 0,-+ εmin/4BT.
By Kronecker's Theorem (see Hardy and Wright [6]) 3 m € N , m = 0 mod z

such that γ/ = 1, . . . , t ωf = eiφ\ where | φj -θ}\< εm]n/4BT. Then by (2.4.1),
Vι = l, . . . , fc, arg(ωΓ) = θ, , where θ , = f i ( φ u ••• ,φt), and

^ - θj = Ψj ~ Oj + 0/ " fly < emin/4£Γ + 6 m i n /45Γ = €m i n /2^Γ.

Therefore, we have the following sequence of inequalities:

\θi-bΓιΣbiΛ\ <εmin/2;

bΓlΣbijθj - (εmin/2) < θ z < b^Σbijθj + (εmin/2);

^Γ1 Σ bijθj - \ (min bΓι Σ *i/fl/) < θ,- < bΓι Σ ̂ ^

+ i i m n ( f l m a x - 6 Γ 1 Σ M y ) ϊ

flmax > θ/ > 0min.

Let C2 = cos 0min, part 1 is proved.

For the proof of part 2 note the following.

Vi=l,...,k\τi(dy2)\ < J,

and consequently,

V / = l , . . . , * ! | τ f ( j0 | < k/Wl

On the other hand, if r is any other embedding of AT into 1R, then by assumption,
τ(d) > 2 2 Λ , and τ(x2) = τ(dy2) + 1 > τ(dγ2) > 22nτ(γ2). Therefore,

\NK/Q(X)\ * Ci)k22niΛ-k)\Nκ/Q(y)\ > {\)k22n\Nκ/^(y)\ > (\)k22\

Lemma 2.5 Let d9 K, M be as in Definition 2.2, let x9y G K, and let ω =
x - dι/2y GMbe such that NL/K(ω) = 1. Then:
a. V prime β ofM, ord^ω Φ 0 implies β has a distinct conjugate over K;
b. assuming ω E HKdS and all primes of S are either ramified or do not split

in M, ω is integral',
c. assuming d = dod\, where oτάp d is odd positive, V/? G 5 0 < ordp do < 1, and

x - dυ2y G Hκ d s , we αw conclude that x, y2dx G O^, jrf1/2, JC - dU2y G
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Proof: Let Π βf1 be the divisor of ω. Then (1) = NM/K(U βf1) = Π qfιa', where
βi lies above qt - a prime of K, and/} =f(βi/qϊ) is the degree of ft over q(. Un-
less each qt occurs twice in the product, the equality cannot hold. Therefore,
each qι must split and each ft has a distinct conjugate.

If all the primes of S ramify or do not split, by the preceding argument, ω
cannot have a nonzero order at any of the primes of M above the primes of S.
On the other hand, if for some prime β of M oτάβ ω < 0, then 0 > ord^ίω +
ω"1) = ord^ 2x. But x G Oκs and hence β must lie above a prime of S. There-
fore we have a contradiction with the first part of the proof.

By assumption, x2 - dy2 = 1. Let p G S, then ovάp dy2 = ord^ d + 2orάpy
is an odd number, because for all p G 5 ordp d is an odd positive number.
Therefore,

Γo if oτάpdy2>0,
orάp(dy2+\) =\ P

^ odd negative integer, if ord^ dy1 < 0.

But 2 ord^jc = orάp(dy2 + 1), and therefore, ord^x = 0, and ordpdy2 > 0.
Letting d = dodγ, we also deduce 0 < ordp dy2 < oτάp rf0 + ord^ dxy

2. Next,
suppose that oτάpd\y2 < 0, then |ordpί/0 | > \ordpd\y \ > 1. But ordpd0 < 1,
so the previous double inequality implies that ordp d0 = 1, and ordp dxy

2 = — 1.
These two equalities in turn imply that ord^ d\ is odd and ord^ d = ordp dodχ is
even. The last statement is of course in contradiction with our assumption on d.

Notation From here to the end of this section let K be a number field with
one pair of complex conjugate embedding and assume K is of degree n > 2 over
Q. (We will consider the case of a complex extension of degree 2 later.) Let
σx = identity, σ 2 , . . . , σn be all the embeddings of K into C. Assume σu σ2 are
the complex embeddings, and σ z l and σ/2 are the two extensions of σz to M,
/ = 1,...,/!.

Let a G Oκ, and consider a - (a2 - 1)1/2 G M = i:((tf2 - 1)1 / 2). Since
(a - (a2 - l)ι/2)(a + (a2 - 1)1/2) = 1, either \a - (a2 - 1) 1 / 2 | > 1 or |α +
(a2 - 1)1/21 > 1. Let ε(α) = α ± (a2 - 1)1/2, with the sign chosen to ensure that
Iε(a)\ > 1. Also denote by ω a generic element of HκdS

Lemma 2.6 Suppose a G Oκ, and Vι = 3,...,n\σj(a)\ < 1. ΓΛe« V/ =
1,..., n Oij{M) is not real and

(2.6.1) 3 | * | > | σ M ( ε ) | = | σ 2 f l ( ε ) | > \a\,

(2.6.2) Vω G Z/^,/,5 V/ = 3 , . . . , /i, y/ = 1,2| σ u ( ω ) | = 1,

vv/zere d = a2 — 1.

P A Ό O / : We will show 3 | # | > | ε | . The rest will follow from Lemma 12 of [10].

It is enough to show 2\a\ > \(a2 — 1 ) 1 / 2 | , which is equivalent to 4\a\2 >

\a2 - 1 | , and the last inequality clearly holds since \a\ > 1, by the product

formula.

Lemma 2.7 Let c,b G Oκ and assume V/? G S ordp c = 0. Then

c\sb & c\b.

Proof: The fact that Vc, 6 G Oκc \ b => c | s b is obvious.
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To prove the converse assume c \sb and consider b/c. V# ̂  S oτdg b/c > 0.
On the other hand, V/? G S ordp(b/c) = ord^ b - oτdp c = ord^ b > 0 because b
is integral by assumption. Hence b/c is integral.

Lemma 2.8 Let a G Oκ satisfy the following conditions:
a. for all p G S which are not factors of 2 oτdp(a - 1) is an odd positive in-

teger;
b. for all p G S which are factors of 2 oτdp(a — 1) is equal to the ramification

degree of p plus an odd number;
c. for i > 2|σ f (ύr)| < 2~ 1 2 (the product formula will imply that \a\ > 2 6 ( n " 2 ) ) ;
d. (a2 - 1) = dxdθ9 where Vp G S ordpd0 = 0, and \dx\ < 2~n(\a\ - 1),

Iσ/ίdOl^l.

Set d = a2 — 1. Then as a group under multiplication, HκdyS is generated by
ε(a) modulo the roots of unity of M.

Proof: First of all we want to show that for all p G S ordp(a2 - 1) is odd.
It is obviously true for all p which are not factors of 2. Next let pe<<p/2) 12,
peip/2)+ι\2. Then by construction, oτdp(a - 1) = e(p/2) + positive odd
number,

ordp(a + 1) = ordp(a - 1 + 2) = miniordpU - l),ord/72) = e(p/2).

Therefore,

ordp(a2 - 1) = 2e(p/2) + posit, odd number = a positive odd integer.

Hence by Lemma 2.5, HKydS contains only integral units ω of M such that
NM/K(ω) = 1. Since the difference between the ranks of the integral unit groups
of K and Mis 1, by Dirichlet Unit Theorem (see O'Meara [7], p. 77), the rank
of Hκdi s under multiplication is at most one. On the other hand z(a) G HκdS,
so the rank is at least one and consequently is one.

Next it is easy to see that rank one implies that the group is generated by a
single element modulo the group of roots of unity of M. We have to show that
this element is ε(#). Assume

(2.8.1) a - (a2 - 1)1 / 2 = pεg,

where p is a root of unity, ε0 G HκdyS, and therefore is integral. Next let

to = xo-{a2-\γ/2yo.

By Lemma 2.5, c/î o>^o are integral, and, therefore,

do=[(a2-\)/dι]\{xt-\),

Nκ/Q((a2 - \)/dx) \NK/Q(x$ - 1),

\NK/Q((a2 - D/rfOl < \Nκ/Q(xZ - 1)|.

On one hand,

(2.8.2) |ΛΓ*/Q((α2 - l)/d{)\ = {[ |(σ,(α)2 - \)/θi(dγ)\

> ( | α 2 - l | / | r f i | ) 2 Π U - k / ( α ) | 2 )
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On the other hand,

(2.8.3) \Nκ/Q(xξ-l)\ = f[ (^ (σn(εo)2 + σn(*oΓ2) ~ \) ^ l ε o |

Therefore, by combining (2.8.2) and (2.8.3) and applying Lemma 2.6, we obtain

(2.8.4) (Ϊ)n-2(\a2-l\/\dx\)2*\4\,

(2.8.5) (\a2 - l |/ |rf i |) 2 e < 2{n-2)e\ε\4 < 3^n~2)e\a\4,

and assuming e > 2, we further derive

(2.8.6) (\a2- ί\/\dι\) < 2 Λ | α |

(2.8.7) 2 - Λ ( | α | - l ) £ | r f 1 | .

This contradicts the assumption ond\, so e = 1.

Lemma 2.9 Z£ί # Z?e a prime of K such that for any root unity ξ of degree
2n or less over Q, no prime lying above q in K(ξ) divides ξ2 ± 1. Then if
ordq (a — 1) is odd, M contains no roots of unity except {± 1 j .

Proof: K contains no complex roots of unity, since it has real embeddings.
Therefore, if £ is a root of unity which belongs to M, NM/K(ξ) = ±1, that is
*i,2(ί) = ϋ " 1 . Therefore, (ξ ± Γ 1 ) 2 = (ξ~Ht2 ± I))2 e K, and, hence, α2 -
1 = c2((ξ~ι(ξ2 ± I))2). Therefore, o r d ^ " 1 ^ 2 ± I))2 is odd, but by assump-
tion we must have o r d ^ " 1 ^ 2 ± I))2 = 0. Consequently, Mcontains no com-
plex roots of unity.

Notation From now on we will assume that a satisfies the conditions of
Lemma 2.8 and Lemma 2.9, and we will let {a - {a2 - \γ/2)m = χm(a) -
(a2 - 1)1/2 ym(a), where xm{a),ym(a) E OKys- If the value of a is clear from
the context of the discussion we will sometimes substitute xm,ym for xm(a) and
ym(a) respectively.

Lemma 2.10 The following statements are true in Oκ (the ring of algebraic
integers of K) for j , m,k>:0:

(2.10.1) ym(a) = rnvaoάa — 1; xm(a) = 1 modα — 1;

ί xm(a) =xm(b)modc,

ym(a)=ym(b)modc;

(2.10.3) x2m±J = -xjmodxm.

Proof: See Lemma 1 of [5].

Lemma 2.11 Let a satisfy conditions of Lemmata 2.8 and 2.9. Furthermore,
assume that the prime q described in Lemma 2.9 is not in S. Then x2 -
(a2 - \)y2 = 1 and x =s 1 mod a - 1 implies 3m G Z such that x = xm(a),
y=ym(a).

Proof: We have two alternatives: x - (a2 - \)ι/2y = (a - (a2 - l ) 1 / 2 ) m or
x - (a2 - \)ι/2y = - (a - (a2 - l ) 1 / 2 ) w . The second alternative is excluded by
the equivalence.

Lemma2.12 SupposekjGIN,m6N, m>0,andvi = 2,.. . ,n\σi(xm{a))\ >
\. Then Xk{a) = ±Xj(a) modxm(a) implies k = ±jmodm.



306 ALEXANDRA SHLAPENTOKH

Proof: See Lemma 15 of [10].

Lemma 2.13 Suppose |σ, (jcy (ύr))| > \ then
(i) ifXj(a) \ym{a) then m = 2kj, k G IN;

(ii) ifxj(a) \ym(a) thenjXj{a)\min Oκ.

Proof: (i) Let m = zj + r9 where 0 < r <y. Then, by Lemma 2.3, ̂ w = xzjyr +
^ jcr. By the same lemma, z = 0 mod 2 implies Xj | JC^ , and z = 1 mod 2 implies
Xj\yZj- Therefore, either Xj\xr or Xj\yr> We will show that this is impossible for
j > r > 0.

The divisibility conditions above imply that either NK/Q(XJ) \NK/Q(xr) or
Nκ/Q(Xj)\Nκ/Q(yr)9 and unless Nκ/Q(xr) = 0 or Λfe/Q(jv) = 0, |Λ^/Q(X,) | <
|Λ^ / Q (x r ) | or \Nκ/Q(Xj)\ < |Λ^/Q(.y r)|. The last two inequalities imply

(2.13.1) Π k <*/)l ^ Π k / W I

OR

(2.13.2) Π k ( * / ) | ^Πk/(Λ) |
i = l / = 1

On the other hand, for / > 2, | σ, (J9)| ^ L by assumption, and | σ/(εr)| = 1,
by Lemma 2.6. Hence from (2.13.1) and (2.13.2) we derive

(2.13.3) ( i ) π ~ 2 | * / l *\xϊ\,

OR

(2.13.4) (\)"-2\Xj\ *2n-2\yϊ\,

(2.13.5) \εJ + ε- 'l < 2 2 ( r t " 2 ) | ( ε r ± ε~Γ)|

(2.13.6) | ε K " < 2 2 ( Λ " 1 ) | ε | r ;

(2.13.7) \a\ < |ε | < 2 2 ( Λ " 1 ) .

This is impossible, by our assumptions on a. Therefore Nκ/^(xr) = 0 or
NK/Q(yr)=0. Hence r = 0.

(ii) xy

2 | ^ m implies 3^ElN such that m = 2qj. By the Binomial theorem,

(2.13.8) ym= Σ (2?)xfyf-k(a2-l)«-«k-i)/2);

(2.13.9) ym = 2qyj"-χXj{a2 - 1)« mod(x/);

since (x7, jy(α2 — 1)) = 1, x, |2g, and consequently JJC, | m.

Lemma 2.14
(a) If for alli = 3,...,k σ,(xk(a)) > \ then

(i) Vi = 3, . . . ,A: |σ / (Λ(σ)) |< l ,
(ii) |Λfe/Q(x*(β))| > |Λ^/ Q (Λ(α)) | ;

(b) * < | x * ( a ) | .

Proof: (a) is similar to the proof of Lemma 2.4. For (b) see the proof of Lemma
21 of [10].
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3 A bound equation In this section K is any number field of degree n over
Q, and σx,..., σn are all the embeddings of K into C.

Lemma 3.1 Let x9z Φ 0 be algebraic integers, let N Φ 0, N E Z, let
5 Ί , . . . ,sn be rational integers such that for i Φ y, 5/ Φ Sj. Assume also that the
following divisibility conditions are true in Oκ.

(3.1.1) (* + S/N)|Λfe,i = l,...,Λ.

Then Vι = 1,... ,n

wΛere C ( S Ί , . . . , s n ) is a natural number depending only on Sγy... ,sn.

Proof: From 3.1.1 we obtain

(3.1.2) Nκ/Q(x + SiN)\Nκ/Q(Nz).

Let/(Γ) = Tn + an-XT
n-χ + . . . be the characteristic polynomial of xover Q.

Then Nκ/Q(x + 57JV) =f(-SiN). Therefore, from (3.1.2) we can obtain the
following linear system:

' 1 -s,N (SίN)2 . . . (-^TV)*-1! Γ a0 "

1 -s27V (s2N)2 . . . (-^Λ^)^ 1 aλ

w 1 -^7V (5ΛΛ^)2 (-^ΛO"- 1 ] U _ L

^ Ci Nκ/Q{Nz) - (-sxN)»

c2 Nκ/Q(Nz) - (s2N)n

Cn-ι NK/Q(NZ) - (s*N)\

where \c\ \,... ,\cn\ < 1. Our plan is to solve for the polynomial coefficients
using Cramer's rule. Therefore we will start by estimating the determinant of the
system which is a nonzero Van-Der-Monde determinant and is actually equal to

1 -5,7V (Si/V)2 ••• (sιN)"-r

1 -s2N (s2N)2 ••• ( - 5 2 / V ) " - 1

det

^ 1 -snN (snN)2 ••• ( - ^ Λ O " - ^

' l - ί i (Sι)
2 ••• ( - J i ) " - p

= i V - — d e t ' ~S2 {S2)2 - ( " 5 2 ) " "

l -sn (snγ ••• {-sny-\

= / V " ( " - 1 ) / 2 d e t ( s 1 , . . . , « „ ) ,
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where det(Sγ,..., sn) is the determinant of the above matrix and depends only
on (5/). Next we will evaluate the determinants corresponding to the unknowns.

\arN^n'^/2det(su...9sn)\

i rth column

f 1 - Λ & ! (Nsri2 ••• cxNκ/Q(Nz) - (-NSi)" ••• ( - A ^ ) " " 1 ]

1 - Λ & 2 ( N s 2 ) 2 ••• c2Nκ/Q(Nz) - (-Ns2)
n ••• ( - A ^ ) " " 1

= d e t

[ l -Nsn ( N s n ) 2 ••• cnNκ/Q(Nz) - (-Nsn)
n ••• {-Nsn)

n-1)

I rth column

Γ l - J V s ! ( N S ι ) 2 ••• C ι N κ / Q ( N z ) ••• { - N s ι ) " - 1 ' )

< 1 - 7 V 5 2 ( 7 V s 2 ) 2 ••• C 2 N K / Q ( N Z ) ••• ( - N S 2 ) " - 1

[ ί - N s n ( N s n ) 2 ••• c n N κ / Q ( N z ) ••• ( - N s H ) " - 1 )

i r t h c o l u m n

Γ l -7V5, (Nsi)2 ••• i-Nsx)" ••• ( - Λ & i ) " " 1 ]

1 - N s 2 ( N s 2 ) 2 ••• ( - N s 2 ) " ••• ( - N s 2 ) " ~ ι

+ det

[ l - N s n ( N s n ) 2 ••• ( - N s n ) n ••• ( - N S n ) " - 1 }

I rth column

Γ 1 - S , ( 5 , ) 2 ••• C, ••• ( - * ! ) " - 1 !

, N ^ 2 - ' N κ M N z ) ά « ' ~S2 < * > 2 - * - ( " ^ '

[ l - s n (snf ••• cΛ ••• ( - ^ r - j

4 r t h column

Γ 1 - 5 , ( 5 i ) 2 ••• ( - 5 0 " ••• ( - s , ) " - 1 !

[ 1 -sH { s n ) 2 ••• ( s n ) n ••• ( s n ) " - 1 )

< \N"^+1>/2-rNκ/^(z)\ Σ \Cir\ + \N"("+»/2-r\ Σ \Si\»\Cir\
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where Cir are cofactors of the matrix

' 1 Sλ (S,)2 . . . ( - 5 ! ) Λ - Γ

1 -s2 (s2)
2 . . . (s2)"-1

det

1 -sn (sn)
2 . . . (sn)

n-\

Let Cι(sl9... ,5Π) = π max(|5/ |
Λ |C/ r |), then

|α r (-Λ^)" ( π - 1 ) / 2 det( ί 1 ) . . . ) s n ) |

£N»«+M-rci{Si,...,sn)\(NK/Q(z) + l)\

<2 Nn^/2-rCλ(su. • .,sn)\Nκ/Q{z)\.

Therefore,

\ar\ < 2Ci(Ji,. ., JB)det(ί, ^ Γ ^ " - ' ^ ^ ^ .

We can assume that for some j\σj(x/N)\ > 1, otherwise we are done. Then for
such ay consider x" + an-\Xn~x +...a0 = 0, and derive

\σJ(x)\sΣ\an.t/σJ(x'-i)\
(=1

< Σ \Ni2Cι(sι,...,sn)det(si sJ-'^/Qωi/lσίJc'-1)!
/-I

< Σ 2C!(5! , . . . ,sn)det(slf... , 5 ^ \Nκ/Q(z)\N.

Let C(5i, . . . ,sπ) = [2πd(5 i , . . . ,5 jdet(5 l 5 . . . 9sn)'1] + 1. (Here "[ ]" de-
notes the integer part of the number.) Then

σj\ίj\<iC(sl9...,sn)\Nκ/Q(z)\.

Lemma 3.2 Let ω G Oκs, let h = h(K) be the class number of K. Then
ωh = ωχ/ω2, where ωz E Oĵ , (ω l 5 ω2) = 1 /Λ O^ and ω2 is divisible by primes of
S only.

Proof: Let Π q^/Jlpf1 be the divisor of ω, with ah bi > 0 and no prime ap-
pearing simultaneously in the numerator and the denominator with a positive ex-
ponent. Then ideals (Yίqf'ψ and (Πpf')Λ a r e principal and relatively prime.
Let ώ\ correspond to the first one and ω2 correspond to the second one. Then
ω(ώ2/ώ!) is an integral unit ξ. Let ωλ = ξώ l5 and we are done.

Lemma 3.3 Let P E IN be the product of all rational primes below primes of
S, let WE Oκs, and let

k = max(ord^P).
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Then (Pw2k + \)h can be written as j/t, where j, t G Oκ, j is prime to every
prime in S, and t is divisible by primes ofS only.

Proof: Let q G S and let ord^ w < 0. Then ord^P + 2k oxάq w < 0. On the
other hand, if ord^ w > 0 then ordg(Pw2k + 1) = 0. Therefore, the result fol-
lows by the previous lemma.

Lemma 3.4 Suppose w G OKi s, is such that V/? G 5 oτάp w < 0. Assume ad-
ditionally that the following condition holds in Oκs

(3.4.1) wh...(wh+ (n-\)P)\sz.

Then for all 1 < / < n\σi(wh)\ < £ r |Λ fc/ Q (z) | , where B{ = C ( 0 , P , . . . ,

(H - 1)P) /s α constant of the type defined in Lemma 3.1.

Proof: First of all, by Lemma 3.2, wΛ = j/t, where y, t G OKfS and V/? G S
ord^y = 0. Next, to examine implications of divisibility condition (3.4.1) we will
rewrite wh = y"/Y as k/D, where Z> = Nκ/Q(t) G Z. We can no longer claim
that /: is not divisible by any prime of S, but if k =jC, then C\D. Next consider
wh + Pi, where / G Z, and P was defined in Lemma 3.3.

(3.4.2) w" + Pi = k + P i D = J C + P ί D = CU+WC)Pi)^

We want to show that wh + Pi\sz implies k + PiD\Dz. Let ^ = Dz/(k +
P/£>). We need to prove that yeθκ. Since w + P/|5z, V/? ̂  S ordp( w

Λ + Pi) <
ord^z and ord^ίA: + PiD) = oτdpD(wh + Pi) < oτdp(Dz). Consequently, it
is enough to show that V/? G S ordpy > 0. So let p G S, then /?|P, and
ord/7(y + (D/C)Pi) = 0. Therefore, o r d ^ = ordp(Dz) - ordp(A: + P/£>) =
oτdpD + oτdpz - ordpO' + (D/C)Pi) - oτdp C > oxdpD - ord^ C > 0.

Hence, we have the following divisibility conditions in Oκ:

(3.4.3) k + P/£>IDz, i = 0 , . . . , n - 1.

Apply Lemma 3.1, with s( = Pi to conclude that \σj(wh)\ < C ( 0 , P , . . . ,

(Λ-l)P) |Λfc / Q (z) | .

Lemma 3.5 Ze/ P Z?e defined as in the previous lemmas, and suppose zGθκ

and w G OKt s is such that V prime p \ P ordp w < 0. Assume additionally that the
following conditions hold in Oκs

(3.5.1) (wh + P)((P + l)wΛ + ? ) . . . (((>z - 1)P + l)wΛ + P) | s z .

Thenvi= 1,... ,/i|σ/(wΛ)| > ^ " ^ / Q U " 1 ) , wΛβre

n C ( 1 , . . . , ( ^ - 1 ) P + 1 )
^ 2 = p .

and C ( l , . . . ,(/i — 1) + 1) fe ̂ Λe constant of the type defined in Lemma 3.1.

Proof: As in the previous lemma wh = y'/f, where y, t G O^>iS and V/? G
5 ord^y = 0, t divisible by primes of S only. Let / = NK/Q(J), and let C =
NK/QU)/J> and let Γ = /C, so that wh = //7:

Next we will show that (iP + 1) wh + P\sz implies (7(/P + 1) + TP) \ Jz. In-
deed, (/P+ l)wΛ-f P | 5 z implies Vp^Sord^zH- oxdpj>: ordp((iP+ l)wΛ +
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P) + ord p/= oτάp [(J(iP+ 1) + TP)/T] + oτdpJ=oτdp(J(iP+ 1) + TP) -
ord^ T + oτdp J = oτdp (J(iP + 1) + TP) - ord^ t + ordpj > oτdp(J(iP + 1) +
ΓP), since V p ^ S ord^ / = 0.

Next letp G S and consider oτdp(J(iP + 1) + 7P) = ordp C + ordp(y(/P +
1) + ίP) = ord^ C < oτdpjC < ord^ /z.

Hence, we can apply Lemma 3.1 with Sj = iP + l9 N = J, and x = TP to
conclude

σ/ί— j < C ( l , . . . , ( ι i - l ) P + l ) | Λ t / Q ( z ) | ,

or

|σf (ivΛ)| >(P[C(l9...,(n-l)P+l)\Nκ/Q(z)\Γι).

4 A Diophantίne definition of Z for number fields with one pair of complex
conjugate embedding

Lemma 4.1 3a G Oκ satisfying all the requirements of Lemma 2.8 and
Lemma 2.9.

Proof: Let q be a prime described in Lemma 2.9 such that Nκ/^(q) has no
factors in 5 and not a factor of 2. Next V/? e S, p\2 let &(/?) be an element of
Ksuch that ord p6(p) = 1. Vp e S such that/?12 and Vp£S,p\2,p has a con-
jugate in S, let b(p) be an element of K such that ordp b(p) = e(p/2) (rami-
fication degree of/?). Additionally, let &(#) G A b̂e such that ord^ b(q) = 1. By
the "very strong" approximation theorem (see [7], p. 77), 3a EK such that

(4.1.1) \<*-l-b(p)\p<\b(p)\p,

for the above described primes p of K, and

(4.1.2) \σi(a)\ =\a\i<2-n,i = 3,...,n,

(4.1.3) | α | , < 1 for all t£S,tΦqy

(4.1.4) k-l-6(<7)|«<|&(<7)|tf,

where | | ̂  is the valuation generated by a prime t, and | . . . |, is an extension
of the archimedean valuation of Q to K.

From (4.1.1) and (4.1.4) we can conclude that \a — l\q = \b(q)\ < 1,
\a — \"\p = \b(p)\p < 1, since otherwise,

\a - 1 - b(p)\p = max(|α - l | p , | 6 ( p ) | p )

= ( i , ifk-i | p>|6(/7)U

Uftί/OU i f | α - l | < | 6 ( / 7 ) | p " ' ^ l / ? '

Moreover, | α | p = |έ/ — 1 H- l | p < max(|ύr — l | p , l ) = 1. Next note that, by the
product formula, (4.1.1)-(4.1.4) imply as before that \a\ > 2 6 ( Λ ~ 2 ) .

Finally, V/? G S ovdp(a2 - 1) > 1 only if p\2. In this case oτdp(a2 - 1) =
2^(p/2) + 1, and 4 I 0 - 1 . Therefore, \dλ\ < 4 < 2 " Λ ( | ^ | - 1).
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Lemma 4.2 Assume a has been constructed using Lemma 4.1. Assume ad-
ditionally that (vi > 2) \ < Iσt (xm(a))\ < C 2(i, tf) < 1, and Q, r E IN sαί/s/j> ίΛβ
following conditions:
(a) Vp E S,p not a factor of 2, Q = 0 mod/? and β = 0 mod #.
(b) 7/*S contains factors of 2 then Qr = 3 mod 4;
(c) r > -131n2/(2glnC 2).

Let

(4.2.1) b = (xw(α))2 (^> + β(l - (xm(α))2).

ΓΛeπ b satisfies all the requirements of Lemmata 2.8 and 2.9, ύτ?d

(4.2.2) b=\moάym{a),

(4.2.3) 6 = amodxm(a).

Proof: Let / > 2. Then

(4.2.4) |σ/(6)| < I σ , ^ ) ! 2 ^ + 2"1 2(1 - i ) < C 2

2 ^ + (J) 1 3 .

It is enough to arrange for CiQr < (5)1 3, i.e., r > (-13 In2/2βln C2) to en-
sure that I σi(b)\ < ( | ) 1 2 . Since, 6 is an algebraic integer, the product formula
will ensure for b, as in the previous lemma for a, that

(4.2.5) \σι(b)\ > 26 ( r t~2 )

holds. Next consider

(4.2.6) £ - l = χ 2 ( ζ > ) + α ( 1 _ χ 2 ) _ 1

= (*- l)(β+ 1)^((Σ ί^)^"') -^)

First, we shall show that Vp E S such that /? is not a factor of 2,
ordp[(Σ?iχ Um)Q r" f ' - «)] = ° s ί n c e -̂m = 1 mod {a - 1), for all A E S which
are not factors of 2

(4.2.7) (Σ (Km)®""* -a\=Qr-l mod (α - 1) = - 1 m o d ^ .

Therefore, for such a p

orάp(b2 - 1) = ord^fc - 1) = ordp(a - 1) + 2oτάpym = 1 + 2oτάpym.

On the other hand, let p\2 and assume either p E S or NK/Q(P) has a fac-
tor in 5. As has been noted in the previous lemma, this implies that 4| a — 1, and
therefore, (ΣSΊ ( ^ ) ^ - β ) s Q r - l s 2 mod 4. Hence,

ord^fj (*2)β /-' - a} = o r d p ( ( § (^)Qr" f" - *) - 2) + 2 = ord.,2.
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(4.2.8) ordpb - 1 = ordp(a2 - 1) + 2oτdpym + ordJ § ( x 2 ) ^ " ' - a)

= 2e(p/2) + 1 + 2 oτdpym + e(p/2)

= 3e(p/2) + 1 +2oτdpym.

(4.2.9) ordp(b2 - 1) = 3*(/>/2) + 1 + 2ordpj>m + e(p/2)

= 4e(p/2) + l + 2oτάpym.

Therefore, V/? e S, /? not a factor of 2, ord^ίZ?2 — l)/y^) = 1 and if S contains
factors of 2, then b2 - 1 is divisible by 16 and V/? E S, /?|2, ord p (6 2 - 1)/
( 1 6 ^ ) = 1. Hence, 1^1 < 16j/2 < 2"« (\b\ - 1)|.

Finally by an argument similar to an argument above, ord^(6 — 1) is a pos-
itive odd number.

Lemma 4.3
(a) Ifσ(K) C 1R then the set [x G OKfS\ σ(x) > 0} is Diophantine over OKtS.

(b) The set {xG Oκ> s \ x Φ 0 j is Diophantine over (D^s-

Proof: (a) follows with slight modification from Lemma 10 of [5]. (b) follows

from section 11 of [2].

Lemma 4.4 (Diophantine definition of Oκ over OKiS) Let a be the element
constructed in Lemma 4.1, with d = a2 - 1. Let 0 < \ < C2(\>a) < 1, let Q be
as in Lemma 4.2, let P, h, k be as in Lemmata 3.2 and 3.3, and let r > -13 In 2/
(2Q In C 2). Then the following system of equations will have solutions in Oκs

only if w is integral, and if w is a rational integer these equations can be satis-
fied in Oκs. (All the divisibility conditions are over Oκs-)

(4.4.1) ξ = (1 + Pw2k)h\
(4.4.2) x2 - dy2 = 1, x =s 1 mod (a - 1);
(4.4.3) w2 - dz2 = 1, w s 5 1 mod (a - 1)
(4.4.4) (Vi>2)\σi(w)\ > | ;
(4.4.5) u2 - dv2 = 1, v Φ 0, « =s 1 mod (# - 1);
(4.4.6) ( v / > 2 ) i < |σf (n)| < C2;
(4.4.7) b = uΆQr) + α ( l - w2);
(4.4.8) f2 - (b2 -I)t2 = l,f=sl m o d b - 1
(4.4.9) /= 5 xmodw;
(4.4.10) w2 | st;;
(4.4.11) t =sξmodw;
(4.4.12) Rι = (P3BιB2)

n+ 1,
i?2 = χ " V " 2 + P ) . . . (χ«2 + nP)f

*3 = Γ 2 ( Γ 2 + P)... ( Γ 2 + (n - 1)P),

(4.4.13) ( r 3 + PXίP + υ r 3 + p) . . . («/i - D P + D Γ 3 + P> U^

Proof: First suppose (4.4.1)-(4.4.13) are satisfied. From (4.4.1) we can conclude
by Lemma 3.2 that ξ = U/V, where t/, F e O^, (/has no divisors in S, Fdivis-
ible by primes of S only.

Next we note that by Lemmata 2.11 and 4.1, 3e9 h, mj G N such that
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(4.4.14) x = xe(a),y=ye(a);
(4.4.15) w = xh(a),z = yh(a);
(4.4.16) (V/>2)|σ,(xΛ)|>±;
(4.4.17) u = xm{a), v = ym(a), ym(a) * 0;
(4.4.18) ( V / > 2 ) ± < \σi(xm(a))\ < C2.

Next, by Lemmata 2.11 and 4.2

(4.4.19) f=xj(b)9t = yj(b).

Moreover, we have the following divisibility condition:

(4.4.20) xl(a)\sym(a).

To begin with, this divisibility condition, as indicated, holds in Oκs, but
then we note that V/? E S(xh(a),p) = 1 since/? | a - 1 and therefore, by Lemma
2.7, the division can actually take place in Oκ. Hence, by Lemma 2.13, we can
conclude that

(4.4.21) xh(a)\mm Oκ.

Also, by Lemma 4.2, we have

(4.4.22) b=\moάym{a),

(4.4.23) b s amoάxm{a),

where all these relations take place in Oκ. From (4.4.20) and (4.4.22) we derive

(4.4.24) b= \modxh(a).

Additionally, from (4.4.9) we get

(4.4.25) Xj(b) =sXe(a) modxm(a)9

and again by the same argument as above,

(4.4.26) Xj(b) = xe(a) modxm(a).

From (4.4.11) we get

(4.4.27) yj(b)=st™odxh(a).

Next we derive the following equivalencies:

(4.4.28) yj(b) =jmod (b - 1) in Oκ, by Lemma 2.10.
(4.4.29) Xj(a) = Xj(b) modxm(a), by Lemma 2.10.
(4.4.30) xj(a) = xe(a) modxm(a), by (4.4.26) and (4.4.29).
(4.4.31) e = ±ymodw, by Lemma 2.12.

On the other hand, from the fact that xh(a)\b - 1 in OKi and (4.4.27) and
(4.4.28) we obtain

(4.4.32) ξ =s±jmodxh(a).

Since, xh \ m form (4.4.21), and given (4.4.31), we obtain

(4.4.33) ξ =s±emodxh(a).
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Next (4.4.33) can be rewritten as

(4.4.34) U= ±Vemodxh(a).

Unless U= ±Ve9

(4.4.35) \NK/Q(U± Ve)\ > |Λ^/Q(JCΛ(α))|,

(4.4.36) Π \σi(ξ)±e\\σi(V)\ > \NK/Q(xh(a))\,

(4.4.37) \NK/Q(V)\ Π |σf ({) ± e\ > \NK/Q(xh(a))\.

From (4.4.13) and Lemma 3.5 we obtain

|σ, ( Γ 3 ) | * \B2NK/Q(yh(a))\-1

so that

Λ ^ / Q ( Γ 3 ) ^ ι^2Λ^/Q(jΛ(^))rΛ

and

(4.4.38) |Λ^/ Q (F^ 2 ) | < | Λ ^ / Q ( ^ 2 ) ^ 2 A ^ / Q ( ^ ( α ) ) | .

On the other hand, since U is not divisible by any prime from 5, some of the
consequences of (4.4.12) are

U"2\yh(a),

Nκ/Q(Un2)\Nκ/Q(yh(a)),

and, finally,

\NK/(}(U"2)\<\NK/Q(yh(a))\,

since ^Λ(α) Φ 0, and therefore, from (4.4.38) we obtain

(4.4.39) |Λ^/ Q(K"2)| < \B2NK/Q(yh(a))2\.

Since {{P'B^y +l,P) = 1, [yh(a)/[(P2BιB2)
n + 1]] e Oκ, and there-

fore from (4.4.12) and Lemma 3.4, we obtain

Similarly,

v^l,. . .,n, | M x g (α ) ) r^μ^ / Q ( ( p 3 ^ )

)

n + i ) | .

Therefore,

|Λ^/ Q(K)1Λ^/ Q({ ± β)| < HΛ^/QίΛίαM^Λ^/QίΛία)) 1 7 1 1 !

< | A ^ / Q ( ^ ( α ) ) | < | Λ ^ / Q ( x Λ ( α ) ) | ,

and, hence, ί* = ±e and Pw2A: is integral. Next recall that V/?G S (ord^ w < 0 =>
oτdpPw2k < 0). Hence, w is integral.
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Next assume w, and consequently, ξ is an integer. Then let (x,y) = (Xξ9y^)9

let h0 be such that (4.4.12) and (4.4.13) are satisfied by z =JΛ 0, and note that by
Lemma 2.4, 3hEZ, a multiple of h0, such that (V/>2)^ < |σ/(jtΛ)| < C2(\,a).
Since ho\h implies y^yh (4.4.12) and (4.4.13) are satisfied with z = yh(<*)

Next, let 0 Φ m0 G IN be such that 2hxh \ m0, and using Lemma 2.4 again we
can find m, a multiple of m0 such that for / > 2 | σ,(xm)| > \. Let w = xm(tf),
v = ym(a), and by Lemma 2.3 we will have Xh(a) \ym(a). Define b using 4.4.7,
and let (/, 0 = (x^(b),y^(b)). Then t = ξ mod (6 - 1) implies ί = ξ mod.yw(α),
which in turn implies t = £ modxΛ. So all the remaining equations will be sat-
isfied.

To complete this Diophantine definition of Oκ over Oκs let wu . . . , wn be
an integral basis of Oκ over Q. Then start with an equation X = Σ/=i 0/w, , and
adjoin (4.4.1)-(4.4.12) for every #,.

Corollary 4.5 Z Λαs ύr Diophantine definition over Oκs-

Proof: From [10] or [8] we know that for K with one pair of complex conju-
gate embeddings Z has a Diophantine definition over Oκ. This fact together
with the preceding lemma produces the desired result.

Lemma 4.6 Let K C M C L be number fields, S, W, V finite sets of finite
primes of K, M, and L respectively, such that OMt w and OLt v are integral
closures of OKj s in M and L respectively. Then

Dioph(OL> V/Oκ9s) «* (Dioph(OL> V/OM, w) and Dioph(OM, w/OKiS)).

Proof: The proof of the lemma can be obtained by a slight modification of the
corresponding proof in [9].

Remark 4.7 Lemma 4.6 implies that in a totally real field K, Z has a Di-
ophantine definition over a ring Oκs- This follows from the fact that any to-
tally real field has an extension of degree 2 which will have exactly two complex
conjugate embeddings: select d€K, such that σx (d) < 0, and for / > 2 σi {d) >
0, and K(dι/2) will have the desired properties. (Existence of such a d follows
from the Approximation Theorem.)

5 A Diophantine definition of Z for extensions of degree two of totally real
number fields In this section we will show that the arguments used by Denef
and Lipschitz in [4] to construct a Diophantine definition over the rings of al-
gebraic integers of K can be extended to accommodate the rings Oκs. (In this
section we will also treat the case of a complex extension of degree 2 over Q.)

Lemma 5.1 Let Kbea number field of degree n > 1 over Q, S a finite set of
its finite primes, L a Galois extension of degree m of K, and W the set of all
primes ofL lying above primes ofS. LetξE OL> w be such that V/? G Word^ ξ < 0,
let wEθKiS, and let zEθκbe such that Vp G S oτdp z = 0, and

(5.1.1) w =w ξmodz,

( 5 . 1 . 2 ) (ξm4"4 + P)({P + l ) £ m 4 * 4 + P ) . . . « ( Λ - D P + l ) f w 4 f | 4 + P) I W T ,
(5.1.3) Rx = (P3B1B2)

(mn)3 + 1
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where P is the product of all the rational primes lying below primes of S, and
\NL/O(T)\ ^ \NL/Q(Z)\ . Assume additionally that h = h(L) (see Lemma 3.2),
ξ = ωh,ω£θLt w . Then ξ E Oκ,s.

Proof: The proof of this lemma will be a modification of Lemma 1 proof on
p. 386 of [4]. From (5.1.1), as in the above-mentioned lemma, one can obtain

(5.1.4) r({) =wζmodz,

VT E Gal(L/K). By Lemma 3.2, £ =j/t, where j, t E OMj w , t is divisible by
primes of Wonly, j is not divisible by any prime of W. Since z has no zeros at
any valuation of S, (5.1.4) is actually equivalent to z\(τ(t)j' — tτ(j)) and, assum-
ing τ(ξ) Φ ξ,

(5.1.5) NL/Q(z)\NL/Q(τ(t)j - tτ(j))

implying

mn

(5.1.6) \NL/Q(z)\ < Π \σi(r(t)j - tr(j)\
ι = l

mn

= nk/(i)-^«Mi))lki'(^(O)^(oi
ι = l

mn

= IL\σi(ξ)-σkii)(lί)\\NL/Q(t)\2

9

i=\

since σz ° r = â (/) is another embedding of L into C, and as α, ranges through
all the embeddings of L into C, σ7 ° T = σA:(/) ranges through all such embeddings
also. Moreover, by Lemmata 3.4 and 3.5, from (5.1.2) and (5.1.3) we can de-
rive Vσ — an embedding of L into C

(5.1.7) (B2\NL/Q(T)\)-(mn)~4 < \σ(ξ)\ < Bx JNL/Q^T)} "" , ,.2,

and using the same argument as in Lemma 4.4 obtain

(5.1.8) |ΛΓL/Q(O| ^ | ^ 2 ^ L / Q ( n | 2 ( w / 2 r 3 .

Combining (5.1.7), (5.1.8), and (5.1.6) we obtain

|ΛΓL/Q(z)| < | ^ / Q ( Γ ) | 4 < ^ - 3 i . | i V L / Q ( Γ ) | ^ ) - 2 .

As this inequality cannot hold, we conclude for all r E G&\(L/K) ξ = r(ξ), i.e.
ξGK.

Lemma 5.2 Let K C L be a Galois extension of number fields of degree 2,
S, W finite sets of finite primes of K and L respectively such that OLi w is the
integral closure of Oκs in L, and let d E OL, d Φ 0. Suppose the equalities

(5.2.1) χ2-dy2= 1,

have infinitely many solutions in OL and suppose there is an e E JN0 such that
V/7 E JV, vx, yeOLtW satisfying (5.2.1)
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,< , ~ _ (x + ydU2Y + (x - ydι/2)e

,<.,., ^_ (x + ydι/2)e-(x-ydι/2)e

implies z,TG Oκ, and ordp z = 0. Moreover, assume that for such a z,T the
relationship

(5.2.4) 7V £ / Q U)>Λ^ / Q (F)

/51 Diophantine over OL> w, and for every solution x - dι/2y G OLt w of (5.2.1)
there exists a natural m such that for z - di/2T= (x - d1/2y)m (5.2.4) is satis-
fied. Then OLf w is Diophantine over Oκs-

Proof: Let £ = (2Pω2k + 1)Λ, where P is the product of all the rational primes
lying below S and W9 h = h(L), k = maxpGS(ordp2P), and consider equations
(5.1.1M5.1.3), (5.2.1M5.2.4) together with

(5.2.5) u2 - dv2 = 1,

(u + vdU2)e + (w - yrf1/2)e

(5.2.6) ZW = .

Assume all the above listed equations are satisfied over OLf w. Then, by our
assumptions, z, T, w G K, and we can apply Lemma 5.1 to conclude that ξ G

Oκ,s.
On the other hand, if ω is a rational integer, and £ is an odd rational inte-

ger, we can show that the above equations can be satisfied in OLt w. Indeed, let
(*o> ̂ o) £ OL be such that x0 - dι/2yQ is not a root of unity. Such a pair (xOy y0)
exists by assumption that the set of solutions to (5.2.1) is infinite in OL. Next,
let (x - dU2y) = (x0 - dι/2y0)

r

9 r G IN, be such that i ? ^ as well as the left
hand side of (5.1.2) divides y. This can be accomplished by Lemma 2.3. Next,
let (z - Tdι/2) = (x- dι/2y)em, where m is selected so that (5.2.4) is satisfied.
By Lemma 2.3, y\wT, and consequently (5.1.2) and (5.1.3) will be satisfied. Fi-
nally, let

(u - vd1/2) = (x-yd1/2Γ*m = (z - dι/2TΓ*/e.

Then

, « Ί Ά (u + vdi/2)e + (u - vdι/2)e . A

(5.2.7) = w = ξ modz,

and we are done.
Finally, denote (5.1.l)-(5.1.3), (5.2.1)-(5.2.6) by F(ξ,u9υ9x,y,z, Γ,w). Next

let ξx = (2Pω2k + IP + 1)Λ, and note that Vp G S oτdp(2Pω2k + 2P + 1) =
min(oτdp2Pω2k + 1, oτdp2P) < 0. Therefore, ξx still satisfies conditions of
Lemma 5.1. Next consider F(ξ9u, v,x,y, z, w) together with F(ξι, uλ, vx,xx,yx,
zu wi). We now get (2Pω2k + P -h 1)Λ, (2Pω2A: + 1)Λ G O^)S. Since K C L is an
extension of degree 2, if (2Pω2k + 1) G ZAϋΓ, then (2Pω2/:'+ 1) = adι/2

9 where
α G ϋf. But in this case (2Pω2k + P + 1)Λ cannot be in K, and we have a contra-
diction. Therefore, if F(£,u, v9x,y,z, w) and F(ξuuuvuXι,yι,Z\,Wι) hold
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at the same time, ω2k E K. Next write down the corresponding equations for
ω + 1. Then together with equations for ω they will assure that ω E K. On the
other hand, if ω is a rational integer all the equations can be satisfied. Thus, if
we use an integral basis of K over Q we can complete the Diophantine definition
of OK)S over OLyW.

Lemma 5.3 IfK is a totally real field, then 3d E OL such that the conditions
of Lemma 5.2 are satisfied.

Proof: Let S = SrU Su, where Sr consists of all the primes of S which ramify
in L and Su contains all the unramified primes. Let Wu and Wr be the primes of
L above Su and Sr respectively. Let σx,..., σz be all the embeddings of K into C
not extending to real embeddings of L9 and let σz+1,..., σn be the if-embeddings
which extend to real embeddings of L. We can assume z ^ 1. Assume d E Oκ

has the following properties:

1. VpeSuoτdpd= 1;
2. V/? E Srd is not a square mod/?;
3. V / = l , . . . , z σ / ( r f ) > 2 2 Λ ;
4. V/ = z + l,...,Λσ, (rf) < - 3 .

Let Z/ = L(dι/2)9 Kf = ϋΓ(rf1/2) and let /J E JFM lie above/? E SM, then ord^d =
ord^d = 1. On the other hand, let βGWr. Then Oz/0 = Oκ/p, where/? = j82.
Therefore, if d is not a square mod/?, it is not a square mod β. Therefore, in L
and ^ ' the primes of Wu and SM respectively will ramify, and primes of Wr and
Sr respectively will remain prime. That is, primes of Wand S will have only one
prime each above them in L and Kf respectively. By Lemma 2.5, HKdS and
HL,CJ, W

 wiW contain integral units only. (From the description of d, it follows
that it is not a square of K or L.)

Moreover, by the same lemma, since for all the primes /? E Su and β E
Wu oxάβ d = oτάp d = 1, and it also follows that if x — dι/2y E HLjd> w then
ord^ x > 0, and ord^ y > 0. On the other hand, taking into account the fact that
primes from Sr, Wr do not divide d, consider {1, dι/1} as a basis for K' over K
or LJ over L. With the possible exception of the factors of 2, the discriminant
of this basis is not divisible by any primes from Sr or Wr, and so it must be a lo-
cal integral basis for these primes. Therefore x,y can fail to be integral at fac-
tors of 2 only if some factors of 2 ramify in the extension K — L.

To remedy the situation in this case, we consider a finite ring OL>/(2). Let
r be the size of the multiplicative group of the ring. Since x — dι/2y is an inte-
gral unit, its equivalence class is invertible mod 2, and hence, if

z - dι/2T= (x - dι/2y)r, where x - dι/2y E HLtdt w,

then

z-dι/2T= Imod2,

z + dι/2T= Imod2,

2z s 0 mod 2,

V7|2inZ/ ord7z> 0.
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On the other hand, 2dι/2T s 0 mod 2 also and, as discussed above, the
problem with a factor of 2 will occur only if it is ramified in the extension K — L
and by construction of d, it does not divide d. Therefore, Γmust be integral.

From the proof of the case (c) of the main theorem of [4] it follows that
Hκ,dys is of finite index / in HLdi w .

We also want to make sure that z is not divisible by any prime from W. Since
primes of Wu divide d, z will not be divisible by them. To take care of the primes
of Wr we can apply the same reasoning as was used to assure that z and T did
not have negative orders at some factor of 2. Let p be the product of all the
primes in Wr and consider OL>/2ρ. Let k be the size of the multiplicative group
of this ring and note that

(z + Tdι/2) = (x± dι/2y)k = 1 mod 2p.

Then z = 1 mod p. Finally, let e = ikr and note

(5.3.1) (z - dι/2y) = (x- dx/2y)\ x - dι/2y G HLid> w

implies x, T are integral, x, T G K, z is not divisible by any prime in W.
Next we would like to consider the issue of making (5.2.4) Diophantine. As-

sume (5.3.1) holds and let σij9 i = 1,. . . , n, j = 1,2 be all the embeddings of L
into C, with the old convention that σ,y is an extension of K — embedding into
C σ/. Then

σn(z) = σi2(z) = θi(z) G σt(K) C R,

σn(T) = σi2(T) = σf (Γ) G af(K) C R.

By construction, V/ = 1,.. ., z Oij(L) is not real, σ, (έ/) > 0, and V/ = h + 1,..., n
Oij(L) is real, σ/(rf) < 0. In view of this, over OLf w consider (5.3.1) together
with

(5.3.2) V/ = z + l , . . . , π | σ / > y ( z ) | £ | .

First of all, (5.3.2) can be made polynomial by Lemma 4.3. Secondly, by
part 2 of Lemma 2.4, we can conclude that (5.3.1) and (5.3.2) imply that (5.2.4)
holds. Conversely, by part 1 of Lemma 2.4, V(x - dU2y) G HKtdtS *m £ ^o
such that if z - Tdxn = (x - dι/2y)m, (5.3.2) holds. Therefore, assuming the
above-described d exists we are done. The existence of the above described d fol-
lows from "The Very Strong Approximation Theorem" (see [7], p. 77).

Of all the number fields where Hubert's Tenth Problem is known to be un-
decidable in the ring of algebraic integers, we have omitted only one case, that
is, extensions of the form Q - K- L, where # is not real. Unfortunately, in this
case the methodology used in the previous cases does not yield the desired results.
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