Multimorphisms Over Enumerated Sets

ANDRZEJ ORLICKI

Abstract

The concept of a multimorphism over enumerated sets is a natural generalization of the classical concept of a morphism of enumerated sets. Moreover, there are some connections between multimorphisms and binary relations over enumerated sets (Orlicki [3]). These connections are presented in the first part of the paper. In the second part the main results of the paper are given. The third part shows us that multimorphisms are not "exotic"they appear in Recursion Theory.

0 Introduction and preliminaries The fundamental idea of the Theory of Enumerations is the following: computability over arbitrary countable sets is realized as a usual computability over natural numbers by using suitable enumerations of the sets considered. An interesting philosophical interpretation of this idea has been given by Eršov in the introduction to his famous monograph [2]in his opinion, Theory of Enumeration is a kind of modern version of pythagoreanism. Consequently, we get the well-known concept of a morphism of enumerated sets: Let $\underline{S}_{i}=\left\langle S_{i}, \nu_{i}\right\rangle(i=1,2)$ be two (non-empty) enumerated sets and let $\mu: S_{1} \rightarrow S_{2}$ be an arbitrary function. We say that μ is a morphism from \underline{S}_{1} to \underline{S}_{2} iff there is a general recursive function f such that $\mu \nu_{1}=\nu_{2} f$, i.e., there exists an algorithm that "realizes" μ on the level of codes of elements of sets S_{1} and S_{2}. It is clear that f cannot be an arbitrary general recursive function-it must preserve kernels of suitable enumerations. But we do not assume that these kernels are decidable (it is worth noting that in that case Eršov also gave an interesting philosophical motivation). A mathematical practice gives us many important examples of undecidable enumerations (Gödel enumerations of partial recursive functions, for instance). So, if we consider an arbitrary general recursive function f, it may happen that we do not know whether f induces a morphism of suitable enumerated sets. Nevertheless, we have an algorithm on codes of elements of the considered sets. Does there exist "something computable" defined on elements of these sets which corresponds in a natural way to that algorithm? The concept of multimorphism over enumerated sets, introduced and discussed in the paper, is suggested as a possible answer to this question.

We make free use of notation and definitions given in Eršov [1] and [2]. Moreover, we assume that the reader is familiar with [3]. Here we shall give only such notation as will be necessary later. Let $R \subseteq A \times B$ be an arbitrary binary relation. For every $a \in A$ by $R(a)$ we denote the set $\{b ;\langle a, b\rangle \in R\}$. If R is a partial function then by $\operatorname{Arg} R$ and $\operatorname{Val} R$ we denote the set of arguments and the set of values of R, respectively. The set of all natural numbers will be denoted by N. We fix a general recursive bijection $\tau: N^{2} \rightarrow N$. By \mathfrak{C}_{1} we shall denote the set of all partial recursive functions of arity 1 . We fix a Gödel enumeration κ of the set \mathcal{C}_{1}. For every natural n we put $\phi_{n}:=\kappa(n)$ and $W_{n}:=\operatorname{Arg} \phi_{n}$. By NSET we shall denote the category of enumerated sets. The enumerated set $\left\langle N, 1_{N}\right\rangle$ will be denoted by \underline{N}. Let ν_{1}, ν_{2} be two enumerations. By $\nu_{1} \oplus \nu_{2}$ we denote the direct sum of these enumerations. If \underline{A} and \underline{B} are two non-empty disjoint enumerated sets then by $\underline{A} \oplus \underline{B}$ we denote the canonical NSET-coproduct of \underline{A} and \underline{B}.

1 Multimorphisms and their connections with relations over NSET Let $\underline{S}_{i}=\left\langle S_{i}, \nu_{i}\right\rangle(i=1,2)$ be two non-empty enumerated sets.

Definition 1.1

(1) Let f be an arbitrary general recursive function. We define the binary relation $R_{f} \subseteq S_{1} \times S_{2}$ putting

$$
R_{f}(a):=\nu_{2}\left(f\left(\nu_{1}^{-1}(a)\right)\right)
$$

for every $a \in S_{1}$ (evidently it essentially depends on the enumerations ν_{1} and ν_{2});
(2) Let $R \subseteq S_{1} \times S_{2}$ be an arbitrary relation. We say that R is a multimorphism over $\left\langle\underline{S}_{1}, \underline{S}_{2}\right\rangle$ iff there exists a general recursive function f such that $R=R_{f}$. In this case we say that f is a realization of R over $\left\langle\underline{S}_{1}, \underline{S}_{2}\right\rangle$. If $\underline{S}_{1}=\underline{S}_{2}=$ \underline{S} then we say that R is a multimorphism over \underline{S}.
The following observations are immediate:
(a) For every $a \in S_{1}$ we have $0<\left|R_{f}(a)\right| \leq\left|\nu_{1}^{-1}(a)\right|$. (Using this observation we easily obtain many examples of binary relations which are not multimorphisms.)
(b) R_{f} is a morphism of enumerated sets iff f is $\left\langle\nu_{1}, \nu_{2}\right\rangle$-extensional (i.e., $\nu_{1}(x)=\nu_{1}(y)$ implies $\nu_{2}(f(x))=\nu_{2}(f(y))$ for every natural $\left.x, y\right)$.
It should be stressed that the concept of multimorphisms is not a categorical one. Consider the following.

Example 1.2 Let $S:=\langle N, \nu\rangle$, where the enumeration ν is given by $\nu(\tau(x, y)):=$ x for every natural x, y. Let $R:=N \times N$. Evidently R is a multimorphism over $\langle\underline{S}, \underline{N}\rangle$. Moreover, $1_{N}: \underline{N} \rightarrow \underline{S}$ is an isomorphism of enumerated sets. But the composition $R \circ 1_{N}$ is not a multimorphism over \underline{N} (because it is not a function). So, a composition of an NSET-isomorphism and a multimorphism need not be a multimorphism. On the other hand: it is easy to see that if R is a multimorphism over $\left\langle\underline{S}_{1}, \underline{S}_{2}\right\rangle$ and $\mu: \underline{S}_{2} \rightarrow \underline{S}_{3}$ is an NSET-morphism then the composition $\mu \circ R$ is a multimorphism over $\left\langle\underline{S}_{1}, \underline{S}_{3}\right\rangle$.

In [3] the concept of a binary relation over the category NSET has been considered. Our multimorphisms are special binary relations too. So it is quite natural to compare these two concepts.

Proposition 1.3 Let $\underline{S}_{0}=\left\langle S_{0}, \nu_{0}\right\rangle$ be an arbitrary non-empty enumerated set. The following conditions are equivalent:
(1) ν_{0} is a positive enumeration;
(2) For every non-empty enumerated set \underline{S} : if R is a multimorphism over $\left\langle\underline{S}_{0}, \underline{S}\right\rangle$ then R is a relation over $\left\langle\underline{S}_{0}, \underline{S}\right\rangle$.
Proof:
(1) $\Rightarrow(2)$ Let g be a general recursive function such that $W_{g(x)}=\nu_{0}^{-1}\left(\nu_{0}(x)\right)$ for every x (it exists because ν_{0} is a positive enumeration). Take a nonempty enumerated set \underline{S} and let f be an arbitrary general recursive function. Let h be a general recursive function such that $W_{h(x)}=$ $f\left(W_{g(x)}\right)$ for every natural x. It is easy to see that R_{f} is a relation over $\left\langle\underline{S}_{0}, \underline{S}\right\rangle$ via the function h.
(2) \Rightarrow (1) Let $\underline{S}:=\underline{N}$ and $f:=1_{N}$. Then $R_{f}=\nu_{0}^{-1}$, i.e., $R_{f}\left(\nu_{0}(x)\right)=\left\{n ; \nu_{0}(n)=\right.$ $\left.\nu_{0}(x)\right\}$ for every natural x. Since R_{f} is a relation over $\left\langle\underline{S}_{0}, \underline{S}\right\rangle$, there exists a general recursive function h such that $R_{f}\left(\nu_{0}(x)\right)=W_{h(x)}$ for every natural x. So, we have $W_{h(x)}=\left\{n ; \nu_{0}(n)=\nu_{0}(x)\right\}$ for every natural x. Therefore ν_{0} is a positive enumeration.
Remark 1.4 If \underline{S}_{0} is an enumerated set such that ν_{0} is not positive then ν_{0}^{-1} is an example of a multimorphism over $\left\langle\underline{S}_{0}, \underline{N}\right\rangle$ which is not a relation over $\left\langle\underline{S}_{0}, \underline{N}\right\rangle$.
Theorem 1.5 Let $\underline{S}_{0}=\left\langle S_{0}, \nu_{0}\right\rangle$ be an arbitrary non-empty enumerated set such that the following conditions hold:
(a) ν_{0} is a positive enumeration;
(b) $\left|\nu_{0}^{-1}(a)\right|=\aleph_{0}$ for every $a \in S_{0}$.

Let $\underline{S}=\langle S, \nu\rangle$ be an arbitrary non-empty enumerated set and let $R \subseteq S_{0} \times S$ be a binary relation such that $R(a)$ is a non-empty set for every $a \in S_{0}$. The following conditions are equivalent:
(1) R is a multimorphism over $\left\langle\underline{S}_{0}, \underline{S}\right\rangle$;
(2) R is a relation over $\left\langle\underline{S}_{0}, \underline{S}\right\rangle$.

Proof (sketch): The implication (1) \Rightarrow (2) follows from Proposition 1.3. We shall prove the inverse implication. Assume that R is a relation over $\left\langle\underline{S}_{0}, \underline{S}\right\rangle$. Therefore we can choose a general recursive function t such that $\phi_{t(n)}$ is a general recursive function and $R\left(\nu_{0}(n)\right)=\nu\left(\operatorname{Val} \phi_{t(n)}\right)$ for every natural n. Since ν_{0} is positive, we can choose a general recursive function u such that $\phi_{u(n)}$ is a general recursive function and $\operatorname{Val} \phi_{u(n)}=\left\{y ; \nu_{0}(y)=\nu_{0}(n)\right\}$ for every natural n. We shall define some computable sequence $f_{0} \subseteq f_{1} \subseteq \ldots$ of finite functions. For every x by A_{x} we shall denote the set of arguments of the function f_{x}. The sequence is defined step by step using the following procedure:
Step 0: Put $A_{0}:=\varnothing$ and $f_{0}:=\varnothing$.
Step $x+1$: Let n, m be the natural numbers such that $x=\tau(n, m)$. Let $p:=$ $\min \left\{k ; \phi_{u(n)}(k) \notin A_{x}\right\}$ (it exists because the set Val $\phi_{u(n)}$ is infinite while A_{x} is
a finite set). Put $a:=\phi_{u(n)}(p), b:=\phi_{t(n)}(m), A_{x+1}:=A_{x} \cup\{a\}$ and $f_{x+1}:=$ $f_{x} \cup\{\langle a, b\rangle\}$.

Now, let

$$
f:=\cup\left\{f_{x} ; x \in N\right\}
$$

It is a matter of easy technical considerations to show that f is a general recursive function and $R=R_{f}$. So, R is a multimorphism over $\left\langle\underline{S}_{0}, \underline{S}\right\rangle$.

Relations over NSET have a nice "lifting property"-see [3], Proposition 2.6. Our multimorphisms have the same property, too.
Proposition 1.6 Let S be a set such that $0<|S| \leq \aleph_{0}$ and let $R \subseteq S \times S$ be a relation such that $R(a) \neq \varnothing$ for every $a \in S$. Then for every enumeration ν of the set S there exists an enumeration ν^{*} such that $\nu \leq \nu^{*}$ and R is a multimorphism over $\left\langle S, \nu^{*}\right\rangle$.

Proof: The proof is a modification of the proof of Proposition 2.6 from [3]. Fix a family $\left\{\omega_{n}: S \rightarrow S ; n \in N\right\}$ of functions such that $R(a)=\left\{\omega_{n}(a) ; n \in N\right\}$ for every $a \in S$. Let ν be an arbitrary enumeration of the set S. For every natural n let $\nu_{n}: N \rightarrow S$ be the function given by $\nu_{n}(\tau(k, m)):=\omega_{n}^{k}(\nu(m))$ for every natural k, m (of course $\omega_{n}^{0}=1_{N}$). We define ν^{*} putting $\nu^{*}(\tau(n, x)):=\nu_{n}(x)$ for every natural n, x. Evidently $\nu \leq \nu^{*}$. Let f be the general recursive function defined by

$$
f(\tau(n, \tau(k, m)):=\tau(n, \tau(k+1, m))
$$

for every natural n, k, m. Then R is a multimorphism over $\left\langle S, \nu^{*}\right\rangle$ via the function f.

Similarity between relations over NSET and multimorphisms gives rise to the following notions:
Definition 1.7 Let $\underline{S}_{i}=\left\langle S_{i}, \nu_{i}\right\rangle(i=1,2)$ be two non-empty enumerated sets and let $R \subseteq S_{1} \times S_{2}$ be an arbitrary relation. We say that R is a strong multimorphism over $\left\langle\underline{S}_{1}, \underline{S}_{2}\right\rangle$ iff there exists a general recursive function f such that $\nu_{2}^{-1}(R(a))=f\left(\nu_{1}^{-1}(a)\right)$ for every $a \in S_{1}$. In this case we say that f is a strong realization of R over $\left\langle\underline{S}_{1}, \underline{S}_{2}\right\rangle$. If $\underline{S}_{1}=\underline{S}_{2}=\underline{S}$ then we say that R is a strong multimorphism over S (compare [3], Definition 2.8). Moreover, if R is a function then we say that R is a strong morphism from \underline{S}_{1} to \underline{S}_{2}.

Observe that if R is a strong multimorphism over $\left\langle\underline{S}_{1}, \underline{S}_{2}\right\rangle$ then $\left|\nu_{2}^{-1}(R(a))\right| \leq$ $\left|\nu_{1}^{-1}(a)\right|$ for every $a \in S_{1}$ (using this observation we easily obtain many examples of multimorphisms which are not strong).

It is straightforward to see that we have the following proposition.

Proposition 1.8

(1) The class of all strong multimorphisms is closed under the composition of relations. Moreover, if f is a strong realization of R and g is a strong realization of T then $g f$ is a strong realization of $T \circ R$;
(2) Strong morphisms constitute a subcategory of the category NSET.

Contrary to the concept of strong relations, the definition of strong multimorphisms is not "symmetrical". It follows from the following simple example.

Example 1.9 Let $\underline{S}_{1}:=\left\langle\{a, b\}, \nu_{1}\right\rangle$, where $a \neq b, \nu_{1}(0):=a$ and $\nu_{1}(x+1):=b$ for every natural x. Moreover, let $\underline{S}_{2}:=\left\langle\{*\}, \nu_{2}\right\rangle$ be the one-point enumerated set and let $\mu: \underline{S}_{1} \rightarrow \underline{S}_{2}$ be the unique NSET-morphism from \underline{S}_{1} to \underline{S}_{2}. Evidently the relation μ^{-1} is a strong multimorphism over $\left\langle\underline{S}_{2}, \underline{S}_{1}\right\rangle$. But $\left(\mu^{-1}\right)^{-1}=\mu$ is not a strong morphism from \underline{S}_{1} to \underline{S}_{2} (because $\left|\nu_{1}^{-1}(a)\right|<\left|\nu_{2}^{-1}(\mu(a))\right|$).

Observe that Proposition 1.3 and Theorem 1.5 remain true if the words "multimorphism" and "relation" are replaced by "strong multimorphism" and "strong relation", respectively. We leave to the reader the easy modification of the appropriate proofs.

As could be expected, for strong multimorphisms the analog of Proposition 1.6 is not true. To prove it, we start from the following proposition.

Proposition 1.10 If R is a strong multimorphism over $\left\langle\underline{S}_{1}, \underline{S}_{2}\right\rangle$ then R^{-1} is a relation over $\left\langle\underline{S}_{2}, \underline{S}_{1}\right\rangle$.
Proof: Let f be a strong realization of R over $\left\langle\underline{S}_{1}, \underline{S}_{2}\right\rangle$. Choose a general recursive function g such that $W_{g(x)}=f^{-1}(x)$ for every natural x. It can readily be seen that R^{-1} is a relation over $\left\langle\underline{S}_{2}, \underline{S}_{1}\right\rangle$ via the function g.
Remark 1.11 Let $\underline{S}_{1}, \underline{S}_{2}$ and μ be the same as in Example 1.9. Then μ^{-1} is a strong relation over $\left\langle\underline{S}_{2}, \underline{S}_{1}\right\rangle$ while μ is not a strong morphism from \underline{S}_{1} to \underline{S}_{2}.

Now, we can prove the following theorem.
Theorem 1.12 There exist a set S with $|S|=\aleph_{0}$ and a function $\mu: S \rightarrow S$ such that for every enumeration ν of the set S the function μ is not a strong morphism from $\langle S, \nu\rangle$ to $\langle S, \nu\rangle$.

Proof: Let $S:=N \cup\{a\} \cup\left\{b_{n} ; n \in N\right\}$, where a, b_{0}, b_{1}, \ldots are different elements and they are not natural numbers. Let $Z=\left\{z_{0}<z_{1}<\ldots\right\}$ be a fixed not arithmetical set of natural numbers. We define the relation $R \subseteq S \times S$ by $R:=$ $\{\langle a, 0\rangle,\langle a, a\rangle\} \cup\{\langle n, n+1\rangle ; n \in N\} \cup\left\{\left\langle z_{n}, b_{n}\right\rangle ; n \in N\right\}$. Put $\mu:=R^{-1}$. Evidently μ is a function. Let ν be an arbitrary enumeration of the set S. Repeating the proof of Theorem 2.5 in [3], we obtain that R is not a relation over $\langle S, \nu\rangle$. So, from Proposition 1.10 it follows that μ is not a strong endomorphism of the enumerated set $\langle S, \nu\rangle$.

We end this section with some fundamental information about strong morphisms.

Proposition 1.13 Let $\mu: \underline{S}_{1} \rightarrow \underline{S}_{2}$ be a strong morphism between two nonempty enumerated sets.
(1) If μ is an injection then $\left\langle\underline{S}_{1}, \mu\right\rangle$ is an e-subobject of \underline{S}_{2};
(2) If μ is a surjection then μ is a factorization.

Proof: Let $\underline{S}_{i}=\left\langle S_{i}, \nu_{i}\right\rangle, i=1,2$. Let f be a strong realization of μ.
(1) Assume that μ is an injection. Let $i:$ Val $\mu \rightarrow S_{2}$ be the identity embedding and let $\nu:=\mu \nu_{1}$. It is known that $\left\langle\underline{S}_{1}, \mu\right\rangle$ and $\langle\langle\mathrm{Val} \mu, \nu\rangle, i\rangle$ are equivalent (as two subobjects of \underline{S}_{2}). But from the property of the function f we obtain that $\nu_{2}^{-1}(\operatorname{Val} \mu)=\operatorname{Val} f$ and $\nu=\nu_{2} f$. Therefore $\langle\langle\mathrm{Val} \mu, \nu\rangle, i\rangle$ is an e-subobject of \underline{S}_{2}. So, $\left\langle\underline{S}_{1}, \mu\right\rangle$ is an e-subobject of \underline{S}_{2}, too.
(2) Assume that μ is a surjection. Denote by $\operatorname{Ker} \mu$ the kernel of the function μ, i.e., Ker $\mu:=\{\langle a, b\rangle ; \mu(a)=\mu(b)\}$. Let $\eta: \underline{S}_{1} \rightarrow \underline{S}_{1} / \operatorname{Ker} \mu$ be the canonical factorization induced by the equivalence relation Ker μ. Moreover, let $\alpha: \underline{S}_{1} / \operatorname{Ker} \mu \rightarrow \underline{S}_{2}$ be the unique NSET-morphism such that $\mu=\alpha \eta$. From the property of the function f we obtain that $f(N)=f\left(\nu_{1}^{-1}\left(S_{1}\right)\right)=$ $\nu_{2}^{-1}(\operatorname{Val} \mu)=\nu_{2}^{-1}\left(S_{2}\right)=N$. Using this observation we easily obtain that α is an isomorphism in the category NSET. Therefore μ is a factorization.

Example 1.14 Let $\underline{S}=\langle N, \nu\rangle$ be the same as in Example 1.2. Evidently $1_{N}: \underline{N} \rightarrow \underline{S}$ is an NSET-isomorphism. Therefore it is a factorization and $\left\langle\underline{N}, 1_{N}\right\rangle$ is an e-subobject of \underline{S}. But 1_{N} is not a strong morphism from \underline{N} to \underline{S} (because $\left|1_{N}^{-1}(a)\right|<\left|\nu^{-1}\left(1_{N}(a)\right)\right|$ for every $\left.a \in N\right)$.
Example 1.15 Let $\underline{S}=\langle S, \nu\rangle$ be a non-empty enumerated set, let A be a nonempty denumerable set, and let $\mu: S \rightarrow A$ be an arbitrary injection. Take an arbitrary enumeration α_{0} of the set $A \backslash \mathrm{Val} \mu$. Put $\alpha:=(\mu \nu) \oplus \alpha_{0}$ and $\underline{A}:=\langle A, \alpha\rangle$. It is clear that $\mu: \underline{S} \rightarrow \underline{A}$ is a strong morphism.

2 Minimal multimorphisms and selectors Let $\underline{S}_{i}=\left\langle S_{i}, \nu_{i}\right\rangle(i=1,2)$ be two non-empty enumerated sets and let R be an arbitrary multimorphism over $\left\langle\underline{S}_{1}, \underline{S}_{2}\right\rangle$. By $M\left(\underline{S}_{1}, \underline{S}_{2}, R\right)$ we shall denote the set of all multimorphisms T over $\left\langle\underline{S}_{1}, \underline{S}_{2}\right\rangle$ such that $T \subseteq R$. Frequently we shall use the same notation to denote the partial order $\left\langle M\left(\underline{S}_{1}, \underline{S}_{2}, R\right), \subseteq\right\rangle$. If $\underline{S}_{1}=\underline{S}_{2}=\underline{S}$ then we simply write $M(\underline{S}, R)$.

Definition 2.1 Let $\mu: \underline{S}_{1} \rightarrow \underline{S}_{2}$ be a morphism in the category NSET. We say that μ is a selector for R (abbreviated μ is an R-selector) iff $\mu \subseteq R$.

Evidently every R-selector is a minimal element in the partial order $M\left(\underline{S}_{1}, \underline{S}_{2}, R\right)$.

We can say that, in a sense, multimorphisms are non-deterministic morphisms. So, a complexity of the structure of the poset $M\left(\underline{S}_{1}, \underline{S}_{2}, R\right)$ can be interpreted as a measure of non-determinism of R. From this point of view the problem of existence of minimal elements in $M\left(\underline{S}_{1}, \underline{S}_{2}, R\right)$ and, in particular, the problem of existence of selectors are quite natural.

Let $\underline{S}=\langle S, \nu\rangle$ be an arbitrary non-empty enumerated set. Evidently the relation ν^{-1} is a strong multimorphism over $\langle\underline{S}, \underline{N}\rangle$ (this observation was already used in the proof of Proposition 1.3). The following two Propositions will be fundamental for our further considerations.

Proposition 2.2 If T is a minimal element in $M\left(\underline{S}, \underline{N}, \nu^{-1}\right)$ then T is a ν^{-1} selector.

Proof: Let T be minimal and suppose that T is not a selector, i.e., T is not a function. Let f be a realization of T over $\langle\underline{S}, \underline{N}\rangle$. Choose $a \in S$ such that $|T(a)| \geq 2$ and fix two different elements m, n from the set $T(a)$. We define the general recursive function g putting for $x \in N$:

$$
g(x):=\text { if } f(x)=m \text { then } n \text { else } f(x)
$$

It is clear that $R_{g}=T \backslash\{\langle a, m\rangle\}$. Thus T is not minimal, a contradiction.

Proposition 2.3 The following conditions are equivalent:
(1) The enumeration ν is decidable;
(2) The morphism $\nu: \underline{N} \rightarrow \underline{S}$ is a split epi in NSET;
(3) The multimorphism ν^{-1} has a selector;
(4) The partial order $M\left(\underline{S}, \underline{N}, \nu^{-1}\right)$ has a minimal element.

Proof: The equivalence (1) \Leftrightarrow (2) is obvious. Let $\mu: \underline{S} \rightarrow \underline{N}$ be an NSET-morphism. Then μ is a ν^{-1}-selector iff $\nu \mu=1_{S}$. So, we have the equivalence (2) \Leftrightarrow (3). From Proposition 2.2 we obtain the equivalence (3) \Leftrightarrow (4).

Lemma 2.4 Assume that the following objects are given:
(a) two non-empty enumerated sets $\underline{A}=\langle A, \alpha\rangle$ and $\underline{B}=\langle B, \beta\rangle$ such that $A \cap B=\varnothing$;
(b) a multimorphism R over $\langle\underline{A}, \underline{B}\rangle$;
(c) an NSET-morphism $\mu: \underline{B} \rightarrow \underline{B}$.

Consider the relation $R \cup \mu \subseteq(A \cup B) \times(A \cup B)$. We have:
(1) $R \cup \mu$ is a multimorphism over $\underline{A} \oplus \underline{B}$;
(2) If R and μ are strong then $R \cup \mu$ is also strong;
(3) The partial orders $M(\underline{A}, \underline{B}, R)$ and $M(\underline{A} \oplus \underline{B}, R \cup \mu)$ are isomorphic. Moreover, the suitable isomorphism preserves and reflects selectors.

Proof: Let f, g be realizations of R and μ, respectively. We define the general recursive function h by $h(2 x):=2 f(x)+1$ and $h(2 x+1):=2 g(x)+1$ for every natural x. It is easy to see that h is a realization of $R \cup \mu$ over $A \oplus \underline{B}$. Moreover, if f and g are strong realizations then h is a strong realization, too. Now, we define the function

$$
\xi: M(\underline{A}, \underline{B}, R) \rightarrow M(\underline{A} \oplus \underline{B}, R \cup \mu)
$$

putting $\xi(T):=T \cup \mu$ for every $T \in M(\underline{A}, \underline{B}, R)$. It is not difficult to show that ξ is well-defined and that the following statements are true:
(i) ξ is a bijection (we have $\xi^{-1}(P):=P \backslash \mu$ for every suitable P);
(ii) ξ is an isomorphism of suitable partially ordered sets;
(iii) ξ preserves and reflects selectors.

We omit technical details of the proof. However, one remark must be given here: the conditions " $A \cap B=\varnothing$ " and " μ is a function" are important for the proof.

Theorem 2.5 Let S be a set such that $|S|=\aleph_{0}$. There exist $2^{\mathrm{N}_{0}}$ enumerations ν of the set S with the following property: There exist \aleph_{0} strong multimorphisms R over $\langle S, \nu\rangle$ for which the poset $M(\langle S, \nu\rangle, R)$ has no minimal elements.

Proof: Without loss of generality we can assume that $S=S_{0} \cup N$ where $\left|S_{0}\right| \geq 2$ and $S_{0} \cap N=\varnothing$. Let ν_{0} be an arbitrary undecidable enumeration of the set S_{0}. Put $\nu:=\nu_{0} \oplus 1_{N}$. Take an arbitrary general recursive function f. Put $R:=\nu_{0}^{-1} \cup f$. From Lemma 2.4 we obtain that R is a strong multimorphism over $\langle S, \nu\rangle$ and that the posets $M\left(\left\langle S_{0}, \nu_{0}\right\rangle, \underline{N}, \nu_{0}^{-1}\right)$ and $M(\langle S, \nu\rangle, R)$ are isomorphic. But $M\left(\left\langle S_{0}, \nu_{0}\right\rangle, \underline{N}, \nu_{0}^{-1}\right)$ has no minimal elements (see Proposition 2.3). Therefore $M(\langle S, \nu\rangle, R)$ has no minimal elements either.

Lemma 2.6 Let S_{0} be a set such that $\left|S_{0}\right|=\aleph_{0}$. There exist $2^{\aleph_{0}}$ enumerations ν_{0} of the set S_{0} with the following property: There exists a strong multimorphism P over $\left\langle\left\langle S_{0}, \nu_{0}\right\rangle, \underline{N}\right\rangle$ for which the following conditions hold:
(1) P has a selector;
(2) The poset $M\left(\left\langle S_{0}, \nu_{0}\right\rangle, \underline{N}, P\right)$ has a minimal element which is not a selector.

Proof: Without loss of generality we can assume that $S_{0}=\{a\} \cup N$, where $a \notin N$. Take an arbitrary non-recursive set A of natural numbers. We define the enumeration ν_{0} putting

$$
\nu_{0}(\tau(n, x)):=\text { if } x \in A \text { then } n \text { else } a
$$

for every natural n, x. Let $T:=(\{a\} \times N) \cup 1_{N}$. It is easy to see that T is a strong multimorphism over $\left\langle\left\langle S_{0}, \nu_{0}\right\rangle, \underline{N}\right\rangle$ via the general recursive function f given by $f(\tau(n, x)):=n$ for every natural n. We shall prove that

$$
\begin{equation*}
M\left(\left\langle S_{0} \nu_{0}\right\rangle, \underline{N}, T\right)=\{T\} \tag{*}
\end{equation*}
$$

Suppose that T_{0} is an element of $M\left(\left\langle S_{0}, \nu_{0}\right\rangle, \underline{N}, T\right)$ and $T_{0} \neq T$. Then there exists a set N_{0} of natural numbers such that $\varnothing \neq N_{0} \neq N$ and $T_{0}=\{\langle a, n\rangle$; $\left.n \in N_{0}\right\} \cup 1_{N}$. Fix an arbitrary natural number m_{0} from the set $N \backslash N_{0}$. Let g be a realization of T_{0} over $\left\langle\left\langle S_{0}, \nu_{0}\right\rangle, \underline{N}\right\rangle$. Using the definition of the enumeration ν_{0}, the property of the number m_{0} and the property of the function g we obtain that for every natural x the following equivalence holds: $x \in A$ iff $g\left(\tau\left(m_{0}, x\right)\right)=$ m_{0}. Thus A is a recursive set, a contradiction. So, the observation (*) is proved. Now, let $\mu:\left\langle S_{0}, \nu_{0}\right\rangle \rightarrow \underline{N}$ be the morphism of enumerated sets given by $\mu(x):=0$ for every $x \in S_{0}$. Put $P:=T \cup \mu$. Fix a natural number t from the set A and let h be the general recursive function given by

$$
h(\tau(n, x)):=\text { if } x=t \text { then } 0 \text { else } n
$$

for every natural n, x. It is easy to see that h is a strong realization of P over $\left\langle\left\langle S_{0}, \nu_{0}\right\rangle, \underline{N}\right\rangle$. Evidently μ is a P-selector. From the observation (*) we obtain that T is a minimal element in $M\left(\left\langle S_{0}, \nu_{0}\right\rangle, \underline{N}, P\right)$. Evidently T is not a selector (it is not a function).

Theorem 2.7 Let S be a set such that $|S|=\aleph_{0}$. There exist $2^{\aleph_{0}}$ enumerations ν of the set S with the following property: There exist \aleph_{0} strong multimorphisms R over $\langle S, \nu\rangle$ for which the following conditions hold:
(1) R has a selector;
(2) The poset $M(\langle S, \nu\rangle, R)$ has a minimal element which is not a selector.

Proof: Without loss of generality we can assume that $S=S_{0} \cup N$ where $\left|S_{0}\right|=\aleph_{0}$ and $S_{0} \cap N=\varnothing$. Let ν_{0}, P be an enumeration of the set S_{0} and a strong multimorphism over $\left\langle\left\langle S_{0}, \nu_{0}\right\rangle, \underline{N}\right\rangle$ obtained by applying Lemma 2.6 to our set S_{0}. Let $\nu:=\nu_{0} \oplus 1_{N}$. Take an arbitrary general recursive function f and put $R:=P \cup f$. Using Lemma 2.4 it is not difficult to show that R has the required properties.
Proposition 2.8 Let $\underline{S}=\langle S, \nu\rangle$ be a non-empty enumerated set such that ν is a decidable enumeration. Then every multimorphism over \underline{S} has a selector.

Proof: Let f be the general recursive function defined by $f(x):=\min \{n$; $\nu(n)=\nu(x)\}$ for every natural x. Then for every general recursive function g the function $h:=g f$ is ν-extensional and $\mu:=R_{h}$ is an R_{g}-selector.

The methods from the proofs of Theorems 2.5 and 2.7 have "constructive counterparts" in the case $S:=\mathcal{C}_{1}$. For example, we shall give a sketch of the proof of the constructive analog of Theorem 2.7.

Proposition 2.9 There exist \aleph_{0} computable enumerations ν of the set \mathfrak{C}_{1} with the following property: There exist \aleph_{0} strong multimorphisms R over $\left\langle\mathbb{C}_{1}, \nu\right\rangle$ for which the following conditions hold:
(1) R has a selector;
(2) The poset $M\left(\left\langle\mathfrak{C}_{1}, \nu\right\rangle, R\right)$ has a minimal element which is not a selector.

Proof (sketch): Fix two non-empty enumerated sets $\left\langle F_{0}, \gamma_{0}\right\rangle$ and $\langle F, \gamma\rangle$ such that the following conditions hold:
(i) $F_{0} \cup F=\mathcal{C}_{1} \backslash\{\varnothing\}$ and $F_{0} \cap F=\varnothing$;
(ii) γ_{0} and γ are computable bijections.
(a) Take an arbitrary recursively enumerable non-recursive set A of natural numbers. We define the computable enumeration ν_{0} of the set $F_{0} \cup\{\varnothing\}$ putting

$$
\nu_{0}(\tau(n, x)):=\text { if } x \in A \text { then } \gamma_{0}(n) \text { else } \varnothing
$$

for every natural n, x. Let $T:=(\{\varnothing\} \times F) \cup\left(\gamma \gamma_{0}^{-1}\right)$ and $P:=T \cup$ $\left(F_{0} \times\{\gamma(0)\}\right)$. Then T and P are strong multimorphisms over $\left\langle\left\langle F_{0} \cup\{\varnothing\}, \nu_{0}\right\rangle,\langle F, \gamma\rangle\right\rangle$.
(b) Let ν be the computable enumeration of the set \mathfrak{C}_{1} defined by $\nu:=$ $\nu_{0} \oplus \gamma$. Take an arbitrary general recursive function f and put $R:=$ $P \cup\left(\gamma f \gamma^{-1}\right)$. Then R has the required properties.

Observe that part (a) of our proof is a counterpart of the proof of Lemma 2.6 while part (b) is a counterpart of the proof of Theorem 2.7.

For the important enumerated set $\left\langle\mathfrak{C}_{1}, \kappa\right\rangle$ we can prove the following weak analog of Theorem 2.5:

Proposition 2.10 There exists a multimorphism R over $\left\langle\mathfrak{C}_{1}, \kappa\right\rangle$ such that the poset $M\left(\left\langle\mathfrak{C}_{1}, \kappa\right\rangle, R\right)$ has no minimal elements.

Proof: Let u be a general recursive function such that $\phi_{u(x)}(n)=x$ for every natural x, n. We define the relation $R \subseteq \mathfrak{C}_{1} \times \mathfrak{C}_{1}$ by $R:=\left\{\left\langle\phi_{x}, \phi_{u(x)}\right\rangle ; x \in N\right\}$. Evidently R is a multimorphism over $\left\langle\mathbb{C}_{1}, \kappa\right\rangle$ and u is its realization. Let $T \in M\left(\left\langle\mathfrak{C}_{1}, \kappa\right\rangle, \underline{N}, \kappa^{-1}\right)$. We define the relation $T^{*} \subseteq \mathfrak{C}_{1} \times \mathfrak{C}_{1}$ putting $T^{*}(\psi):=$ $\left\{\phi_{u(x)} ; x \in T(\psi)\right\}$ for every partial recursive function ψ. It is easy to see that T^{*} is an element of $M\left(\left\langle\mathrm{C}_{1}, \kappa\right\rangle, R\right)$ (if f is a realization of T then the composition $u f$ is a realization of T^{*}).

Now, let $P \in M\left(\left\langle\mathcal{C}_{1}, \kappa\right\rangle, R\right)$. We define the relation $P^{0} \subseteq \mathfrak{C}_{1} \times N$ putting $P^{0}(\psi):=\left\{x ; \phi_{u(x)} \in P(\psi)\right\}$ for every partial recursive function ψ. Let g be a realization of P over $\left\langle\mathfrak{C}_{1}, \kappa\right\rangle$ and let h be the partial recursive function given by $h(x):=\phi_{g(x)}(0)$ for every natural x. Since $P \subseteq R$, the function h is total. More-
over, h is a realization of P^{0} over $\left\langle\left\langle\mathfrak{C}_{1}, \kappa\right\rangle, \underline{N}\right\rangle$. Using the above considerations we can define the function

$$
\xi: M\left(\left\langle\mathbb{C}_{1}, \kappa\right\rangle, \underline{N}, \kappa^{-1}\right) \rightarrow M\left(\left\langle\mathrm{C}_{1}, \kappa\right\rangle, R\right)
$$

putting $\xi(T):=T^{*}$ for every suitable T. It is clear that ξ is a bijection (we have $\xi^{-1}(P):=P^{0}$ for every suitable P) and that it is an isomorphism of the suitable partial orders. So, from Proposition 2.3 we obtain that $M\left(\left\langle\mathfrak{C}_{1}, \kappa\right\rangle, R\right)$ has no minimal elements.

3 Some important examples In this section we shall give three examples of multimorphisms which are related to some fundamental and important constructions from Recursion Theory. These multimorphisms have no selectors. So, our examples are non-trivial. In our opinion, these examples give us a good motivation to consider the concept of multimorphisms over enumerated sets.

Throughout this section f_{0} will denote a fixed general recursive function such that

$$
\text { Val } f_{0}=\left\{x ; \phi_{x} \text { is a non-empty function }\right\}
$$

By κ_{0} we shall denote the computable enumeration of the set $\mathcal{C}_{1} \backslash\{\varnothing\}$ defined by $\kappa_{0}:=\kappa f_{0}$. Moreover, let K be a fixed recursively enumerable not recursive set of natural numbers.

Let p be a partial recursive function such that for every natural number x the following assertion holds: if W_{x} is non-empty then $x \in \operatorname{Arg} p$ and $p(x) \in W_{x}$. Put $t:=p f_{0}$. Evidently t is a general recursive function. Denote by E_{1} the multimorphism over $\left\langle\left\langle\mathcal{C}_{1} \backslash\{\varnothing\}, \kappa_{0}\right\rangle, \underline{N}\right\rangle$ induced by t, i.e., $E_{1}:=R_{t}$.

Proposition 3.1 The multimorphism E_{1} has no selectors.

Proof: Let $\beta: N^{3} \rightarrow N$ be a general recursive function such that for every natural numbers x, m, n the following conditions hold:
(i) if $x \in K$ then $\phi_{\beta(x, m, n)}=\{\langle m, 1\rangle,\langle n, 1\rangle\}$;
(ii) if $x \notin K$ then $\phi_{\beta(x, m, n)}=\{\langle m, 1\rangle\}$
(we consider functions of arity 1 as sets of ordered pairs). Thus $\phi_{\beta(x, m, n)}$ is a finite non-empty function for every natural x, m, n. Therefore we can define the general recursive function $h: N^{3} \rightarrow N$ putting $h(x, m, n):=\min \left\{z ; f_{0}(z)=\right.$ $\beta(x, m, n)\}$ for every x, m, n.

Now, suppose that $\mu:\left\langle\mathcal{C}_{1} \backslash\{\varnothing\}, \kappa_{0}\right\rangle \rightarrow \underline{N}$ is an E_{1}-selector. Then $\mu \kappa_{0}$ is a general recursive function and $\mu(\psi) \in \operatorname{Arg} \psi$ for every non-empty partial recursive function ψ. Consider the following two cases:
Case 0: $\mu(\{\langle 0,1\rangle,\langle 1,1\rangle\})=0$.
Then for every natural number x the following equivalence holds:

$$
x \in K \text { iff } \mu \kappa_{0} h(x, 1,0)=0 ;
$$

Case 1: $\mu(\{\langle 0,1\rangle,\langle 1,1\rangle\})=1$.
Then for every natural number x the following equivalence holds:

$$
x \in K \text { iff } \mu \kappa_{0} h(x, 0,1)=1
$$

Thus in the both cases we obtain that K is a recursive set, a contradiction. So, E_{1} has no selectors.

Now, let g be a general recursive function such that for every natural number x. Val $\phi_{g(x)}=W_{x}$ and if W_{x} is non-empty then $\phi_{g(x)}$ is a general recursive function. Denote by E_{2} the multimorphism over $\left\langle\mathfrak{C}_{1}, \kappa\right\rangle$ induced by g, i.e., $E_{2}:=R_{g}$.

Proposition 3.2 The multimorphism E_{2} has no selectors.

Proof: Suppose that $\mu:\left\langle\mathcal{C}_{1}, \kappa\right\rangle \rightarrow\left\langle\mathcal{C}_{1}, \kappa\right\rangle$ is an E_{2}-selector and let h be a general recursive function such that $\mu \kappa=\kappa h$. Observe that for every natural x the function $\mu\left(\kappa_{0}(x)\right)$ is total, $\mu\left(\kappa_{0}(x)\right)=\phi_{h f_{0}(x)}$ and Val $\mu\left(\kappa_{0}(x)\right)=\operatorname{Arg} \kappa_{0}(x)$. Therefore, if we put

$$
\mu^{*}\left(\kappa_{0}(x)\right):=\left(\mu\left(\kappa_{0}(x)\right)\right)(0)
$$

then we obtain the NSET-morphism $\mu^{*}:\left\langle\mathcal{C}_{1} \backslash\{\varnothing\}, \kappa_{0}\right\rangle \rightarrow \underline{N}$ which is an E_{1-} selector, a contradiction. So, E_{2} has no selectors.

Our third example is strictly related to the s - m - n-theorem. Denote by \mathcal{C}_{2} the set of all partial recursive functions of arity 2 . By λ we shall denote a fixed Gödel enumeration of the set \mathcal{C}_{2}. Let s be a general recursive function such that for every natural number x the following conditions hold:
(1) $\phi_{s(x)}$ is a general recursive function;
(2) $\lambda(x)(a,-)=\phi_{\phi_{s(x)}(a)}$ for every natural a.

Denote by E_{3} the multimorphism over $\left\langle\left\langle\mathcal{C}_{2}, \lambda\right\rangle,\left\langle\mathfrak{C}_{1}, \kappa\right\rangle\right\rangle$ induced by s, i.e., $E_{3}:=R_{s}$.

Proposition 3.3 The multimorphism E_{3} has no selectors.
Proof: Suppose that $\mu:\left\langle\mathcal{C}_{2}, \lambda\right\rangle \rightarrow\left\langle\mathcal{C}_{1}, \kappa\right\rangle$ is an E_{3}-selector and let h be a general recursive function such that $\mu \lambda=\kappa h$. So, for every $\gamma \in \mathcal{C}_{2}$ and every $a \in N$ we have $\gamma(a,-)=\phi_{\mu(\gamma)(a)}$. Let $c: N^{2} \rightarrow N$ be a fixed general recursive function. Choose a general recursive function f such that

$$
\lambda(f(x))=\text { if } x \in K \text { then } c \text { else } \varnothing
$$

for every natural x. Observe that:
(a) if $x \in K$ then $\phi_{h f(x)}=\mu(c)$;
(b) if $x \notin K$ then $\phi_{h f(x)}=\mu(\varnothing)$.

Take an arbitrary natural number a. We have:

$$
\phi_{\mu(c)(a)}=c(a,-) \neq \varnothing(a,-)=\phi_{\mu(\varnothing)(a)} .
$$

So, $\mu(c)(a) \neq \mu(\varnothing)(a)$ for every natural a. Using this observation and the above assertions (a) and (b) we obtain that for every natural number x the following equivalence holds:

$$
x \in K \operatorname{iff} \phi_{h f(x)}(0)=\mu(c)(0) .
$$

Therefore K is a recursive set, a contradiction. So, E_{3} has no selectors.

REFERENCES

[1] Eršov, J., "Theorie der Numerierungen I," Zietschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 19 (1973), pp. 289-388.
[2] Eršov, J., Teorija Numeracij (in Russian), Nauka, Moscow, 1977.
[3] Orlicki, A., "Binary relations over the category of enumerated sets," Zietschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 34 (1988), pp. 265-276.

Instytut Matematyki UMK
ul. Chopina 12/18
87-100 Toruń
Poland

