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Probabilistic Canonical Models for Partial Logics

François Lepage and Charles Morgan

Abstract The aim of the paper is to develop the notion of partial probability

distributions as being more realistic models of belief systems than the standard

accounts. We formulate the theory of partial probability functions independently

of any classical semantic notions. We use the partial probability distributions to

develop a formal semantics for partial propositional calculi, with extensions to

predicate logic and higher order languages. We give a proof theory for the partial

logics and obtain soundness and completeness results.

1 Motivation

It is commonplace to use classical logic and classical probability theory to try to

model rational belief. However, real believers (e.g., humans) do not have deductively

closed belief states; for example, there are deductive consequences of my beliefs to

which I would be reluctant to assent, just because they are so complex I am not aware

of whether or not they are deductive consequences of my beliefs. Similarly, although

classical probability distributions are total functions, there are many statements to

which I feel unable to assign any probability at all; and I certainly do not want to

say that all of such statements about whose probability value I am uncertain have

the same probability value (e.g., 0.5). Real believers are just not probabilistically

omniscient. So both the absolute consequence relation of classical logic and the

graded consequence relation of classical probability distributions are at odds with

belief systems of real believers. Thus there seems to be a need to develop formal

tools that allow consequence relations, both absolute and graded, to be sometimes

undefined, corresponding to a state of no opinion.

In this paper we wish to merge some of the ideas of Lapierre and Lepage [1]

and [2] on partial logics with some of the ideas of Morgan [3] and [4] on canonical

probability distributions. There are two major aspects to this research.
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(1) Morgan showed that there is a probabilistic semantics for (almost) every logic

which includes the principles of classical sentence logic as a core. In this paper,

we show that this result can be generalized to include logics which contain only the

(weaker) partial logics of Lapierre and Lepage as a core. This extension is accom-

plished by developing a theory of partial probability distributions. Partial probability

distributions more closely model real belief systems than do total probability distri-

butions.

(2) Completeness results are frequently proven by contraposition. One begins by as-

suming that some formula A is not a theorem of some set of premises Ŵ. One then

establishes the existence of an appropriate semantic structure in which the members

of Ŵ are satisfied but in which A is not. That is, for each set Ŵ and nontheorem

A, there is a semantic structure that shows that A is not semantically implied by Ŵ.

In certain modal logics one can show that there is a semantic structure, called the

canonical model, such that for each set Ŵ and nontheorem A, that structure shows

that A is not semantically implied by Ŵ. Note the interchange of the quantifiers,

from ‘for each there is’ to ‘there is for each’. It is interesting to note that there is

no canonical model for the standard semantics for propositional or first-order logics.

However, Morgan in [4] has shown that in probabilistic semantics, there are canon-

ical probability distributions, analogous to the canonical models of modal logic. In

a canonical distribution Pc, for every set Ŵ and nontheorem A, there is some addi-

tional evidence 1 such that Pc(A, Ŵ ∪ 1) 6= 1. In short, the intuition is: If A is not

a logical consequence of what you believe, then there is some reason to doubt it. In

this paper we show that canonical probability distributions also exist for probabilistic

semantics based on partial probability theory.

One interesting feature about Morgan’s proposals is that very little is said about the

systems of logic themselves. Morgan just assumes that

1. the logics contain classical sentential logic;

2. the logics have rules of the following form:

IR If ⊢ A0 and · · · and ⊢ A j , and the Ai and A satisfy conditions

COND, then ⊢ A.

The notation COND just stands for any set of conditions on the Ai and A which are

well founded; for a standard example, just think of the rule for universal quantifier

introduction.

What we propose here is to weaken clause (1) in the following sense. Lapierre and

Lepage, following Thijsse [5], have developed a kind of partial semantics in order to

model epistemic states. Roughly, the semantics results from introducing the unde-

fined truth value and the undefined object, and then restricting all the semantic values

to partial monotonic functions instead of classical total functions; the sense of mono-

tonicity is with respect to the order ‘more defined or as defined as’. Interestingly, this

approach provides partial interpretations not only for classical sentential logic, but

also for first-order functional predicate calculus, for modal logic, for propositional

type theory, for standard type theory and for intensional logic. It seems that this way

to partialize semantics is quite universal. These partial logics are not really nonstan-

dard logics, that is, they are not outside standard logics; rather, classical logics are

just limiting cases of partial logics, namely, those in which the semantic values are

totally defined.
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The relationship between the partial logics and their total correlates is formally

expressed by the following: If Ŵ 
P A, then Ŵ 
T A (where 
P and 
T are,

respectively, the relation of semantic consequence for the partial and the total logic

under consideration), that is, the valid consequences in partial logic are classically

valid consequences (the converse is certainly not true).

The question arises: Can we Morganize partial logic? More precisely, is it possi-

ble to define a kind of strongly canonical partial probability distribution Pc such that

if Ŵ 6⊢ A, there is some 1 such that Pc(A, Ŵ ∪ 1) 6= 1 or is undefined? The aim of

this paper is to show that the answer is yes.

As noted above, real agents simply cannot assign a probability value to every

sentence; real agents are not probabilistically omniscient. The partial probability

distributions introduced here go some way to answering the problem of probabilis-

tic omniscience. For example, let q be any atomic formula, and let Ŵ be any set of

sentences. If PP (q, Ŵ) is undefined and A is any sentence (even a classically logical

truth or classically logical falsehood) involving only the letter q , then PP (A, Ŵ) is

also permitted to be undefined. Thus an agent need not be able to assign probabil-

ity values to every statement. In Section 5 below, we will discuss the problem of

probabilistic omniscience in more detail.

2 Two New Tools

In the classical case, the method used by Morgan [4] in constructing canonical prob-

ability distributions relies on building up a sequence of maximally consistent sets.

The sets must be “coherent” with each other in the sense that, as the sequence is built

up, minimal changes are made when moving from one set to the next in the sequence.

In order to adapt Morgan’s proof for partial logic, we will need two notions slightly

different from those used by Morgan.

Instead of maximally consistent sets, we will use saturated deductively closed

consistent sets (SDCCS), and instead of total probability distributions, we will use

partial probability distributions . Let us first present the partial sentential logic.

2.1 Partial logic The partial sentential logic is a kind of hard core of all the partial

logics, and it is sufficient for the present purpose because the soundness and com-

pleteness proofs will only use very basic features of partial logics. As a consequence,

the results will hold for (almost) any extension of partial sentential logic in a sense

that will be specified below. The syntax is the ordinary syntax or sentential logic

using only ¬ and ∧. We will use a sequent formulation for presenting the logic.

We use only one rule, which we will call reiteration, that does not require knowl-

edge of previous consequence relationships.

R If A ∈ Ŵ then Ŵ ⊢ A.

In all other cases, A is obtained from already derived sentences by using the follow-

ing rules.

D.1 If Ŵ ⊢ B ∧ ¬B , then Ŵ ⊢ A.

D.2 If Ŵ ⊢ ¬¬A, then Ŵ ⊢ A.

D.3 If Ŵ ⊢ A, then Ŵ ⊢ ¬¬A.

D.4 If Ŵ ⊢ A ∧ B , then Ŵ ⊢ A.

D.5 If Ŵ ⊢ A ∧ B , then Ŵ ⊢ B .

D.6 If Ŵ ⊢ A and Ŵ ⊢ B , then Ŵ ⊢ A ∧ B .
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D.7 If Ŵ ⊢ A, then Ŵ ⊢ ¬(¬A ∧ ¬B).

D.8 If Ŵ ⊢ A, then Ŵ ⊢ ¬(¬B ∧ ¬A).

D.9 If Ŵ ⊢ ¬(¬¬A ∧ ¬¬B), then Ŵ ⊢ ¬(A ∧ B).

D.10 If Ŵ ⊢ ¬(A ∧ B), then Ŵ ⊢ ¬(¬¬A ∧ ¬¬B).

D.11 If Ŵ ∪ {B} ⊢ A and Ŵ ∪ {C} ⊢ A, then Ŵ ∪ {¬(¬B ∧ ¬C)} ⊢ A.

This system has no theorems; even (A ∨ ¬A) may be undefined. But the system

is proved to be strongly complete according to the three-valued semantics when the

values of ¬ and of ∧ are those of Kleene strong connectors. As mentioned earlier,

our results will hold for almost any extension. Following Morgan, we can specify

stronger (partial or total) logics by adding rules of the following form.

IRP If Ŵ ⊢ A0 and · · · and Ŵ ⊢ A j , and the Ai and A satisfy conditions

COND, then Ŵ ⊢ A.

We will sometime write (A ∨ B) for ¬(¬A ∧ ¬B) and (A ⊃ B) for (¬A ∨ B). The

following lemmas are easily proved.

L.1 If Ŵ ⊢ A, then Ŵ ⊢ (A ∨ ¬A).

L.2 If Ŵ ⊢ A, then for some finite subset 1 of Ŵ, 1 ⊢ A.

L.3 If Ŵ ∪ {A} ⊢ B and Ŵ ⊢ A, then Ŵ ⊢ B .

L.4 If Ŵ ⊢ A, then Ŵ ∪ 1 ⊢ A.

L.5 If Ŵ ∪ {A} ⊢ B , then Ŵ ∪ {A ∨ ¬A} ⊢ A ⊇ B .

2.2 Saturated, deductively closed, consistent sets An SDCCS Ŵ is a set which is

1. saturated, that is, (A ∨ B) ∈ Ŵ if and only if A ∈ Ŵ or B ∈ Ŵ;1

2. deductively closed, that is, A ∈ Ŵ if and only if Ŵ ⊢ A;

3. consistent, that is, there is an A such that Ŵ 6⊢ A.

Clearly, in any logic which contains classical logic, to be an SDCCS and to be a

maximally consistent set are equivalent properties.

It can be shown, following Thijsse, that every SDCCS provides a partial model for

partial sentential logic. Lapierre and Lepage have extended this result to a large class

of logics as mentioned above. In fact, for any SDCCS Ŵ we can define a valuation

V Ŵ such that

V Ŵ(A) = 1 iff A ∈ Ŵ

V Ŵ(A) = 0 iff ¬A ∈ Ŵ

V Ŵ(A) is undefined otherwise.

So for each set Ŵ there is a valuation that simultaneously satisfies the members of

Ŵ but fails to satisfy each nontheorem of Ŵ. But there will not be a single valuation

that works for every set Ŵ. Our goal is to show that there will be a single canonical

probability distribution that works for every set Ŵ and nontheorem A.

Let 1 be a consistent set. There are many ways to construct an SDCCS which is a

superset of 1. The following construction will be used in the completeness proof. 1

being consistent, there is a formula At (called the test formula) such that 1 6⊢ At . We

will define Ŵ, a superset of 1, such that Ŵ is an SDCCS and Ŵ 6⊢ At . The definition

of Ŵ needs only very few features of the logic as we will see.

Let E0, . . . , Ek, . . . be any specific fixed enumeration of all the sentences of the

language in which every sentence appears denumerably many times. We will call

this enumeration the canonical enumeration.
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Starting from 1 we define the sequence 10, . . . ,1k, . . . such that

10 = 1

12k+2 = 12k+1 = 12k if 12k ∪ {Ek} ⊢ At

12k+1 = 12k ∪ {Ek} if 12k 6⊢ At and

12k+2 = 12k+1 if Ek is not (A ∨ B) and if Ek is (A ∨ B) then

12k+2 = 12k+1 ∪ {A} if 12k+1 ∪ {A} 6⊢ At and

12k+2 = 12k+1 ∪ {B} if 12k+1 ∪ {A} ⊢ At .

One can easily check that Ŵ = ∪i1i is an SDCCS and Ŵ 6⊢ At . It is worth em-

phasizing that the only logical resources of the system which are used in the proof

are the definition of consistency, the rule R of reiteration, the cut rule (L.3) and ∨-

elimination (D.11).

Carefully note that if At is a classical tautology, then Ŵ is not a maximally con-

sistent set.

Further note that if in the construction process we replace the phrases ‘⊢ At ’

and ‘ 6⊢ At ’ by ‘is inconsistent’ and ‘is consistent’, respectively, then Ŵ would be

maximally consistent.

Finally, note that we could choose the test formula At any way we like. Each

selection of test formula yields a potentially distinct SDCCS. In particular, for any

given set 1, we could select At to be the first formula Ei in the enumeration such

that 1 6⊢ Ei .

The following are some more elementary results.

L.5 If Ŵ is any consistent set of formulas, then there is at least one SDCCS

which is a superset of Ŵ.
L.6 If Ŵ 6⊢ A then there is an SDCCS 1 such that Ŵ ⊆ 1 and 1 6⊢ A.

L.7 Ŵ ⊢ A if and only if for every SDCCS 1 which is a superset of Ŵ, A ∈ 1.

2.3 Partial probability functions We now turn our attention to the problem of

characterizing partial probability distributions. Of course the main idea is that a

partial probability distribution should be just like a total probability distribution, only

with some of the values undefined. But our notion is slightly more complicated than

that. While we want to allow gaps in the distributions, we do not allow completely

arbitrary gaps. Essentially, while we allow gaps, we require that any value that can

be computed from values that are given cannot be left undefined.

Definition 2.1 A partial probability function P is a partial function

P : L × 2L → [0, 1]

such that the following constraints are always satisfied:

P.1 If A ∈ Ŵ, then P(A, Ŵ) is defined;

P.2 If P(¬A, Ŵ) is defined, then P(A, Ŵ) is defined;

P.3 If P(A, Ŵ) is defined, then P(¬A, Ŵ) is defined;

P.4 If P(A ∧ B, Ŵ) is defined, then P(B ∧ A, Ŵ) is defined;

P.5 If P(A ∧ B, Ŵ) is defined and > 0, then P(A, Ŵ) and P(B, Ŵ ∪ {A}) are

defined;
P.6 If P(A, Ŵ) is defined and P(B, Ŵ ∪ {A}) is defined, then P(A ∧ B, Ŵ) is

defined;
P.7 If P(A, Ŵ) = 0, then P(A ∧ B, Ŵ) = 0;
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P.8 If P(A, Ŵ) is not defined, then P(A ∧ B, Ŵ) is undefined unless

P(B, Ŵ) = 0;
P.9 If P(A, Ŵ) is defined and > 0 and P(A ∧ B, Ŵ) = 0, then

P(B, Ŵ ∪ {A}) = 0.

And when all the appropriate values of P are defined, the following (classical) con-

straints are satisfied:

NP.1 0 ≤ P(A, Ŵ) ≤ 1;

NP.2 If A ∈ Ŵ, then P(A, Ŵ) = 1;

NP.3 P(A ∨ B, Ŵ) = P(A, Ŵ) + P(B, Ŵ) − P(A ∧ B, Ŵ);

NP.4 P(A ∧ B, Ŵ) = P(A, Ŵ) × P(B, Ŵ ∪ {A});

NP.5 P(¬A, Ŵ) = 1 − P(A, Ŵ) provided Ŵ is P-normal (i.e., it is not the case

that P(A, Ŵ) = 1 for all A);
NP.6 P(A ∧ B, Ŵ) = P(B ∧ A, Ŵ);

NP.7 P(C, Ŵ ∪ {A ∧ B}) = P(C, Ŵ ∪ {A, B}).

We now define the semantic consequence relation, based on partial probability dis-

tributions. We use the standard intuition that Ŵ semantically implies A, if and only if

no matter what your belief system is like, there is no evidence in addition to Ŵ which

you could obtain that would make you doubt A.

Definition 2.2 We say that A is a semantic consequence of Ŵ written Ŵ 
 A , if

and only if for all probability distributions P , P(A, Ŵ ∪ 1) = 1 for all 1.

3 Some Useful Intermediate Results

In this section we state and prove a number of results which will be needed in order

to establish soundness and completeness. We will give a brief comment on each

lemma.

Our first lemma states a rule of detachment for the conditional of conditional

probability.

Lemma 3.1 If P(A, Ŵ ∪ {B}) = 1 and P(B, Ŵ) = 1, then P(A, Ŵ) = 1.

Proof

P(A, Ŵ ∪ {B}) = 1 hypothesis

P(B, Ŵ) = 1 hypothesis

P(B ∧ A, Ŵ) = 1 P.6 and NP.4

P(A ∧ B, Ŵ) = 1 P.4 and NP.6

P(A, Ŵ) = 1 P.4, P.5, and NP.4 �

Our second lemma essentially establishes that a set of assumptions that makes certain

any contradiction must be an abnormal set of assumptions that certifies any sentence

whatever.

Lemma 3.2 If P(B ∧ ¬B, Ŵ) = 1, then Ŵ is P-abnormal.

Proof

1 = P(B ∧ ¬B, Ŵ) hypothesis

= P(¬B ∧ B, Ŵ) NP.6

= P(¬B, Ŵ) × P(B, Ŵ ∪ {¬B}) P.5 and NP.4

= P(¬B, Ŵ) NP.1
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Thus

P(B, Ŵ) = 0 P.2 and NP.5

unless Ŵ is P-abnormal. But,

1 = P(B ∧ ¬B, Ŵ) hypothesis

= P(B, Ŵ) × P(¬B, Ŵ ∪ {B}) P.5 and NP.4

= P(B, Ŵ) NP.1

Thus Ŵ is P-abnormal. �

Our third lemma is like a limited natural deduction rule of negation elimination.

Lemma 3.3 P(C ∧ B, Ŵ) = 0 if and only if P(¬¬C ∧ B, Ŵ) = 0.

Proof (⇒)

P(C ∧ B, Ŵ) = 0 hypothesis

P(B ∧ C, Ŵ) = 0 P.4 and NP.6

(i) If P(B, Ŵ) is not defined,

P(C, Ŵ) = 0 P.8

P(¬¬C, Ŵ) = 0 NP.5

P(¬¬C ∧ B, Ŵ) = 0 P.7

(ii) If P(B, Ŵ) is defined,

(a) if P(B, Ŵ) = 0,

P(¬¬C ∧ B, Ŵ) = 0 P.7, P.4, and NP.6

(b) if P(B, Ŵ) > 0,

P(C, Ŵ) is defined P.8

But then we have

0 = P(C ∧ B, Ŵ) hypothesis

= P(B ∧ C, Ŵ) P.4 and NP.6

= P(C, Ŵ ∪ {B}) P.9

= P(¬¬C, Ŵ ∪ {B}) NP.5

But

P(¬¬C ∧ B, Ŵ) = P(B ∧ ¬¬C, Ŵ) P.4 and NP.6

= P(B, Ŵ) × P(¬¬C, Ŵ ∪ {B}) because all the expressions involved

= 0 are defined

(⇐) Similar to (⇒) �

Essentially, our fourth lemma states that, given a set of background assumptions, if

A is certified by separately adding a sentence and also adding its negation, then A

must be certified by the background assumptions alone.
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Lemma 3.4 If P(A, Ŵ∪{B}) = P(A, Ŵ∪{¬B}) = 1, then P(A, Ŵ) = 1, provided

P(B, Ŵ) is defined and Ŵ is P-normal.

Proof

P(A ∧ B, Ŵ) = P(B, Ŵ) × P(A, Ŵ ∪ {B}) NP.4 and NP.6

P(A ∧ ¬B, Ŵ) = P(¬B, Ŵ) × P(A, Ŵ ∪ {¬B}) NP.4 and NP.6

P(A ∧ B, Ŵ) = P(B, Ŵ) hypothesis

P(A ∧ ¬B, Ŵ) = P(¬B, Ŵ) hypothesis

P(A ∧ B, Ŵ) + P(A ∧ ¬B, Ŵ) = 1 NP.5

P(A, Ŵ) × P(B, Ŵ ∪ {A}) + P(A, Ŵ) × P(¬B, Ŵ ∪ {A}) = 1 NP.4

P(A, Ŵ) × (P(B, Ŵ ∪ {A}) + P(¬B, Ŵ ∪ {A})) = 1 algebra

P(A, Ŵ) = 1. NP.5
�

4 Soundness and Completeness

We now want to show that the semantic consequence relation based on partial prob-

ability distributions exactly captures the syntactic consequence relation of partial

logics. To this end, we will prove soundness and completeness results for the propo-

sitional case. The result for more complex logics can be accomplished by adding

restrictions on the probability distributions corresponding to the generalized infer-

ence rules of the logics, in the manner indicated in [4]. We begin by establishing

soundness.

Theorem 4.1 (Soundness) If Ŵ ⊢ A, then Ŵ 
 A.

Proof Let us suppose that Ŵ ⊢ A. Then there is a proof from Ŵ : {A0, . . . , An−1}

⊢ A. We prove by induction on i that Ŵ 
 Ai .

Basis: A0 ∈ Ŵ. In that case P(A0, Ŵ) = 1 and P(A0, Ŵ ∪ 1) = 1.

Induction step: Ŵ 
 Ai for all i < n.

1. An ∈ Ŵ. As basis.

2. Ŵ ⊢ (B∧¬B) so Ŵ ⊢ An . By the induction hypothesis, P(B∧¬B, Ŵ∪1) = 1

for all 1. By Lemma 3.2, Ŵ ∪ 1 is P-abnormal for all 1. Hence,

P(An, Ŵ ∪ 1) = 1 for all 1.

3. Ŵ ⊢ ¬¬An so Ŵ ⊢ An . By the induction hypothesis, P(¬¬An, Ŵ ∪ 1) = 1

for all 1. If Ŵ ∪ 1 is P-abnormal, the desired result is trivial, so suppose

it is not. P(¬An, Ŵ ∪ 1) = 0 for all 1 (unless P-abnormal) by NP.5.

P(An, Ŵ ∪ 1) = 1 for all 1 by NP.5.

4. An is ¬¬B. Ŵ ⊢ B , so Ŵ ⊢ ¬¬B . Similar to (3).

5. Ŵ ⊢ (An∧B, Ŵ), so Ŵ ⊢ An . By the induction hypothesis, P(An∧B, Ŵ∪1) =

1 for all 1. Then by P.5 and NP.4, P(An, Ŵ ∪ 1) = 1 for all 1.

6. Ŵ ⊢ (B ∧ An, Ŵ), so Ŵ ⊢ An . Similar to (5).

7. An is B ∧ C . Ŵ ⊢ B and Ŵ ⊢ C , so Ŵ ⊢ (B ∧ C, Ŵ). By the induction

hypothesis, P(B, Ŵ ∪1) = 1 for all 1 and P(C, Ŵ ∪1) = 1 for all 1. Then

P(C, Ŵ ∪ {B} ∪ 1) = 1 for all 1. So, by NP.4 P(B ∧ C, Ŵ ∪ 1) = 1 for all

1.

8. An is B ∨ C . Ŵ ⊢ B , so Ŵ ⊢ B ∨ C . By the induction hypothesis,

P(B, Ŵ ∪ 1) = 1 for all 1.
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(i) If Ŵ ∪ 1 is P-abnormal, then P(¬(¬B ∧ ¬C), Ŵ ∪ 1) = 1 and

P(¬(¬C ∧ ¬B), Ŵ ∪ 1) = 1.

(ii) If Ŵ ∪ 1 is P-normal, then P(¬B, Ŵ ∪ 1) = 0 and, by P.7,

P(¬C ∧ ¬B, Ŵ ∪ 1) = 0. Thus P(¬(¬C ∧ ¬B), Ŵ ∪ 1) = 1.

9. An is C ∨ B . Ŵ ⊢ B , so Ŵ ⊢ C ∨ B . Similar to (8).

10. An is ¬(C ∧ B). Ŵ ⊢ ¬(¬¬C ∧ ¬¬B), so Ŵ ⊢ ¬(C ∧ B). By the induction

hypothesis, P(¬(¬¬C ∧ ¬¬B), Ŵ ∪ 1) = 1.

(i) If Ŵ ∪ 1 is P-abnormal, then trivial.

(ii) If Ŵ ∪ 1 is P-normal, then P(¬¬C ∧ ¬¬B, Ŵ ∪ 1) = 0. We have

P(C ∧ ¬¬B, Ŵ ∪ 1) = 0 Lemma 3.3

P(¬¬B ∧ C, Ŵ ∪ 1) = 0 P.4 and NP.6

P(B ∧ C, Ŵ ∪ 1) = 0 Lemma 3.3

P(C ∧ B, Ŵ ∪ 1) = 0 P.4 and NP.6

P(¬(C ∧ B), Ŵ ∪ 1) = 1 NP.5

11. As (10), but bottom up.

12. Ŵ = 6∪{B∨C} = 6∪{¬(¬B∧¬C)} and 6∪{B} ⊢ An and 6∪{C} ⊢ An .

By the induction hypothesis,

(*) P(An,6 ∪ 1 ∪ {B}) = 1 for all 1 and

(**) P(An,6 ∪ 1 ∪ {C}) = 1 for all 1.

We have

P(¬(¬B ∧ ¬C),6 ∪ {¬(¬B ∧ ¬C)} ∪ 1) = 1 for all 1.

(i) If 6 ∪ 1 ∪ {¬(¬B ∧ ¬C)} is abnormal, then

P(An,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1) = 1 for all 1.
(ii) If 6 ∪ 1 ∪ {¬(¬B ∧ ¬C)} is normal, then

P(¬B ∧ ¬C,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1) = 0. NP.5

There are three possible cases.

(a) P(¬B,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1) = 0 or

(b) P(¬B,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1) > 0

(c) P(¬B,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1) is undefined.

(a) P(¬B,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1) = 0 hypothesis

P(B,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1) = 1 P.2 and NP.5

P(An,6 ∪ {B} ∪ 1 ∪ {¬(¬B ∧ ¬C)}) = 1 (∗)

P(An,6 ∪ 1 ∪ {¬(¬B ∧ ¬C)}) = 1 Lemma 3.1

(b) P(¬B,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1) > 0

P(¬C,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1 ∪ {¬B}) = 0 P.9

P(C,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1 ∪ {¬B}) = 1 P.2 and NP.5

P(An,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1 ∪ {¬B} ∪ {C}) = 1 (∗∗)

P(An,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1 ∪ {¬B}) = 1 Lemma 3.1

P(An,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1 ∪ {B}) = 1 (∗)

P(An,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1) = 1 Lemma 3.4

(c) P(¬B,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1) is undefined

P(¬C,6 ∪ {¬(¬B ∧ ¬C)} ∪ 1) = 0. P.8
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The rest of the proof is similar to (a). �

That completes the induction, so we have demonstrated soundness. We now turn our

attention to strong completeness.

Theorem 4.2 (Completeness) If Ŵ 
 A, then Ŵ ⊢ A.

Proof We proceed by contraposition. Let us suppose that for some particular set

Ŵ∗ and sentence A∗, that Ŵ∗ 6⊢ A∗. We need to find a probability distribution P

such that there is some 1∗ such that P(A∗, Ŵ∗ ∪ 1∗) 6= 1 or is undefined. Instead

of constructing a different function P for each set Ŵ∗ and sentence A∗, we will

instead construct one canonical distribution that will work for every set Ŵ∗ and every

nontheorem A∗.

For each set Ŵ, let S(Ŵ) be the saturated set containing Ŵ defined by using the

canonical enumeration E0, . . . , En, . . . of the formulas of the language, and using

as test formula the first formula Ei in the canonical enumeration such that Ŵ 6⊢ Ei .

Then we define a function as follows:

P : L × L2 → [0, 1] such that

P(B, Ŵ) = 1 if B ∈ S(Ŵ);

P(B, Ŵ) = 0 if ¬B ∈ S(Ŵ);

P(B, Ŵ) is undefined otherwise.

It is clear that if Ŵ 6⊢ A, then A 6∈ S(Ŵ ∪ {¬A}). So there is some 1 such that

P(A, Ŵ ∪1) 6= 1 or is undefined. Thus, provided P so defined is a legitimate partial

probability function, it will follow that Ŵ 6
 A if Ŵ 6⊢ A, for all Ŵ and A.

That was the easy part. We have now to check that P is a partial function satisfy-

ing P.1 – P.9 and NP.1 – NP.7. In order to do that, we will need the following lemma

in order to deal with P.5, P.6, P.9 as well as NP.4. The problem is to ensure that if

A ∈ Ŵ, then S(Ŵ) = S(Ŵ ∪ {A}). For example, P.6 makes no sense if we do not have

this property because we would not even define a unique SDCCS, and consequently,

we would not define a partial probability function.

Lemma 4.3 If A ∈ S(Ŵ), then S(Ŵ) = S(Ŵ ∪ {A}).

Proof Let us consider the definitions of S(Ŵ) and S(Ŵ ∪ {A}) according to the

same canonical enumeration E0, . . . , En, . . .. We prove that they have exactly the

same members. To do this, we prove that, for any i , Ŵi ⊆ 1i . The conclusion that

S(Ŵ) = S(Ŵ ∪ {A}) then follows easily because for any B , if 1i ∪ {B} 6⊢ At then

Ŵi ∪ {B} 6⊢ At and so, by the definition of the SDCCS, everything that will be added

or belong to some 1i will be sooner or later added to some Ŵi . Let us prove that, for

any i , Ŵi ⊆ 1i . We proceed by induction.

Basis: Ŵ0 ⊆ 10 = Ŵ0 ∪ {A}.

Induction step: Suppose that Ŵ2i ⊆ 12i . We prove that Ŵ2i+2 ⊆ 12i+2.

(a) Suppose that Ei is such that Ŵ2i ∪{Ei } ⊢ At . In that case, by the induction hy-

pothesis, 12i ∪ {Ei } ⊢ At , and Ŵ2i+2 =Ŵ2i+1 =Ŵ2i ⊆ 12i =12i+1 =12i+2.

(b) Suppose that Ei is such that Ŵ2i ∪ {Ei } 6⊢ At .

(i) If 12i ∪ {Ei} 6⊢ At , then Ŵ2i+1 = Ŵ2i ∪ {Ei } ⊆ 12i i ∪ {Ei} = 12i+1.

(α) Ei is not (C ∨ D). In that case Ŵ2i+2 = Ŵ2i+1 ⊆ 12i+1 = 12i+2.

(β) Ei is (C ∨ D). If Ŵ2i+1 ∪ {C} 6⊢ At , then
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(1) If 12i+1 ∪ {C} 6⊢ At , then Ŵ2i+2 = Ŵ2i+1 ∪ {C} = 12i+1 ∪ {C}

= 12i+2.

(2) If 12i+1 ∪ {C} ⊢ At . In this case, there is a derivation of At ,

A0, . . . , An ⊢ At . If all of the Ai are consequences of Ŵ0 ∪ {A}

then for some p, Ŵ2p ⊢ A and thus Ŵ2p ⊢ At , which contradicts

the hypothesis. Therefore, there is at least one of the A j that was

introduced in the process of defining the 1 j s. A j was not intro-

duced because 12 j ∪ {A j } 6⊢ At , in that case A j ∈ Ŵ2 j+1 ⊆ Ŵ2i .

Thus A j was introduced by ∨-saturation after the treatment

of some Ak = (E ∨ A j ), with 12k ∪ {E ∨ A j } 6⊢ At thus

Ŵ2k∪{E∨A j } 6⊢ At with Ŵ2k+1∪{E} 6⊢ At and 12k+1∪{E} ⊢ At .

This is just the starting point of (β)(2) and, as the number of for-

mula introduced in 12i is finite, after a finite number of steps, this

case is no more an option.

(ii) If 12i ∪ {Ei} ⊢ At . The argument is the same as in (i)(β)(2).

Thus, Ŵi ⊆ 1i for all i ; as proved above, this implies that S(Ŵ) = S(Ŵ ∪ {A}). �

That is the end of the proof of Lemma 4.3, and we now return to the proof of the

main theorem. We have now to prove that P is a partial probability function.

From the definition it follows that P is a partial function from L × 2L into [0, 1].

We have to check that P.1 – P.9 and NP.1 – NP.7 are satisfied by a P so defined.

P.1 If A ∈ Ŵ, S(Ŵ) ⊢ A, A ∈ S(Ŵ) and thus P(A, Ŵ) = 1.

P.2 If P(¬A, Ŵ) is defined, it is either 1 or 0.

(i) If P(¬A, Ŵ) = 1, then ¬A ∈ S(Ŵ) and P(A, Ŵ) = 0.

(ii) If P(¬A, Ŵ) = 0, then ¬¬A ∈ S(Ŵ) and, by D.2, A ∈ S(Ŵ) and

thus P(A, Ŵ) = 1.

P.3 Similar to P.2

P.4 If P(A ∧ B, Ŵ) is defined, it is either 1 or 0.

(i) If P(A ∧ B, Ŵ) = 1, then A ∧ B ∈ S(Ŵ). Using D.4, D.5, and

D.6, we get B ∧ A ∈ S(Ŵ) and thus P(B ∧ A, Ŵ) = 1.

(ii) Similar to (i).

P.5 If P(A ∧ B, Ŵ) is defined and > 0, then P(A ∧ B, Ŵ) = 1. Then

A∧B ∈ S(Ŵ) and by D.4, A ∈ S(Ŵ). By Lemma 4.3, S(Ŵ) = S(Ŵ∪{A})

and so P(B, Ŵ ∪ {A}) = P(B, Ŵ). Thus B ∈ S(Ŵ) and by D.5,

P(B, Ŵ) = 1.

P.6 If P(A, Ŵ) is defined, it is either 1 or 0.

(i) If P(A, Ŵ) = 1, then A ∈ S(Ŵ). By Lemma 4.3, S(Ŵ)

= S(Ŵ ∪ {A}) and as P(B, Ŵ ∪ {A}) is defined,

P(B, Ŵ{A}) = P(B, Ŵ) is either 1 or 0. If P(B, Ŵ)

= 1, B ∈ S(Ŵ) and by D.6, A ∧ B ∈ S(Ŵ), P(A ∧ B, Ŵ) = 1

and thus is defined.

(ii) If P(A, Ŵ) = 0 then ¬A ∈ S(Ŵ). By D.7,

¬(¬¬A ∧ ¬¬B) ∈ S(Ŵ), and by D.9 ¬(A ∧ B) ∈ S(Ŵ). Thus

P(A ∧ B, Ŵ) = 0 and it is defined.
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P.7 Similar to (ii) of P.6.

P.8 If P(A, Ŵ) is undefined, then P(A ∧ B, Ŵ) is undefined unless

P(B, Ŵ) = 0. Let us suppose that P(A ∧ B, Ŵ) is defined and

P(B, Ŵ) 6= 0.

(i) If P(A ∧ B, Ŵ) = 1 then A ∧ B ∈ S(Ŵ) and thus A ∈ S(Ŵ). In

that case, P(A, Ŵ) = 1 and it is defined.

(ii) If P(A ∧ B, Ŵ) = 0, then ¬(A ∧ B) ∈ S(Ŵ) and by ∨-saturation

¬B ∈ S(Ŵ) or ¬A ∈ S(Ŵ). In the first case P(B, Ŵ) = 0 and in

the second P(A, Ŵ) is defined.

P.9 If P(A, Ŵ) is defined and > 0, then P(A, Ŵ) = 1 and A ∈ S(Ŵ). If

P(A ∧ B, Ŵ) = 0, then ¬(A ∧ B) ∈ S(Ŵ). By ∨-saturation, ¬A ∈ S(Ŵ)

or ¬B ∈ S(Ŵ). Thus ¬B ∈ S(Ŵ). But A ∈ S(Ŵ) implies by Lemma 4.3

that S(Ŵ) = S(Ŵ ∪ {A}) and thus ¬B ∈ S(Ŵ ∪ {A}). This implies that

P(B, Ŵ ∪ {A}) = 0.

NP.1 Trivial.

NP.2 Trivial.

NP.3 Like in the classical case.

NP.4 Two cases.

1. P(A ∧ B, Ŵ) = 1 and thus P(A, Ŵ) = 1. By Lemma 4.3,

S(Ŵ) = S(Ŵ ∪ {A}) and 1 = P(B, Ŵ) = P(B, Ŵ ∪ {A}). Thus

P(A ∧ B, Ŵ) = P(A, Ŵ) × P(B, Ŵ ∪ {A}).

2. P(A ∧ B, Ŵ) = 0. If P(A, Ŵ) = 0 done by P.7. If P(A, Ŵ) = 1,

A ∈ S(Ŵ) and if P(A ∧ B, Ŵ) = 0, ¬(A ∧ B) ∈ S(Ŵ) and thus

¬(¬¬A∧¬¬B) ∈ S(Ŵ). Either ¬A ∈ S(Ŵ) or ¬B ∈ S(Ŵ). Thus

¬B ∈ S(Ŵ) and 0 = P(B, Ŵ) = P(B, Ŵ ∪ {A}) by Lemma 4.3.

NP.5 Trivial.

NP.6 Trivial.

NP.7 Ŵ ∪ {A ∧ B} has exactly the same consequences as Ŵ ∪ {A, B}.

Thus one can easily prove that S(Ŵ ∪ {A ∧ B}) = S(Ŵ ∪ {A, B}).

Thus P is a strongly canonical partial probability function, and that finishes our

completeness proof. �

An examination of our completeness proof yields two interesting corollaries, which

we state here without further proof.

Corollary 4.4 If Ŵ 6⊢ A and Ŵ 6⊢ ¬A and A is not a classical tautology nor a

classical contradiction, then for any P there is 1 and 1′ such that P(A, Ŵ∪1) = 1

and P(A, Ŵ ∪ 1′) = 0 (unless Ŵ ∪ 1′ is P-abnormal).

Corollary 4.5 If Ŵ 6⊢ A and Ŵ 6⊢ ¬A there is a P such that P(A, Ŵ) is undefined.

5 Conclusion

We have shown that there is a probabilistic semantics that is both sound and complete

for (almost) every extension of the partial logics of Lapierre and Lepage. Unlike

the case with classical probability theory, we permit probability distributions to be
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only partial functions. The degree of “partiality” allowed is dictated by P.1 – P.9 of

Section 2.3 above.

In order to give some examples, suppose we have three coins. Each coin has two

sides. We will use Hi to stand for the assertion that coin i is showing heads. Further

suppose we make the following assignments:

(e.1) P(H1, ∅) = 0.5

(e.2) P(H2, ∅) = 1.0

(e.3) P(H3, ∅) = undefined

Recall that we are using (A ∨ B) as shorthand for ¬(¬A ∧ ¬B) and (A ⊃ B) as

shorthand for (¬A ∨ B).

Suppose ∅ is P-normal, and let B be any sentence whatsoever, even one whose

probability value is undefined. Then we may proceed as follows:

(e.4 P(¬H2, ∅) = 0 NP.5

(e.5) P(¬H2 ∧ ¬B, ∅) = 0 P.7

(e.6) P(H2 ∨ B, ∅) = 1 NP.5

In short, knowing that H2 has a probability of 1 allows us to compute the value of

the disjunction of H2 with any other proposition, even one whose probability value

is undefined. Using H1 instead of H2, we could not carry out a similar sequence of

calculations to determine the value of (H1 ∨ B) if the value of B is undefined. To

begin with we would have

(e.4′) P(¬H1, ∅) = 0.5 NP.5

But then we could not apply P.7. In fact, P.8 and P.4 would require that the value of

the disjunction H1 ∨ B must be undefined if the value of B is undefined.

Similarly, P.8 and P.4 would require that unless B has a value of 1, the value of

the disjunctions H3 ∨ B and B ∨ H3 must be undefined. Thus even the value of

H3 ∨ ¬H3 must be undefined. And then the value of H1 ∨ (H3 ∨ ¬H3) must also be

undefined.

In a similar way, it will be easy for the reader to verify the following, for the case

in which the value of B is undefined:

(e.7) P((H1 ∧ ¬H1) ⊃ B, ∅) = 1

(e.8) P((B ∧ ¬B) ⊃ H1, ∅) = undefined

However, the partial distributions we have defined here are not the final answer to the

problem of probabilistic omniscience, and more research is needed. For example, if

P(r, Ŵ) is defined and A is any sentence involving only the letter r , then P(A, Ŵ) will

also have to be defined. But even this minimal degree of probabilistic omniscience

does not seem to correspond to real agents.

In short, we would like to emphasize that our restrictions on partial probability

distributions are still rather stringent, insofar as modeling actual belief systems is

concerned. In particular, we required that any probability value that could be com-

puted from defined values must not be left undefined. Of course, real people do not

even approximate computational completeness. So although we have made some

progress, there is still room for research on this topic.
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Note

1. If the logic contains quantifiers, the notion of saturated set is a little bit more complex:

∃x A ∈ Ŵ iff A(y/x) ∈ Ŵ for some y such that bla bla bla and ∀x A 6∈ Ŵ iff A(y/x) 6∈ Ŵ

for some y such that bla bla bla, where bla bla bla are specific conditions of no interest

here. For sake of simplicity, we will just consider ∨.
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