
Notre Dame Journal of Formal Logic

Volume 44, Number 1, 2003

Differences between Resource Bounded
Degree Structures

Michael E. Mytilinaios and Theodore A. Slaman

Abstract We exhibit a structural difference between the truth-table degrees of

the sets which are truth-table above 0′ and the PTIME-Turing degrees of all sets.

Though the structures do not have the same isomorphism type, demonstrating

this fact relies on developing their common theory.

1 Introduction

For sets A and B , A is recursive in B (A ≤T B) if and only if there exists an algo-

rithm to compute A given complete information about B . If A and B are recursive

in each other, we say that they have the same Turing degree. The Turing degree of

a set is a measurement of the information which is contained in the diagram of that

set. The Turing degrees are partially ordered by ≤T on their representatives.

By restricting the class of allowed algorithms, we obtain finer notions of degree.

For example, A is truth-table reducible to B (A ≤t t B) if and only if there is a

total recursive function g and an algorithm to compute A from B such that for each

n, the algorithm runs in less than g(n) many steps. The truth-table degrees are the

associated equivalence classes. Similarly, A is PTIME-computable from B if the

function g is a polynomial, and the PTIME-degrees are the associated equivalence

classes. With subexponential time classes, the representation of sets is important;

we will always work with sets of finite binary strings and calculate the run time of

programs in terms of the lengths of their inputs.

In general, if u is a collection of total recursive functions, we say that A ≤u B if

there is a g in u and an algorithm to determine atomic facts about A from B such that

the run time of the algorithm is bounded by g. Typically, u is taken to represent a

natural class of time complexity. We let Dt t denote the partial order of the truth-table

degrees, DPTIME the PTIME-degrees, and Du the u-degrees.

Received December 8, 2002; accepted January 27, 2003; printed April 16, 2004
2000 Mathematics Subject Classification: Primary, 03D28; Secondary, 68Q15

Keywords: Turing degree, polynomial-time degree, truth-table degree

c©2004 University of Notre Dame

1

http://www.nd.edu/~ndjfl
http://www.nd.edu


2 Michael E. Mytilinaios and Theodore A. Slaman

Dt t is an odd member among the above collection of bounded resource degree

structures. The other us are uniformly recursive; that is to say, there is a single

recursive function h(n, m) of two variables such that for every g, g ∈ u if and only if

there is an m such that for all n, g(n) = h(n, m). However, this difference disappears

if we consider Dt t (≥t t0
′), the truth-table degrees of sets above the halting problem,

and let h be recursive in 0′.

Downey raised the question whether moving to the degrees above 0′ removes the

differences between Dt t and the more complexity theoretic degree structures Du .

The answer is both no and yes. We will show that Dt t (≥t t0
′) is not isomorphic to

DPTIME. However, we come to this conclusion by exploiting the extensive similari-

ties between the two structures.

We will show that Dt t (≥t t0
′) and DPTIME are not isomorphic by showing that

Dt t (≥t t0
′) is locally more complicated than DPTIME. For this, we will use finite

sequences p of degrees to specify infinite sequences. Working in Dt t (≥t t 0
′), we will

show that if p specifies the sequence 〈gi : i ∈ ω〉, then there is another finite sequence

q below the join of p such that q specifies the subsequence 〈gi : i ∈ 0′′′〉. However,

in DPTIME, there is a p specifying a sequence 〈gi : i ∈ ω〉 such that for every finite

sequence q below the join of p, q does not specify the subsequence 〈gi : i ∈ 0′′′〉 (in

the sense of the previous sentence).

2 Isomorphism Types

2.1 Defining ω-sequences from parameters

Conventions In Section 2.1, we develop a common part of the theories of

Dt t (≥t t0
′) and DPTIME. The following can be applied equally well in either of

the two, so we will refer simply to D. Similarly, we will let O refer to a representa-

tive of the least element of D: ∅ when D = DPTIME and 0′ when D = Dt t (≥t t0
′).

Finally, we will use uppercase Greek letters, such as 8 and 9 , to denote Turing func-

tionals which correspond to reductions of type D and refer to them as D-functionals.

For example, a DPTIME-functional is a Turing functional that runs in polynomial

time. To keep the notation uncluttered, we will not explicitly join our sets with O,

but we will make the convention that any D-functional can refer to the oracle O.

Definition 2.1

1. An ideal in D is a set I that is closed under join and closed downward.

2. Intersection gives an operation of meet on ideals. Union followed by closure

under D’s join and closure downward gives an operation of join for ideals.

3. Given a k in D, let (k) denote {x : x ≤D k}. Clearly, (k) is an ideal. Simi-

larly, if K is a set of elements in D, let (K) denote the ideal generated by the

elements of K.

There are many ways by which finitely many parameters can be used to generate an

infinite sequence in D. In Definition 2.2, we specify one such method with features

motivated by Shore [6] and Nies et al. [4]. This method is well suited to specifying

subsequences from presentation of sequences.

Definition 2.2 A finite sequence p of elements of D specifies the infinite sequence

〈gi : i ∈ ω〉 if and only if there are sets E1, F1, E2, F2, D1, and D2 which represent

the elements of p in order, and there are sets 〈Gi : i ∈ ω〉 which represent the

elements of 〈gi : i ∈ ω〉 in order, and the following conditions hold.



Differences between Degree Structures 3

1. For any finite set Gn1
, . . . , Gnk and Gm , if for all j ≤ k, n j 6= m, then

({Gn1
, . . . , Gnk }) ∩ (Gm) = (O).

2. (a) D1 6≥D D2, and

(b) for each n ∈ ω, D1 ⊕ Gn ≥D D2.

3. For each n ∈ ω,

(a) if n is odd, then (F1 ⊕ Gn) ∩ (E1) = (Gn+1), and

(b) if n is even, then (F2 ⊕ Gn) ∩ (E2) = (Gn+1).

If p specifies a sequence, then the set of elements of that sequence is not necessarily

first-order definable from p, but it is associated with p in a way that is invariant under

isomorphism.

For the next definition, let p specify the sequence 〈gi : i ∈ ω〉 and adopt the

notation of Definition 2.2. Further, if p = 〈p1, . . . , pk〉 and q is a degree, then let

p⌢〈q〉 denote the sequence 〈p1, . . . , pk, q〉 obtained by appending q to p.

Definition 2.3 Suppose that q is a degree in D and Q is a set of degree q . We say

that the sequence p⌢〈q〉 specifies the subsequence 〈gi : i ∈ S〉 if and only if, for all

i ,

i ∈ S ⇐⇒ (∃X)[Gi ≥D X and X ⊕ D1 ≥D D2 and Q ≥D X].

The technology to control meets in DPTIME was developed in Ambos-Spies [1]. It

was developed further in Shinoda and Slaman [5] and Shore and Slaman [7]. We ap-

ply some of that technology in the next theorem. But first we introduce a Skolemized

version of Definition 2.2.

Definition 2.4 A verified sequence is a finite sequence of D-Turing functionals

〈(21, j ,22, j ,8 j+1) : j < i〉 with these three conditions, where we identify X0 with

G0.

1. For all even j strictly less than i , 21, j (F2 ⊕ X j ) = 22, j (E2) and X j+1 is

their common value.

2. For all odd j strictly less than i , 21, j (F1 ⊕ X j ) = 22, j (E1) and X j+1 is

their common value.

3. For all j strictly less than i , 8 j+1(D1 ⊕ X j+1) = D2.

We can think of a verified sequence as just a finite sequence of numbers, the indices

of the functionals. If 〈(21, j ,22, j ,8 j+1) : j < i〉 is a verified sequence, then each

X j+1 named above is a nontrivial element of (G j+1). In the other direction, for

every i , Gi is the last element of some verified sequence.

Theorem 2.5 Suppose that p specifies the sequence 〈gi : i ∈ ω〉 in D. Let P be a

representative of the join of representatives of p. For S ⊆ ω, the following conditions

are equivalent.

1. S is 60
2(P).

2. There is a Q of degree q such that P ≥D Q and p⌢〈q〉 specifies the subse-

quence 〈gi : i ∈ S〉.

Proof We begin with (1). Let us suppose that there is a Q of degree q such that

P ≥D Q and p⌢〈q〉 specifies the subsequence 〈gi : i ∈ S〉. Then

i ∈ S ⇐⇒ (∃X)[Gi ≥D X and X ⊕ D1 ≥D D2 and Q ≥D X].



4 Michael E. Mytilinaios and Theodore A. Slaman

First, we can expand the right-hand side of the equivalence so that

i ∈ S ⇐⇒ There are 91, 92, and 8 such that

92(91(Gi ) ⊕ D1) = D2 and 8(Q) = 91(Gi ),

where 91, 92, and 8 are D-functionals. Second, the ideal below Gi is characterized

by the recursion relations in Definition 2.2. So, saying that there is a 91 such that

91(Gi ) has a certain property can also be expressed as follows. We can say that

there is a verified sequence ending with X i such that X i has the property in question.

Equality between D-Turing reductions is 50
1 relative to P; the existence of the X j s

can be asserted by the existence of a vector of indices for D-Turing reductions; and

so, the reformulation of the right-hand side is a 60
2(P) property.

Part (2) of the proof of Theorem 2.5 is the construction of an appropriate Q. We

will describe the strategies involved and then discuss a construction combining them.

Suppose that S is 60
2(P), and let R be a bounded formula such that for all i , i ∈ S

if and only if ∃n∀m R(i, n, m, P). For the moment, let us focus on satisfying the

statement ‘If 〈(21, j ,22, j ,8 j+1) : j < i〉 is a verified sequence, then Q ≥D X i if

and only if i ∈ S ’.

Our strategy to satisfy this statement will have two types of substrategies which

we will describe in isolation. Before we describe these, we discuss some mechanical

preliminaries.

In the first type of substrategy, we will work with a number n and approximate

whether ∀m R(i, n, m, P). For this, we will do the first s-many computational steps

of the process to check whether R(i, n, 0, P), R(i, n, 1, P), R(i, n, 2, P), and so on.

We say that ∀m R(i, n, m, P) is verified up to stage s if and only if this s-step process

does not reveal an m such that R(i, n, m, P) is not true.

In both types of substrategy, we will approximate verified sequences. We let X0

denote G0. We say that a sequence 〈(21, j ,22, j ,8 j+1) : j < i〉 is verified up to s

provided that all of the equalities in the list

1. For all even j strictly less than i , 21, j (F2 ⊕ X j ) = 22, j (E2) and we let

X j+1 denote common value.

2. For all odd j strictly less than i , 21, j (F1 ⊕ X j ) = 22, j (E1) and we let X j+1

denote their common value.

3. For all j strictly less than i , 8 j+1(D1 ⊕ X j+1) = D2.

hold on the set of computations that can be verified in s many steps. Clearly,

〈(21, j ,22, j ,8 j+1) : j < i〉 defines a verified sequence if and only if for every

s it is verified up to s.

We are not being specific about what we mean by the set of computations that

can be verified in s many steps. Our construction is not sensitive on this point. Fix

any recursive method to eventually check through all of the above identities at all

possible arguments, no matter how inefficient. Then take “the first s many steps” to

mean the first s many steps in this recursive process.

We will describe our construction as occurring in stages. Stage s will consist of

calculating for all σ of length s, whether σ is an element of Q. For each such σ , this

calculation will have length a constant multiple of s2. We note that membership in

Q has been decided for strings of length less than s and that we can use information

about Q on short strings provided that we can compute that information within our

s2 time bound.



Differences between Degree Structures 5

Coding Fix the sequence 〈(21, j ,22, j ,8 j+1) : j < i〉 and a number n. The coding

substrategy acts as follows to ensure that if 〈(21, j ,22, j ,8 j+1) : j < i〉 is a verified

sequence and (∀m)R(i, n, m, P) then Q ≥D X i .

It chooses a finite binary string σ , unused by any other substrategy. Looking

across all stages, its action breaks into two states.

State 1 If 〈(21, j ,22, j ,8 j+1) : j < i〉 is verified up to s and no counterexample

(m) to (∀m)R(i, n, m, P) is discovered within a search of s steps, then the coding

substrategy acts as follows. Given a string σ⌢τ ∗ of length s, it checks whether τ ∗ is

the concatenation of a sequence of 0s of length the run time of the computation rel-

ative to the appropriate (depending on the parity of i ) Ek used to determine whether

τ ∈ X i , 1, and then τ . If this is the case, then it sets

σ⌢τ ∗ ∈ Q ⇐⇒ τ ∈ X i .

Otherwise, it sets σ⌢τ ∗ 6∈ Q. Note that τ and X i (τ ) can be computed a constant

multiple of s many steps from τ ∗ and the appropriate Ek .

State 2 If during stage s 〈(21, j ,22, j ,8 j+1) : j < i〉 is not verified up to s or

if in less than n-steps we discover an m such that R(i, n, m, P), then the coding

substrategy imposes the constraint that for all σ⌢τ ∗ of length s, σ⌢τ ∗ 6∈ Q.

Effect If 〈(21, j ,22, j ,8 j+1) : j < i〉 is a verified sequence, then the coding sub-

strategy ensures that X i is D-computable from Q. Otherwise, its effect on the con-

struction of Q is to ensure that there are only finitely many extensions of σ that

belong to Q.

Diagonalization Our substrategy here is analogous to similar strategies found in

Ladner [3]. Suppose that we are given a sequence 〈(21, j ,22, j ,8 j+1) : j < i〉. The

diagonalization substrategy acts to ensure that if the sequence is a verified sequence

then 2(Q) 6= X i . It affects the construction as follows.

State 1 First, it checks whether 〈(21, j ,22, j ,8 j+1) : j < i〉 is verified up to s.

If so then it runs the first s many steps to check whether there is a counterexample

to 2(Q) = X i . (Note that we restrict P’s simulating queries to Q so that those

queries are on arguments of length less than s.) If no counterexample is found, then

the diagonalization substrategy requires that for all σ of length s, σ ∈ Q if and

only if σ is required to be in Q by virtue of a coding substrategy which has higher

priority than it does. (We will organize our construction so that there are only finitely

many strategies of higher priority than this one. We will also ensure that none of the

strategies of higher priority code nontrivial sets D-below Gi .)

State 2 If either 〈(21, j ,22, j ,8 j+1) : j < i〉 is not verified up to s or the diago-

nalization discovers a counterexample to 2(Q) = X i , then it imposes no constraint

on the construction during stage s.

Effect The diagonalization substrategy starts by imposing a constraint that, if per-

manent, would ensure that Q is in the ideal generated from the sets coded by the

higher priority coding substrategies. Further, if this constraint were permanent, then

the verified sequence for X i would ensure that X i is a nontrivial element of (Gi ) and

the substrategy’s never finding a counterexample to 2(Q) = X i would ensure that

X i is in the ideal generated by these coded sets. Consequently, if X i is not below the

join of the sets coded into Q by the action of higher priority coding substrategies,

then the diagonalization strategy cannot stay in State 1 indefinitely.



6 Michael E. Mytilinaios and Theodore A. Slaman

The global strategy for 〈(21, j , 22, j , 8 j+1) : j < i〉 Now we discuss the global

strategy G to ensure that if 〈(21, j ,22, j ,8 j+1) : j < i〉 is a verified sequence, then

Q ≥D X i if and only if i ∈ S. (Recall that R is a bounded formula such that for all

i , i ∈ S if and only if ∃n∀m R(i, n, m, P).)

The first action of G is to compute what we will call its state as follows. G first

computes whether 〈(21, j ,22, j ,8 j+1) : j < i〉 is verified up to s. If the sequence

is not verified up to s, then we say that G is canceled during stage s and let canceled

be its state during stage s. If it is not canceled, then beginning with n equal to 0, G

performs the first s computational steps in the following recursion. (Below, we refer

to a standard recursive enumeration of the D-functionals 〈2n : n ∈ ω〉.)

1. If there is an m less than s such that ¬R(i, n, m, P) then (n, 1) is not the state

of G.

2. If there is an x less than s such that 2n(x, Q) 6= X i (x) then the state of G is

not (n, 2).

If G rules out both states (n, 1) and (n, 2) then it increases the value of n by one and

repeats the process.

If G is not canceled, the state of G during stage s is the first pair (n, j) not ruled

out above. It points to the substrategy that we should use for the sake of G during

stage s.

If G is canceled, then it does not impose any constraints on the construction.

Otherwise let (n, j) denote the state of G during stage s. If j is equal to 1, then

G acts to enforce the state-1 constraints of the coding strategy on all strings τ of

length s. If j is equal to 2, then G acts to enforce the state-1 constraints of the

diagonalization strategy on all strings τ of length s.

Now we describe our full construction of Q.

Assigning priority Fix a recursive enumeration of all sequences of indices for pos-

sible verified sequences 〈(21, j ,22, j ,8 j+1) : j < i〉. Of course, some of these may

not actually denote verified sequences as they may fail to satisfy one of the appropri-

ate equalities between terms. We let Ge denote the strategy associated with the eth

such sequence (denoted 〈(2e,1, j ,2e,2, j ,8e, j+1, Xe, j+1) : j < ie〉).

For distinct strategies Ge1
and Ge2

, we say that Ge1
in state (n1, k1) has higher

priority than Ge2
in state (n2, k2) if and only if either the maximum of {e1, n1} is

less than the maximum of {e2, n2} or their maxima are equal and e1 is less than e2.

Clearly, for each Ge1
and state (n1, k1), there are only finitely many Ge2

s and states

(n2, k2) which have higher priority.

Defining Q on sequences of length s During each stage s of our construction, we

work through the following steps in order.

1. For each i less than s, we compute the state of Gi during stage s.

2. We order the strategies in their stage-s states according to the priority given

above. Let Ge in stage-s state (ne, 2) have the highest priority among all of

these whose states have the form (n j , 2) and for which there is no higher

priority Ge1
in stage-s state (ne1

, 1) for which ie = ie1
. In other words, Ge

in stage-s state (ne, 2) has the highest priority among those strategies/states

Ge1
/(ne1

, 2) for which there is no higher priority strategy/state which would

code a nontrivial element of (Gie1
) into Q.



Differences between Degree Structures 7

3. Finally, if σ has length s, then σ is an element of Q if and only if some coding

strategy Ge1
in a stage-s state of higher than or equal priority than that of Ge

requires that σ belong to Q.

To summarize, we find the highest priority strategy/diagonalization-state pair

Ge/(ne, 2) which is working on a value of i for which there is no higher priority

active coding strategy, and we restrict ourselves to using only those strategy/coding-

state pairs of higher priority than Ge/(ne, 2). We say that Ge/(ne, 2) and these

strategies in their coding states are active during stage s.

Verifying that Q has the requisite properties First, we observe that P ≥D Q. Sup-

pose that σ is a string of length s. For each i less than s, we calculate the stage-s

state of Gi by simulating two s-step computations, one to test whether to cancel Gi

and one to determine its (n, j) state. Thus the calculation of the strategy/state pairs

which are active during stage s is done in a constant multiple of s2 many steps. We

then determine whether σ is an element of Q by checking whether it is put into Q

for a strategy which is active during stage s. As we indicated earlier, whether σ is to

be put into Q by an active coding strategy can be determined in linear time relative

to E1 and E2. Consequently, whether σ belongs to Q is computable from P in a

constant multiple of s2 many steps, and so P ≥D Q.

We now have a finite injury argument to show that Q satisfies a sufficient set

of requirements. To begin, for each strategy and each state which that strategy can

achieve, there are only finitely many strategy/state pairs of higher priority. Further,

for all strategies Ge and states (n, j), if (n, j) is ruled out for Ge during stage s, then

it is ruled out during every subsequent stage (for the same reason that it was ruled

out during stage s).

We claim that no strategy Ge can reach a state (ne, 2) and remain actively in that

state during all subsequent stages. For the sake of a contradiction, suppose that the

claim is false. Let Ge and state (ne, 2) be the highest priority counterexample. Since

Ge remains in state (ne, 2), its sequence 〈(2e,1, j ,2e,2, j ,8e, j+1, Xe, j+1) : j < ie〉)

must be verified up to s during every stage s, and so be a verified sequence. In

particular, Xe,ie is a nontrivial member of (Gie ). Choose a stage s so that Ge is in

state (ne, 2) during stage s and so that every strategy in a stage-s state (n, 2) with

no active, higher priority, coding strategy has lower priority than Ge/(ne, 2) does.

By the choice of Ge, (ne, 2), and s, if t is greater than or equal to s and if Ge1
is in

a coding state of higher priority than Ge in state (ne, 2), then ie1
is not equal to ie.

Consequently, the join of the sets being coded into Q by strategies of higher priority

is below a finite join of Gi s such that i is not equal to ie. Since the degrees of the

sets Gi are part of the sequence specified by p (see Definition 2.2), any set below the

finite join above Gie has trivial D-degree. Since Xe,ie is the last element of a verified

sequence, Xe,ie is not trivial and Xe,ie ∈ (Gie ). Thus, Xe,ie is not below the join of

the coded sets. Once the construction computes the witness to this effect and rules

out the state (ne, 2) for Ge, as claimed.

By the previous paragraph, no strategy can remain in an active diagonalization

state indefinitely. Suppose that 〈(2e,1, j ,2e,2, j ,8e, j+1) : j < ie〉 is a verified

sequence such that ie = i and that (∀n)(∃m)¬R(i, n, m). By the first assumption,

Ge will have a state of the form (n, j) during every stage of the construction greater

than or equal to e. We let n∗ be fixed for the moment and we show that 2n∗(Q) 6= X i .

Since the (n, 1) states of any Ge1
with ie1

= i are discarded when the construction



8 Michael E. Mytilinaios and Theodore A. Slaman

finds that (∃m)¬R(ie, n, m), no such Ge1
can be in one of these states indefinitely:

either the construction discovers that 〈(2e1,1, j ,2e1,2, j ,8e1, j+1) : j < ie1
〉 fails to

be verified up to the current stage or it discovers that (∃m)¬R(ie, n, m). So there

is a stage t after which every Ge1
with ie1

= ie rules out all of the states (n1, 1)

of higher priority than that of Ge in state (n∗, 2). Since no strategy can remain in

an active diagonalization state indefinitely and no state can be repeated once it is

ruled out, there is an even larger stage such that for all later stages, if Ge is in state

(n∗, 2) then it will be active. Since it cannot be active indefinitely, there must be a

stage during which we rule out the state (n∗, 2) for Ge and this can only happen by

finding a string σ and a computation showing that 2n∗(σ, Q) is not equal to Xe,i (σ ).

Consequently, if (∀n)(∃m)¬R(i, n, m) and 〈(2e,1, j ,2e,2, j ,8e, j+1) : j < ie〉 is a

verified sequence such that ie = i , then 2n∗(Q) 6= X i . Since n∗ was arbitrary, if

(∀n)(∃m)¬R(i, n, m) and 〈(2e,1, j ,2e,2, j ,8e, j+1) : j < ie〉 is a verified sequence

such that ie = i then Q 6≥D X i , as required.

Dually, suppose that 〈(2e,1, j ,2e,2, j ,8e, j+1) : j < ie〉 is a verified sequence

such that ie = i and that (∃n)(∀m)¬R(i, n, m). Let ni be the smallest number n

such that (∀m)¬R(i, n, m). Arguing as above, either there is a stage s such that all

of the higher priority states of Ge are ruled out during every stage after s or there is

a higher priority strategy/coding-state Ge1
which is active indefinitely and for which

ie1
= i . All of the strategy/diagonalization-states of higher priority than Ge in state

(ni , 1) which are ever active are eventually ruled out. If Ge is ever made active in

state (ni , 1) it will be active during every subsequent stage. Consequently, either Ge

in state (ni , 1) is active indefinitely or there is a higher priority strategy/coding-state

Ge1
which is active indefinitely and for which ie1

= i . (Note that the coding of Xe1

into Q could keep Ge in an earlier diagonalization state. However, in this case, we

need not argue that Ge codes Xe,i into Q.)

Consequently, there is an e∗ and a verified sequence ending with Xe∗,i such that

Q ≥D X ie∗ , as required in this case. Thus Q satisfies the requirements necessary to

verify part (2) of Theorem 2.5. �

Next we show that it is possible for parameters to specify sequences. The following

theorem is not the best possible, in fact stronger results appear in [7], but it is suffi-

cient for our application. We include a direct proof of Theorem 2.6 here, since it is

relatively short and avoids the complexities of [7] that are not relevant here.

Theorem 2.6 There are sets E1, F1, E2, F2, D1, and D2 such that the following

conditions hold.

1. The degrees of E1, F1, E2, F2, D1, and D2 specify a sequence.

2. The Turing jump of the join of all of these sets is recursive in the Turing jump

of the least element of D.

Proof Recall our notation, O is a representative of the least element of D. We build

E1, F1, E2, F2, D1, and D2 by an effective forcing construction so that the Turing

jump of their join is recursive in O ′.

We partition the set of finite binary strings with at least one nonzero value into

an infinite set of isomorphic copies of the set of all binary strings. Let 〈0i 1〉 be the

binary sequence with i -many 0s followed by a 1. For a set X , we let X i denote

the set of strings σ such that σ is in X and σ is an extension of 〈0i 1〉. We will let

G2 j = E
2 j
1 and G2 j+1 = E

2 j+1
2 , and so by specifying E1 and E2 we will implicitly



Differences between Degree Structures 9

specify all of the elements of {Gi : i ∈ ω} as well. Note that we have ensured that

distinct Gi s have empty intersection and that the set theoretic union of any set of Gi s

is a PTIME-upper bound for the ideal which they generate.

The forcing partial order A condition p in P specifies finitely much about the sets

E1, F1, E2, F2, D1, and D2. The information specified must satisfy the following

conditions.

1. (a) If p specifies D2(σ ), Gi (〈0
i 1〉

⌢
σ), and D1(〈0

i 1〉
⌢

σ), then

D2(σ ) =

{

0, if D1(〈0
i 1〉

⌢
σ) = Gi (〈0

i 1〉
⌢

σ);

1, otherwise.

(b) Further, if p specifies two of the above three values, then it specifies the

remaining one.

2. (a) If i > 0 is odd and p specifies Gi (〈0
i 1〉

⌢
σ), F1(〈0

i 1〉
⌢

σ), and

Gi+1(〈0
i+11〉

⌢
σ), then

Gi+1(〈0
i 1〉

⌢
σ) =

{

0, if F1(〈0
i 1〉

⌢
σ) = Gi (〈0

i 1〉
⌢

σ);

1, otherwise.

(b) If i > 0 is even and p specifies Gi (〈0
i 1〉

⌢
σ), F2(〈0

i 1〉
⌢

σ), and

Gi+1(〈0
i+11〉

⌢
σ), then

Gi+1(〈0
i+11〉

⌢
σ) =

{

0, if F2(〈0
i 1〉

⌢
σ) = Gi (〈0

i 1〉
⌢

σ);

1, otherwise.

(c) In each of the above cases, if p specifies two of the above three values,

then it specifies the remaining one.

Conditions are ordered by inclusion.

Properties of a generic set The instances of comparability required to specify a

sequence are built into the partial order. Additionally, there is enough flexibility

in the partial order so that the other properties required by Definition 2.2 can be

ensured by deciding 60
1 (O) sentences about the sets constructed. Specifically, we

must satisfy the following requirements.

D-requirements For each D-functional 2, 2(D1) 6= D2.

FE-requirements For each pair of D-functionals 81 and 82 and each i ,

(a) if i is odd and 81(F1Gi ) = 82(E1), then there is a D-functional 1

such that 1(Gi+1) = 82(E1), and

(b) if i is even and 81(F2Gi ) = 82(E2), then there is a D-functional

1 such that 1(Gi+1) = 82(E1).

D-requirements Consider the first of these requirements. Suppose that p is a con-

dition. Choose σ so that p does not specify D2(σ ), and for all i , p does not specify

Gi (〈0
i 1〉

⌢
σ) or D1(〈0

i 1〉
⌢

σ). We first extend p’s specification of D1 so as to deter-

mine the value of 2(σ, D1). Then we extend p’s specification of D2 so that D2(σ )

is different from the value of 2(σ, D1). We extend the specification of the Gi s to

ensure that D1 ⊕ Gi codes D2 in the manner prescribed in (1a). Finally we extend

F1 and F2 so as to respect (2a) and (2b). Given p, we can find the desired extension

recursively in O.



10 Michael E. Mytilinaios and Theodore A. Slaman

FE-requirements Now consider the first instance of the second requirement, when

i is odd. Suppose that p is a condition. By making a finite extension of p, we may

assume that for all σ and all i , if either of F1(〈0
i 1〉

⌢
σ) or F2(〈0

i 1〉
⌢

σ) is specified

by p, then so are Gi (σ ), and Gi+1(σ ). We consider two cases.

Case 1 For any string σ and any two conditions q1 and q2 which extend p and

agree on the values specified for Gi+1, the values of 82(σ, E1) determined by the

conditions are equal.

But then, for any way to extend the values of p onto the G j s, there is an extension

of the values of F1, F2, D1, and D2 which produces a condition. Consequently p

forces that Gi+1 can compute the value of 82(σ, E1): the value of 82(σ, E1) is

equal to that of 82(σ, E p), where E p is the set whose only elements are the union

of Gi+1 with the set of elements specified to belong to E1 by p.

Case 2 There is a string σ and two conditions q1 and q2 which extend p and agree

on the values specified for Gi+1 such that the values of 82(σ, E1) determined by the

conditions are not equal, and we fix such.

By making a finite extension of q1, we may assume that q1 specifies enough of

F1 and Gi to determine the value of 81(σ, F1 ⊕ Gi ). If this value is different from

82(E1), then our requirement is satisfied. Otherwise, we proceed as follows to con-

struct a condition r such that r specifies the same values for F1 and Gi as q1 does,

and r specifies the values for E1 that q2 does. We start with q1. We change the values

specified for E1 so as to agree with those specified by q2; since q1 and q2 specify the

same values for Gi+1, this does not change the specification of Gi+1. Thus we have

changed the specification of some of the G j s with j even. We change the values of

the G j s for j odd in order to make F1 ⊕ G j correctly code the new values of G j+1.

Note that though we may change some of the G j s for j even, we do not change Gi ,

since F1 ⊕ Gi already codes Gi+1. We change the values of F2 in order to make

F2 ⊕ G j correctly code the new values of the G j+1s for j even. Finally, we change

D1 so that for all j , D1 ⊕ G j correctly codes D2. In short, we can change all of the

even G j s with j 6= i + 1 and shunt the feedback away for F1 ⊕ Gi . The condition r

ensures that 81(σ, F1 ⊕ Gi ) 6= 82(σ, E1).

In either case, the requirement is satisfied. The split into cases is 60
1(O); and in

the second case, we can find the condition r uniformly recursively in O ′.

Turing jump requirements Controlling the jump is a standard feature of construc-

tions of this sort; see Jockusch [2]. We can ensure that the join of the sets that we

produce has Turing jump recursive in O ′ by ensuring that every 60
1 sentence about

these sets is decided by an element of our partial order.

The construction For each of our requirements, we can go from a condition p to a

condition q such that the requirement is satisfied for any sets extending q . Further,

we can find q from p and the requirement recursively relative to O ′. Consequently,

we can use recursion to construct sets of the desired sort, satisfying the requirements

one after the other. �

2.2 Comparing Dt t(≥t t0
′) and DPTIME

Theorem 2.7 Dt t (≥t t0
′) and DPTIME are not isomorphic.

Proof First consider Dt t (≥t t 0
′). Every element of Dt t (≥t t0

′) can compute 0′, and

so 0′′′ is 60
2 in every representative of an element of Dt t (≥t t 0

′). By Theorem 2.5 , if



Differences between Degree Structures 11

p specifies a sequence 〈gi : i ∈ ω〉 in Dt t (≥t t0
′), then there is a q below the join of

p such that p⌢〈q〉 specifies the subsequence 〈gi : i ∈ 0′′′〉.

Now consider DPTIME. Let p be the sequence of parameters produced in Theo-

rem 2.6. By clause (1) of Theorem 2.6, p specifies a sequence 〈gi : i ∈ ω〉 in DPTIME.

By clause (2), the Turing jump of join of the representatives of p is recursive in 0′.

Consequently, if q is below the join of p in DPTIME and Q is a representative of Q,

then any set 60
2 (Q) is 60

2 . But then, since 0′′′ is not 60
2 , Theorem 2.5 implies that the

subsequence 〈gi : i ∈ 0′′′〉 is not represented by any q below the join of the elements

of p. �

3 Conclusion

We have shown that Dt t (≥t t0
′) and DPTIME are not isomorphic. We firmly believe

that these structures have different first-order theories. We believe that one could

find a difference between their theories by extending the apparatus of specifying se-

quences to an apparatus of specifying standard models of arithmetic. The structural

difference between the two structures would then be expressed in the first-order lan-

guage of these structures. DPTIME would have a sequence of parameters specifying a

standard model of arithmetic such that no q below the parameters specifies the com-

plete 60
3 predicate on that model. In Dt t (≥t t0

′), the opposite would be true. One

could attempt to apply the techniques in [5] in order to carry out this proposal.

The difference found between Dt t (≥t t0
′) and DPTIME comes from the large dif-

ference in the Turing degrees of their least elements. Our methods do not answer the

following question.

Question 3.1 Let DELEM be the elementary-time Turing degrees. Is DPTIME iso-

morphic to DELEM?

References

[1] Ambos-Spies, K., “Minimal pairs for polynomial time reducibilities,” pp. 1–13 in Com-

putation Theory and Logic, vol. 270 of Lecture Notes in Computer Science, Springer,

Berlin, 1987. Zbl 0637.03038. MR 88j:03025. 3

[2] Jockusch, C. G., Jr., “Degrees of generic sets,” pp. 110–39 in Recursion Theory: Its

Generalisation and Applications (Proceedings of the Logic Colloquium, University of

Leeds, Leeds, 1979), edited by F. R. Drake and S. S. Wainer, vol. 45 of London Math-

ematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1980.

Zbl 0457.03042. MR 83i:03070. 10

[3] Ladner, R., “On the structure of polynomial time reducibility,” Journal of the Association

for Computing Machinery, vol. 22 (1975), pp. 155–71. Zbl 0322.68028. MR 57:4623. 5

[4] Nies, A., R. A. Shore, and T. A. Slaman, “Interpretability and definability in the re-

cursively enumerable degrees,” Proceedings of the London Mathematical Society. Third

Series, vol. 77 (1998), pp. 241–91. Zbl 0904.03028. MR 99m:03083. 2

[5] Shinoda, J., and T. A. Slaman, “On the theory of the PTIME degrees of the recursive sets,”

Journal of Computer and System Sciences, vol. 41 (1990), pp. 321–66. Zbl 0715.68040.

MR 92b:03049. 3, 11

http://www.emis.de/cgi-bin/MATH-item?0637.03038
http://www.ams.org/mathscinet-getitem?mr=88j:03025
http://www.emis.de/cgi-bin/MATH-item?0457.03042
http://www.ams.org/mathscinet-getitem?mr=83i:03070
http://www.emis.de/cgi-bin/MATH-item?0322.68028
http://www.ams.org/mathscinet-getitem?mr=57:4623
http://www.emis.de/cgi-bin/MATH-item?0904.03028
http://www.ams.org/mathscinet-getitem?mr=99m:03083
http://www.emis.de/cgi-bin/MATH-item?0715.68040
http://www.ams.org/mathscinet-getitem?mr=92b:03049


12 Michael E. Mytilinaios and Theodore A. Slaman

[6] Shore, R. A., “The theory of the degrees below 0′,” The Journal of the London Mathemat-

ical Society. Second Series, vol. 24 (1981), pp. 1–14. Zbl 0469.03027. MR 83m:03051.

2

[7] Shore, R. A., and T. A. Slaman, “The p-T -degrees of the recursive sets: Lattice embed-

dings, extensions of embeddings and the two-quantifier theory,” Theoretical Computer

Science, vol. 97 (1992), pp. 263–84. Zbl 0774.03028. MR 93e:03061. 3, 8

Acknowledgments

During the preparation of this paper, Slaman was partially supported by the Alexander

von Humboldt Foundation and by National Science Foundation Grant DMS-9988644.

Department of Informatics
Athens University of Economics and Business
Patission 76
10434 Athens
GREECE
xar@aueb.gr

Department of Mathematics
University of California at Berkeley
719 Evans Hall #3840
Berkeley CA 94720-3840
slaman@math.berkeley.edu

http://www.emis.de/cgi-bin/MATH-item?0469.03027
http://www.ams.org/mathscinet-getitem?mr=83m:03051
http://www.emis.de/cgi-bin/MATH-item?0774.03028
http://www.ams.org/mathscinet-getitem?mr=93e:03061
mailto:xar@aueb.gr
mailto:slaman@math.berkeley.edu

	1. Introduction
	2. Isomorphism Types
	2.1. Defining -sequences from parameters
	2.2. Comparing Dtt(tt0') and DPTIME

	3. Conclusion
	References
	Acknowledgments

