
Notre Dame Journal of Formal Logic

Volume 43, Number 4, 2002

Investigations into Quantified Modal Logic

Yannis Stephanou

Abstract The paper discusses several first-order modal logics that extend the
classical predicate calculus. The model theory involves possible worlds with
world-variable domains. The logics rely on the philosophical tenet known as
serious actualism in that within modal contexts they allow existential generaliza-
tion from atomic formulas. The language may or may not have a sign of identity,
includes no primitive existence predicate, and has individual constants. Some
logics correspond to various standard constraints on the accessibility relation,
whereas others correspond to various constraints on the domains of the worlds.
Soundness and strong completeness are proved in every case; a novel method is
used for proving completeness.

1 Introduction

This paper presents a number of first-order modal logics. To justify discussion of
a logical system, we may show what requirements the system fulfils. The main re-
quirements to be fulfilled by the logics which will be presented here are that the
model theory should involve possible worlds with world-variable domains, the non-
modal fragment of each logic should be a version of the classical predicate calculus
with or without identity, and all logics should conform to serious actualism.

The model theory that involves possible worlds is more familiar than other ways
of defining models for modal logic, and at least in that respect it is more convenient
and so preferable. Its version adopted here is characterized by world-variable do-
mains: each world is assigned a set of objects which may vary between worlds, and
a formula (∀x)A[x] counts as true at a world w if and only if A[x] is true at w of all
the objects in the set assigned to w. I adopted that version because I did not wish
to include all the instances of the Barcan Formula, (∀x)�A → �(∀x)A, and the
instances of the Converse Barcan Formula, �(∀x)A → (∀x)�A, in all the logics we
shall discuss.
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There are well-known intuitive counterexamples to the Barcan Formula. For ex-
ample, let us use the demonstrative ‘these’ to refer to all the entities there are, without
any restriction. It seems clear that every being x is such that, necessarily, if these ex-
ist then x is one of them, but it also seems clear that there could have been something
x such that these existed but x was not one of them. For there could have been some-
thing that does not in fact exist. There are also well-known intuitive counterexamples
to the Converse Barcan Formula. Let us consider any ordinary material object x . It
seems clear that x might not have existed, although necessarily every being exists.
Our intuitions strongly support the idea that there are many contingent beings and
the idea that there could have been things which do not actually exist. If our intu-
itions have not gone awry here, we should not admit all the instances of the Barcan
Formula and the Converse Barcan Formula in our preferred first-order modal logic.

The model theory I chose is put forward as just a set-theoretic way of defining
some logics. There is no suggestion that it reflects the structure of modal reality
or the relation between modal reality and interpreted language. The term ‘worlds’
is used here because it has become standard and not because the model theory is
intended to be about possible worlds in a philosophically substantial sense of the
word. So the model theory should not be judged by how well it captures the relations
between language and modal reality.

The model theory might be justified by the logics it defines, although this paper
will not provide such a justification. A logic is a class of formulas which arguably
express the logical principles governing some concepts (or at least is similar, from a
formal point of view, to such a class of formulas). A model theory introduces one
or more notions of a valid formula, and the extension of any such notion is a logic.
The best way of justifying a definition of validity is to find some concepts whose
logical properties may interest us and to show that the formulas that come under
the definition express just the logical principles governing the interaction of those
concepts. The model theory itself could then be justified because it included such
definitions.

The second requirement to be fulfilled by the logics discussed in this paper is that
their nonmodal fragment should be classical. Even if one has philosophical objec-
tions to the classical predicate calculus, one cannot deny that it has been central to
both mathematics and philosophy. Most mathematical theories can be couched in a
framework provided by classical first-order logic, and when a philosophical discus-
sion presupposes a first-order logic it is normally classical. Thus, however interesting
the first-order modal logics may be whose nonmodal fragment is not classical, there
is clearly a need for logics whose nonmodal fragment is classical.

That need has not yet been fully met. When the model theory involves possi-
ble worlds with a constant domain the nonmodal fragment of the resulting logics
is classical, but when the domains vary from world to world the resulting logics are
usually based on some free logic or other. Two exceptions are Kripke [6] and Menzel
[7]. The nonmodal fragment of any system in [6] is not free, but it is not classical
either. It is an inclusive logic, a logic that admits the empty domain; so the sys-
tems exclude the classical theorem (x)Px → (∃x)Px . Moreover, there is a double
restriction on Kripke’s logics: the language has no individual constants, and open
formulas are not accepted as theorems. As long as that double restriction applies,
the peculiarities of free logic cannot appear. And if we admit either open formulas
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as theorems or individual constants, an inclusive logic based on a classical proposi-
tional (nonmodal) system is inevitably free. For the inclusive logic, in order to avoid
(x)Px → (∃x)Px , must exclude at least one of the classical theorems (x)Px → Pa
and Pa → (∃x)Px , as well as at least one of (x)Px → Px and Px → (∃x)Px .
On the other hand, the nonmodal fragment of system A in the appendix to [7] is a
formulation of the classical predicate calculus with identity. A is based on S5, which
will play a peripheral part in this paper.1

The requirement that every one of the logics to be discussed should have a classi-
cal nonmodal fragment suggests that the language should have no primitive existence
predicate. Of course, we can formulate a nonmodal logic that employs such a pred-
icate and otherwise does not differ from a usual version of the classical predicate
calculus. That logic would presumably be classical. Yet standard formulations of the
classical predicate calculus have no primitive existence predicate, and for this reason
no such predicate will be used here. Also, our language will have individual con-
stants (which are treated as rigid designators because they are intended as schematic
letters for proper names) but not function symbols. It seems that any expression
that we may be inclined to render through a function symbol can be accommodated,
when we formalize modal discourse, in terms of definite descriptions analyzable in
Russell’s style.

Serious actualism is the principle that, for every being x and every property
ϕ, it is necessarily the case that if x has ϕ then x exists. Its main proponent is
Plantinga (see [8], pp. 11–15 and [9], pp. 316–23 and pp. 344–49). The logics
we shall discuss conform to this principle in that within modal contexts they al-
low existential generalization from atomic formulas. More specifically, the for-
mulas of the form (∀x)�[F. . .x . . . → (∃x)F. . . x . . .] are theorems (or rather, by
definition abbreviate theorems) in all those logics; and the formulas of the form
(∀x)�[F. . .x . . . → (∃y)[x = y]] abbreviate theorems in all the logics with iden-
tity. Every predicate letter F is a schematic letter for predicates, and a predicate
expresses a property or relation. Thus, if we accept serious actualism and the anal-
ogous principle about relations, then we should endorse those theorems. Since exis-
tential generalization from atomic formulas is allowed even within modal contexts,
the model theory has local predicates: for every world w in any model and for every
k-place predicate letter F, the value of F at w contains only k-tuples of members of
the domain of w.

Serious actualism is controversial. Pollock ([10], pp. 126–29) and Fine ([1],
pp. 160–71) have objected to it; Forbes ([3], chap. 3) argued for a version re-
stricted to unstructured properties and relations. I will not defend serious actualism
here. I hope to show elsewhere that it is right and that formulas of the form
(∀x)�[F. . .x . . . → (∃x)F. . .x . . .] or the form (∀x)�[F. . .x . . . → (∃y)[x = y]]

should be admitted in our preferred first-order modal logic. This paper must be
seen as articulating a number of formal systems which conform to a philosophical
position that is under debate.

As usual, each logic will be specified both model-theoretically and axiomatically,
and completeness will be proved. When we prove completeness in first-order modal
logic, we usually specify a property of sets of well-formed formulas, show how a
consistent set of such formulas can be extended to a maximal consistent set with
that property, and consider the class of all the maximal consistent sets that have the
property. The property is normally to do with quantifiers, and the class we consider
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is used as the class of worlds in a canonical model. The two methods for proving
completeness which are presented both in Hughes and Cresswell ([5], chap. 16) and
in Garson [4] are of that kind. However, rather than take the class of all the maximal
consistent sets having a specified property, we can start with a consistent set of well-
formed formulas and construct a class of maximal consistent sets which can then be
used as the class of worlds in a canonical model. Constructing the class of worlds
may render the proof of completeness more complicated but should allow us greater
flexibility in giving the class the desirable features. Both the method I shall employ
here and the method used in Fine [2] are of this second kind. When we construct
the class of maximal consistent sets according to the method in [2], at each stage we
form a class W that effectively has the following feature: {♦[A1 ∧ · · · ∧ Ai ] : there is
a set w ∈ W that contains all the formulas A1, . . . ,Ai } is consistent. In the context
of S5, that feature contributes greatly to making the class of maximal consistent sets
suitable for use in a canonical model. When we construct the class according to the
method I shall employ here, at no stage do we try to form a class with that feature.
At the end of the construction the class is, however, suitable for use in a canonical
model; in particular, it is such that if one of its members, w, contains a well-formed
formula ¬�A, then eitherw or another one of its members contains ¬A and includes
{B : �B ∈ w}.

There are two sections in the paper after the introduction. Section 2 contains the
claims that are proved in Section 3.

2 Models and Axioms

The language L has the following symbols:

x1, x2, . . . (variables)
a1, a2, . . . (individual constants)

F1
1 , F1

2 , . . . , F2
1 , F2

2 , . . . , . . . (predicate letters)
and

→ , ¬ , � , ∀ , [ , ] , ( , ) .

The order of variables which is indicated here will be called alphabetical, as will the
above order of the predicate letters of degree 1 (i.e., those whose superscript is 1).

Bold letters will generally be used as metalinguistic variables. The letters A, B,
C, and D (with or without a prime or subscript) are variables ranging over the well-
formed formulas (wffs) of L; x and y range over the variables of L, and a over the
individual constants; b, c, and d range over both the variables and the individual
constants; F and G range over the predicate letters. As usual, the letters i , j , k, and
h will be variables ranging over the positive integers, while m, n, l, and r will range
over the natural numbers.

A sequence of symbols is an atomic wff just in case it has the form F i
j b1. . .bi . For

any A, B, and x, the formulas [A → B], ¬A, �A, and (∀x)A are well formed. Noth-
ing else is well formed. ♦A is defined as ¬�¬A, while other connectives and the
existential quantifier are introduced by standard abbreviatory definitions.2 Brackets
will be omitted according to standard conventions.3

We shall say that b is free for x in A if and only if in A no free occurrence of x is
in the scope of an occurrence of (∀b). Ṡx

bA is the wff that will result from A if we
replace every free occurrence of x with b, while S̄x

yA is the wff that will result from A
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if we replace every bound occurrence of x with y. If a1, . . . , ai are distinct individual
constants, Sa1,...,ai

x1,...,xi A is the wff that results from A when we simultaneously substitute
the variables x1, . . . , xi for a1, . . . , ai , respectively. Finally, if x1, . . . , xi are distinct
variables arranged in alphabetical order and they are all the variables that have a free
occurrence in A, the closure of A, clo(A), will be (∀x1) · · · (∀xi)A; if no variable has
a free occurrence in A, clo(A) will be A itself.

A structure is a quintuple 〈W, R, D, Q, w∗〉. W and D are nonempty sets, while
R and Q are relations: R (the accessibility relation) is a subset of W × W , and
Q is a subset of W × D. The elements of W and D will be called ‘worlds’ and
‘individuals’, respectively. For every w ∈ W , Dw (the domain of w) will be the
range of the restriction of Q to {w}. Finally, w∗ (the actual world) is a member of
W such that Dw∗ is nonempty. Any such quintuple is a structure.

A model is a sextuple 〈W, R, D, Q, w∗, V 〉 where 〈W, R, D, Q, w∗〉 is a struc-
ture while V is a function that assigns an element of Dw∗ to each individual
constant and a subset of (Dw)

i to each pair 〈F i
j , w〉 of a predicate letter and a

world belonging to W . Any such sextuple is a model. We shall say that the model
〈W, R, D, Q, w∗, V 〉 is based on the structure 〈W, R, D, Q, w∗〉.

Given a model, we can define what it means for a (denumerable) sequence s of
individuals to satisfy a wff at a world. We first define the function s∗: s∗(a) = V (a);
s∗(xi) = si .

1. s satisfies F i
j b1. . .bi at w if and only if 〈s∗(b1), . . . , s∗(bi )〉 ∈ V (F i

j , w).
2. s satisfies A → B at w if and only if either s does not satisfy A at w or s

satisfies B at w.
3. s satisfies ¬A at w if and only if s does not satisfy A at w.
4. s satisfies �A at w if and only if, for every world w′ such that wRw′, s

satisfies A at w′.
5. s satisfies (∀xi)A at w if and only if every sequence s ′ of individuals which

differs from s in at most the i th position and is such that s ′
i ∈ Dw satisfies A

at w.

A wff is true in the model if and only if it is satisfied at w∗ by every sequence of
elements of Dw∗ .

A wff A is valid in a structure 〈W, R, D, Q, w∗〉 if and only if it is true in every
model based on the structure. A set 3 of wffs is satisfiable in 〈W, R, D, Q, w∗〉

if and only if, in some model based on the structure, there is a sequence of ele-
ments of Dw∗ which satisfies all members of 3 at w∗. A is a consequence of 3 in
〈W, R, D, Q, w∗〉 if and only if, in every model based on the structure, every se-
quence of elements of Dw∗ that satisfies all members of 3 at w∗ satisfies A, too, at
w∗. Thus a wff is valid in a structure just in case it is a consequence of the empty set
in that structure.

Our basic axiomatization will be QK. Apart from axiom schemata and primitive
rules of inference, QK also has a rule of proof which places a restriction on how
those schemata and rules can be used in the course of a proof. The axiomatization
runs as follows.

QKA1 Every substitution instance of a classical propositional tautology.

QKA2 �[A → B] → [�A → �B].

QKA3 B → [(∀x)A → Ṡx
bA], where b is free for x in A, and B is an atomic

wff in which b occurs.
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QKA4 (∀x)[A → B] → [(∀x)A → (∀x)B].

QKA5 A → (∀x)A where x has no free occurrence in A.

QKA6 (∀x)A → Ṡx
bA where b is free for x in A.

QKR1 From A → B and A we may infer B.

QKR2 From A we may infer �A.

QKR3 From A we may infer (∀x)A.

QKR4 From A1 → �[· · · → �[Ai → �B] . . .], we may infer A1 → �[· · · →

�[Ai → �(∀x)B] . . .] if x has no free occurrence in A1, . . . ,Ai .

QKR5 From �n(∀x)Fx→A we may infer A if F has no occurrence in A.

QKP Once QKA6 has been used in the course of a proof, no rule of inference
or axiom schema may be used except QKR1 and QKA6.

�n means � · · ·�
︸ ︷︷ ︸

n times

. So the premise in an application of QKR5 may begin with zero,

one, or more boxes. If the schema QKA6 is used in a proof in QK, the proof divides
into two parts. The first part, which ends just before the first time QKA6 is used,
relies at most on QKA1–5 and QKR1–5. The second part, which begins with the
first time QKA6 is invoked, relies at most on QKA6, QKR1, and everything that has
been proved in the first part. Of course, it may be that the first time QKA6 is used in
the course of a proof is other than the first time an instance of that schema appears
as a step in the proof; it may be that an instance of QKA6 appears at some point
in a proof but there either it is supported by QKA1 because it is an instance of that
schema too or it is inferred from previous wffs in accordance with one of QKR1–5,
without any axiom schema being used.

Each rule of inference is a permission to draw inferences of some kind, but in
the context of QK our primitive rules, except modus ponens, are not unconditional
permissions; they are subject to the proviso that QKP should not be violated. It is
because of QKP that we need the axiom schema QKA3 along with QKA6: the way
in which a proof may develop after QKA3 has been invoked is not subject to any such
restriction as QKP imposes on the way in which a proof may develop after QKA6
has been invoked.4 We shall see that the theorems of QK are the wffs that are valid
in every structure.

There are at least two ways in which we can specify conditions that a structure
may meet. First, we can put conditions on the accessibility relation and characterize
structures accordingly. For instance, a structure 〈W, R, D, Q, w∗〉 is serial if and
only if R is serial, and it is reflexive if and only if R is reflexive. Second, we can put
various conditions on the relation Q. We shall here discuss the following conditions.

1. For any worlds w and w′ and for any individual d, if wRw′ and wQd then
w′ Qd.

2. If wRw′ and w′ Qd then wQd.
3. If wRw′, w′ Rw′′, wQd, and w′′Qd, then w′ Qd.
4. For every world w, there is an individual d such that wQd.
5. For every individual d, there is a world w such that wQd.
6. For any worldsw andw′ and for any individual d, wQd if and only if w′ Qd.
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(1) is met only by structures in which all instances of the schema �(∀x)A → (∀x)�A
(the Converse Barcan Formula) are valid. (2) is met only by structures in which all
instances of the schema (∀x)�A → � (∀x)A (the Barcan Formula) are valid. (3) is
a condition weaker than (1) and weaker than (2). It is a model-theoretic analogue of
the view that, for every being x , it is necessarily the case that if x does not exist then
x could not have existed. This view was tentatively suggested in Stephanou [11]. (4)
corresponds to the position that necessarily there is something, while (5) means that
D is just the union of the domains of the various worlds. (6) means that all worlds
have the same domain.

In order to capture some conditions on structures, we need additional axiom sche-
mata:

QDA �A → ♦A.
QTA �A → A.
QS4A �A → ��A.
QBA A → �♦A.
QS5A ♦A → �♦A.

Q1A B → �[(∀x)A → Ṡx
bA], where b is free for x in A, and B is an

atomic wff in which b occurs.
Q2A ♦B → [(∀x)A → Ṡx

bA], where b is free for x in A, and B is an
atomic wff in which b occurs.

Q3A B → �[♦C → [(∀x)A → Ṡx
bA]] where b is free for x in A while

B and C are atomic wffs in both of which b occurs.
Q4A (∃x)[A → A].

The axiomatic systems QD, QT, QS4, QB, and QS5 will be QK + QDA, QK + QTA,
QT + QS4A, QT + QBA, and QT + QS5A, respectively. The axiomatic systems
QK1, QK2, QK3, and QK4 will be QK + Q1A, QK + Q2A, QK + Q3A, and QK +

Q4A. Finally, QK1/2 will be QK + Q1A + Q2A.
As expected, QD, QT, QS4, QB, and QS5 are sound and (weakly) complete re-

garding validity in all serial structures, all reflexive structures, all transitive reflexive
structures, all symmetrical reflexive structures, and all equivalence structures, re-
spectively. QS5 is also sound and complete regarding validity in all universal struc-
tures, that is, the structures in which, for any worlds w and w′, wRw′. QK1, QK2,
QK3, and QK4 are sound and complete regarding validity in the structures that meet
condition (1), in those that meet (2), in the structures meeting (3), and in those meet-
ing (4), respectively. QK, without any additional axiom schema, is sound and com-
plete regarding validity in the structures that satisfy condition (5). QK1/2 is sound
and complete regarding validity in the structures that satisfy (6).

We shall see that satisfiability in a structure is compact: it is the case for any
set 3 of wffs that if, for each finite subset of 3, there is a structure in which that
subset is satisfiable, then 3 itself is satisfiable in a structure. And QK is strongly
complete regarding consequence in all structures: it is the case for any A and any
set 3 of wffs that if A is a consequence of 3 in every structure, then for some wffs
B1, . . . ,Bn ∈ 3(n ≥ 0) `QK B1 ∧ · · · ∧ Bn → A. Actually, if any one of the
axiomatizations QD, QT, QS4, QB, QS5, QK1, QK2, QK3, QK4, and QK1/2 was
reported in the preceding paragraph to be sound and (weakly) complete regarding
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validity in some kind of structures, then satisfiability in a structure of that kind is
compact, and the axiomatization is strongly complete regarding consequence in the
structures of that kind. For instance, satisfiability in a serial structure is compact, and
QD is strongly complete regarding consequence in serial structures.

Turning to quantified modal logic with identity, we shall use the letter F 2
1 as a

sign of identity. [b = c] is defined as F2
1 bc. The brackets will be omitted when it is

clear what they would enclose. A model is an identity model if and only if, for every
world w and all individuals d and d ′ such that wQd and wQd ′, 〈d, d ′〉 ∈ V (F2

1 , w)

just in case d is d ′. A wff A is I-valid in a structure 〈W, R, D, Q, w∗〉 if and only if it
is true in every identity model based on the structure. A set 3 of wffs is I-satisfiable
in 〈W, R, D, Q, w∗〉 if and only if, in some identity model based on the structure,
there is a sequence of elements of Dw∗ which satisfies all members of 3 at w∗. And
A is an I-consequence of 3 in 〈W, R, D, Q, w∗〉 just in case, in every identity model
based on the structure, every sequence of elements of Dw∗ that satisfies all members
of 3 at w∗ satisfies A, too, at w∗.

Our basic axiomatic system with identity, QIK, results from QK by adding the
following axiom schemata:

QIKA1 A → x = x where A is an atomic wff in which x occurs.

QIKA2 x = y → [A → B], where A is an atomic wff in which x occurs,
and B results from A by substituting y for an occurrence of x.

QIKA3 ♦n[b = c] → �m[A → b = c] where A is an atomic wff in which
b occurs or c occurs.

It will be proved that the theorems of QIK are the wffs that are I-valid in every
structure.

The axiomatizations QID, QIT, QIS4, QIB, and QIS5 will be QIK + QDA, QIK
+ QTA, QIT + QS4A, QIT + QBA, and QIT + QS5A, respectively. The axiom-
atizations QIK1, QIK2, QIK3, and QIK4 will be QIK + Q1A, QIK + Q2A, QIK
+ Q3A, and QIK + Q4A. QIK1/2 will be QIK + Q1A + Q2A. QID, QIT, QIS4,
QIB, and QIS5 are sound and (weakly) complete regarding I-validity in all serial
structures, all reflexive structures, all transitive reflexive structures, all symmetrical
reflexive structures, and all equivalence structures, respectively. QIS5 is also sound
and complete regarding I-validity in all universal structures. QIK1, QIK2, QIK3,
and QIK4 are sound and complete regarding I-validity in the structures that satisfy
condition (1), in those that satisfy (2), in the structures satisfying (3), and in those
satisfying (4). QIK is also sound and complete regarding I-validity in the structures
that meet condition (5). QIK1/2 is sound and complete regarding I-validity in the
structures that meet (6).

Moreover, I-satisfiability in a structure is compact: it is the case for any set 3 of
wffs that if, for each finite subset of 3, there is a structure in which that subset is
I-satisfiable, then 3 itself is I-satisfiable in a structure. And QIK is strongly com-
plete regarding I-consequence in all structures: it is the case for any A and any set
3 of wffs that if A is an I-consequence of 3 in every structure, then for some wffs
B1, . . . ,Bn ∈ 3(n ≥ 0) `QIK B1 ∧· · ·∧Bn → A. Actually, if any one of the axiom-
atizations QID, QIT, QIS4, QIB, QIS5, QIK1, QIK2, QIK3, QIK4, and QIK1/2 has
just been reported to be sound and (weakly) complete regarding I-validity in some
kind of structures, then I-satisfiability in a structure of that kind is compact, and the
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axiomatization is strongly complete regarding I-consequence in the structures of that
kind.

Let L
′ be the language whose wffs are the wffs of L in which there is no occur-

rence of �; L
′ is a language for nonmodal first-order logic. It will be shown that

the nonmodal fragment of any one of the axiomatic systems QK, QD, QT, QS4, QB,
QS5, QK1, QK2, QK3, QK4, and QK1/2 is classical; in other words, the theorems
that are wffs of L

′ are just the formulas that make up the classical predicate calculus
without identity when this calculus is formulated in L

′. It will also be shown that
if we take any one of the systems QIK, QID, QIT, QIS4, QIB, QIS5, QIK1, QIK2,
QIK3, QIK4, and QIK1/2, its theorems that are wffs of L

′ are just the formulas that
make up the classical predicate calculus with identity when this calculus is formu-
lated in L

′ and the sign of identity is F2
1 .

It is left to the reader to discuss axiomatizations that extend QK or QIK by adding
axiom schemata both from among QDA–QS5A and from among Q1A–Q4A.

3 Proofs

We shall begin with some metatheorems that are useful at several places below.

Metatheorem 3.1 It is the case in every model that for any A, any world w, and
any sequences s and s ′ of individuals such that, for every variable xi that has a free
occurrence in A, si = s ′

i : s satisfies A at w if and only if s ′ satisfies A at w.

Metatheorem 3.2 It is the case in every model that for any A, x, and b such that
b is free for x in A, for any world w, and for any sequences s and s ′ of individuals
such that s∗(b) = s ′∗(x) while, for every variable xi that has a free occurrence in A
but is other than x, si = s ′

i : s′ satisfies A at w if and only if s satisfies Ṡx
bA at w.

Metatheorem 3.3 It is the case in every model that for any A, any x, any y that
does not occur in A, any world w, and any sequence s of individuals : s satisfies A
at w if and only if s satisfies S̄x

yA at w.

Metatheorem 3.4 For any models M = 〈W, R, D, Q, w∗, V 〉 and M ′ =

〈W, R, D, Q, w∗, V ′〉 where V and V ′ differ in at most what they assign to a
predicate letter F, for any A in which F does not occur, for any world w ∈ W, and
for any sequence s of members of D : s satisfies A at w in M if and only if s satisfies
A at w in M ′.

Metatheorem 3.5 For any models M = 〈W, R, D, Q, w∗, V 〉 and M ′ =

〈W, R, D′, Q, w∗, V 〉 where D ⊇ D′, for any A, for any world w ∈ W, and
for any sequence s of members of D′ : s satisfies A atw in M if and only if s satisfies
A at w in M ′.

(3.1) – (3.5) can be proved by induction on the number of the occurrences of →, ¬,
�, and ∀ in A. The proof of (3.2) presupposes (3.1), and the proof of (3.3) presup-
poses (3.2).

For any set 3 of axiom schemata, QK + 3 will be the axiomatic system that
results from QK by adding those schemata. A wff is W-true in a model if and only
if it is satisfied at every world by every sequence of individuals. (Note that if A is
W-true in every model based on a given structure then it is valid in the structure, but
the converse does not hold. For example, the wff (∀x1)F1

1 x1 → F1
1 x1 is valid in

every structure, but it is not W-true in every model.)
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Metatheorem 3.6 If, for any structure, 3 is a set of axiom schemata whose in-
stances are W-true in every model based on that structure, the theorems of QK +3

are valid in the structure.

Proof A proof in QK + 3 will consist of two parts, although one of them may
be empty: the first part will rely at most on QKA1–5, 3, and QKR1–5 while the
second part will rely at most on QKA6, QKR1, and everything that has been proved
in the first part. Now, the instances of QKA1–5 are W-true in every model based
on the given structure, for they are W-true in all models. (To demonstrate that, use
(3.2) in the case of QKA3 and (3.1) in the case of QKA5.) It can be shown that for
any model the rules QKR1–4 preserve W-truth in that model. It can also be shown
that for any structure the rule QKR5 preserves the property of being W-true in every
model based on that structure. (For if a wff �n(∀x)Fx → A, where F does not
occur in A, is W-true in every model based on the structure, so is A. To see that,
let 〈W, R, D, Q, w∗, V 〉 be a model in which a sequence s of individuals does not
satisfy A at a world w. Consider the model 〈W, R, D, Q, w∗, V ′〉 where, for every
world w′ that is n R-steps away from w, V ′(F, w′) = Dw′ but otherwise V ′ does
not differ from V .5 In this model, which is based on the same structure, by (3.4) s
does not satisfy A at w, whereas it satisfies �n(∀x)Fx at w.) Therefore, everything
proved in the first part of the proof in QK +3 will be W-true in every model based
on the given structure, and so it will be valid in the structure. Finally, the instances of
QKA6 are valid in the given structure (for they are valid in all structures) and QKR1
preserves validity in it. �

(3.6) will be crucial to establishing the soundness of the axiomatizations without
identity. The following is a corollary of (3.6).

Metatheorem 3.7 If `QK A, A is valid in every structure.

To establish completeness, we need some proof-theoretic development. S will be
an arbitrary axiomatic system which differs from QK in at most having additional
axiom schemata such that if A is an instance of one of those schemata, a1, . . . , ai are
distinct individual constants, and y1, . . . , yi are variables that do not occur in A, then
Sa1,...,ai

y1,...,yi A is also an instance of the relevant schema. This restriction on additional
axiom schemata is presupposed in the proof of (3.9) below; all the extensions of QK
that were named in Section 2 comply with it. While the notation `S A means, as
usual, that A is a theorem of S, the notation `∗S A will mean that A can be proved
in S without using QKA6; in other words, there is a proof of A which relies at most
on QKA1–5, QKR1–5, and any axiom schemata that S has in addition to those of
QK. When the name of a theorem schema ends with a star, for example, ST1∗, the
star will indicate that QKA6 has not been used in the proof. Most easy or standard
proofs will be omitted.

If we have proved A without using QKA6, and we are then sketching a proof for a
further theorem, we may begin with A and subsequently employ any one of the rules
QKR1–5 and the schemata QKA1–5; if, on the other hand, we have used QKA6 in
our proof of A, then in sketching a further proof we may begin with A but we must
not go on to employ any one of QKR2–5 and QKA1–5.

ST1∗ �[A ↔ B] → [�A ↔ �B].

ST2∗ �A ∧ �B → �[A ∧ B].
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ST3∗ ♦A → �B → �[A → B].

ST4∗ ♦[A ∧ B] → ♦A.
ST5∗ (∀x)[A → B] → [A → (∀x)B] where x has no free occurrence in A.

ST6∗ (∀x)(∀y)A → (∀y)(∀x)A.

Proof Suppose that x and y are distinct variables, for otherwise the schema
is trivial. Let F be a predicate letter of degree 1 which does not occur in
A. Then Fy → [(∀y)A → A] is an axiom. Hence, by QKR3 and ST5∗,
Fy → (∀x)[(∀y)A → A] and so Fy → [(∀x)(∀y)A → (∀x)A]. Thus, by QKR3 and
QKA4, (∀y)Fy → (∀y)[(∀x)(∀y)A → (∀x)A] and so (∀y)Fy → [(∀x)(∀y)A →

(∀y)(∀x)A]. Then apply QKR5. �

ST7∗ (∀x)[(∀y)A → Ṡy
xA] where x is free for y in A.

Proof Let F be a predicate letter of degree 1 which does not occur in A.
Then Fx → [(∀y)A → Ṡy

xA] is an axiom. Hence, by QKR3 and QKA4,
(∀x)Fx → (∀x)[(∀y)A → Ṡy

xA]. Then apply QKR5. �

ST8 (∀x)[(∀y)A → Ṡy
bA] where b is free for y in A.

Proof If b and x are the same variable, we have ST7∗. Suppose that b is other than
x, and let z be a variable that does not occur in A and is other than x. By ST7∗

`∗S (∀z)[(∀y)A → Ṡy
zA] and so, by QKR3 and ST6∗, `∗S (∀z)(∀x)[(∀y)A → Ṡy

zA].
But (∀z)(∀x)[(∀y)A → Ṡy

zA] → (∀x)[(∀y)A → Ṡy
bA] is an instance of QKA6. �

ST9∗ (∀x)[A ↔ B] → [(∀x)A ↔ (∀x)B].

SR6 If B results from A by substituting D for an occurrence of C and
`∗S C ↔ D, then `∗S A ↔ B.

Proof By induction on the number n of the occurrences of � and ∀ in whose scope
lies the relevant occurrence of C. If n = 0 then [C ↔ D] → [A ↔ B] is a substitu-
tion instance of a propositional tautology. Now let n > 0 and assume that what we
are trying to prove holds for numbers smaller than n. Then B results from A by sub-
stituting O . . .D . . ., where O is either � or ∀, for an occurrence of O . . .C . . .which
is in the scope of n − 1 occurrences of � and ∀. [C ↔ D] → [. . .C . . . ↔ . . .D . . .]
is again an instance of a tautology. Since `∗S C ↔ D, `∗S . . .C . . . ↔ . . .D . . .. So,
by QKR2 and ST1∗ or by QKR3 and ST9∗, `∗S O . . .C . . . ↔ O . . .D . . .. Hence,
by the inductive hypothesis, `∗S A ↔ B. �

ST10∗ (∀x)A ↔ (∀y)Ṡx
yA where y is free for x in A and has no free occur-

rence in A.

Proof By ST7∗ and ST5∗ we have (∀x)A → (∀y)Ṡx
yA. The converse is an instance

of the same schema — unless x is y, in which case the proof is trivial. �

ST11∗ A ↔ S̄x
yA where y does not occur in A.

ST12∗ (∀x)[A ∧ B] → (∀x)A ∧ (∀x)B.
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ST13∗ (∀x)A → A ∨ (∀x)¬[B → B] where x has no free occurrence in A.

Proof Begin with A → [¬A → ¬[B → B]]. By QKR3, QKA4, and ST5∗ we get
(∀x)A → [¬A → (∀x)¬[B → B]]. �

ST14∗ (∀x)¬[A → A] → (∀y)¬[A → A].

Proof Let B be a wff in which neither x nor y occurs. We can prove (∀x)¬[A → A]

→ (∀x)¬[B → B], by ST10∗ (∀x)¬[B → B] → (∀y)¬[B → B], and
(∀y)¬[B → B] → (∀y)¬[A → A]. �

ST15∗ (∀x)A → A ∨ (∀y)¬[B → B] where x has no free occurrence in A.

As usual, a set 3 of wffs is S-consistent if and only if there are no wffs
A1, . . . ,Ai ∈ 3 (i ≥ 1) such that `S ¬[A1 ∧ · · · ∧ Ai ]. It is S-consistent∗ if
and only if there are no wffs A1, . . . ,Ai ∈ 3 (i ≥ 1) such that `∗S ¬[A1 ∧ · · · ∧ Ai ].
3 is maximal if and only if, for every A, A ∈ 3 or ¬A ∈ 3.

Metatheorem 3.8 If 0 is a maximal S-consistent∗ set of wffs, then every A such
that `∗S A belongs to 0, and if 0 contains both A → B and A it also contains B.

3 is finite∗ just in case there are infinitely many variables that have no free occur-
rence in its members, as well as infinitely many predicate letters of degree 1 that do
not occur in its members. It has the ∀-property if and only if, for every wff (∀x)A,
it contains (∀x)¬[A → A] or else there are a variable y, not occurring in A, and a
predicate letter F of degree 1 such that 3 contains both Ṡx

yA → (∀x)A and Fy.
A set W is S-full if and only if its members are maximal S-consistent∗ sets of

wffs, they have the ∀-property, they each contain a wff of the form (∀x)Fx, and, for
every set 0 ∈ W and each wff ¬�A ∈ 0, there is a set 0′ ∈ W which contains ¬A
and includes {B : �B ∈ 0}.6 We can also define what it means to say that, in an
S-full set W , a member 0′ is n steps away from a member 0: 0′ is 0 steps away if
and only if it is 0 itself, and it is n +1 steps away just in case a set 0 ′′ ∈ W is n steps
away from 0 and {A : �A ∈ 0′′} ⊆ 0′. An S-full set W starts at one of its members
if and only if, for each set 0 ∈ W , there is a number n such that 0 is n steps away
from that member.

Assuming that we have specified an enumeration of all the wffs, we can also
define the function con. For each finite and nonempty set 3 of wffs, con(3) will be
the wff that we abbreviate when we form the conjunction of all the members of3 in
order of appearance in that enumeration.

Metatheorem 3.9 If 3 is an S-consistent, finite∗, and nonempty set of wffs, there
is an S-consistent∗ and finite∗ set of wffs 3′ that is a superset of 3 and contains, for
each individual constant a, an atomic wff in which a occurs.

Proof Let F1,F2, . . . be infinitely many distinct predicate letters of degree 1, ex-
cluding those that occur in members of 3 and also excluding infinitely many others.
3′ will be 3 ∪ {F1a1,F2a2, . . .}. Of the properties of 3′ that we must demon-
strate, the only one that is not obvious is S-consistency∗. So assume that 3′ is not
S-consistent∗. Then

`∗S ¬[G1a1 ∧ · · · ∧ Giai ∧ A1 ∧ · · · ∧ A j ]
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where G1a1, . . . ,Giai are distinct wffs belonging to {F1a1,F2a2, . . .} while
A1, . . . ,A j ∈ 3. In other words,

`∗S G1a1 → [· · · → [Giai → ¬[A1 ∧ · · · ∧ A j ]] . . .].

So this theorem has a proof in which QKA6 is not used. Let y1, . . . , yi be dis-
tinct variables that do not occur in the proof. If throughout that proof we replace
a1, . . . , ai with y1, . . . , yi , the result will be a proof of

G1y1 → [· · · → [Giyi → ¬Sa1,...,ai
y1,...,yi

[A1 ∧ · · · ∧ A j ]] . . .]

in which QKA6 is not used. Hence,

`∗S (∀y1) · · · (∀yi)[G1y1 → [· · · → [Giyi → ¬Sa1,...,ai
y1,...,yi

[A1 ∧ · · · ∧ A j ]] . . .]].

So, if i > 1, then by ST5∗, QKA4, and QKR3

`∗S (∀y1) · · · (∀yi−1)[G1y1 → [· · ·

→ [Gi−1yi−1 → [(∀yi)Giyi → (∀yi)¬Sa1,...,ai
y1,...,yi

[A1 ∧ · · · ∧ A j ]]] . . .]].

Proceeding similarly, we infer that

`∗S (∀y1)G1y1 →[· · ·→[(∀yi)Giyi →(∀y1) · · · (∀yi)¬Sa1,...,ai
y1,...,yi

[A1 ∧· · ·∧A j ]] . . .].

Hence, by QKR5, `∗S (∀y1) · · · (∀yi)¬Sa1,...,ai
y1,...,yi [A1 ∧ · · · ∧ A j ]. So, if i > 1, then

by QKA6 `S (∀y2) · · · (∀yi)¬Sa2,...,ai
y2,...,yi [A1 ∧ · · · ∧ A j ]. Continuing likewise, we

conclude that `S ¬[A1 ∧ · · · ∧ A j ], which contradicts the S-consistency of 3. �

We can now establish (3.10), which is pivotal for completeness. (3.10) can also
be proved by modifying and adapting the first of the two methods presented in [5],
chap. 16. That method is due to R. Thomason. The proof I shall offer is different. It
is somewhat longer than the proof by Thomason’s method, but it is more interesting
because it displays a new way of proving completeness in quantified modal logic.

Metatheorem 3.10 If3 is an S-consistent∗, finite∗, and nonempty set of wffs, there
is an S-full set W that contains, and starts at, a superset of 3.

Proof Let ϕ1, ϕ2, . . . be an enumeration of all the ordered k-tuples of wffs of the
form �A, as well as all the ordered k-tuples whose first k −1 positions (if k > 1) are
occupied by wffs of the form �A, but whose last position is occupied by a wff that
begins with a universal quantifier. The enumeration must be such that each k-tuple
〈�A1, . . . ,�Ak〉 appears before all the (k + 1)-tuples 〈�A1, . . . ,�Ak,B〉 which
coincide with it in their first k positions.7 On the basis of that enumeration, I will
recursively define the matrix

10
0, 10

1, 10
2, . . .

ψ1, 11
1, 11

2, . . .

ψ2, 12
1, 12

2, . . .

...
...

...
...

where each10
n is a finite∗ and nonempty set of wffs, each1i

j is a finite and nonempty
set of wffs, and each ψ i is a k-tuple of wffs of the form �A. There will not be any i
and j such that i 6= j but ψ i is ψ j . A matrix here is a function from a set of ordered
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pairs of natural numbers. There will not be a last column, but there may be a last
row, in the matrix that is defined.

The idea of the proof is that each row represents the gradual construction of a
world while ψ1, ψ2, . . . record the accessibility relation: if either m = 0 and ψm′

is
〈�A〉 or ψm and ψm′

are 〈�A1, . . . ,�Ak〉 and 〈�A1, . . . ,�Ak,�B〉, respectively,
then the world constructed in the row whose superscript is m ′ will be accessible from
the world constructed in the row whose superscript is m.
10

0 will be 3 ∪ {(∀x1)Fx1} where F is the first predicate letter of degree 1 (in
alphabetical order) that does not occur in the members of 3. Owing to QKR5, 10

0
is S-consistent∗. When we reach ϕn+1, what has already been defined will be, for
some m,

10
0, . . . , 10

n

...
...

...

ψm, . . . , 1m
n

Then, at the stage of ϕn+1, a new column will be added and possibly a new row:
a new row will be added only if we have either the second subcase of Case 1 or
Subcase 4b.

Case 1 ϕn+1 is 〈�A〉. Then 11
n+1, . . . , 1

m
n+1 will be the same as 11

n, . . . , 1
m
n ,

respectively. If there are wffs B1, . . . ,Bi ∈ 10
n such that `∗S B1 ∧ · · · ∧ Bi → �A,

10
n+1 will be 10

n ∪ {�A}. Otherwise, a new row will be introduced: ψm+1 will be

ϕn+1, and 1m+1
1 = · · · = 1m+1

n+1 = {¬A, (∀x1)Fx1} where F is the first predicate
letter of degree 1 that occurs neither in the members of10

n nor in A. Then10
n+1 will

be 10
n ∪ {¬�¬con(1m+1

n+1 )}.

Case 2 ϕn+1 is 〈(∀x)A〉. Then11
n+1, . . . , 1

m
n+1 will be the same as11

n, . . . , 1
m
n .

If there are wffs B1, . . . ,Bi ∈ 10
n such that `∗S B1 ∧ · · · ∧ Bi → (∀x)¬[A → A],

10
n+1 will be 10

n ∪ {(∀x)¬[A → A]}. Otherwise, 10
n+1 will be 10

n ∪ {Ṡx
yA →

(∀x)A, Fy}, where y is the first variable (in alphabetical order) that has no free
occurrence in any member of10

n and does not occur in A, and F is the first predicate
letter of degree 1 that occurs neither in the members of 10

n nor in A.

Case 3 ϕn+1 is 〈�A1, . . . ,�Ak,B〉 and, in what has already been defined, either
there is no row beginning with 〈�A1〉 or there is no row beginning with 〈�A1,�A2〉

or · · · or there is no row beginning with 〈�A1, . . . ,�Ak〉. Then 10
n+1, . . . , 1

m
n+1

will be the same as 10
n, . . . , 1m

n .

Case 4 ϕn+1 is 〈�A1, . . . ,�Ak,B〉 and there is a row beginning with 〈�A1〉, . . . ,
there is a row beginning with 〈�A1, . . . ,�Ak〉. Let m1, . . . ,mk be the superscripts
in the rows that begin with 〈�A1〉, . . . , 〈�A1, . . . ,�Ak〉, respectively. Then, except

for 1m1
n+1, . . . , 1

mk
n+1, the sets 11

n+1, . . . , 1
m
n+1 will be the same as 11

n, . . . , 1
m
n .

10
n+1 will be 10

n ∪ {¬�¬con(1m1
n+1)}, 1

m1
n+1 will be 1m1

n ∪ {¬�¬con(1m2
n+1)}, . . . ,

1
mk−1
n+1 will be 1mk−1

n ∪ {¬�¬con(1mk
n+1)}. It remains to specify 1mk

n+1.
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Subcase 4a B is �C, and there are wffs D1, . . . ,Di ∈ 10
n such that

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · · → �[con(1mk

n ) → �C] . . .]].

Then 1mk
n+1 will be 1mk

n ∪ {�C}.

Subcase 4b B is �C, and there are no wffs D1, . . . ,Di ∈ 10
n such that

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · · → �[con(1mk

n ) → �C] . . .]].

Then a new row will be introduced: ψm+1 will be ϕn+1, and

1m+1
1 = · · · = 1m+1

n+1 = {¬C, (∀x1)Fx1}

where F is the first predicate letter of degree 1 that occurs neither in the members of
10

n nor in C. 1mk
n+1 will be 1mk

n ∪ {¬�¬con(1m+1
n+1 )}.

Subcase 4c B is (∀x)C, and there are wffs D1, . . . ,Di ∈ 10
n such that

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · ·

→ �[con(1mk
n ) → (∀x)¬[C → C]] . . .]].

Then 1mk
n+1 will be 1mk

n ∪ {(∀x)¬[C → C]}.

Subcase 4d B is (∀x)C, and there are no wffs D1, . . . ,Di ∈ 10
n such that

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · ·

→ �[con(1mk
n ) → (∀x)¬[C → C]] . . .]].

Then1mk
n+1 will be1mk

n ∪ {Ṡx
yC → (∀x)C, Fy}, where y is the first variable that has

no free occurrence in any member of 10
n and does not occur in C, and F is the first

predicate letter of degree 1 that occurs neither in the members of 10
n nor in C.8

In Case 4 we have that ¬�¬con(1mk
n ) ∈ 1

mk−1
n , . . . , ¬�¬con(1m2

n ) ∈ 1
m1
n , and

¬�¬con(1m1
n ) ∈ 10

n. To see that, let 〈�A1, . . . ,�Ak〉 have been ϕn′ . Then the row
whose superscript is mk was introduced at the stage of ϕn′ . So 1mk

n′ contained ¬Ak ,
¬�¬con(1mk

n′ ) ∈ 1
mk−1
n′ , . . . , ¬�¬con(1m2

n′ ) ∈ 1
m1
n′ , and ¬�¬con(1m1

n′ ) ∈ 10
n′ .

Now let n′′ be any number such that n′ < n′′ ≤ n. If a wff is added, when we reach
ϕn′′ , to any one of the sets 1m1

n′′−1, . . . , 1
mk
n′′−1, it is added through an application of

Case 4. Let 1mi
n′′−1 be the set whose superscript is greatest among those to which

a wff is added. Then ¬�¬con(1mi
n′′ ) ∈ 1

mi−1
n′′ , . . . , ¬�¬con(1m2

n′′ ) ∈ 1
m1
n′′ , and

¬�¬con(1m1
n′′ ) ∈ 10

n′′ .
Assume that 10

n, . . . , 1
m
n are all S-consistent∗ but one of 10

n+1, . . . , 1
m
n+1 (or

one of 10
n+1, . . . , 1

m+1
n+1 if we have the second subcase of Case 1 or Subcase 4b) is

not. I will only consider the nontrivial cases.

Case 1 Consider the subcase in which there are no wffs B1, . . . ,Bi ∈ 10
n such that

`∗S B1 ∧ · · · ∧ Bi → �A. Then 10
n+1 or 1m+1

n+1 is S-inconsistent∗. In either event,
there are wffs B1, . . . ,Bi ∈ 10

n such that

`∗S B1 ∧ · · · ∧ Bi → �[(∀x1)Fx1 → A].

Hence `∗S �(∀x1)Fx1 → [B1 ∧ · · ·∧ Bi → �A]. Thus, by QKR5, `∗S B1 ∧ · · ·∧ Bi
→ �A, contrary to the characteristics of the subcase.
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Case 2 Consider the subcase in which there are no wffs B1, . . . ,Bi ∈ 10
n such that

`∗S B1 ∧ · · · ∧ Bi → (∀x)¬[A → A]. Then 10
n+1 is not S-consistent∗, so there are

wffs B1, . . . ,Bi ∈ 10
n such that

`∗S B1 ∧ · · · ∧ Bi → [Fy → Ṡx
yA ∧ ¬(∀x)A].

Hence, by QKR3, ST5∗, and QKA4,

`∗S B1 ∧ · · · ∧ Bi → [(∀y)Fy → (∀y)[Ṡx
yA ∧ ¬(∀x)A]].

Thus
`∗S (∀y)Fy → [B1 ∧ · · · ∧ Bi → (∀y)Ṡx

yA ∧ (∀y)¬(∀x)A].

So, by QKR5, ST10∗, and ST15∗,

`∗S B1 ∧ · · · ∧ Bi → (∀x)A ∧ [¬(∀x)A ∨ (∀x)¬[A → A]].

Therefore, `∗S B1 ∧ · · · ∧ Bi → (∀x)¬[A → A], contrary to the characteristics of
the subcase.

Subcase 4a At least one of 10
n+1,1

m1
n+1, . . . , 1

mk
n+1 is not S-consistent∗. Let 1m1

n+1
be S-inconsistent∗, for example. Then

`∗S con(1m1
n ) → �[· · · → �[con(1mk

n ) → ¬�C] . . .].

So

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · · → �[con(1mk

n ) → ¬�C] . . .]].

Hence, if k > 1, then by repeated use of QKA1, QKR2, and QKA2

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · ·

→ �[con(1mk−1
n ) → �¬con(1mk

n )] . . .]].

But, since ¬�¬con(1mk
n ) ∈ 1

mk−1
n ,

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · ·

→ �[con(1mk−1
n ) → ¬�¬con(1mk

n )] . . .]].

Going on in the same way, we conclude that `∗S D1 ∧ · · · ∧ Di → �¬con(1m1
n ),

contrary to the S-consistency∗ of 10
n.

Subcase 4b At least one of 10
n+1,1

m1
n+1, . . . , 1

mk
n+1,1

m+1
n+1 is not S-consistent∗. In

any event, there are wffs D1, . . . ,Di ∈ 10
n such that

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · ·

→ �[con(1mk
n ) → �[(∀x1)Fx1 → C]] . . .]].

So, if k > 1,

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · ·

→ �[con(1mk−1
n ) → �[�(∀x1)Fx1 → [con(1mk

n ) → �C]]] . . .]].

Proceeding in the same manner, we infer that

`∗S � · · ·�
︸ ︷︷ ︸

k+1 times

(∀x1)Fx1 → [D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · ·

→ �[con(1mk
n ) → �C] . . .]]].



Quantified Modal Logic 209

Therefore,

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · · → �[con(1mk

n ) → �C] . . .]],

contrary to the characteristics of the subcase.

Subcase 4c This subcase is similar to (4a).

Subcase 4d Since at least one of10
n+1,1

m1
n+1, . . . , 1

mk
n+1 will not be S-consistent∗,

we can say that, for some wffs D1, . . . ,Di ∈ 10
n,

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · ·

→ �[con(1mk
n ) → [Fy → Ṡx

yC ∧ ¬(∀x)C]] . . .]].

Hence, by QKR4 and ST5∗,

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · ·

→ �[con(1mk
n ) → (∀y)[Fy → Ṡx

yC ∧ ¬(∀x)C]] . . .]]

and so, if k > 1,

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · · → �[con(1mk−1

n )

→ �[(∀y)Fy → [con(1mk
n ) → (∀y)Ṡx

yC ∧ (∀y)¬(∀x)C]]] . . .]].

Proceeding as we did at a similar point in Subcase 4b, we infer that

`∗S � · · ·�
︸ ︷︷ ︸

k times

(∀y)Fy → [D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · ·

→ �[con(1mk
n ) → (∀y)Ṡx

yC ∧ (∀y)¬(∀x)C] . . .]]].

Therefore,

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · ·

→ �[con(1mk
n ) → (∀y)Ṡx

yC ∧ (∀y)¬(∀x)C] . . .]]

and so,

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · ·

→ �[con(1mk
n ) → (∀x)C ∧ [¬(∀x)C ∨ (∀x)¬[C → C]]] . . .]].

Hence,

`∗S D1 ∧ · · · ∧ Di → �[con(1m1
n ) → �[· · ·

→ �[con(1mk
n ) → (∀x)¬[C → C]] . . .]],

contrary to the characteristics of the subcase.
We have thus shown that all 1m

n are S-consistent∗. I will now define the three
sequences

10

11

12

...

and

20

21

22

...

and

00

01

02

...

(The sequences here may be finite ones.)
10 will be the union of 10

0,1
0
1,1

0
2, . . .; for every i such that the matrix previ-

ously defined has a row whose superscript is i , 1i will be the union of 1i
1,1

i
2, . . ..
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Each one of 10,11,12, . . . is S-consistent∗, has the ∀-property, and contains a wff
of the form (∀x)Fx.
20 = 10. If ψ i is 〈�A〉, 2i will be 1i ∪ {B : �B ∈ 10}. If ψ i is

〈�A1, . . . ,�Ak〉 where k > 1, let 〈�A1, . . . ,�Ak−1〉 have been ψ j ; then 2i

will be 1i ∪ {B : �B ∈ 1 j }.
Assume that some 2i is not S-consistent∗, and consider the case in which ψ i

is 〈�A1, . . . ,�Ak〉 where k > 1. Then, for some wffs B1, . . . ,Bl such that
�B1, . . . ,�Bl ∈ 1 j and some wffs C1, . . . ,Ch ∈ 1i , `∗S B1 ∧ · · · ∧ Bl → ¬[C1∧

· · · ∧ Ch]. Hence

`∗S �B1 ∧ · · · ∧ �Bl → �¬[C1 ∧ · · · ∧ Ch].

Now, let 〈�A1, . . . ,�Ak〉 have been ϕr . Then, in the matrix defined previously, the
row whose superscript is i was introduced at the stage of ϕr . Among 1i

r ,1
i
r+1, . . .

there will be a set 1i
n that contains all of C1, . . . ,Ch . (Actually, there are infin-

itely many such sets.) ¬�¬con(1i
n) will belong to 1 j

n . For ¬�¬con(1i
r ) ∈ 1

j
r

and, for any r ′ such that r < r ′ ≤ n, even if 1i
r ′ is not the same as 1i

r ′−1 still

¬�¬con(1i
r ′) ∈ 1

j
r ′ . But we have both

`∗S �B1 ∧ · · · ∧ �Bl ∧ ¬�¬con(1i
n) → ¬�¬[C1 ∧ · · · ∧ Ch]

and
`∗S �B1 ∧ · · · ∧ �Bl ∧ ¬�¬con(1i

n) → �¬[C1 ∧ · · · ∧ Ch].

That contradicts the S-consistency∗ of 1 j . Things are similar if ψ i is 〈�A〉. Thus
20,21,22, . . . are all S-consistent∗.

A standard method extends every2m to the maximal S-consistent∗ set 0m . Note
that, for any B, if �B ∈ 0m then �B ∈ 1m . For if �B /∈ 1m then 1m will
contain, for some F, the wff abbreviated as ♦[¬B∧ (∀x1)Fx1] or the wff abbreviated
as ♦[(∀x1)Fx1 ∧ ¬B] and so, by ST4∗, 0m will contain the wff abbreviated as ♦¬B.
The set {00, 01, 02, . . .} is S-full and starts at 00. �

A model 〈W, R, D, Q, w∗, V 〉 is S-canonical just in case the following conditions
are satisfied: W is an S-full set starting at w∗; for all worlds w and w′, wRw′ if and
only if {A : �A ∈ w} ⊆ w′; D is the set of variables and individual constants; for
every world w and every b, wQb if and only if w contains an atomic wff in which b
occurs; for every a, V (a) = a; finally, for every predicate letter F i

j , every world w,
and all b1, . . . , bi that belong to the domain of w, 〈b1, . . . , bi 〉 ∈ V (F i

j , w) if and
only if F i

j b1 . . .bi ∈ w. The following is a corollary of (3.9) and (3.10).

Metatheorem 3.11 If 3 is an S-consistent, finite∗, and nonempty set of wffs, there
is an S-canonical model 〈W, R, D, Q, w∗, V 〉 in which w∗ ⊇ 3.

We can now demonstrate (3.12).

Metatheorem 3.12 It is the case in any S-canonical model that, for every A and
every world w, (x1, x2, . . .) satisfies A at w if and only if A ∈ w.

Proof As usual, the proof proceeds by induction on the number of the occurrences
of ¬, →, �, and ∀ in A. Let s be (x1, x2, . . .).

If A is F i
j b1. . .bi , then s satisfies A at w just in case 〈b1, . . . , bi 〉 ∈ V (F i

j , w).
If b1, . . . , bi ∈ Dw , the case follows from the definition of V ; otherwise,
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〈b1, . . . , bi 〉 /∈ V (F i
j , w), but also A /∈ w. If A is ¬B, B → C, or �B, the

case follows in a standard manner from the definition of an S-full set. There are two
more hypotheses to consider.

(a) A is (∀xi)B and belongs to a world w. Let s ′ be a sequence that differs from s
in at most the i th position and is such that wQs ′

i . Then there is an atomic wff C ∈ w

in which s ′
i occurs.

Case 1 s ′
i is free for xi in B. Then, by QKA3 and (3.8), Ṡxi

s ′
i
B ∈ w. Hence, by the

inductive hypothesis, s satisfies Ṡxi
s ′

i
B at w, so by (3.2) s′ satisfies B at w.

Case 2 s ′
i is not free for xi in B. Let y be a variable that does not occur in A. Then,

by ST11∗, S̄s ′
i

y A, that is, (∀xi)S̄
s ′

i
y B, belongs to w. So Ṡxi

s ′
i
S̄s ′

i
y B ∈ w. Hence s satisfies

Ṡxi
s ′

i
S̄s ′

i
y B at w, and thus s ′ satisfies S̄s ′

i
y B at w. Therefore, by (3.3), s ′ satisfies B at w.

Since, whichever of the two cases may obtain, s ′ satisfies B at w, s satisfies (∀xi)B
at w.

(b) A is (∀xi)B and is satisfied by s at a worldw. Then, sincew has the ∀-property,
we can distinguish the following two cases.

Case 1 (∀xi)¬[B → B] ∈ w. Then (∀xi)B ∈ w, for `∗S (∀xi)¬[B → B]→(∀xi)B.

Case 2 There are a variable y, not occurring in B, and a predicate letter F of degree
1 such thatw contains both Ṡxi

y B → (∀xi)B and Fy. ThenwQy. Let s ′ be a sequence
which differs from s in at most the i th position and is such that s ′

i is y. As s ′ will
satisfy B at w, s satisfies Ṡxi

y B at w. Hence Ṡxi
y B ∈ w, and so (∀xi)B ∈ w. �

(3.11) and (3.12) imply (3.13), which is the central result about completeness.

Metatheorem 3.13 If A is true in every S-canonical model, then `S A.

Proof If A is true in every S-canonical model, so is clo(A). Now assume that 6`S A.
Then, by QKA6, 6`S clo(A), so {¬clo(A)} is S-consistent. Thus, by (3.11), there is
an S-canonical model whose actual world,w∗, contains ¬clo(A). Hence (x1, x2, . . .)

satisfies ¬clo(A) at w∗, and so does not satisfy clo(A) at w∗. Take any individual
constant a. We know that a ∈ Dw∗ , and by (3.1) the sequence all of whose positions
are occupied by a fails to satisfy clo(A) at w∗. Then clo(A) is not true in the S-
canonical model we are considering. �

The completeness of QK regarding validity in all structures is a corollary of (3.13).

Metatheorem 3.14 If A is valid in all structures, `QK A.

As for the completeness of QK regarding validity in all the structures that meet con-
dition (5), it follows from (3.14) and the next metatheorem.

Metatheorem 3.15 If a wff A is true in every model that is based on a structure
meeting (5), then it is true in every model.

Proof Let 〈W, R, D, Q, w∗, V 〉 be a model in which a sequence s of individ-
uals from the domain of w∗ does not satisfy A at w∗. Consider the model
〈W, R, D′, Q, w∗, V 〉 where D′ = D − {d : d ∈ D but there is no w ∈ W
such that wQd}. This model is based on a structure meeting condition (5), and in it,
by (3.5), s does not satisfy A at w∗. �
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Let us turn to the axiomatic systems that extend QK but do not introduce a sign of
identity. It is now easy to establish the soundness and completeness of QD, QT, QS4,
QB, and QS5. Their soundness can be derived from (3.6). For example, in the case
of QT we must show that the instances of the schema QTA are W-true in every model
that is based on a reflexive structure. The completeness can be derived from (3.13).
In the case of QT, say, we must show that every QT-canonical model is based on a
reflexive structure. The details are quite standard.

The soundness of QK1, QK2, QK3, QK4, and QK1/2 also follows from (3.6).
For each QKi (1 ≤ i ≤ 4) we need only show that the instances of QiA are W-
true in every model that is based on a structure meeting condition (i). Showing that
suffices even for proving the soundness of QK1/2, since every structure that meets
condition (6) also meets conditions (1) and (2). The completeness of QK1, QK2,
QK3, QK4, and QK1/2 is a consequence of (3.13) and the next three metatheorems.

Metatheorem 3.16 Each QK1-canonical model is based on a structure that satis-
fies condition (1). Each QK2-canonical model is based on a structure that satisfies
condition (2). Each QK3-canonical model is based on a structure that satisfies con-
dition (3).

Proof For illustration I shall deal with the case of QK3. What we must show is that,
in any QK3-canonical model, if {A : �A ∈ w} ⊆ w′ and {A : �A ∈ w′} ⊆ w′′

while w contains an atomic wff B in which b occurs and w′′ contains an atomic wff
C in which b occurs, then w′ contains such a wff too. ¬�¬C will belong to w′, for
otherwise �¬C ∈ w′ and so ¬C ∈ w′′, contrary to the QK3-consistency∗ ofw′′. We
know that w′, like each world in an S-canonical model, contains a wff (∀x)Fx. By
Q3A and (3.8), �[¬�¬C → [(∀x)Fx → Fb]] ∈ w. Therefore, Fb ∈ w′. �

Metatheorem 3.17 Each QK4-canonical model is based on a structure that satis-
fies condition (4).

Proof We must show that, in any QK4-canonical model, each world w con-
tains an atomic wff. We know that w has the ∀-property. Take any wff (∀x)A.
¬(∀x)¬[A → A] belongs to w, so (∀x)¬[A → A] /∈ w. Hence there are a variable
y and a predicate letter F of degree 1 such that Fy ∈ w. �

Metatheorem 3.18 Each QK1/2-canonical model is based on a structure that sat-
isfies condition (6).

Proof Proceeding as in the proof of (3.16), we can show that each QK1/2-canonical
model is based on a structure that meets conditions (1) and (2). Now, let w andw′ be
any worlds in a QK1/2-canonical model. We know that w, as well as w′, is finitely
many steps away from w∗ (the actual world of the model). Thus, if wQd, then by
condition (2), w∗Qd, and so by condition (1), w′ Qd. �

It is worth seeing how the Converse Barcan Formula and the Barcan Formula can be
derived in QK1 and QK2.

QK1T1∗ �(∀x)A → (∀x)�A.

Proof Let F be a predicate letter of degree 1 which does not occur in A. By
Q1A we have Fx → �[(∀x)A → A]. Therefore Fx → [�(∀x)A → �A], so
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(∀x)Fx → (∀x)[�(∀x)A → �A]. Thus, by QKR5, (∀x)[�(∀x)A → �A]. Hence,
by ST5∗, �(∀x)A → (∀x)�A. �

QK2T1∗ (∀x)�A → �(∀x)A.

Proof Let F be a predicate letter of degree 1 which does not occur in A. By Q2A
we get (∀x)�A → [♦Fx → �A]. Thus, by ST3∗, (∀x)�A → �[Fx → A]. Hence,
by QKR4, (∀x)�A → �(∀x)[Fx → A], so (∀x)�A → [�(∀x)Fx → �(∀x)A].
Thus �(∀x)Fx → [(∀x)�A → �(∀x)A]. Finally, use QKR5. �

We should now see why the theorems of QK (or those of QD, QT, QS4, QB, QS5,
QK1, QK2, QK3, QK4, or QK1/2) which belong to the language L

′ (the nonmodal
part of L) are just the wffs that make up the classical predicate calculus without
identity when this calculus is formulated in L

′.

Metatheorem 3.19 If `S A then `S (∀x)A.

Proof As we know, a proof in S consists of two parts; the second part, which is
empty if QKA6 is not used in the proof, but which otherwise begins with the first
time QKA6 is used, relies at most on the first part, on QKA6, and on QKR1. Now,
consider that we prefix (∀x) to each step in a proof of A. Then the wffs in the first
part become theorems of S. By ST8 the instances of QKA6 also become theorems
of S. Finally, if `S (∀x)[B → C] and `S (∀x)B, then `S (∀x)C: if we begin
with (∀x)[B → C] → [(∀x)B → (∀x)C], continue with the first part of a proof of
(∀x)[B → C] and the first part of a proof of (∀x)B, add the second part of the proof
of (∀x)[B → C] and the second part of the proof of (∀x)B, and conclude with two
appropriate applications of modus ponens, we get a proof of (∀x)C. �

(3.19) is essential for demonstrating (3.20).

Metatheorem 3.20 If A is one of the wffs that make up the classical predicate
calculus without identity when this calculus is formulated in L

′, then `S A.

Proof We can axiomatize classical first-order logic without identity by restrict-
ing our metalinguistic variables to L

′ and using QKA1, QKA6, ST5∗, QKR1, and
QKR3. We can then see that all the axioms will be theorems of S and that the primi-
tive rules of inference will preserve theoremhood in S. �

We know that a classical interpretation for the language L
′ will be a pair 〈D,I〉

where D is a nonempty set and I is a function that assigns to each individual
constant a an element of D , and to each predicate letter F i

j a subset of D
i . If

〈W, R, D, Q, w∗, V 〉 is a model such that Dw∗ = D , V (a) = I(a) for every a, and
V (F i

j , w
∗) = I(F i

j ) for every F i
j , then it is easy to prove inductively the following

theorem.

Metatheorem 3.21 For any wff A of L
′ and any sequence s of elements of D , s

satisfies A at w∗ in 〈W, R, D, Q, w∗, V 〉 if and only if s satisfies A in 〈D,I〉.

As a consequence, we have (3.22).

Metatheorem 3.22 If A is a wff of L′ and `QK A then A is one of the wffs that make
up the classical predicate calculus without identity when this calculus is formulated
in L

′.
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Proof By (3.7), since `QK A, A is true in every model. Now, if A is not part
of classical first-order logic without identity, there will be a classical interpretation
〈D,I〉 in which a sequence s of elements of D does not satisfy A. Then we can
construct a model 〈W, R, D, Q, w∗, V 〉 such that Dw∗ = D , V (a) = I(a) for every
a, and V (F i

j , w
∗) = I(F i

j ) for every F i
j . By (3.21), A will not be true in that

model. �

For each one of the axiomatic systems QD, QT, QS4, QB, QS5, QK1, QK2, QK3,
QK4, and QK1/2, we can prove, in the same manner, an analogue of (3.22).

Turning to the axiomatizations that introduce a sign of identity, we can first prove
an analogue of (3.6). For any set3 of axiom schemata, QIK+3will be the axiomatic
system that results from QIK by adding those schemata.

Metatheorem 3.23 If, for any structure, 3 is a set of axiom schemata whose in-
stances are W-true in every identity model based on that structure, the theorems of
QIK +3 are I-valid in the structure.

The proof of (3.23) is similar to that of (3.6) and relies inter alia on the fact that the
instances of the schemata QIKA1–3 are W-true in every identity model.

Once we have (3.23), it is easy to establish the soundness of QIK, QID, QIT,
QIS4, QIB, QIS5, QIK1, QIK2, QIK3, QIK4, and QIK1/2. Before we demonstrate
their completeness, we need to prove some theorems in those systems. Let SI be
an arbitrary axiomatization which differs from QIK in at most having additional
axiom schemata such that if A is an instance of one of those schemata, a1, . . . , ai
are distinct individual constants, and y1, . . . , yi are variables that do not occur in A,
then Sa1,...,ai

y1,...,yi A is also an instance of the relevant schema.

SIT1∗ (∀x)[x = x].

Proof The proof is by QIKA1 and QKR5. �

SIT2∗ A → b = b where A is an atomic wff in which b occurs.

Proof Let x be a variable that does not occur in A, and let A′ result from A
by replacing every occurrence of b with x. A′ → x = x is an axiom. Hence
(∀x)[A′ → x = x]. But A → [(∀x)[A′ → x = x] → [A → b = b]] is an instance
of QKA3. �

SIT3∗ b = c → [A → B], where A is an atomic wff in which b occurs, and B
results from A by substituting c for an occurrence of b.

Proof Suppose that b is other than c, for otherwise the theorem is trivial. Let
x and y be distinct variables that do not occur in b = c → [A → B]. Let A′

result from A by replacing the relevant occurrence of b with x, and let B′ result
from B by replacing the relevant occurrence of c with y. x = y → [A′ → B′]

is an axiom. Hence (∀x)(∀y)[x = y → [A′ → B′]]. Thus, by QKA3,
b = c → (∀y)[b = y → [A → B′]]. But by QKA3 we also have b = c →

[(∀y)[b = y → [A → B′]] → [b = c → [A → B]]]. �

SIT4∗ b = c → c = b.
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Proof By the preceding two theorem schemata we have b = c → b = b and
b = c → [b = b → c = b]. �

SIT5∗ b = c → [c = d → b = d].

SIT6∗ b1 = c1 → [· · · → [bi = ci → [Fb1 . . .bi → Fc1 . . . ci ]] . . .].

SIT7∗ ♦m[A ∧ ¬[b = c]] → �n¬[b = c] where A is an atomic wff in which
b or c occurs.

The standard order of variables and individual constants will be x1, a1, x2,

a2, . . .. Given an SI -full set W , we can define the function f from variables and
individual constants: for each b, f (b) is the first individual constant or variable c
in the standard order such that, for every world w ∈ W containing an atomic wff in
which b or c occurs, b = c ∈ w.9 Note that, for every world w ∈ W containing an
atomic wff in which b occurs, b = b ∈ w.

A model 〈W, R, D, Q, w∗, V 〉 is SI -identity-canonical just in case it is an iden-
tity model and satisfies the following conditions: W is an SI -full set starting at w∗;
for all worlds w and w′, wRw′ if and only if {A : �A ∈ w} ⊆ w′; D is the range
of f ; for every world w and every b ∈ D, wQb if and only if w contains an atomic
wff in which b occurs; for every a, V (a) is f (a); finally, for every predicate letter
F i

j other than F2
1 , for every world w, and for all b1, . . . , bi that belong to the do-

main of w, 〈b1, . . . , bi 〉 ∈ V (F i
j , w) if and only if F i

j b1 . . .bi ∈ w. The following
metatheorem can be deduced from (3.9) and (3.10).

Metatheorem 3.24 If 3 is an SI -consistent, finite∗, and nonempty set, there is an
SI -identity-canonical model whose actual world is a superset of 3.10

Proceeding as in the proof of (3.12), we can establish (3.25).

Metatheorem 3.25 It is the case in any SI -identity-canonical model that, for every
A and every world w, ( f (x1), f (x2), . . .) satisfies A at w if and only if A ∈ w.

Proof I shall only discuss the clauses that differ from their counterparts in the proof
of (3.12). Let s be the sequence ( f (x1), f (x2), . . .).

(1) A is F i
j b1. . .bi . Then s satisfies F i

j b1. . .bi atw if and only if 〈 f (b1), . . . , f (bi)〉

∈ V (F i
j , w).

(1a) Either it is not true that wQ f (b1) or · · · or it is not true that wQ f (bi). Then
〈 f (b1), . . . , f (bi )〉 /∈ V (F i

j , w) but also F i
j b1. . .bi /∈ w. For if F i

j b1. . .bi ∈ w,
thenw contains all of b1 = f (b1), . . . , bi = f (bi ), in which case wQ f (b1) and · · ·

and wQ f (bi ).

(1b) F i
j is F2

1 , so A can be abbreviated as b1 = b2, whilewQ f (b1) andwQ f (b2).
Then b1 = f (b1) ∈ w and b2 = f (b2) ∈ w. Also 〈 f (b1), f (b2)〉 ∈ V (F2

1 , w)

if and only if f (b1) is f (b2). Now, if f (b1) is f (b2), then b1 = f (b2) ∈ w and
so, since by SIT4∗ f (b2) = b2 ∈ w, by SIT5∗ b1 = b2 ∈ w. On the other hand,
if f (b1) is other than f (b2), let, for example, f (b1) appear before f (b2) in the
standard order. Then there is a world w′ which does not contain b2 = f (b1) but
contains an atomic wff, C, in which b2 or f (b1) occurs. We know that w′ is, for
some m, m steps away from w∗ and that w is, for some n, n steps away from w∗.
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Thus w∗ contains the wff abbreviated as ♦m[C ∧ ¬[b2 = f (b1)]] — for if it does
not, then it will contain �m[C → b2 = f (b1)] and so w′ will contain b2 = f (b1).
Hence, by SIT7∗, w∗ contains �n¬[b2 = f (b1)]. Thus ¬[b2 = f (b1)] belongs to
w and b2 = f (b1) does not. Therefore, since b1 = f (b1) ∈ w, b2 = b1 /∈ w and so
b1 = b2 /∈ w.

(1c) F i
j is other than F2

1 while wQ f (b1) and · · · and wQ f (bi). Then
〈 f (b1), . . . , f (bi )〉 ∈ V (F i

j , w) if and only if F i
j f (b1). . . f (bi ) ∈ w. But w

will contain all of b1 = f (b1), . . . , bi = f (bi ). Hence, by SIT4∗ and SIT6∗,
F i

j f (b1). . . f (bi) ∈ w if and only if F i
j b1. . .bi ∈ w.

(2a) A is (∀xi)B and belongs to w. Let s ′ be any sequence that differs from s in
at most the i th position and is such that wQs ′

i . Since s ′
i ∈ D, s ′

i is f (b) for some
b. Thus s ′

i is the first individual constant or variable c such that, for every world w′

containing an atomic wff in which b or c occurs, b = c ∈ w′. Likewise, f (s ′
i ) is

the first individual constant or variable c such that, for every world w′ containing
an atomic wff in which s ′

i or c occurs, s ′
i = c ∈ w′. Hence b = s ′

i ∈ w and
s′

i = f (s ′
i ) ∈ w. Now, if s ′

i is other than f (s ′
i ), then by SIT2∗ f (s′

i ) comes before
s′

i in the standard order, so there is a world w′ that does not contain b = f (s ′
i ) but

contains an atomic wff, C, in which b or f (s ′
i ) occurs. Hence, by the same reasoning

as we employed in Case 1b above, b = f (s ′
i ) /∈ w. As by SIT5∗ that conclusion is

unacceptable, s ′
i is f (s ′

i ). The rest of Case (2a) proceeds like clause (a) in the proof
of (3.12).

(2b) A is (∀xi)B and is satisfied at w by s.
Case 1 (∀xi)¬[B → B] ∈ w. Then (∀xi)B ∈ w.
Case 2 There are a variable y, not occurring in B, and a predicate letter F of degree
1 such that w contains both Ṡxi

y B → (∀xi)B and Fy. Then y = f (y) ∈ w, so
wQ f (y). Let s ′ be the sequence which differs from s in at most the i th position,
and in which s ′

i is f (y). Then s ′ satisfies B at w, so s satisfies Ṡxi
y B at w. Hence

Ṡxi
y B ∈ w, and thus (∀xi)B ∈ w. � �

From (3.24) and (3.25) we can deduce the following.

Metatheorem 3.26 If A is true in every SI -identity-canonical model, then `S I A.

The proof of (3.26) is very similar to that of (3.13). Using (3.26), we can easily
demonstrate the completeness of the axiomatic systems QIK, QID, QIT, QIS4, QIB,
QIS5, QIK1, QIK2, QIK3, QIK4, and QIK1/2: the proof is similar to the complete-
ness proof for their counterparts without identity.

We should now see why the theorems of QIK (or those of QID, QIT, QIS4, QIB,
QIS5, QIK1, QIK2, QIK3, QIK4, or QIK1/2) which belong to the language L

′ are
just the wffs that make up the classical predicate calculus with identity when this
calculus is formulated in L

′ and the sign of identity is F2
1 .

Metatheorem 3.27 If A is one of the wffs that make up the classical predicate
calculus with identity when this calculus is formulated in L

′ and the sign of identity
is F2

1 , then `S I A.

Proof We can axiomatize classical first-order logic with identity by restricting our
metalinguistic variables to L

′ and using QKA1, QKA6, ST5∗, SIT1∗, QIKA2,
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QKR1, and QKR3. In that axiomatization, all the axioms are theorems of SI ,
and the primitive rules of inference preserve theoremhood in SI (see Metatheo-
rem 3.19). �

Metatheorem 3.28 If A is a wff of L
′ and `QIK A, then A is one of the wffs that

make up the classical predicate calculus with identity when this calculus is formu-
lated in L

′ and the sign of identity is F2
1 .

Proof By the soundness of QIK, since `QIK A, A is true in every identity model.
Now, if A is not part of classical first-order logic with identity, there will be a classical
interpretation 〈D,I〉 for L

′ in which I assigns the set {〈d, d〉 : d ∈ D} to F2
1 , and

in which a sequence s of elements of D does not satisfy A. Then we can construct
an identity model 〈W, R, D, Q, w∗, V 〉 such that Dw∗ = D , V (a) = I(a) for every
a, and V (F i

j , w
∗) = I(F i

j ) for every F i
j . By (3.21), A will not be true in that

model. �

For each one of the systems QID, QIT, QIS4, QIB, QIS5, QIK1, QIK2, QIK3, QIK4,
and QIK1/2, we can similarly prove an analogue of (3.28).

Now, in order to establish compactness and strong completeness, we can extend
the language L to a language L

+ by adding denumerably many individual constants
and denumerably many predicate letters of degree 1. The new individual constants
will be a+

1 , a+
2 , . . .. Just as the concept of a model was defined in the context of

L, so the concept of a model+ can be defined in the context of L
+. The axiomatic

system QK+ will be just like QK except that it concerns the language L
+. Other

model-theoretic and proof-theoretic concepts are also extended to the new language.
I shall assume that we have proved the counterparts in L

+ of several metatheorems
we have proved above for L. We also need the following two statements.

Metatheorem 3.29 For any model M = 〈W, R, D, Q, w∗, V 〉 and any model+

M+ = 〈W, R, D, Q, w∗, V +〉 where V ⊂ V +, any wff A of L, any set I of positive
integers, anyw ∈ W, and any sequence s of elements of D such that, for every i ∈ I ,
si = V +(a+

i ): s satisfies A at w in M if and only if s satisfies E at w in M+, where
E is the wff of L

+ that results from A when, for every i ∈ I , we replace every free
occurrence of xi with a+

i .

Metatheorem 3.30 For any model M = 〈W, R, D, Q, w∗, V 〉 and any model+

M+ = 〈W, R, D, Q, w∗, V +〉 where V ⊂ V +, any wff A of L, any w ∈ W, and
any sequence s of elements of D: s satisfies A at w in M if and only if s satisfies A
at w in M+.

(3.29) can be proved by induction on the number of occurrences of →, ¬, �, and ∀

in A, and (3.30) is a corollary of (3.29).

Metatheorem 3.31 Let 3 be any set of wffs of L. If, for each finite subset of
3, there is a structure in which that subset is satisfiable, then 3 is satisfiable in a
structure.

Proof We assume that 3 is not finite, for the case with finite 3 is trivial. Let 3+

be the set of wffs of L
+ which results from 3 when, in each member of 3 and for

every i , we replace every free occurrence of xi with a+
i .

Take any finite subset 2+ of 3+, and let 2 be the subset of 3 from whose mem-
bers we can get all members of 2+ by means of the replacement just described.
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We know that there is a model M = 〈W, R, D, Q, w∗, V 〉 in which, for some se-
quence s of elements of Dw∗ , s satisfies all members of 2 at w∗. It is easy to
construct a model+ M+ = 〈W, R, D, Q, w∗, V +〉 where V + ⊃ V and, for every
i , V +(a+

i ) = si . Then, by (3.29), we infer that in M+ the sequence s satisfies all
members of 2+ at w∗. In other words, 2+ is satisfiable in a structure.

Suppose that 3+ is not QK+-consistent. Then there will be wffs E1, . . . ,E j of
L

+ such that E1, . . . ,E j ∈ 3+ and `QK+ ¬[E1 ∧· · ·∧E j ]. So, by the soundness of
QK+, ¬[E1 ∧ · · · ∧ E j ] will be valid in every structure, contrary to the satisfiability
of {E1, . . . ,E j } in some structure. Hence 3+ is QK+-consistent.
3+ is also a nonempty set, and it is finite∗ in L

+. Therefore, by the counterparts
of (3.11) and (3.12) for L

+, there is a QK+-canonical model+ M+ = 〈W, R, D, Q,
w∗, V +〉 in which (x1, x2, . . .) satisfies every member of 3+ at w∗. So, by the ana-
logue of (3.1) for L

+, we have that in M+ the sequence (a+
1 , a+

2 , . . .), which is a
sequence of elements of Dw∗ , satisfies every member of 3+ at w∗. Hence, by re-
peated applications of the counterpart of (3.2) for L

+, we conclude that, in M+,
(a+

1 , a+
2 , . . .) satisfies every member of 3 at w∗.

Now consider the model M that results from M+ when we delete the valuation of
the individual constants and predicate letters that extend L to L

+. Then, by (3.30),
in M (a+

1 , a+
2 , . . .) satisfies every member of 3 at w∗. �

Metatheorem 3.32 Let A be a wff of L, and 3 be a set of wffs of L. If A is a
consequence of 3 in every structure, then for some wffs B1, . . . ,Bn ∈ 3 (n ≥ 0)
`QK B1 ∧ · · · ∧ Bn → A.

Proof By hypothesis there is no structure in which3 ∪ {¬A} is satisfiable. Hence,
by (3.31), for some wffs B1, . . . ,Bn ∈ 3 there is no structure in which {B1, . . . ,Bn,

¬A} is satisfiable. Thus B1 ∧ · · · ∧ Bn → A is valid in every structure. Then invoke
the weak completeness of QK. �

(3.31) says that satisfiability in a structure is compact. We can likewise demonstrate
that satisfiability in a serial structure is compact, as well as satisfiability in a reflexive
structure, in a transitive reflexive one, in a symmetrical reflexive one, in an equiva-
lence structure, in a universal one, in a structure that meets condition (1), in one that
meets (2), in a structure meeting (3), in one meeting (4), and in one that meets (6).
But in order to demonstrate that satisfiability in a structure meeting condition (5) is
compact, we should rely on (3.31) and argue as in the proof of (3.15). Then, proceed-
ing as in the proof of (3.32), we can prove the strong completeness of QD, QT, QS4,
QB, QS5, QK1, QK2, QK3, QK4, and QK1/2, as well as the strong completeness of
QK regarding consequence in the structures that meet condition (5).

The proof of compactness and strong completeness for the axiomatizations with
identity is similar.

Notes

1. One might define first-order modal logics with two kinds of quantifiers: one that involved
a constant domain and gave rise to a classical nonmodal fragment and one that involved
world-variable domains and gave rise to a nonclassical fragment. But it seems more
interesting to define first-order modal logics in which the same quantifiers both involve
world-variable domains and give rise to a classical fragment.
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2. As usual, a statement such as ‘A∨¬A is a theorem’ will not mean ‘The formula A∨¬A
is a theorem’ but ‘The wff abbreviated as A ∨ ¬A is a theorem’.

3. Outermost brackets are omitted. The rule of the association to the left applies; for exam-
ple, A → B → C abbreviates [[A → B] → C]. The brackets that enclose a disjunction
or conjunction are omitted when the disjunction or conjunction is an argument of an oc-
currence of → or ↔; so A → B ∨ C abbreviates [A → [B ∨ C]]. No other brackets are
omitted.

4. In the sense of ‘proof’ used in the text, a proof consists of wffs each of which is annotated
with a reference to either an axiom schema or a primitive rule of inference. From a more
formal viewpoint, a proof can be seen as just a k-tuple of wffs. In order to count as a
proof in QK, a k-tuple 〈A1, . . . ,Ak〉 must satisfy the following condition: if some wff
Ai (1 ≤ i ≤ k) is an instance of QKA6, but not also an instance of QKA1, and there
are among A1, . . . ,Ai−1 no wffs from which it can be inferred in accordance with one
of QKR1–5, then every A j such that i < j ≤ k either is also an instance of QKA6 or
can be inferred in accordance with QKR1 from two wffs from among A1, . . . ,A j−1.
Opting for this, more formal, sense of ‘proof’ does not change the class of theorems of
QK.

5. A world w′ is 0 R-steps away from w if and only if it is w itself, and it is m + 1 R-steps
away from w if and only if there is a world w′′ that is m R-steps away from w while
w′′ Rw′.

6. The requirement that each set in W should contain a wff of the form (∀x)Fx is needed for
proving the completeness of QK1, QK2, QK3, QK1/2, and the corresponding systems
with identity.

7. To get such an enumeration, we can first define a one-to-one correspondence between
wffs and positive integers. Each one of the k-tuples we want to enumerate is assigned the
sum of the integers corresponding to the wffs that occupy its positions. We then arrange
the k-tuples in increasing order of the sums assigned to them; k-tuples having the same
sum can be arranged in a lexicographic manner.

8. Usually, a recursive definition defines a sequence. The definition in the text does not
have that form, since it constructs a matrix rather than a sequence. We can, however,
give it the usual form by viewing it as defining a sequence of finite matrices, each of
which has fewer columns, and possibly fewer rows, than its successor. Then the matrix
we want to construct will be the union of those finite matrices.

9. A statement such as ‘b = c belongs to w’ will not mean ‘The formula b = c belongs to
w’ but ‘The wff abbreviated as b = c belongs to w’.

10. In order to deduce (3.24), we should realize that if a member 0 of an SI -full set contains
an atomic wff in which a constant a occurs, then 0 contains a = f (a) and so contains
an atomic wff in which f (a) occurs.
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