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Logics of Relative Identity

Paweł Garbacz

Abstract This paper is the first part of an exploration into the logical properties
of relative identity. After providing the semantic grounds for various monadic
logics of relative identity, I define the minimal system and its nine extensions.
It is suggested that despite their purely formal origin at least some of them may
contain nontrivial philosophical insights. All logics are axiomatized by means
of sound and complete sequent calculi. I show their affinities with existing for-
malizations.

1 The Minimal Theory of Relative Identity

One of the most notorious logical inventions of Geach is relative identity (from
Geach [4] to [5]). Due to the extravagance of his theory, relative identity (RI for
short) has not been warmly welcomed by his contemporaries. In particular Geach’s
rejection of absolute identity (AI) turned out to be fatal for any future theory of RI.

However, fairly recently Deutsch [2] has tried to revive the notion in his logic of
general similarity. One of the most striking features of his account is its philosophical
modesty. Deutsch confines himself to stating linguistic facts without fortifying them
by means of ontological or epistemological explanations. Needless to say, Deutsch
does not reject AI. He merely proposes examining the logical properties of the rela-
tion that is expressed in our everyday language by formulas of the form “ . . . is the
same . . . as . . . ”.

In what follows I will sketch a formal landscape for monadic logics of relative
identity (henceforth MLRIs).1 My aim is to expose the possible logical properties of
RI and explore the logical consequences of these properties. The nonformal frame-
work of my formalization consists of four assumptions.

Assumption 1.1 RI is denoted by ‘ . . . is the same . . . as . . . ’. Paradigmatic oc-
currences of this expression include the following:
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1. Goldberg Variations by Glenn Gould is the same piece of music as Murray
Perahia’s interpretation, but they are not the same interpretation of Bach’s
masterpiece;

2. The ship of Theseus is the same collection of planks as the reassembled ship,
but they are not the same artefacts;

3. The inscription ‘identity’ is the same word (i.e., so-called type-word) as the
inscription ‘identity’, but not the same inscription (token-word);

4. 1
2 is the same rational number as 2

4 , but they are not the same fractions;
5. Cockney English is the same language as BBC English, but is not the same

dialect;
6. Karol Wojtyła is the same man as John Paul II, but not the same member of

the Catholic Church.

Assumption 1.2 Such sentences will be rendered by schemata ‘x is the same A
as y’, where ‘x’ and ‘y’ are individual variables of first-order logic, and ‘A’ is a
predicate variable. Some more restrictions may be imposed on nonformal grounds.2

Assumption 1.3 ‘is the same A as’ denotes an equivalence relation on the set of all
objects falling under a predicate A. Hence this set is exhaustively divided by it into
disjoint nonempty subsets.

Assumption 1.4 The semantics of MLRIs will be formulated in the standard set
theory (ZFC) and share the alphabet with first-order nonmodal classical predicate
logic.3

If x = y, then x and y will be called AI-objects. Because of (1.4) the definition of
an RI-object is bound to refer to AI-objects; namely, an RI(δ)-object is the set of
AI-objects that are the same δ. For example, RI (piece of music) contains AI-objects
that are the same pieces of music.

My minimal theory of RI consists of (1.1) and (1.3). The former merely reports
unusual identity sentences and the latter imposes the minimal condition for RI being
identity. Observe that my theory

1. does not exclude that RI may collapse into AI, that is, it does not proscribe
reading ‘x is the same A as y’ as ‘x = y and A(x)’,

2. does not require the standard set theory.

The prospects for developing logics of RI in a nonstandard set theory are rather poor,
but I think that Blizard’s theory of multisets or the Krause conception of quasi sets
may be useful in this respect (cf. Blizard [1] and Krause [7]).

A full theory of RI should furthermore plausibly explain why we are entitled
to treat non-AI objects as identical in some derivative sense and on the ground of
this justification “predict” the behavior of RI sentences. It is hoped that MLRIs
will provide formal tools useable in this enterprise and give some clues for possible
justifications.

However small my minimal theory might seem to be, it is not small enough to
encompass all accounts of RI. In particular, it excludes Zemach’s version of RI,
according to which relativity of identity derives from the incompleteness of objects
to which we refer (Zemach [16]). Zemach makes the controversial claim that if x is
the same A as y, then neither x nor y need be A (cf. (1.3) above). On the other hand,
(1.3) follows from theories in [2], [5], Griffin [6], Noonan [8], and van Inwagen [14].
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My minimal theory of relative identity deliberately avoids some controversial the-
ses on RI:

1. AI is a syntactically and/or semantically incomplete expression ([5]).
2. RI is indispensable when it comes to individuating things ([6], pp. 156–61).
3. Every AI statement is a disguised RI statement (Strawson [13], pp. 47–74,

and a consequence of [16]).
4. Only RI may provide a criterion of identity ([8], pp. 1–81; renounced in Noo-

nan [9]).
5. RI holds only among vague objects ([16] and Zemach [18]).

For those reasons, I find (1.1) – (1.4) rather innocuous and acceptable even for a
moderate opponent to RI.

2 Language

Let a nonempty set of signs be called an alphabet. If X is an alphabet, then X ∗ will
denote the set of all finite sequences of signs from X . A will denote the alphabet of
the language of MLRIs (the monadic language, for short).

Definition 2.1 A is the union of the following sets:
1. x1, x2, . . . (individual variables);
2. ¬, ∧, ∨, →, ≡;
3. ∀, ∃;
4. =.4

The set (1) will be referred to as Var.
A set S of symbols of the monadic language is the union of a (possibly empty)

set of monadic predicates, A1, A2, . . ., and a (possibly empty) set of constants,
c1, c2, . . .. A set T S of terms of the monadic language consists of Var and the set of
constants. The monadic language LS is the smallest subset of (A ∪ S)∗ satisfying
the standard conditions on formula-construction and the condition concerning RI.

Definition 2.2 If α1, α2 ∈ T S and δ ∈ S, then α1 =δ α2 ∈ LS .

The elements of LS will be called S-formulas. Sets of S-formulas will be called
S-sets.

I assume the usual definition of substitution. If ϕ ∈ LS , then ϕ[β1, . . . , βn/

α1, . . . , αn] will denote the result of uniform substitution of terms α1, . . . , αn for
variables β1, . . . , βn .

3 Semantics

I depart from the standard semantics at Definition 3.1.

Definition 3.1 An S-structure is a pair Z := (U, F ).
1. U is a nonempty set called the universe of Z.
2. F is a map on S such that

(a) F : {An : An is a monadic predicate } → ℘(℘(X) \ {∅}),
(b) F : {cn : cn is a constant } → U .

Therefore, in my semantics a monadic predicate is interpreted by a family of sets.
An assignment in an S-structure Z is a map G : Var→ U . An S-interpretation is a
pair F := (Z, G). If G is an assignment in an S-structure Z and u ∈ U , then we have
the following.
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Definition 3.2 G
β1
u (β2) :=

{

G(β2) if β1 6= β2.

u if β1 = β2.

Respectively, F
β
u := (Z, G

β
u ).

Definition 3.3 An S-interpretation F is (also) a map F : S → U such that
1. F(β) := G(β).
2. F(χ) := F (χ).

Let ‘F |H ϕ’ abbreviate ‘An S-interpretation F is a model for an S-formula ϕ’.

Definition 3.4 If F = (Z, G) is an S-interpretation, then

F |H α1 = α2 iff F(α1) = F(α2), (1)
F |H α1 =δ α2 iff ∃X ∈ F (δ)F(α1), F(α2) ∈ X, (2)

F |H δ(α) iff ∃X ∈ F (δ)F(α) ∈ X, (3)
F |H ¬ϕ iff ¬F |H ϕ, (4)

F |H ϕ1 ∨ ϕ2 iff F |H ϕ1 or F |H ϕ2, (5)

F |H ∃βϕ iff for some u ∈ U, F
β

u
|H ϕ. (6)

If an S-interpretation F is a model for all formulas from an S-set 8, then we say that
it is a model for this set: F |H 8. The sign ‘|H’ is commonly used also in another
context: ‘8 |H ϕ’ means ‘An S-formula ϕ is a semantic consequence of an S-set 8’.
As MLRIs will be identified by means of sets of structures, we need a relativization
thereof to a set 6 of S-interpretations.

Definition 3.5 8 |H6 ϕ if and only if for every S-interpretation F from 6, if F is
a model for 8, then it is a model for ϕ.

We may treat a consequence operation |H6 as a logic characterized by 6. For short,
such logic will be referred to as a 6 logic.

Definition 3.6 A set 8 of formulas is 6-satisfiable if and only if ∃F ∈6 ∀ϕ ∈8

F |H6 ϕ.

4 Minimal MLRI

Assumption 1.3 from Section 1 establishes the minimal condition for F .

(C1) If X, Y ∈ F (δ) and X 6= Y , then X ∩ Y = ∅.5

S-structures satisfying (C1) will be called minimal S-structures. The minimal MLRI
is characterized by the class of all minimal S-structures. It will be referred to as
‘|HC1’ or (C1). It is easy to verify the following facts.

Fact 4.1

1. |HC1 x1 = x2 ∧ A1(x1) → x1 =A1 x2.
2. |HC1 x1 =A1 x2 → A1(x1).
3. |HC1 A1(x1) → x1 =A1 x1.
4. |HC1 x1 =A1 x2 → x2 =A1 x1.
5. |HC1 x1 =A1 x2 ∧ x2 =A1 x3 → x1 =A1 x3.

All these facts but the last obtain without (C1).
To be an MLRI is to contain (C1). All structures below (both nondeviant and

deviant) are assumed to satisfy (C1).
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5 Some Nondeviant MLRIs

Since RI sentences come from miscellaneous domains (witness Assumption 1.1 (1) –
(6) above) I am inclined to recognize various logics of RI, at least as a formal pos-
sibility. From the “point of view of the monadic language” their variety may be
described in terms of relations among RI-objects falling under predicates that con-
tain or intersect one another.

Let ‘∪’ denote the union of a family of sets. More interesting cases of containment
conditions include the following.

(C2) If ∪F (δ1) = ∪F (δ2), then F (δ1) = F (δ2).

(C3) If ∪F (δ1) ⊆ ∪F (δ2), then ∀X ∈ F (δ1)∃Y ∈ F (δ2)X ⊆ Y .

(C4) If ∪F (δ1) ⊆ ∪F (δ2), then ∀X ∈ F (δ2)∃Y ∈ F (δ1)(X ⊆ F (δ1)

→ X ⊆ Y ).
(C5) If ∪F (δ1) ⊆ ∪F (δ2), then F (δ1) ⊆ F (δ2).

(C2) may be called the extensionalist MLRI since it guarantees that (extensionally)
identical predicates possess (extensionally) identical RI-objects. The nontrivial in-
tersection restrictions involve the following conditions.

(C6) If X ∈ F (δ1), Y ∈ F (δ2), and X ∩ Y 6= ∅, then either X ⊆ Y or Y ⊆ X .

(C7) If X ∈ F (δ1), Y ∈ F (δ2), and X ∩ Y 6= ∅, then X ⊆ ∪F (δ2).

(C8) If X ∈ F (δ1), Y ∈ F (δ2), Z ∈ F (δ2), X ∩ Y 6= ∅, and X ∩ Z 6= ∅,
then Y = Z .

(C9) If X ∈ F (δ1), Y ∈ F (δ2), and X ∩ Y 6= ∅, then X ∈ F (δ2).

Fact 5.1 One may prove by inspection that
1. (C3) entails (C2).
2. (C4) entails (C2).
3. (C5) entails (C3) and (C4).
4. (C8) entails (C3).
5. (C9) entails (C5), (C6), (C7), and (C8).
6. (C7 ∧ C8) entails (C9).

A Cn logic is a logic characterized by the class of all S-structures satisfying Cn (and
(C1) as well). In Sections 8 and 9 it will be proved that characteristic theorems for
Cn logics are as follows.

Fact 5.2

1. |HC2 ∀x1(A1(x1) ≡ A2(x1)) → (x1 =A1 x2 → x1 =A2 x2).
2. |HC3 ∀x1(A1(x1) → A2(x1)) → (x1 =A1 x2 ∧ x2 =A2 x3 → x1 =A2 x3).
3. |HC4 ∀x1(A1(x1) → A2(x1)) → (x1 =A1 x2 ∧ x2 =A2 x3 → x1 =A1 x3).
4. |HC5 ∀x1(A1(x1) → A2(x1)) → (x1 =A1 x2 ∧ x2 =A2 x3 →

x1 =A1 x3∧x1 =A2 x3).
5. |HC6 x1 =A1 x2 ∧ x2 =A2 x3 → x1 =A1 x3 ∨ x1 =A2 x3.
6. |HC7 x1 =A1 x2 ∧ A2(x1) → A2(x2).
7. |HC8 x1 =A1 x2 ∧ A2(x1) ∧ A2(x2) → x1 =A2 x2.
8. |HC9 x1 =A1 x2 ∧ A2(x1) → x1 =A2 x2, however,
9. 6|HC9 x1 =A1 x2 → x1 = x2.

Incidentally, compare (2) – (4) with
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Fact 5.3 |HC9 x1 =A1 x2 ∧ x2 =A2 x3 → x1 =A1 x3 ∧ x1 =A2 x3.

Observe also the following.

Fact 5.4 |HC3, 5 ∀x1(A1(x1) → A2(x1)) → (x1 =A1 x2 → x1 =A2 x2).

6 Some Deviant MLRIs

The formula in Fact 5.2(9), which is invalid in (C9), holds if we assume the follow-
ing.

(C10) If X ∈ F (δ), then ∃u ∈ ∪F (δ)X = {u}.

And here is another deviant condition on F .

(C11) ∪F (δ) ∈ F (δ).

Then the following is obvious.

Fact 6.1

1. (C10) entails (C9).
2. (C11) entails (C3).
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Figure 1

The deviancy of (C10) and (C11) is revealed by the following facts.
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Fact 6.2

1. |HC10 x1 = x2 ∧ A1(x1) ≡ x1 =A1 x2.
2. |HC11 A1(x1) ∧ A1(x2) → x1 =A1 x2.

Notice that (C11) validates inferences like ‘if x is an artefact and y is an artefact,
then x is the same artefact as y’.

Relations among nonminimal MLRIs are depicted in Figure 1.

7 Sequent Calculi

Let ϕ1, ϕ2, . . . , ϕn be a nonempty sequence of S-formulas. Such a sequence will
be called an S-sequent, the subsequence ϕ1, ϕ2, . . . , ϕn−1 its antecedent and the S-
formula ϕn its succedent. Sequents are to correspond to “stages” in formal proofs. A
sequent calculus is a set of sequence derivation rules. A rule of derivation is a set of
pairs (X, s) in which X is a finite (possible empty) set of sequents and s is a single
sequent. Elements of X may be called premises of the rule and s its conclusion.
Usually rules of derivation are introduced as schemes of the following form:

81ϕ1
82ϕ2
· · ·

8nϕn
8ϕ

Definition 7.1 A sequent 8ϕ is derivable in a sequent calculus SQ = {R1, R2, . . . ,

Rn} if and only if there exists a finite sequence of sequents 81ϕ1, 82ϕ2, . . . , 8nϕn
such that

1. 8n = 8 and ϕn = ϕ,
2. every element 8iϕi in that sequence either is the conclusion of some non-

premise rule from SQ or there is a rule in SQ such that8iϕi is its conclusion
and its premises are among precedent sequents in the sequence.

If there is a derivation of the sequent 8ϕ in SQ, then we write `SQ 8ϕ.

Definition 7.2 A formula ϕ is derivable in SQ from a set 8 of formulas, 8 `SQ ϕ,
if and only if there is a finite number of formulas ϕ1, ϕ2, . . . , ϕn in 8 such that
`SQ ϕ1, ϕ2, . . . , ϕnϕ.

The calculi below are to yield S-sequents in such a way that for every Cn logic, there
is a sequent calculus SQn such that ϕ is a consequence of 8 in Cn if and only if ϕ

is derivable in SQn from 8. My monadic calculi of relative identity (MCRIs) will
be based on the standard sequent calculus for classical first-order logic with identity
defined by the following rules.

(R1)
81ϕ

82ϕ
if 81 ⊆ 82

(R2) 8ϕ
if ϕ ∈ 8

(R3)
8ϕ1ϕ2 8¬ϕ1ϕ2

8ϕ2
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(R4)
8¬ϕ1ϕ2 8¬ϕ1¬ϕ2

8ϕ1

(R5)
8ϕ1ϕ3 8ϕ2ϕ3

8(ϕ1 ∨ ϕ2)ϕ3

(R6) (i)
8ϕ1

8(ϕ1 ∨ ϕ2)

(ii)
8ϕ1

8(ϕ2 ∨ ϕ1)

(R7)
8ϕ[β/α]

8∃βϕ

(R8)
8ϕ1[β1/β2]ϕ2

8∃β1ϕ1ϕ2
if β2 is not free in the sequent 8∃β1ϕ1ϕ2

(R9) α = α

(R10)
8ϕ[β/α2]

8α1 = α2ϕ[β/α2]

Definition 7.3 SQ0 = {R1, R2, . . . , R10}.

For example, I will prove in SQ0 the sequent (ϕ ∨ ¬ϕ):

1. ϕϕ R2
2. ϕ(ϕ ∨ ¬ϕ) R6(i):1
3. ¬ϕ¬ϕ R2
4. ¬ϕ(ϕ ∨ ¬ϕ) R6(ii):3
5. (ϕ ∨ ¬ϕ) R3:2,4

MCRIs will be characterized by the following additional rules.

(R11A)
8α1 = α2 8δ(α1)

8α1 =δ α2

(R11B)
8α1 =δ α2

8δ(α1)

(R11C)
8α1 =δ α2
8α2 =δ α1

(R11D)
8α1 =δ α2 8α2 =δ α3

8α1 =δ α3

(R12)
8∀β(δ1(β) ≡ δ2(β)) 8α1 =δ1 α2

8α1 =δ2 α2

(R13)
8∀β(δ1(β) → δ2(β)) 8(α1 =δ1 α2) ∧ (α2 =δ2 α3)

8α1 =δ2 α3
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(R14)
8∀β(δ1(β) → δ2(β)) 8(α1 =δ1 α2) ∧ (α2 =δ2 α3)

8(α1 =δ1 α3)

(R15)
8∀β(δ1(β) → δ2(β)) 8(α1 =δ1 α2) ∧ (α2 =δ2 α3)

8(α1 =δ1 α3 ∧ α1 =δ2 α3)

(R16)
8(α1 =δ1 α2) ∧ (α2 =δ2 α3)

8(α1 =δ1 α3) ∨ (α1 =δ2 α3)

(R17)
8(α1 =δ1 α2) 8δ2(α1)

8δ2(α2)

(R18)
8(α1 =δ1 α2) 8(δ2(α1) ∧ δ2(α2))

8α1 =δ2 α2

(R19)
8(α1 =δ1 α2) 8δ2(α1)

8(α1 =δ2 α2)

(R20)
8(α1 =δ α2)

8(α1 = α2)

(R21)
8(δ(α1) ∧ δ(α2))

8α1 =δ α2

Definition 7.4 SQ1 := SQ0 ∪ {R11A, R11B, R11C, R11D}.

Definition 7.5 SQn := SQ1 ∪ {R(10 + n)}.6

The following facts will be useful later.

Fact 7.6

1. 8 `SQn δ(α) iff 8 `SQn α =δ α.
2. If ∀β(8 `SQn β =δ1 β only if 8 `SQn β =δ2 β),

then 8 `SQn ∀β(δ1(β) → δ2(β)).

Fact 7.7 If 8 `SQ3,5 ∀β(δ1(β) → δ2(β)) and 8 `SQ3,5 α1 =δ1 α2, then
8 `SQ3,5 α1 =δ2 α2.

MCRIs’ counterparts of Facts 5.1 and 10.1 are collected below.

Fact 7.8

1. If 8 `SQ1 ϕ, then 8 `SQ2,6,7 ϕ.
2. If 8 `SQ2 ϕ, then 8 `SQ3 ϕ.
3. If 8 `SQ3 ϕ, then 8 `SQ5,8,11 ϕ.
4. If 8 `SQ4 ϕ, then 8 `SQ5 ϕ.
5. If 8 `SQ5,6,7,8 ϕ, then 8 `SQ9 ϕ.
6. If 8 `SQ9 ϕ, then 8 `SQ10 ϕ.

Proof Let 1 ≤ n ≤ 8 and 2 ≤ m ≤ 10. Due to Definitions 7.1 – 7.5, in order to
prove that if 8 `SQn ϕ, then 8 `SQm ϕ, it is sufficient to prove that the conclusion
of the rule R(n + 10) is derivable from its premises in SQm. The cases (1), (2), (4),
and (6) are obvious.
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(3) Assume first that m = 5. The conclusion of (R13) follows from the conclusion
of (R15). Now let m = 8. In SQ1 the sequents 8δ2(α1) and 8δ2(α2) follow from the
premises of (R13). From these sequents and the left conjunct of the second premise
we obtain (using (R18)) the sequent 8α1 =δ2 α2 and then the desired result by
(R11D).

Now let m = 11. The second premise of (R13) entails the sequents 8δ1(α1) and
8(δ2)(α3). The former with the first premise leads to the sequent 8δ2(α1), a sequent
that together with the latter results in the conclusion of (R13).

(5) Let n = 5. In SQ1 the sequents 8α2 =δ1 α2 and 8α2 =δ2 α3 are derivable from
the second premise of (R15). (R11B) and the former entail the sequent 8δ1(α2), a
sequent that together with the latter in SQ9 gives the sequent 8α2 =δ1 α3. The
sequent 8α1 =δ1 α3 is now derivable by means of (R11C) – (R11D).

If n = 6, then as in the case of n = 5 we get the sequent (∗):

(∗) 8α1 =δ1 α3.

The second premise of (R16) entails in SQ9 that 8δ2(α3), the sequent that yields
the sequent 8α1 =δ2 α3 by means of (∗) and (R19). The proofs for n = 7, 8 are
similar. �

In the proof of the completeness theorem I will use the standard notion of consistency
of a set of formulas with respect to a calculus (cf. Ebbinghaus et al. [3], p. 72).

8 Soundness

Theorem 8.1 If 8 `SQn ϕ, then 8 `Cn ϕ.

Proof If 8 `SQn ϕ, then there is a finite set 8′ such that 8′ ⊆ 8 and `SQn 8′ϕ

(cf. Definition 7.2). If we show that for every rule Rm of SQn, Rm = ({8i1ϕi1 , 8i2 ϕi2 ,

. . . , 8im ϕim }, 8 jm ϕ jm ), it holds that

(∗) if 8i1 |HCn ϕi1 , 8i2 |HCn ϕi2 , . . . , 8im |HCn ϕim , then 8 jm |HCn ϕ jm ,

then we prove that 8′ |HCn ϕ, and for that reason that 8 |HCn ϕ.
The proof of (∗) consists of the subproof of the classical rules (R1) – (R10) and

the subproof for the rules for RI. The former is a trivial extension of the proof of the
counterpart of Theorem 8.1 in the standard first-order sequent calculus. The cases of
the rules (R11A) – (R11C) are obvious.

Case R11D Assume that 8 |HC1 α1 =δ α2 and 8 |HC1 α2 =δ α3. If F |HC1 8,
then ∃X ∈ F (δ)F(α1), F(α2) ∈ X and ∃X ∈ F (δ)F(α1), F(α2) ∈ X . The dis-
jointness condition (i.e., (C1)) entails that ∃X ∈ F (δ)F(α1), F(α3) ∈ X . Hence,
8 |HC1 α1 =δ α3.

Case R12 Let 8 |HC2 ∀β(δ1(β) ≡ δ2(β)), 8 |HC2 α1 =δ1 α2, and F |HC2 8. Then
for all u ∈ U , F

β
u |HC2 δ1(β) ≡ δ2(β) and ∃X ∈ F (δ1)F(α1), F(α2) ∈ X . The

former entails ∪F δ1 = ∪F δ2, so the latter by (C2) results in F |HC2 α1 =δ2 α2.

Case R13 If F |HC3 ∀β(δ1(β) → δ2(β)), then by (C3)

(∗) ∀X ∈ F (δ1)∃Y ∈ F (δ2)X ⊆ Y .
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If F |HC3 (α1 =δ1 α2) ∧ (α2 =δ2 α3), then ∃X ∈ F (δ1) F(α1), F(α2) ∈ X and
∃X ∈ F (δ2) F(α2), F(α3) ∈ X . The former with (∗) and (C1) entail that F(α1)

belongs to the set referred to in the latter. This means that F |HC3 α1 =δ2 α3.

Case R14 Let F |HC4 ∀β(δ1(β) → δ2(β)). Then by (C4)

(∗) ∀X ∈ F (δ2)∃Y ∈ F (δ1)(X ⊆ F (δ1) → X ⊆ Y ).

If F |HC4 (α1 =δ1 α2) ∧ (α2 =δ2 α3), then ∃X ∈ F (δ1) F(α1), F(α2) ∈ X and
∃X ∈ F (δ2) F(α2), F(α3) ∈ X . The latter with (∗) and (C1) entail that F(α2)

belongs to the set referred to in the former. This means that F |HC4 α1 =δ1 α3.

Case R15 Assume that 8 |HC5 ∀β(δ1(β) → δ2(β)) and 8 |HC5 (α1 =δ1 α2)

∧ (α2 =δ2 α3). It follows that if F |HC5 8, then for every u ∈ U ,

(∗) if ∃X ∈ F (δ1)u ∈ X, then ∃X ∈ F (δ2)u ∈ X, and
(∗∗) ∃X ∈ F (δ1)F(α1), F(α2) ∈ X ,
(∗∗∗) ∃X ∈ F (δ2)F(α2), F(α3) ∈ X .

(∗) is the antecedent of (C5). Thus, (∗∗) and (∗∗∗) together with (C1) guaran-
tee that there is some set in F (δ1) that contains F(α1), F(α2), and F(α3) and that
there is some set in F (δ2) that also contains F(α1), F(α2), and F(α3). This entails
F |HC5 α1 =δ1 α3 ∧ α1 =δ3 α3.

Case R16 Let F |HC6 (α1 =δ1 α2) ∧ (α2 =δ2 α3). Definition 3.4(2) guarantees that
there are two sets X and Y such that

(∗) X ∈ F (δ1) and F(α1), F(α2) ∈ X .
(∗∗) Y ∈ F (δ2) and F(α2), F(α3) ∈ Y .

Thus, X ∩ Y 6= ∅, and because of (C6), either X ⊆ Y or Y ⊆ X , that is, either
F |HC6 α1 =δ2 α3 or F |HC6 α1 =δ1 α3.

Case R17 If F |HC7 δ2(α1) and F |HC7 α1 =δ1 α2, then there are sets X, Y
such that F(α1), F(α2) ∈ X ∈ F (δ1), and F(α1) ∈ Y ∈ F (δ2). Therefore,
X ∩ Y 6= ∅, and due to (C7), X ⊆ ∪F (δ2). Consequently, ∃X ∈ F (δ2)F(α2) ∈ X
and F |HC7 δ2(α2), as desired.

Case R18 If F |HC8 α1 =δ1 α2 and F |HC8 δ2(α1) ∧ (δ2(α1), then there are three
sets X, Y, Z such that X ∈ F (δ1)F(α1), F(α2) ∈ X, Y ∈ F (δ2)F(α1) ∈ Y , and
Z ∈ F (δ2)F(α2) ∈ Z . (C8) entails that Y = Z , thus ∃X ∈ F (δ2)F(α1), F(α2) ∈ X ,
as desired.

Case R19 Assume that 8 |HC9 δ2(α2) and 8 |HC9 α1 =δ1 α2. If F |HC9 8, then

(∗) ∃X ∈ F (δ2)F(α2) ∈ X,

(∗∗) ∃X ∈ F (δ1)F(α1), F(α2) ∈ X .

By (C9) these two consequences entail that there is a set contained both in F (δ1)

and F (δ2) that contains F(α2). (∗∗) implies that F(α1) belongs to this set as well.
That suffices for F |HC9 α1 =δ2 α2.

Case R20 Suppose that F |HC10 α1 =δ α2. It follows that ∃X ∈ F (δ)F(α1),

F(α2) ∈ X . By (C10), we have F(α1) = F(α2), that is, F |HC10 α1 = α2.
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Case R21 Assume that F |HC11 δ(α1) ∧ δ(α2). Thus, ∃X ∈ F (δ)F(α1) ∈ X and
∃X ∈ F (δ)F(α2) ∈ X , that is, F(α1), F(α2) ∈ ∪F δ. From (C11) it follows that
∃X ∈ F (δ)F(α1), F(α2) ∈ X , so 8 |HC11 α1 =δ α2. �

9 Completeness

Theorem 9.1 If 8 |HCn ϕ, then 8 `SQn ϕ.

In order to justify Theorem 9.1, I will modify Henkin’s proof for the standard first-
order system. First, I show the following.

Lemma 9.2 Every SQn-consistent S-set is Cn-satisfiable.

Proof Let 8 be a set of S-formulas. In order to verify Lemma 9.2, I will con-
struct n term-structures Z8

n = (U8
n , F 8

n ) in which every SQn-consistent set is Cn-
satisfiable. Their universes consist of elements identical “according to 8.”

Definition 9.3 α
8
n := {α′ ∈ T S : 8 `SQn α = α′}.

Definition 9.4 U8
n := {α

8
n : α ∈ T S}.

Their functions of structure may be defined as follows.

Definition 9.5 X ∈ F 8
n (δ) iff ∀α

8
n , α′8n , (α

8
n ∈ X →(α′8n ∈ X ≡8 `SQn α =δ α′)).

Definition 9.6 F 8
n (χ) := χ

8
n .

Fixing an assignment G8
n (β) := β

8
n we get n term-interpretations F8

n := (Z8
n , G8

n ).
In order to show that they characterize Cn logics we must prove the following.

Lemma 9.7 Every F 8
n function satisfies the Cn condition.

Proof

Definition 9.8 RIn
α,δ := {α′

8
n : 8 `SQn α =δ α′}.

In what follows it is helpful to notice that by Definition 9.8 and (R11D) we have the
following.

Fact 9.9 RIn
α,δ ∈ F 8

n (δ).

For the sake of simplicity, α
8
n , α′

8
n , F 8

n will be in the nth case abbreviated by
α, α′, F .

(n = 1) Assume otherwise. Then there exist two distinct sets X, Y ∈ F (δ) such
that X ∩ Y 6= ∅. Let α ∈ X, Y . Now by Definition 9.5, for all α′, it is the case that
α′ ∈ X ≡ 8 `SQ1 α =δ α′ and α′ ∈ Y ≡ 8 `SQ1 α =δ α′, that is, X = Y . This
contradicts our assumption to the effect that X and Y are distinct.

(n = 2, 3) Proofs are similar to the proof for the case when n = 5.

(n = 4) Assume that ∪F (δ1) ⊆ ∪F (δ2). Because of Definition 9.5 this gives

(∗) for all α ∈ U, if ∃X[X ∈ ∪F (δ1) and α ∈ X],
then ∃X[∀α′, α′′(α′ ∈ X → (α′′ ∈ X ≡ 8 `SQ4 α′ =δ2 α′′)) and α ∈ X].

It is clear that α ∈ RI4
α,δ if 8 `SQ6 α =δ α. Therefore from (∗) it follows that

(∗∗) ∀β(if 8 `SQ4 β =δ1 β, then 8 `SQ4 β =δ2 β).
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Facts 7.6 and 7.8 and (∗∗) entail that

(∗∗∗) 8 `SQ4 ∀β(δ1(β) → δ2(β)).

Suppose that

(∗∗∗∗) X ∈ F (δ2),

and

(∗∗∗∗∗) X ⊆ F (δ1).

Let α ∈ X and α′ ∈ X . Let Y0 ∈ F (δ1) denote the set to which α′ belongs (cf. Def-
inition 3.1 and (∗∗∗∗∗)). I will show that α belongs to Y0 as well. By (∗∗∗∗) and
Definition 9.5 we get that 8 `SQ4 α =δ2 α′. By (∗∗∗∗∗), Definition 9.5, and Fact 7.8
we get that 8 `SQ4 α′ =δ1 α′. Thus, 8 `SQ4 α =δ1 α′ due to (R14). (9.5) entails
now that α belongs to the same element of F (δ1) as α′, namely, Y0.

(n = 5) Assume that ∪F (δ1) ⊆ ∪F (δ2). As in the previous case this assump-
tion entails that

(∗∗∗∗) 8 `SQ5 ∀β(δ1(β) → δ2(β)).

But now due to Fact 7.7, (∗∗∗) entails that

(∗∗∗∗∗) If 8 `SQ5 α1 =δ1 α2, then 8 `SQ5 α1 =δ2 α2.

Suppose that X ∈ F (δ1). Let α ∈ X and α′ ∈ X . Then 8 `SQ5 α =δ1 α′, and
by (∗∗∗∗) 8 `SQ5 α =δ2 α′. Let now 8 `SQ5 α =δ2 α′ and α ∈ X . The latter
entails that 8 `SQ5 α =δ1 α, consequently the former and (R15) gives the sequent
8 `SQ5 α =δ1 α′. Since α ∈ X , therefore α′ ∈ X . In this way we have shown that
X ∈ F (δ2).

(n = 6) Assume otherwise. Then there are two sets X, Y such that X ∈ F (δ1),
Y ∈ F (δ2), X ∩ Y 6= ∅, X * Y , and Y * X . Subsequently, there are three U -
elements α, α′, α′′ such that α ∈ X ∩ Y, α ′ ∈ X \ Y , and α′′ ∈ Y \ X . Therefore,

(∗) 8 `SQ6 α =δ1 α′ and 8 `SQ6 α =δ2 α′′.
(∗∗) 8 0SQ6 α =δ2 α′ and 8 0SQ6 α =δ1 α′′.

(R16) applied to (∗) gives

(∗∗∗) 8 `SQ6 (α′ =δ1 α′′) ∨ (α′ =δ2 α′′).

Now, the left disjunct of (∗∗∗) with the left conjunct of (∗) contradicts, by (R11C) –
(R11D), the right part of (∗∗), and the right disjunct with the right conjunct contra-
dicts the left part.

(n = 7) Suppose that X ∈ F (δ1), Y ∈ F (δ2), and X ∩ Y 6= ∅. Then there exist
α such that

(∗) ∀α′(α′ ∈ X ≡ 8 `SQ7 α =δ1 α′).

and because of (R11B)

(∗∗) 8 `SQ7 δ2(α).
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Let α′′ ∈ X . From (∗) it follows that 8 `SQ7 α =δ1 α′′, so in view of (∗∗) it is the
case that 8 `SQ7 α′′ =δ2 α′′ (cf. (R17) and Fact 7.6). Consequently, α′′ ∈ RI7

α′′,δ2
and α′′ ∈ ∪F (δ2) (Fact 9.9). This completes the proof that X ⊆ ∪F (δ2).

(n = 8) Let X ∈ F (δ1), Y ∈ F (δ2), Z ∈ F (δ2), X ∩ Y 6= ∅, X ∩ Z 6= ∅. This
means that there are α, α′, such that α ∈ X ∩ Y , α′ ∈ X ∩ Z . Thus,

(∗) ∀α′′[(α′′ ∈ X ≡ 8 `SQ8=δ1 α′′) ∧ (α′′ ∈ X ≡ 8 `SQ8 α′ =δ1 α′′)].
(∗∗) ∀α′′(α′′ ∈ Y ≡ 8 `SQ8 α =δ2 α′′).
(∗∗∗) ∀α′′(α′′ ∈ Z ≡ 8 `SQ8 α′ =δ2 α′′).

From (∗) it follows that 8 `SQ8 α =δ1 α′ (R11D). Since α ∈ Y and α′ ∈ Z ,
8 `SQ8 δ2(α) and 8 `SQ8 δ2(α

′) because of (∗∗), (∗∗∗), and 7.6(1). Due to (R18),
8 `SQ8 α =δ2 α′ holds. Therefore, if α′′ ∈ Y , then 8 `SQ8 α′ =δ2 α′′ by (∗∗) and
(R11D). Thus α′′ ∈ Z owing to (∗∗∗). The proof that Z ⊆ Y is analogous.

(n = 9) Let X ∈ F (δ1), Y ∈ F (δ2), and X ∩ Y 6= ∅. Then there is some α

such that

(∗) ∀α′(α′ ∈ X ≡ 8 `SQ9 α =δ1 α′).
(∗∗) 8 `SQ9 δ2(α).

In order to prove that X ∈ F (δ2) assume α′, α′′ ∈ X . Then 8 `SQ9 α′ =δ1 α′′

and 8 `SQ9 α =δ1 α′. The latter and (∗∗) entail 8 `SQ9 δ2(α
′); therefore the

former gives 8 `SQ9 α′ =δ2 α′′. If α′ ∈ X and 8 `SQ9 α′ =δ2 α′′, then we
obtain 8 `SQ9 δ1(α

′) from the former and (R11B). Consequently, the latter entail
8 `SQ9 α′ =δ1 α′′. The desired result, α′′ ∈ X , follows from (∗).

(n = 10) If X ∈ F (δ), then for all α, α ′ ∈ X, 8 `SQ10 α =δ α′, and by (R20)
8 `SQ10 α = α′. According to the definition of the term-structure, this means that
α = α′. Therefore, X has exactly one element (Definition 3.1(1)), that is to say,
∃u ∈ ∪F (δ)X = {u}.

(n = 11) If α, α′ ∈ ∪F (δ), then 8 `SQ11 α =δ α and 8 `SQ11 α′ =δ α′. Now
by (R11B) 8 `SQ11 δ(α) and 8 `SQ11 δ(α′). (R21) yields that 8 `SQ11 α =δ α′.
Now let α ∈ ∪F (δ) and 8 `SQ11 α =δ α′. The former entails that there is some
set X ∈ F (δ) such that if 8 `SQ11 α =δ α′, then α′ ∈ X . Hence, due to the latter,
α′ ∈ X ⊆ ∪F (δ). This fulfills Definition 9.5 condition for ∪F (δ) ∈ F (δ). �

Now, following Henkin’s proof, I will prove two facts from which Lemma 9.2 fol-
lows immediately.

Fact 9.10 For every SQn-consistent and negation-complete (with respect to SQn)
set 8 that contains witnesses (with respect to SQn), and for every formula ϕ,
F8

n |HCn ϕ if and only if 8 `SQn ϕ.

Fact 9.11 Every SQn-consistent set 8 is contained in some SQn-consistent and
negation-complete (with respect to SQn) set 8′ that contains witnesses (with respect
to SQn).

The definition of a negation-complete set (with respect to a calculus) and the defini-
tion of a set containing witnesses (with respect to a calculus) are standard (cf. [3], p.
78).

Proof of 9.10 The proof is by induction on the construction of ϕ.
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(i) The basis of the induction

Case of ϕ = δ(α) F8
n |HCn δ(α) if and only if ∃X ∈ F 8

n (δ)F8
n (α) ∈ X if and

only if ∃X[∀α
8
n , α′

8
n , (α

8
n ∈ X → (α′

8
n ∈ X ≡ 8 `SQn α =δ α′)) and α

8
n ∈ X]

only if 8 `SQn α =δ α if and only if (by Facts 7.6(1) and 7.8) 8 `SQn δ(α).
8 `SQn δ(α) if and only if (by Facts 7.6(1) and 7.8) 8 `SQn α =δ α. There-

fore, α
8
n ∈ RIn

α,δ. Consequently (by Fact 9.9), ∃X ∈ F 8
n (δ) F8

n (α) ∈ X , and
F8

n |HCn δ(α).

Case of ϕ = α =δ α′ F8
n |HCn α =δ α′ if and only if ∃X ∈ F 8

n (δ) F8
n (α),

F8
n (α′) ∈ X if and only if ∃X[∀α

8
n , α′

8
n (α

8
n ∈ X → (α′

8
n ∈ X ≡ 8 `SQn α =δ α′))

and α
8
n , α′

8
n ∈ X] only if 8 `SQn α =δ α′.

If 8 `SQn α =δ α′, then (by (R11B) and Fact 7.8), α
8
n , α′

8
n ∈ RIn

α,δ. Since this
set belongs to F 8

n (δ) by Fact 9.9, we have F8
n |HCn α =δ α′.

(ii) The inductive step involves only those satisfaction conditions and rules for deriv-
ing sequents that are shared with the standard system. �

Proof of 9.11 In order to verify (9.11) we need two more lemmas.

Lemma 9.12 Every SQn-consistent S-set 8 such that the set of free variables in
formulas of 8 is finite can be extended to an SQn-consistent S-set that contains
witnesses (with respect to SQn).

Lemma 9.13 Every SQn-consistent S-set 8 can be extended to an SQn-consistent
and negation-complete (with respect to SQn) S-set.

Then, using Henkin’s device of extending the set of constants, we get (9.11). The
proof of this fact and proofs of Lemmas 9.12 and 9.13 are similar to the standard
derivations. �

Proof of Theorem 9.1 If 8 |HCn ϕ and 8 0SQn ϕ, then 8∪ {¬ϕ} is SQn-consistent
but not Cn-satisfiable, contrary to Lemma 9.2. �

10 Logical Objection

One of the most significant objections to RI comes from Wiggins. He argues at some
length that RI is to be interpreted as AI confined to some set of objects, that is,
(∗) x =A y ≡ A(x) ∧ x = y.7

In terms of my formal landscape, his position has it that the only plausible logic of
RI is deviant (C10). That strongly suggests that the RI phenomena stated in Assump-
tion 1.1 are deceptive.

Wiggins admits that the force of his arguments comes mainly from Leibniz’s Law:
(LL) If x is the same as y, then all properties of x are properties of y.
Assume that RI is governed by an MLRI different from (C10). This entails that RI
need not satisfy (LL). Wiggins argues that then there is no reason to classify it as
identity.

Leibniz’s Law marks off what is peculiar to real identity and what differenti-
ates it in a way in which transitivity, symmetry, and reflexivity . . . do not.

How if a is b could be something true of the object a which was untrue of
the object b? After all they are the same object.
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If Leibniz’s Law is dropped . . . , then we need some formal principle or
other, and one of at least compared universality, to justify the instances of
the intersubstitution of identicals that evidently are valid. The instability, in-
determinacy or arbitrariness of all extant emendations or relativizations of
Leibniz’s Law constitutes an important part of the case for a pure congruence
principle such as Leibniz’s. (Wiggins [15], p. 27–28)

I propose calling Wiggins’s position the logical objection. There are two possible
answers to the logical objection. The first was suggested by Deutsch. He admits
that there are no formal counterparts of (LL) for RI; nevertheless, there are material
counterparts. Or better, there are no a priori justifiable counterparts and we are left
with a posteriori principles. Deutsch claims that if x is the same A1 as y and x is
A2, then whether y is A2 depends on A1 and A2. There are no logical warrants here.
For example, if x is the same ship as y and x is a galley, then y is also a galley, but
x might be painted green without y being green. I would add that Wiggins is right
up to a point: RI is a relation sui generis. Whether it is a real identity seems to be a
verbal problem of little importance. It is the logical properties of RI that are far more
important.

If it holds that if α =δ1 β and δ2(α), then δ2(β), then, following Deutsch, I will
say that a predicate δ2 is δ1-subscripted. Deutsch notes that RI and indiscernibility
principles for subscripted predicates are to be respected because they help us solve
problems about change, allographic objects, and the constitution of material things
(cf. [2]).

The second answer points out that in (C7) and (C9) there are “restricted” counter-
parts of (LL).

Fact 10.1

(i) |HC7 α =δ1 β → (ϕ → ϕ[β/α]) provided that ϕ does not contain either ‘=’
or ‘=δ2’.

(ii) |HC9 α =δ1 β → (ϕ → ϕ[β/α]) provided that ϕ does not contain ‘=’.

11 Ambiguity Objection

Wiggins also provides a detailed analysis of alleged counterexamples to (LL) (they
are similar to my examples from Assumprion 1.1). His analysis rests on (LL) and
the postulate of referential univocity of the terms and concepts we use. The upshot
of that analysis is that most delusive RI phenomena are due to the vicious referential
ambiguity of terms and concepts. Consider for example the term ‘an inscription’.
Wiggins seems to require that we should determine whether, in using that term, we
refer to token-words or to type-words. In the former case it is false that an inscrip-
tion ‘identity’ is the same type-word as an inscription ‘identity’ and it is false that
an inscription ‘identity’ is the same token-word as an inscription ‘identity’. In the
latter case it is true that an inscription ‘identity’ is the same type-word as an inscrip-
tion ‘identity’ and it is false that an inscription ‘identity’ is the same token-word
as an inscription ‘identity’. Still, neither inscription is a token-word, so Wiggins’s
absolutism is not threatened: in both cases the RI-phenomenon disappears.

First, let me observe that Wiggins’s postulate has never been realized. In this
respect it resembles other postulates of ideal languages that up to now have never
been constructed. At present we are doomed to use imperfect concepts and terms.
Secondly, the epistemological cost of the postulate seems to be high. A lot of terms
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we use are referentially ambiguous, so Wiggins’s reform would have to modify a
vast part of our language. If we wished to remove all such ambiguity, we would
have to at least double the number of terms in the language. For example, if we
wished to remove the RI phenomenon generated by the term ‘Goldberg Variations’,
we would have to introduce at least two terms, for example, ‘score of Goldberg Vari-
ations’ and ‘interpretation of Goldberg Variations’. Thirdly, we would guarantee that
a term we introduced is immune to referential ambiguity only if some day we closed
our conceptual vocabulary. Otherwise, it will always be possible that new concepts
and terms will ‘discover’ the referential ambiguity of the old concepts and terms.
Consider our new allegedly univocal term ‘interpretation of Goldberg Variations’.
Suppose that some day music lovers will pay more attention to the kind of instru-
ment an interpretation is performed on. The same instruments will correspond to the
same executions of an interpretation and different instruments correspond to different
executions. Then it is possible that one interpretation of Goldberg Variations is the
same interpretation as the other interpretation but a different execution.

In conclusion, I find Wiggins’s postulate untenable if it is construed as a global
requirement that eliminates RI altogether. In my opinion we have to learn to live
with RI phenomena and it is to be hoped that MLRIs will help us to do so.

12 Embarras de Richesse

The variety of MLRIs is likely to raise the old perplexing problem, Which logic is the
correct one? (for monists) or How to choose a logic? (for pluralists). Unfortunately,
we get little help here from the few proponents of RI as they mainly ramble on about
epistemology and/or philosophy of language, which has hardly any bearing on the
logic of RI.

There are at least two strategies for approaching this problem. First, if you wish
to preserve RI-minimalism, you ought to compare MLRIs with paradigms of RI-
sentences from Assumption 1.1. Then, either you assume that there is only one
type of RI and choose from MLRIs the strongest logic that is consistent with those
sentences or you maintain that RI is ambiguous and distinguish various kinds thereof.
Secondly, you may be tempted to abandon minimalism and risk some philosophy in
order to explain RI-phenomena. Then your explanations should provide a criterion
for “valid” MLRIs.

I begin with the first strategy. Assume that RI is univocal. If you compare the ex-
amples of RI sentences to MLRIs, then you will have to content yourself with (C1).
(C7) (and subsequently (C9)) is falsified by all examples. Assumption 1.1(4) un-
dermines (C2) (and subsequently other MLRIs). For example, the fact that Gould’s
Goldberg Variations is shorter than Perahia’s contradicts Fact 5.2(5). Similarly, since
‘rational number’ and ‘fraction’ are extensionally equivalent, Assumption 1.1(4) is
a counterexample to Fact 5.2(1). On the other hand, if you consider RI ambiguous,
then your choice depends on your views on the meanings of RI, but you must not
choose (C9) or (C7) as they are falsified by all examples.

However, one may object that within RI-minimalism all nonminimal MLRIs are
only formal structures without any philosophical merit. It is the second of the afore-
mentioned strategies that can address such objections. In what follows I will present
a philosophical conception that explains the main features of some MLRIs, but I do
not claim that my proposal is the only reason for introducing MLRIs. I hope that
MLRIs may be fortified on different grounds.
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The philosophical conception behind my semantics begins with the assumption
to the effect that the ontologically ultimate reality is determinately “carved up” into
AI-objects. Let X denote a set of AI-objects and a family A of predicates represent
monadic properties possessed by objects from X. (For the sake of brevity I will treat
A also as a set of extensions of predicates.) Contrary to the classical case it is as-
sumed that if we describe X by means of predicates from A, then, for some reason
or other, only sets of AI-objects are accessible for us; that is to say, “from the point
of view of A” we are in a position to recognize RI-objects but not AI-objects. Single
elements of X escape from our conceptual net. For example, if someone says “The
ship of Theseus was magnificent,” she does not and cannot specify which of at least
two, as Assumption 1.1(2) proves, ships of Theseus was magnificent.

This assumption strongly suggests defining relative identity in terms of indis-
cernibility. It seems to me that such a strategy could have been approved by Geach.
Since there are some problems with interpretations of his views (see for example
[6], pp. 142–54 and Noonan [10]), and since he himself complains about frequent
misinterpretations, I will quote in extenso the latest formulation of his argument.

No criterion has been given, or, I think, could be given for a predicable’s
being used in a language L to express absolute identity. The familiar axiom
schemata for identity could at most guarantee, if satisfied, that the relative
term under investigation will be true in L only of pairs that are indiscernible
by description framed in terms if the other predicables of L . This cannot
guarantee that there is no proper extension of L , with extra predicables, that
makes possible the discrimination of things that were indiscernible by the
resources of L . If there is such a proper extension of L , obviously the friend
of absolute identity will not be able to say that a predicable of L which in L
satisfied the axiom schemata for identity was an absolute-identity predicable.
([5], p. 297).

Presumably he argues here that the definition of AI is always relative to some stock
of predicates and that absolutely identical objects may cease to be identical if we
enlarge this stock. To wit, we are able to define only sets of objects that are indis-
cernible relative to some stock of predicates.

Geach would probably agree that it is possible that A 6= ℘(X). Let ‘x ≈A y’
abbreviate ‘x is indiscernible from y in respect of properties from A’.

Definition 12.1 x ≈A y ≡ ∀Ai ∈ A(Ai(x) ≡ Ai(y)).

Indiscernibility may be interpreted either as an epistemological or ontological phe-
nomenon. Epistemic indiscernibility (for an epistemic subject P) interprets A as a
set of predicates with which P is familiar at a given time. Obviously, epistemic in-
discernibility varies through times and subjects. On the other hand, ontologically
interpreted indiscernibility assumes that A represents all properties that objects from
X may possess.

Definition 12.2 x =A y ≡ x ≈A y ∧ (A(x) ∧ A(y)).

If we now define RI in terms of indiscernibility as in Definition 12.2, then it can
be proved that RI satisfies the (C9) characteristic theorem 5.2(7), but, provided that
A 6= ℘(X), (12.2) does not in general lead to (C10), that is, ‘=A’ need not be
equivalent to ‘=’. In order to see this, assume that x =A1 y and A2(x). The former
and (12.2) entail that
(∗) A1(x)
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(∗∗) ∀Ai ∈ A(Ai(x) ≡ Ai(y)).
From (∗), (∗∗), and Definition 12.1 it follows that A2(y). Then x =A2 y due to (∗∗)
and (12.1).

Nevertheless, if one wishes to define RI by means of indiscernibility with respect
only to some available properties, the ensuing logic might be different. For example,
suppose that you think that there is an ontological reason for discriminating between
different kinds of properties, that is, that you divide A into disjoint subsets. More-
over, you require that each such subset be a tree with respect to the set-theoretical
inclusion. Your position then bears a close resemblance to that of Aristotle, because
his Categories may be interpreted as imposing a tree-structure within one category.
If Ai ⊆ A is a tree with respect to the set-theoretical inclusion and SupAi

is its great-
est element, let Ai be called an aristotelian family and SupAi

be the category with
respect to Ai . Aristotelian families should disjointly cover A, that is,

1. 6{Ai : Ai is an aristotelian family} = A.
2. 5{Ai : Ai is an aristotelian family} = ∅.

If you claim further that only properties from one aristotelian family contribute to the
ontological indiscernibility of objects falling under such a family, you may define RI
as ontological indiscernibility with respect to that family.

Definition 12.3 x ≈A y ≡ A ∈ Ai ∧ ∀A j ∈ Ai(A j (x) ≡ A j (y)).8

The RI defined by (12.2) now satisfies the characteristic theorem of (C3). I will
briefly sketch the proof. Let ∀x(A1(x) → A2(x)) and x =A1 y ∧ y =A2 z. The
former yields that there exists a unique aristotelian family A0 to which A1 and A2
belong. Then due to the latter it is the case that ∀A j ∈ A0(A j (x) ≡ A j (y)) and
∀A j ∈ A0(A j (y) ≡ A j (z)). As a result, it holds that x ≈A2 z, and subsequently that
A2(x) ∧ A2(z).

13 Comparisons

13.1 MLRIs and a formal theory of sortal quantification (Stevenson) Steven-
son’s [12] theory is a full first-order logic. Predicates (or more precisely, sortals) in
‘=δ’ behave here in a special way.

1. If predicates δ1 and δ2 intersect, then there is a predicate δ such that
`STEVENSON ∀β(δ1(β) ∨ δ2(β) → δ(β)).

2. For every predicate δ, there is a predicate δ′ such that
`STEVENSON ∀β(δ(β) → δ′(β)), and for no predicate δ′′ other than δ′,
`STEVENSON ∀β(δ′(β) → δ′′(β)).

Since in Stevenson’s account it holds that α1 =δ α2 ≡ α1 = α2 ∧ δ(α1), my coun-
terpart of it is (C10).

13.2 MLRIs and Griffin-Routley’s logics Griffin’s monograph Relative Identity [6]
is devoted mainly to repudiating various arguments against RI. In its constructive
part one may find, among other things, an argument for RI from the open-texture
of language (it is a refinement of Zemach [17]). The notion of open-texture is not
clearly defined here, but it seems that we may proceed with the following definition.
A term t is open-textured with respect to a concept C (C-open for short) if and only
if there is x that falls under t such that it is indeterminate whether x falls under C .
Further, a term t1 closes a C-open term t2 if and only if every x that falls under t1
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also falls under t2 and for every x that falls under t1 it is determinate whether x falls
under C or not. For example, Griffin claims that the term ‘word’ is open-textured
with respect to the concept ‘is the same as y’, but is closed by the terms ‘token-word’
and ‘type-word’. In general, terms closing RI-open terms may be such that sentences
of the form ‘x is the same A1 as y’ and ‘x is not the same A2 as y’ are both true.

In a later paper with Routley [11], Griffin presents us with a sequence of RI log-
ics. The most advanced one is a second-ordered nonclassical system based on a
three-valued logic of significance, and for that reason their proposal is essentially
incommensurable to mine. However, one of Routley-Griffin’s preliminary logics,
namely, the classical second-order system, may be taken to express their views on
the logical properties of RI. Routley and Griffin strive to define RI as a kind of
restricted congruence relation.

(i) α1 =δ α2 iff δ(α1), δ(α2) and (if δ′ ∈ 1δ, then δ′(α1) iff δ′(α2)).

In [11] the set 1δ is said to contain ‘δ’ and be closed under negation, conjunction,
and implication; that is, cf. [6], pp. 140–41:

(ii) if δ ∈ 1δ , then (¬δ) ∈ 1δ .
(iii) if ¬∀β(δ1(β) ≡ ¬δ2(β)) and δ1, δ2 ∈ 1δ, then (δ1 ∧ δ2) ∈ 1δ.
(iv) if δ1 ∈ 1δ and ∀β(δ1(β) → δ2(β)), then δ2 ∈ 1δ .

If we add that

(v) 1δ is the least set meeting (ii) – (iv),

then we will be in a position to show that (C3) is my counterpart of Routley-Griffin
logic. First, observe that

(vi) if ∀β(δ1(β) → δ2(β)), then 1δ2 ⊆ 1δ1 .

I prove (vi) by induction on the construction of predicates. Assume that
∀β(δ1(β) → δ2(β)).

The basis of induction

(∗) δ2 ∈ 1δ1 .
(∗∗) If ∀β(δ2(β) → δ3(β)), then δ3 ∈ 1δ1 because ∀β(δ1(β) → δ3(β)) holds

as well.

The inductive step

(∗∗) If ¬δ ∈ 1δ2 , then by the hypothesis of induction δ ∈ 1δ1 . Therefore,
¬δ ∈ 1δ1 .

(∗∗∗) If δ ∧ δ′ ∈ 1δ2 , then by the hypothesis of induction δ ∈ 1δ1 and δ′ ∈ 1δ1 .
Therefore, δ ∧ δ′ ∈ 1δ1 .

Assume now that

(∗) x =A1 y and y =A2 z,
(∗∗) ∀x(A1(x) → A2(x)).

I will prove that from (∗) and (∗∗) it follows that x =A2 z (cf. 5.2(2)) provided that
we define RI by means of (i). Obviously, A2(x) and A2(z) hold. The fact (vi) and
(∗∗) entail that (∗∗∗) 1A2 ⊆ 1A1 .

Suppose now that A ∈ 1A2 . Then it follows from the right conjunct of (∗) that
A(y) ≡ A(z) and from (∗∗∗) and the right conjunct of (∗) that A(x) ≡ A(y). Thus
A(x) ≡ A(z), as desired (cf. (i)).
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13.3 MLRIs and Zemach’s logic of incompleteness Zemach’s [16] logic for RI is
based on his theory of vagueness which postulates two kinds of objects: complete and
incomplete. The former are apt, as it were, to submit a determinate answer to every
question of the form ‘Is x an A?’. Consequently, they fall under AI. The latter fail to
be determinate in some respects, and therefore involve RI. For every set of complete
objects that fall under some sortal, there exists an incomplete object that exhibits
all of and only those properties that the objects have in common. Zemach says that
incomplete objects are schemas of complete ones. An object that schematizes all
objects falling under a sortal is called the minimal schematic object constituted by
these objects with respect to this sortal.

Now, an object O1 is the same A as an object O2 if and only if both O1 and O2
constitute with respect to a sortal ‘A’ the same minimal schematic object. Since O1
and O2 may fall under two sortals ‘A1’ and ‘A2’ such that all determinate properties
of O1 and O2 belong to the A1-minimal schematic object but some, say, O1 prop-
erties do not belong to the A2-minimal schematic object, therefore O1 may be the
same A1 as O2 but a different A2. Oddly enough Zemach insists that O1 and O2 that
are the same A may not be As themselves (Zemach [18], p. 259–60). Seemingly,
schematic objects are considered genuine entities on a par with complete ones. His
position, thus, entails rejection of (C1). The ensuing logic for RI is a second-order
theory based on Bochvar’s three-valued logic.

13.4 MLRIs and van Inwagen’s logic Van Inwagen ([13], pp. 231–38) constructs
a first-order logic for RI in order to formalize Christian doctrines of Trinity and In-
carnation. He rejects any version of (LL) as containing metaphysical content and
characterizes RI as a weak-reflexive (i.e., A(x) → x =A x), symmetrical, and tran-
sitive relation. As a result, (C1) is its counterpart.

13.5 MLRIs and a logic of general similarity Deutsch [2] sketches a logic of gen-
eral similarity which he treats as a logic of RI. It is a classical elementary monadic
theory with ‘= dA’ (the sign corresponding to RI) and ‘d’ as nonlogical constants.
Deutsch’s way of rendering RI in the language of general similarity is a little unusual.
According to his explanation we must not read ‘α1 = dAk α2’ as ‘α1 is the same Ak as
α2’, but rather as ‘α1 is the same dAk as α2’, where dAk is a determinable of which
‘Ak’ is a determinate predicate. For example,‘has a shape’ is a determinable of which
‘is round’ is a determinant, that is, ‘d(is round)=has a shape’, and ‘x = dround y’ is to
be read as ‘x is of the same shape as y’. Consequently, there are three kinds of predi-
cates in his theory: determinate predicates, determinable predicates, and subscripted
predicates (cf. Section 10). The first and the third group need not be disjoint, but
Deutsch implicitly presupposes that a predicate may be subordinate only to a deter-
minable predicate.

His convention is a little awkward to follow since we do not know whether
to express ‘The piano concerto I performed yesterday was the same Chopin
concerto as the concerto I had listened to the day before yesterday’ as ‘α1 =

dChopin’s concerto in F minor α2’ or as ‘α1 = dChopin’s concerto in E minor α2’. Deutsch’s position
does not, nonetheless, result in rejection of my Assumption 1.3 from Section 1. Both
Chopin concertos, the one I performed yesterday and the one I listened to the day
before, whether they were in F minor or in E minor, are still Chopin concertos.
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The semantics of Deutsch’s logic of general identity treats each kind of predicate
differently. Determinate predicates are interpreted by sets. A determinable predicate
is interpreted by a family of pairwise disjoint subsets. These subsets are interpreta-
tions of the determinate predicates of the determinable predicate. A δ-subscripted
predicate is interpreted by a family such that any of its members either includes, or
is disjoint from, any set from the family that interprets the predicate δ. Deutsch’s
satisfaction conditions guarantee that

(i) `DEUTSCH x1 = dAx2 → (A(x1) → A(x2));
(ii) `DEUTSCH x1 = dA1 x2 ∧ A1(x1) → (∀x(A1(x) → A2(x)) → x1 = dA2 x2);

(iii) `DEUTSCH A(x1) ∧ A(x2) → x1 = dAx2.

The last theorem does not prove the deviancy of the logic of general similarity but is
a consequence of the aforementioned notational convention.

In order to compare Deutsch’s logic with MLRIs, first we have to neutralize that
convention. This is fairly simple. We may render his ‘x = dA1 y’ as my ‘x = dA2 y’.
It is the semantics that should worry us. My semantics does not discriminate among
determinate, determinable, and subscripted predicates. For that reason, I am not in a
position to compare them with their ancestor without modifying the latter. One may
argue that since Definition 3.1 interprets predicates as families of sets, we might ex-
clude determinate predicates. What about subscripted predicates? There seem to
be two options available. We might stipulate that every (determinable) predicate is
subscripted by any other. Deutsch’s semantics would require that if two predicates
overlap, then the respective families share the same sets in the overlapping region. In
other words, Deutsch’s semantics would impose the condition (C9). However, one
is justified in objecting that our stipulation is inconsistent with the initial distinction
between subscripted and nonsubscripted predicates. Further, we might dispense with
the distinction without that inconsistency simply by stipulating that there are no sub-
scripted predicates at all. In that case, since Deutsch’s semantics does not impose
any condition on nonsubscripted predicates, we have to content ourselves with (C1).

13.6 I hope my brief survey shows that the RI-logics so far developed either triv-
ialize RI or try to display the peculiarity of RI on nonlogical grounds. Consequently,
both strategies resulted in neglecting some formal possibilities, for example, (C2).

14 Open Problems

Problem 14.1 Are there any MLRIs besides those defined above? Well, in general
the answer is positive. One might come up with the following,

(C∗) if ∪F (δ1) ∩ ∪F (δ2) = ∪F (δ3), then F (δ1) ∩ F (δ2) = F (δ3),

and obtain a logic stronger than (C2) but different from (C3), (C6), and (C7). In
some sense, however, it would be a trivial extension of (C2). Assume that we would
introduce the notion of noteworthiness and make it sufficiently precise. Are there
any noteworthy MLRIs except those defined above? Again, the answer is positive.
Witness (C6)+(C8), that is, the logic characterized by the class of structures satis-
fying (C6) and (C8). Since (C6)∧(C8) does not entail (C9) and (C6) neither entails
(C8) nor vice versa, (C6)+(C8) is stronger than (C6) and (C8), but weaker than (C9).
But we might further invent the notion of relative newness, and ask whether there are
any noteworthy MLRIs that are new relative to (C1) – (C11).
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Problem 14.2 Are MLRIs conservative, that is, is there any formula from the inter-
section of the monadic language and the language of classical logic such that it is a
tautology of an MLRI and is not a tautology of classical monadic predicate calculus?

Notes

1. The forthcoming second part of my paper will contain an extension of my semantics to
a full system with n-ary functions and relations. The idea of a semantic approach to the
logic of relative identity originates from Deutsch’s seminal article on a logic of general
similarity [2].

2. Usually it is held that only predicates that are (or express) sortals may occur in RI.
Following Strawson [13] I assume that sortals correspond to countable (in the grammat-
ical sense) nouns, that is, sortals yield definite answers to questions ‘How many . . . are
there?’. Therefore, ‘gold’ (used as a mass term) cannot qualify as a sortal.

3. In my exposition of MLRIs I follow a formulation of first-order logic from Ebbing-
haus [3]; my Sections 2 and 3 borrow from their Chapters II and III; Sections 9 and
10 copy Chapter IV; and the completeness result uses Henkin’s proof from Chapter V.
In particular, vast parts of proofs of theorems on MLRIs are identical to their classical
counterparts and, for that reason, will be omitted.

4. More rigorously, there are two signs of identity in the monadic language: one for AI and
the other for RI; the former forms sentences from terms, the latter requires terms and
predicates. My compressing them into one symbol is not intended to have any formal or
philosophical consequence. An extreme RI proponent who denies the meaningfulness
of ‘=’ is free to throw it out of the monadic language.

5. Observe that it does not preclude that if x is an artefact and y is an artefact, then x is the
same artefact as y.

6. From here on, 1 ≤ n ≤ 11 unless stated otherwise.

7. In some cases RI is claimed not to be identity at all. Wiggins suggests that then it is the
relation of composition or the relation of representation in disguise.

8. The consistency of Definition 12.3 is guaranteed by (i) and (ii).
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