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On Non-wellfounded Sets as Fixed Points of
Substitutions

Tapani Hyttinen and Matti Pauna

Abstract We study the non-wellfounded sets as fixed points of substitution.
For example, we show that ZFA implies that every function has a fixed point. As
a corollary we determine for which functions f there is a function g such that
g = g ? f . We also present a classification of non-wellfounded sets according to
their branching structure.

1 Introduction and Definitions from Barwise and Moss [2]

In Aczel [1] and in Barwise and Moss [2], non-wellfounded sets and the antifoun-
dation axiom AFA have been studied. The non-wellfounded sets are modeled by
equations. In the equations we use urelements and the class of all urelements is de-
noted by U. Urelements are not vital for the theory but often they are convenient
(see, for example, [2], §11). Recall the definitions of a flat system of equations and
a solution to it from [2].

Definition 1.1

1. A flat system of equations is a triple (X, A, f ) where X and A are sets of
urelements, X ∩ A = ∅, and f : X → P (X ∪ A) is a function.

2. A solution to a flat system of equations (X, A, f ) is a function g such that
dom(g) = X , and for all x ∈ X , g(x) = {g(y) | y ∈ f (x)∩ X}∪ ( f (x)∩ A).

The idea is that X is the set of indeterminates of the equations and A is the set of
“constants”. The equations are understood as x = f (x), x ∈ X . For example, let
A = {a}, X = {x}, and f (x) = {a, x}, then (X, A, f ) is a flat system of equations.
The solution to this system is a function g such that g(x) = {a, g(x)}. The antifoun-
dation axiom AFA says that every flat system of equations has a unique solution.

Substitution operations sub(s, b) are also studied in [2]. The operation sub(s, b)

means that in b all x are substituted by s(x). We recall the definition of a substitution
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from [2]. If A ⊆ U, then Vafa[A] is the class of all sets x such that support(x) ⊆ A,
where support(x) is defined to be TC(x) ∩ U. So Vafa[U] is the class of all sets.

Definition 1.2 Substitution is a function s such that dom(s) ⊂ U. The substitution
operation is the operation ‘sub’ such that the domain of sub consists of a class of
pairs 〈s, b〉 where s is a substitution and b ∈ Vafa[U] ∪ U such that the following
conditions hold:

1. if x ∈ dom(s), then sub(s, x) = s(x);
2. if x ∈ U − dom(s), then sub(s, x) = x ;
3. for all sets b, sub(s, b) = {sub(s, p) | p ∈ b}.

In [2] it is shown that there is a unique substitution operation sub(s, b) defined for all
substitutions s and b ∈ Vafa[U]∪U. As a corollary to our theory of substitution fixed
points, we obtain the same result (see Corollary 3.11). Next we recall the definition
of a composition of substitutions from [2].

Definition 1.3 The substitution operation sub(s, b) is also denoted by b[s], and [s]
is the operation mapping each set or urelement b to b[s]. A substitution s is proper if
for all x ∈ dom(s), s(x) ∈ Vafa[U] whenever s(x) 6= x . If s and t are substitutions,
then t ? s is the substitution whose domain is dom(s) and for every x ∈ dom(s),
(t ? s)(x) = s(x)[t].

It is shown in [2] that we can state the AFA axiom in terms of substitution. AFA is
equivalent to the assertion that for every proper substitution e there is a unique proper
substitution s such that s = s ? e.

We remark here first that if f is a substitution, not necessarily proper, then a
substitution s such that s = s ? f is not necessarily unique for the following reason:
Let a and b be distinct urelements. Let f (a) = b, f (b) = a. Let u ∈ U − {a, b}
and s(a) = s(b) = u. Then s = s ? f .

Second, if f is such that the domain of f contains sets, then s does not neces-
sarily exist. For example, let a and b be distinct urelements, and let f (a) = {a},
f ({a}) = b. If s is such that s = s ? f , then

s(a) = (s ? f )(a) = f (a)[s] = sub(s, f (a)) = sub(s, {a}) = s({a})

by Definition 1.3. Then by (2) of Definition 1.2,

s({a}) = f ({a})[s] = sub(s, f ({a})) = sub(s, b) = b.

But by (3) s(a) = sub(s, {a}) = {sub(s, a)} = {s(a)}, hence s(a) = �, where � is
the unique non-wellfounded set x such that x = {x}.

As a corollary of our theory of substitution fixed points, we will show that for
every substitution f there is g such that g = g ? f (see Lemma 3.9).

2 Fixed Points Approach

Next we study the non-wellfounded sets as fixed points of substitutions. Here we
generalize the equation systems to arbitrary functions. The solutions are then de-
fined in terms of the substitution. The fixed points are further generalizations of the
solutions. This approach works well also in the situation without urelements. First
we introduce some notation.
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Definition 2.1

1. With every function f we associate a class function f ∗ defined as follows. If
x ∈ dom( f ), then f ∗(x) = f (x), otherwise f ∗(x) = x .

2. If f and g are functions, then by f [g] we mean a function such that
dom( f [g]) = dom(g) and f [g](x) is defined as follows. If f ∗(x) is an urele-
ment, then f [g](x) = f ∗(x) and otherwise f [g](x) = {g∗(y) | y ∈ f ∗(x)}.

3. For all functions f and g, we say that g is a solution to f (S(g, f )), if
dom(g) = dom( f ) and g = f [g].

From the above we see that in [2] a solution to a flat system (X, A, f ) of equations
is defined so that g is the solution to the system if and only if S(g, f ) holds. So, in
a sense, the solution to a flat system (X, A, f ) of equations is obtained if in f (x)

all elements y from f (x) ∩ dom( f ) are replaced by f (y). Then all elements z in
f (y) ∩ dom( f ) are replaced by f (z) and so on. So the solutions are some kind of
restricted substitution-fixed points of the function from the system. In fact, in [2] it is
shown that we get an equivalent theory if instead of equations we study substitution
(cf. above). Because of the urelements, we define

⋃

X =
⋃

{x | x ∈ X and x is not
an urelement}.

Next we introduce the concept of a fixed point and the fixed point axiom.

Definition 2.2

1. We say that g is a fixed point of f , (FP(g, f )), if

dom( f ) ∪
⋃

f ∗[dom(g)] ⊆ dom(g) and g = f [g]

(where f ∗[dom(g)] = { f ∗(y) | y ∈ dom(g)}).
2. We say that a function f is generating if for all x ∈ dom( f ) the following

holds: if f (x) is an urelement, then x = f (x). We say that a generating f is
basic if dom( f ) ⊆ U.

3. The fixed point axiom FPA is the following: every function has a fixed point.

Note that if FP(g, f ) holds and f ∗(x) is not an urelement, then

g(x) = {g(y) | y ∈ f ∗(x)}.

The following example shows the difference between solutions and fixed points: Let
x be an urelement, dom( f ) = {x} and f (x) = (∅, x). Then f itself is the solution
to f but if g is a fixed point of f , then g(x) = (∅, g(x)). Also following the notation
from [2], if f is basic and FP(g, f ) holds, then for all x ∈ dom(g), if f (x) is not an
urelement, then g(x) = sub(g, f (x)). Note that the basic functions are the same as
the proper substitutions in [2].

Example 2.3 Assume ZFC. Let X be a set and f : X → P (X) be such that
f (x) = x ∩ X . Then f has a (unique) fixed point g (such that dom(g) = dom( f )),
namely, the Mostowski collapse of X .

In [2] it is also shown that in the presence of the axiom AFA, bisimulation character-
izes identity: By TC(x) we mean the transitive closure of x and in the case x is an
urelement, TC(x) is defined to be ∅.

Definition 2.4

1. We write B(x, y) if there is B ⊆ ({x} ∪ TC(x)) × ({y} ∪ TC(y)) such that
(a) (x, y) ∈ B,
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(b) if (a, b) ∈ B and c ∈ a, then there is d ∈ b such that (c, d) ∈ B,
(c) if (a, b) ∈ B and d ∈ b, then there is c ∈ a such that (c, d) ∈ B,
(d) if (a, b) ∈ B, then a is an urelement iff b is an urelement and if they are

urelements, then a = b.
We call this kind of relation B a bisimulation relation between x and y.

2. We let the strong extensionality axiom SEA be the following axiom:

∀x, y(B(x, y) → x = y).

The axiom system ZFC−2 consists of pairing, union, power set, infinity, collection,
separation, and choice, together with the axiom of urelements:

∀p∀q(U(p) → q /∈ p),

and the axiom of plenitude of urelements: for every set S there is an injective function
f : S → U whose image f [S] is disjoint from S. So the list of the axioms of ZFC−2

is the same as that in [2], p. 28, of excluding extensionality and replacing strong
plenitude by plenitude of urelements. ZFA means ZFC−2 + extensionality + AFA.
By ZFC+ we mean ZFC−2 +SEA+FPA. So the difference between ZFA and ZFC+

is that we have replaced equations by substitution and uniqueness of the solutions by
SEA.

We feel that our axiom system follows the lines of the axiom systems of [1] in that
the axioms for the existence and the uniqueness of the solutions have been separated.
Also, this approach is a bit more set theoretical in nature, since the fixed point axiom
refers to functions instead of graphs or equation systems. Sometimes this makes the
proofs easier.

We start by showing that ZFA and ZFC+ are equivalent. Especially we show that
ZFA implies that every function has a fixed point. Then we show that the fixed points
of the basic functions are fixed points of themselves, thus the name fixed point. For
all functions this does not hold. Finally, we study the following question: Do we
need to assume the existence of all solutions to the flat systems of equations to get
all fixed points? We show that the answer is (essentially) yes.

3 Equivalence of ZFA and ZFC+

Item (2) in the following lemma is [2], Exercise 7.3 and item (1) is well known.

Lemma 3.1

1. ZFC−2 ` ∀x, y 6∈ U(∀z(z ∈ x ↔ z ∈ y) → B(x, y)). Especially,
ZFC−2 ` ∀x, y(x = y → B(x, y)).

2. ZFC ` ∀x, y(B(x, y) → x = y).

Proof (1) Let B consist of (x, y) together with (a, b) ∈ TC(x) × TC(y) such that
a = b. To show that B is a bisimulation between x and y, let z ∈ x . Then by the
assumption, z ∈ y also. By the definition of B, (z, z) ∈ B and hence B is a bisimu-
lation between x and y. Especially, if x = y and x, y /∈ U, then ∀z(z ∈ x ↔ z ∈ y),
and by the above, we can construct a bisimulation between x and y. If x = y and
x, y ∈ U, then {(x, y)} is a bisimulation between x and y.

(2) By ∈-induction: Assume the claim for all x ′ ∈ x and that for some set
y, B(x, y) holds. This means that for every x ′ ∈ x there is y ′ ∈ y such that
B(x ′, y′) holds. This is so because if B is the bisimulation between x and y, then
B � ((TC(x ′) ∪ {x ′}) × (TC(y ′) ∪ {y ′})) is a bisimulation between x ′ and y ′. But
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this means that for every x ′ ∈ x there is y ′ ∈ y such that x ′ = y ′, that is, x ′ ∈ y.
Similarly, if y ′ ∈ y, then there is x ′ ∈ x , such that y ′ = x ′, that is, y ′ ∈ x . By
extensionality, x = y. �

The following lemma is essentially proved in [2].

Lemma 3.2 Assume ZFC−2 + SEA.
1. ∀x, y /∈ U(∀z(z ∈ x ↔ z ∈ y) → x = y), that is, the extensionality axiom

holds.
2. For all functions f , if S(g, f ) and S(h, f ) hold, then g = h.
3. For all functions f , if FP(g, f ) and FP(h, f ) hold and A = dom(g)∩dom(h),

then g � A = h � A.

Notice that since the extensionality axiom holds in ZFC−2 + SEA, also the functions
of the form f [g] are well defined and thus S(g, f ) and FP(g, f ) are well defined.

Proof (1) Let B consist of (x, y) together with (x, y) ∈ TC(x) × TC(y) such that
x = y. Then B is a bisimulation between x and y. This is so because if a ∈ x , then
a ∈ y also, and therefore (a, a) ∈ B. If (a, a) ∈ B, and a ∈ U, then the condition
2.4(1)(d) holds. If a /∈ U, and c ∈ a, then (c, c) ∈ B and we are done.

(2) Let B consist of (g(a), h(a)) together with (x, y) ∈ TC(g(a))×TC(h(a)) such
that either

(a) x = y or
(b) there is z ∈ dom( f ) such that x = g(z) and y = h(z).

To show that B is a bisimulation, let z ∈ dom( f ) and (g(z), h(z)) ∈ B. If g(z) is an
urelement, then g(z) = f [g](z) = f ∗(z) = f [h](z) = h(z). Assume that g(z) is
not an urelement. Then

g(z) = f [g](z) = {g∗(y) | y ∈ f ∗(z)}.

Let c ∈ g(z). So c = g∗(y) for some y ∈ f ∗(z). But because also

h(z) = {h∗(y) | y ∈ f ∗(z)} and g(z) = h(z),

we have that h∗(y) ∈ h(z). Now if y /∈ dom( f ), then y /∈ dom(g) = dom(h). There-
fore g∗(y) = h∗(y) = y and (y, y) ∈ B. If y ∈ dom( f ), then (g(y), h(y)) ∈ B.

(3) Let B consist of (g(a), h(a)) together with (x, y) ∈ TC(g(a)) × TC(h(a))

for which there is z ∈
⋃

f ∗[A] such that x = g(z) and y = h(z). Assume that
(g(z), h(z)) ∈ B and f ∗(z) is not an urelement. So g(z) = {g(y) | y ∈ f ∗(z)}. Now
let y ∈

⋃

f ∗[A], then y ∈ A and therefore if g(y) ∈ g(z), then also h(y) ∈ h(z)
and (g(y), h(y)) ∈ B. �

Lemma 3.3 Assume ZFC−2 + SEA.
1. Assume FP(g, f ) holds and let x ∈ dom(g). If TC( f ∗(x)) ∩ dom( f ) = ∅,

then g(x) = f ∗(x).
2. If FP(g, f ) holds and for all x ∈ dom( f ), TC( f (x)−dom( f ))∩dom( f ) = ∅,

then S(g � dom( f ), f ) holds.

Proof (1) We may assume that f ∗(x) is not an urelement, since if f ∗(x) is an
urelement, then g(x) = f [g](x) = f ∗(x) by the assumption that FP(g, f ) holds.
Let A = TC( f ∗(x)) ∩ dom(g). Because for all y ∈ A, y = f ∗(y) ⊆ dom(g), A is
transitively closed. Since g(x) = {g(y) | y ∈ f ∗(x)}, it is enough to show that for
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all y ∈ f ∗(x), g(y) = y. Since A ∩ dom( f ) = ∅, FP(g � A, id A) holds. Since A is
transitively closed, S(g � A, idA) holds. So by Lemma 3.2 (2), it is enough to show
that S(idA, idA) holds, but this is clear.

(2) Assume that f (x) is not an urelement. By (1),

g(x) = {g(y) | y ∈ f (x)} =

{g(y) | y ∈ f (x) − dom( f )} ∪

{g(y) | y ∈ f (x) ∩ dom( f )} =

{y | y ∈ f (x) − dom( f )} ∪

{g(y) | y ∈ f (x) ∩ dom( f )} = f [g � dom( f )](x). �

Corollary 3.4 Assume dom( f ) ⊆ U and for all x ∈ dom( f ), f (x) ⊆ U. If
FP(g, f ) holds, then S(g � dom( f ), f ) holds.

Proof Let f be as in the assumption, then

TC( f (x) − dom( f )) ∩ dom( f ) = ( f (x) − dom( f )) ∩ dom( f ) = ∅.

Hence, by Lemma 3.3 (2), S(g � dom( f ), f ) holds. �

Lemma 3.5 Assume ZFC−2+ extensionality. Assume that f is a generating func-
tion, A ⊆ dom( f ), for all x ∈ dom( f )− A, f (x) is an urelement, and FP(g, f � A)

holds. If h is a function such that dom(h) = dom(g) ∪ dom( f ), h � dom(g) = g,
and for all x ∈ dom( f ) − dom(g), h(x) = f (x), then FP(h, f ) holds.

Proof If x ∈ dom( f ) − A, then f (x) = x ∈ U because f is generating. Hence for
all x , f ∗(x) = ( f � A)∗(x). Because

⋃

f ∗[dom(h)] =
⋃

f ∗[dom(g) ∪ dom( f )] =
⋃

f ∗[dom(g) ∪ (dom( f ) − A)] =
⋃

f ∗[dom(g)] =
⋃

( f � A)∗[dom(g)] ⊆ dom(g) ⊆ dom(h),

we have that dom( f ) ∪
⋃

f ∗[dom(h)] ⊆ dom(h).
Assume x ∈ dom(h) and f ∗(x) /∈ U. Then x ∈ dom(g) and

f [h](x) = {h(y) | y ∈ f ∗(x)} = {g(y) | y ∈ ( f � A)∗(x)} = g(x) = h(x),

because f ∗(x) = ( f � A)∗(x) ⊆ dom(g). Assume that f ∗(x) ∈ U. If x /∈ dom(g),
then h(x) = f (x) = x . If x ∈ dom(g), then h(x) = g(x) = f ∗(x). So we have
shown that h = f [h]. �

The following lemma is proved for basic functions in [2] (cf. Theorem 8.5).

Lemma 3.6 Assume ZFA. For all generating f there is g such that FP(g, f ) holds.

Proof Let f be a generating function. We show that f has a fixed point. By
Lemma 3.5, we may assume that for all x ∈ dom( f ), f (x) is not an urelement.
Choose a transitively closed A so that dom( f )∪

⋃

rng( f ) ⊆ A. Then
⋃

f ∗[A] ⊆ A.
Choose a one-one function h so that dom(h) = B = (A−U)∪dom( f ), rng(h) ⊆ U,
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h(y) = y if y ∈ dom( f ) ∩ U and rng(h) ∩ A = dom( f ) ∩ U. Define f ′ so
that dom( f ′) = rng(h) and for all x ∈ B, f ′(h(x)) = {h∗(y) | y ∈ f ∗(x)}.
Then (rng(h), (A ∩ U) − rng(h), f ′) is a flat system of equations. Let g′ be such
that S(g′, f ′) holds and let g be such that dom(g) = A, g � B = g′ ◦ h and
g � A − B = idA−B . We show that g is a fixed point of f . We have already shown
that dom( f ) ∪ f ∗[dom(g)] ⊆ dom(g). So it is enough to show that for all x ∈ A,
g(x) = f [g](x). If x 6∈ B, then g(x) = x and x /∈ dom( f ). So f ∗(x) = x is an
urelement and we have that f [g](x) = f ∗(x) = x = g(x).

Assume that x ∈ B. Then f ′(h(x)) is not an urelement and so

g(x) = g′(h(x)) = {g′(y) | y ∈ f ′(h(x))} =

{g′(y) | y ∈ f ′(h(x)) − rng(h)} ∪ {g′(y) | y ∈ f ′(h(x)) ∩ rng(h)}. (1)

Now

f ′(h(x)) − rng(h) = {h∗(z) | z ∈ f ∗(x)} − rng(h) =

{z | z ∈ f ∗(x) − B} = f ∗(x) − B.

If y ∈ f ∗(x)− B = f ′(h(x))− rng(h), then y /∈ dom( f ′), since rng(h) = dom( f ′).
Because f ∗(x) ⊆ A, we have that f ∗(x) − B ⊆ U, so y ∈ U. Hence
g′(y) = f ′[g′](y) = ( f ′)∗(y) = y. On the other hand,

f ′(h(x)) ∩ rng(h) = {h∗(y) | y ∈ f ∗(x)} ∩ rng(h) = {h(y) | y ∈ f ∗(x) ∩ B}.

Thus we have that Equation (1) is equal to

{y | y ∈ f ∗(x) − B} ∪ {g′(y) | y ∈ {h(z) | z ∈ f ∗(x) ∩ B}} =

{g(y) | y ∈ f ∗(x) − B} ∪ {g′(h(z)) | z ∈ f ∗(x) ∩ B} =

{g(y) | y ∈ f ∗(x)}. �

Lemma 3.7 Assume ZFC−2 + SEA. If every generating function has a fixed point,
then every function has a fixed point.

Proof Let f be a function. Let A be a transitively closed set such that dom( f ) ∪
rng( f ) ⊆ A. Let B be the set of those x ∈ A such that f ∗(x) 6= x is an urelement
and let C be the set of those x ∈ A such that f ∗(x) = x is an urelement. Let h be
a one-one function such that dom(h) = B and rng(h) ⊆ U − A. Define f ′ so that
dom( f ′) = A − B and for all x ∈ dom( f ′), if x ∈ C , then f ′(x) = x and otherwise
f ′(x) = {h∗(y) | y ∈ f ∗(x)}. Then f ′ is generating and so by Lemma 3.6 it has a
fixed point g′. Let D = g′[dom( f ′)] − U and define f ′′ so that dom( f ′′) = D and
for all x ∈ dom( f ′′), f ′′(x) = {h′(y) | y ∈ x} where h′(y) = y, if y 6∈ rng(h) and
otherwise h′(y) = f (h−1(y)). Then f ′′ is generating and let g′′ be a fixed point of
f ′′. We define g so that dom(g) = A, for all x ∈ dom(g), if f ∗(x) is an urelement,
then g(x) = f ∗(x) and otherwise, g(x) = g′′(g′(x)). We show that g is a fixed point
of f .

Since rng( f ) ⊆ A and A is transitively closed,
⋃

f ∗[A] ⊆ A. Also dom( f ) ⊆ A.
So it is enough to prove that for all x ∈ A, g(x) = f [g](x). If x ∈ B ∪ C , the claim
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is clear. So assume x ∈ A − (B ∪ C). Then

g(x) = g′′(g′(x)) = {g′′(y) | y ∈ f ′′(g′(x))} =

{g′′(h′(y)) | y ∈ g′(x)} =

{g′′(h′(g′(y))) | y ∈ f ′(x)} =

{g′′(h′(g′(h∗(y)))) | y ∈ f ∗(x)}.

We have several cases.

Case 1 y ∈ C : Then h∗(y) = y, g′(y) = ( f ′)∗(y) = y, h′(y) = y and
g′′(y) = ( f ′′)∗(y) = y. Also g(y) = y and so g′′(h′(g′(h∗(y)))) = g(y).

Case 2 y ∈ B: Then ( f ′)∗(h∗(y)) = h∗(y) and so g′(h∗(y)) = h∗(y). Fur-
thermore, h′(h∗(y)) = f (y) and since f (y) 6∈ dom( f ′′), g′′( f (y)) = f (y). So
g′′(h′(g′(h∗(y)))) = f (y) = g(y).

Case 3 y ∈ A − (B ∪ C): Clearly h∗(y) = y and g′(y) is a set. So
h′(g′(y)) = g′(y). Then g′′(h′(g′(h∗(y)))) = g′′(g′(y)) = g(y).

By Cases 1–3, g(x) = {g′′(h′(g′(h∗(y)))) | y ∈ f ∗(x)} = {g(y) | y ∈ f ∗(x)} =
f [g](x). �

Corollary 3.8 ZFC+ is equivalent to ZFA.

Proof Assume ZFC+ and that (X, A, f ) is a flat system of equations. Then
f (x) ⊆ U for every x ∈ dom( f ). Let g be such that FP(g, f ) holds. Then by
Corollary 3.4, S(g � dom( f ), f ) holds. Thus AFA holds. The extensionality axiom
follows from Lemma 3.2 (1) and hence ZFA holds.

Assume ZFA. Then by Lemmas 3.6 and 3.7, every function has a fixed point. So
FPA holds. By Theorem 7.3 of [2], the strong extensionality axiom holds in ZFA.
Hence ZFC+ holds. �

Lemma 3.9 If f is a substitution, then there is a function g such that g = g ? f .

Proof Let u ∈ U be such that u /∈ dom( f ). We define f ′ as follows. Let
dom( f ′) = dom( f ). If f (x) is not an urelement or f (x) = x or f (x) ∈ U−dom( f ),
then let f ′(x) = f (x). If there is n < ω such that ∀m < n : f m(x) ∈ U and
f m(x) 6= f m−1(x) but f n(x) /∈ U, or f n(x) = f n−1(x), or f n(x) ∈ U − dom( f ),
then let f ′(x) = f n(x). Otherwise let f ′(x) = u.

Let g′ be such that FP(g′, f ′) holds and let g = g′ � dom( f ). We show that
g = g ? f . If f (x) ∈ dom( f ) is an urelement, then by the definition of f ′, we have
that f ′( f (x)) = f ′(x). Now if f ′(x) ∈ U,

g(x) = f ′(x) = f ′( f (x)) = g( f (x)) = sub(g, f (x)).

If f ′(x) /∈ U,

g(x) = {g′(y) | y ∈ f ′(x)} = {g′(y) | y ∈ f ′( f (x))} = g( f (x)) = sub(g, f (x)).

If f (x) ∈ U − dom( f ), then g∗(x) = f ′(x) = f (x) = sub(g, f (x)). So we have
shown that if f (x) is an urelement, then g(x) = g( f (x)), hence we need to show
that for all x ∈ dom( f ), if f (x) /∈ U, then g′(x) = sub(g, f (x)). For this, we define
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a bisimulation B so that (a, b) ∈ B if and only if there is a y ∈ dom(g ′) such that
a = g′(y) and b = sub(g, f ∗(y)) or a = b ∈ U ∩ dom(g′) or a = g′(y) = b.

To show that B is a bisimulation, let (g′(y), sub(g, f ∗(y))) ∈ B for some
y ∈ dom(g′). We have several cases.

Case 1 y ∈ U − dom( f ): Then ( f ′)∗(y) = f ∗(y) = y so g′(y) = y =
sub(g, f ∗(y)).

Case 2 y ∈ dom( f ) and f (y) ∈ U: As above we have that g′(y) = g( f (y)) =
sub(g, f ∗(y)).

Case 3 y ∈ dom( f ), f (y) /∈ U: Because f (y) /∈ U, we have that f (y) = f ′(y),
so

g′(y) = {g′(z) | z ∈ f ′(y)},

sub(g, f ∗(y)) = {sub(g, z) | z ∈ f (y)}.

Assume z ∈ f (y), so z ∈ dom(g′). If z /∈ dom( f ), then (g′(z), sub(g, f ∗(z))) ∈ B.
If z ∈ dom( f ), then sub(g, z) = g(z) = g′(z) and (g′(z), g′(z)) ∈ B. �

For a class function F , FP(G, F) is defined as for the set functions. We show that
under ZFC+ also the class functions have fixed points.

Lemma 3.10 Assume ZFC+. Let F : Vafa[U] ∪ U → Vafa[U] ∪ U be a
definable class function. Then there exists a unique definable class function
G : Vafa[U] ∪ U → Vafa[U] ∪ U such that FP(G, F) holds.

Proof Let x ∈ Vafa[U] ∪ U. If F(x) ∈ U, then let G(x) = F(x). Otherwise
we define G(x) as follows. Let A0 = TC({x}), An+1 = An ∪ TC(F[An]), and
A(x) =

⋃

n<ω An. Then A(x) is transitively closed and F[A(x)] ⊆ A(x). Now let
g be a function such that FP(g, F � A(x)) holds and define G(x) = g(x).

We show that g(y) does not depend on the choice of A(x) as long as y ∈ A(x)

and F[A(x)] ⊆ A(x). Let A and A′ be transitively closed sets such that y ∈ A,
F[A] ⊆ A, and F[A′] ⊆ A′. Let g and g′ be such that FP(g, F � A) and
FP(g′, F � A′) hold. Let C = A ∩ A′, then C is transitively closed, y ∈ C , and
F[C] ⊆ C . We show that g � C = g′ � C from which the claim follows. So let
z ∈ C and let B consist of (g(z), g′(z)) together with (a, b) ∈ TC(g(z))×TC(g′(z))
such that either a = b or there is c ∈ C such that a = g(c) and b = g ′(c). To show
that B is a bisimulation between g(z) and g′(z), let c ∈ C and (g(c), g′(c)) ∈ B.
Assume that F(c) is not an urelement. Then g(c) = {g(d) | d ∈ (F � C)(c)}. Now
if d ∈ (F � C)(c), then d ∈ C and so (g(d), g′(d)) ∈ B. So B is a bisimulation and
hence for all z ∈ C , g(z) = g′(z).

We show that G is a fixed point of F . Let x ∈ Vafa[U] ∪ U. If F(x) ∈ U, then
G(x) = F[G](x) = F(x). If F(x) /∈ U, let A(x) be the transitively closed set such
that x ∈ A(x) and F[A(x)] ⊆ A(x). Let g be such that FP(g, F � A(x)) holds.
Then G(x) = g(x) = {g(y) | y ∈ (F � A(x))∗(x)} = {G(y) | y ∈ F(x)} because
A(x) is transitively closed and F[A(x)] ⊆ A(x). �

As a corollary we have Theorem 8.1 of [2].

Corollary 3.11 There is a unique operation sub(s, b) as in Definition 1.2 defined
for all substitutions s and sets b.
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Proof Assume s is a substitution. Define a class function F by F(x) = x if
x /∈ dom(s) and F(x) = s(x) otherwise. By the above lemma, let G be such that
FP(G, F) holds. We claim that G(x) = sub(s, x) for all x .

If x is an urelement, then G(x) = F(x) = sub(s, x). Let x be a set. Define
the relation B by (a, b) ∈ B if and only if a = G(y) and b = sub(s, y) for some
y ∈ {x} ∪ TC(x). We show that B is a bisimulation between G(x) and sub(s, x).
The case for urelements is as above, so let (G(y), sub(s, y)) ∈ B where G(y) is a
set. Then G(y) = {G(z) | z ∈ F(y)} and sub(s, y) = {sub(s, z) | z ∈ y}. Because
y /∈ dom(s), F(y) = y and we see that the bisimulation can be continued. �

We finish this section by showing that a fixed point of a fixed point of a basic f is a
fixed point of f . Thus the name fixed point.

Lemma 3.12 Assume ZFC+. For every function f there is a function g such that
FP(g, f ) holds and rng(g) ∪

⋃

rng(g) ⊆ dom(g).

Proof Let f be a function and g′ such that FP(g′, f ). We define inductively func-
tions fn and gn for n < ω as follows. Let f0 = f and g0 = g′.

Let An = dom(gn) ∪ rng(gn) ∪
⋃

rng(gn) and dom( fn+1) = dom( fn) ∪ An.
Define fn+1(x) = fn(x), if x ∈ dom( fn), and otherwise fn+1(x) = x . Let gn+1 be
such that FP(gn+1, fn+1) holds.

Because for every n, dom( fn) ⊆ dom(gn+1), we have that

rng(gn) ∪
⋃

rng(gn) ⊆ dom(gn+1). (2)

From the definition of fn if follows that for all n, fn ⊆ fn+1 and also f ⊆ fn .
Clearly if x /∈ dom( f ), then fn(x) = x , hence for every x and n, f ∗

n (x) = f ∗(x).
It is clear that dom( f ) ⊆ dom(gn). Also

f ∗[dom(gn)] = f [dom(gn) ∩ dom( f )] ∪ (dom(gn) − dom( f )) = f ∗
n [dom(gn)].

Hence
⋃

f ∗[dom(gn)] ⊆
⋃

f ∗
n [dom(gn)] ⊆ dom(gn). If x ∈ dom(gn) and f ∗(x)

is an urelement, then gn(x) = f ∗
n (x) = f ∗(x). If f ∗(x) is not an urelement, then

gn(x) = {gn(y) | y ∈ f ∗
n (x)} = {gn(y) | y ∈ f ∗(x)}. Thus FP(gn, f ).

Now because for every n < ω, FP(gn, f ), FP(gn+1, f ), and dom(gn) ⊆
dom(gn+1), we have by Lemma 3.2 (3) that gn ⊆ gn+1. So we can define
g =

⋃

n<ω gn. By Equation (2) we have that rng(g) ∪
⋃

rng(g) ⊆ dom(g).
Finally, we show that FP(g, f ) holds. Because for all n, FP(gn, f ), we have

that dom( f ) ∪
⋃

f ∗[dom(g)] ⊆ dom(g). Let x ∈ dom(g). Then for some
n, x ∈ dom(gn). If f ∗(x) ∈ U, then g(x) = gn(x) = f ∗(x). Otherwise
g(x) = gn(x) = {gn(y) | y ∈ f ∗

n (x)} = {g(y) | y ∈ f ∗(x)} = f [g](x). �

Lemma 3.13 Assume ZFC−2 + SEA, f is basic, FP(g, f ) holds and rng(g) ∪
⋃

rng(g) ⊆ dom(g). Then for all x ∈ dom(g), g(g(x)) = g(x) and if g(x) 6∈ U,
then g(x) = {g(y) | y ∈ g(x)}. Especially, FP(g, g) and S(g, g) hold.

Proof Let a ∈ dom(g). Let B consist of (g(a), g(g(a))) together with (x, y) ∈
TC(g(a)) × TC(g(g(a))) such that either x = y or there is z ∈ dom(g) such that
x = g(z) and y = g(g(z)).

We show that B is a bisimulation between g(a) and g(g(a)). Assume that
z ∈ dom(g), f ∗(z) /∈ U, and (g(z), g(g(z))) ∈ B.
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Let y ∈ g(z) = {g(w) | w ∈ f ∗(z)}. So y = g(w) for some w ∈ f ∗(z). Because
g(w) ∈ rng(g) ⊆ dom(g), g(g(w)) is defined. So (g(w), g(g(w))) ∈ B.

Let y ∈ g(g(z)) = {g(w) | w ∈ f ∗(g(z))}. So y = g(w) for some
w ∈ f ∗(g(z)) ⊆ dom(g). Thus (g(w), g(g(w))) ∈ B.

For the second claim, assume that g(x) /∈ U. So g(x) /∈ dom( f ) and thus
g(x) = g(g(x)) = {g(y) | y ∈ g(x)} = g[g](x). Thus S(g, g) holds. Because
dom(g) ∪

⋃

g∗[dom(g)] ⊆ dom(g) ∪ rng(g) ∪
⋃

rng(g) ⊆ dom(g), we have that
FP(g, g) holds. �

The assumption that f is basic is needed in Lemma 3.13.

Example 3.14 Assume ZFC+ (the first example works also in ZFC).
1. We define sets en, n < ω, so that e0 = ∅ and en+1 = {en}. Let f be such that

f (e3) = e2, f (e2) = {e0, e1} and for n < 2, f (en) = en. Then FP( f, f )

holds, but f ( f (e3)) = {e0, e1} 6= f (e3).
2. As in [2], let � be such that � = {�}. Define f so that f (∅) = {∅} and

f (�) = ∅. Let g be such that FP(g, f ) holds. Then since g(x) = {g(y) | y ∈
f ∗(x)}, g(∅) = � and g(�) = ∅. But {g(y) | y ∈ g(∅)} = {∅} 6= g(∅),
so it is not the case that FP(g, g).

4 A Model in Which Not All Equations Have Solutions

We now turn to the question: Do we need to assume that all flat systems of equations
have solutions in order to get all fixed points. First we show how to construct a model
of set theory from a given transitive class of non-wellfounded sets.

Definition 4.1 Let C ⊂ Vafa[U] ∪ U be a transitive class.

C(C) = {x ∈ Vafa[U] ∪ U | there is no sequence xi , i < ω

such that x0 ∈ TC(x) and ∀i, xi+1 ∈ xi , xi /∈ C}.

Intuitively this class is the same as the following class V ′′: Let V ′
0 = C ∪ U,

V ′
α+1 = {x | x ⊆ V ′

α}, V ′
β =

⋃

α<β V ′
α , when β is a limit ordinal, and let

V ′′ =
⋃

{V ′
α | α is an ordinal}.

Lemma 4.2 Assume that C ⊂ Vafa[U] ∪ U is a transitive class and V ′ = C(C),
then V ′ |H ZFC−2 + SEA.

Proof Now V ′ is a transitive class, so the axioms of extensionality and strong ex-
tensionality hold in V ′. If x is a subset of V ′, then clearly x ∈ V ′. Hence the power
set axiom holds in V ′.

The axiom of urelements, ∀p∀q(U(p) → ¬(q ∈ p)) holds in V ′. The pairing
and union axioms also hold in V ′. Because ω ∈ V ′, ∅ and the successor operation
are absolute for V ′, V ′ satisfies the axiom of infinity.

For the collection it is enough to show that for each ϕ(x, y, A, w1, . . . , wn) and
each A, w1, . . . , wn ∈ V ′, if

∀x ∈ A∃!y ∈ V ′ϕV ′
(x, y, A, w1, . . . , wn),

then
∃Y ∈ V ′({y | ∃x ∈ A, ϕV ′

(x, y, A, w1, . . . , wn)} ⊆ Y ).
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So let Y = {y ∈ V ′ | ∃x ∈ A, ϕV ′
(x, y, A, w1, . . . , wn)}. Then Y ⊂ V ′ and hence

Y ∈ V ′.
Since for every z ∈ V ′, P(z) ⊆ V ′, we have that V ′ satisfies the separation axiom.

For the axiom of choice, we can show that if x ∈ V ′ and x can be well ordered, then
(x can be well ordered)V ′

: If R ⊆ x ×x well orders x , then since x ×x ∈ V ′ we have
that R ∈ V ′. The formula ‘R totally orders x’ is absolute for V ′. For well ordering
we have to check that (∀yϕ(y, x, R))V ′

, where ϕ(y, x, R) is

y ⊆ x ∧ y 6= ∅ → ∃z ∈ y∀w ∈ y((w, z) /∈ R).

Now ϕ is absolute for V ′ so it is enough to show that ∀y ∈ V ′ϕ(y, x, R) which
follows since R well orders x . Thus the axiom of choice holds in V ′.

For the axiom of plenitude which is

∀S /∈ U(∃ f : S → U such that f is injective and f [S] ∩ S = ∅),

let S be a set in V ′. Let g : S → U be an injection in Vafa[U]. Then also
g ∈ V ′ because V ′ is closed under the power set operation. We have shown that
V ′ |H ZFC−2 + SEA. �

Lemma 4.3 Assume that C ⊂ Vafa[U] is a transitive class and there exist xi , i < ω

such that xi+1 ∈ TC(xi) and xi /∈ C. If V ′ = C(C), then V ′ |H ZFC−2 + SEA and
V ′ 6|H AFA.

Proof We define the canonical flat system of equations for x0 as follows. Let h be
an injection such that dom(h) = TC(x0), rng(h) ⊆ U and if a ∈ TC(x0) ∩ U, then
h(a) = a. Let A = TC(x0) ∩ U, a0 ∈ U − rng(h), X = (rng(h) ∪ {a0}) − A.
Define f in X such that f (a0) = {h(y) | y ∈ x0} and f (h(z)) = {h(y) | y ∈ z}
for z ∈ dom(h). So f is a system of equations which belongs to V ′ and it was
constructed so that for the solution g to f , we have that g(a0) = x0.

Now x0 cannot be in V ′ because of the definition of V ′. Because being a solution
to a flat system of equations is an absolute property for V ′, we have that f has not a
solution in V ′. �

Next we introduce the notion of a flat P -coalgebra from [2] which corresponds to a
flat system of equations with no atoms.

Definition 4.4 A flat P -coalgebra is a pair (X, f ) such that X ⊆ U is a set of
urelements and f : X → P (X). A function g is a substitution solution to the flat
P -coalgebra if FP(g, f ) holds.

It is shown in [2] that if g is a substitution solution to a flat P -coalgebra, then
rng(g) ⊆ P

∗, where P
∗ is the greatest fixed point of the operator P and it is equal

to the class of all pure sets Vafa[∅]. (In case there are no urelements, then P
∗ is

the whole universe and the example below does not hold anymore—but see the next
section.)

Example 4.5 Assume ZFC−2 + SEA. The following does not imply AFA: Every
flat P -coalgebra has a substitution solution.

Proof Let C = Vafa[∅]. If (X, f ) is a flat P -coalgebra and g its solution, then
rng(g) ⊆ C . If we let V ′ = C(C), then dom(g) ∈ V ′ and hence g ∈ V ′ because
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V ′ is closed under the power set operation. Because being a flat P -coalgebra and a
solution to it are absolute properties for V ′, we have that in V ′ every flat P -coalgebra
has a solution.

Let x be an urelement and f (x) = {a, x} where a ∈ U and a 6= x . Then f is an
equation system and it has a solution g in Vafa[U]. Then g(x) = {a, g(x)} /∈ C , and
we get the xis as required in Lemma 4.3, by setting xi = g(x). Hence by Lemma 4.3
AFA does not hold in V ′. �

0-coalgebras can be seen as systems of equations (see [2], §16) and if we restrict
our interest to flat 0-coalgebras, then the class of solutions can be seen as the final
0-coalgebra. One may wonder if the same can be done (e.g., by fixed points) for
a class of 0-coalgebras larger than the flat ones. This does not seem to be the case
or at least a much deeper understanding of non-wellfounded sets is needed. The
crucial property of the flat 0-coalgebras (X, e) is that X is new for 0 (i.e., for all
substitutions t and sets a, 0(a[t]) = 0(a)[t]); this forces X to be flat in the usual
sense of the word. And without something like this the theory does not work. For
example, the crucial Lemma 16.1 in [2] fails.

Let 0(X) = P (P (X) − {∅}). This is a monotone and proper operator, that is, if
X ⊆ Y , then 0(X) ⊆ 0(Y ), and for all sets a, 0(a) ⊆ Vafa[U]. Let X = {∅, {∅}},
and let e(∅) = {{∅}} and e({∅}) = ∅. Then (X, e) is a 0-coalgebra that is not flat.
If s is a solution to e, then s(∅) = {∅} and s({∅}) = ∅ but {∅} /∈ 0∗. Hence s is
not a 0-morphism of (X, e) into (0∗, id).

5 Classifying Non-wellfounded Sets

Here we have a fixed class of urelements U and all sets can contain urelements as
their members. So from now on we denote by Vafa the class Vafa[U] ∪ U of [BM].
But as in the above, urelements are not vital in here. We regard arbitrary functions as
equation systems and when we speak of the indeterminates of the equation systems,
we mean the elements of their domain.

We define a series of classes of equation systems Eα , α ∈ ON in increasing
complexity. From these equation systems we obtain a series of classes of non-
wellfounded sets,

V 0
afa ⊂ V 1

afa ⊂ · · · ⊂ V α
afa ⊂ · · · ,

so that V α+1
afa 6⊂ V α

afa. We also define the rank of a non-wellfounded set x as the least
α such that x ∈ V α

afa.
The non-wellfounded sets become more complicated in the series V 0

afa ⊂V 1
afa ⊂· · ·

according to the branching structure of the non-wellfounded sets. V 0
afa is the class of

wellfounded sets. In V 1
afa there are sets which can be described either as � and sets

that can be obtained from it by standard set theoretical operations or as sets which
have a non-wellfounded ∈-sequence of length ω such that going down this sequence
one has ω chances to branch out of that sequence. But in V 1

afa, after branching, the
sets are wellfounded. In V 2

afa there are sets in which there are ω chances to branch
to sets in which there are again ω chances to branch into sets in which there are
only finite number of possibilities to branch. So the rank tells how many times it is
possible to branch arbitrarily deep.
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A non-wellfounded set of rank ω has elements of arbitrarily high rank below ω.
In a non-wellfounded set of rank ω + 1, one can find a non-wellfounded ∈-sequence
in which there are ω chances to branch into sets of rank ω. And so on in the higher
degrees.

There is also the possibility that this branching process goes on arbitrarily long.
In this case we say that the rank is ∞. First we need to characterize the different
classes of equation systems. This is done in game theoretic terms.

Definition 5.1 Let f be a system of equations. A sequence Ex = 〈x i | i < ω〉
where xi ∈ dom( f ), i < ω, of indeterminates of f is called descending if for all
i < ω, xi+1 ∈ f (xi).

We describe a game Gα(E), where α ∈ ON, that is played on a given system of
equations f as follows. There are two players, black and white. First the black
player chooses a descending sequence Ex of indeterminates. Then white chooses an
ordinal α0 < α and a natural number n < ω. Black must respond with a descending
sequence of indeterminates Ey such that for some m ≥ n, y0 ∈ f (xm) and y0 6= xm+1.
So Ey branches out of Ex . Then again white chooses an ordinal α2 < α1 and a natural
number and so on.

The length of this game is the number of pairs of moves by black and white. This
length is finite since there are no infinite descending sequences of ordinals.

We say that black has a winning strategy in the game Gα( f ) if she is able to
respond to white’s moves until white has no more moves. White wins otherwise,
that is, if black is not able to respond with a descending sequence of indeterminates
to white’s move.

There is also a game of infinite length. In G∞( f ) the white player does not choose
ordinals, only indices. Hence the length of this game is ω.

More formally, we say that a move of the white player is a pair (α, n) where α is
an ordinal and n < ω. We use the projection function π2(α, n) = n to get the second
coordinate of the pair (α, n). In Gα( f ) we say that a sequence Ew is a legal sequence
of white’s moves of length k if

Ew = 〈(αi , ni ) | i < k〉, ∀i ∈ ω(ni < ω), and α > α0 > α1 > · · · > αk−1.

We define the winning strategy σ for black as follows.

Definition 5.2 Let f be a system of equations and α an ordinal. A winning strategy
for the black player in the game Gα( f ) is a function σ of two arguments, a natural
number k and a legal sequence Ew of white’s moves of length k, that satisfies the
following conditions:

1. σ(0, ∅) = Ex , where Ex is a descending sequence of the indeterminates of f .
2. σ(k + 1, Ew) = Ey, where Ey is a descending sequence of indeterminates such

that the following holds. Denote by Ex the previous move of black, that is,
σ(k, Ew � k) and denote by n white’s last move, that is, π2(wk). We require
from Ey that ∃m ≥ n(y0 ∈ f (xm) and y0 6= xm+1).

We say that the black player wins a game if she has a winning strategy. The white
player wins if the black player does not win.

We may also define a similar game played on non-wellfounded sets Gα(x). We
say that a sequence 〈xi | i < ω〉 is a non-wellfounded sequence, if for all i < ω,
xi+1 ∈ xi . If we replace, in the above definitions, the system of equations f by a set
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x and the descending sequences of indeterminates by non-wellfounded sequences,
then we have the corresponding definition for sets. For sets we also require that
σ(0, ∅) is a non-wellfounded sequence starting from x .

If white wins the game G0(x), then x is well founded. If white wins G1(x), and
black wins G0(x), then in TC(x) there are non-wellfounded sets but no sets in which
we can branch two times as described above. Also, if black wins Gα , then black
wins Gβ for all α ≤ β and if white wins Gα, then white wins Gβ for all β ≥ α.

Definition 5.3

1. Eα = { f | white wins Gα( f )},
2. E∞ = { f | black wins G∞( f )},
3. V α

afa = {x | white wins Gα(x)},
4. V ∞

afa = {x | black wins G∞(x)},
5. AFAα is the statement that all the systems of equations in Eα have solutions.

From the preceding definition it follows that if x is a set and f is its canonical system
of equations, then x ∈ V α

afa if and only if f ∈ Eα. Also black player’s winning strat-
egy in the game on sets can be straightforwardly converted into a winning strategy in
the game on equation systems. Thus all the solutions to the equation systems from
Eα are in V α

afa.
The solution set x to an equation system f does not always have the same rank as

f . For example, define an equation system f such that

dom( f ) = {uη ∈ U | η ∈ 2<ω},

where uηs are distinct, by f (uη) = {uη_{0}, uη_{1}}. Then f /∈ Eα for all α but the
solution set of f is �, by Exercise 7.1 of [2] and � ∈ V 1

afa.

Definition 5.4 The non-wellfoundedness rank of a set x , denoted by nwfrank(x)

is the least α such that x ∈ V α
afa, if there is such and ∞ otherwise.

Note that for x such that nwfrank(x) ∈ ON we have that nwfrank(x) = min{α |
white wins Gα(x)} = sup{α + 1 | black wins Gα(x)}. We also have that if x ∈ y,
then nwfrank(x) ≤ nwfrank(y) but not necessarily nwfrank(x) < nwfrank(y). In
fact, Marshall and Schwarze [3] have shown that it is not possible to define in set
theory a rank function r such that if x ∈ y, then r(x) < r(y), without the foundation
axiom. Another notion of rank for non-wellfounded sets, defined using modal logic,
appears in [2], §11.

Lemma 5.5 Black wins Gα(x) if and only if there is a non-wellfounded sequence
Ex starting from x such that for all β < α the set

Aβ = {i < ω | ∃y ∈ xi(y 6= xi+1 and black wins Gβ(y))}

is an unbounded subset of ω.

Proof Assume that black has a winning strategy σ in the game Gα(x). Let
Ex = σ(0, ∅). Let n < ω and β < α. If we let (β, n) be the first move of the white
player, then σ(1, (β, n)) is a non-wellfounded sequence Ey such that ∃i ≥ n(y0 ∈ xi
and y0 6= xi+1) by the definition of a winning strategy. The winning strategy σ ′ for
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black in the game Gβ(y0) is defined by the following equations:

σ ′(0, ∅) = σ(1, (β, n));

σ ′(m + 1, Ew) = σ(m + 2, (β, n)_ Ew).

Hence Aβ is unbounded in ω.
Assume on the other hand that there is a non-wellfounded sequence Ex starting

from x and satisfying the condition. We prove that black has a winning strategy σ in
the game Gα(x). Let σ(0, ∅) = Ex . Let (β, n) ∈ α × ω be white’s first move. Since
Aβ is unbounded in ω there is i ≥ n such that ∃y ∈ xi(y 6= xi+1 and black wins
Gβ(y) with winning strategy σ ′). Then let

σ(1, (β, n)) = σ ′(0, ∅);

σ(m + 2, (β, n)_ Ew) = σ ′(m + 1, Ew). �

Corollary 5.6 nwfrank(x) ≥ α if and only if for all β < α there is a non-
wellfounded sequence Ex starting from x such that

{i < ω | ∃y ∈ xi(y 6= xi+1 and nwfrank(y) ≥ β)}

is an unbounded subset of ω.

By Corollary 5.6 we could have also defined the classes V α
afa via the concept of

nwfrank by letting wellfounded sets have rank 0. So we have that

V α
afa = {x | nwfrank(x) ≤ α}.

Theorem 5.7 V α
afa |H ZFC−2 + SEA + AFAα.

Proof Let V ′ = C(V α
afa). We claim that V α

afa = V ′ from which the conclu-
sion follows. Since all the solutions to the equation systems from Eα are in V α

afa,
V α

afa |H AFAα .
By the definition of V ′, we have that V α

afa ⊆ V ′. We show that V ′ ⊆ V α
afa by

showing that if nwfrank(x) > α, then x /∈ V ′.
Assume toward a contradiction that there is x ∈ V ′ for which nwfrank(x) > α.

So the white player does not have a winning strategy in Gα(x) and this means that the
black player has. From this it follows by Lemma 5.5 that there is a non-wellfounded
sequence Ex starting from x such that for all β < α the set

Aβ = {i < ω | ∃y ∈ xi(y 6= xi+1 and black wins Gβ(y))}

is an unbounded subset of ω.
Let i < ω. Black wins Gβ(xi) for all β < α because Ex � [i, ω] is now a non-

wellfounded sequence where black wins. So by Lemma 5.5, black wins Gα(xi).
Hence nwfrank(xi) > α, and so xi /∈ V α

afa which violates the definition of C(V α
afa).

�

From the preceding proof we can extract the following corollaries.

Corollary 5.8 If α < γ , then V α
afa ( V γ

afa.
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Proof If nwfrank(x) = γ > α, then by the proof of the theorem, we have that
x /∈ V α

afa. We construct an example of a set x for which nwfrank(x) = γ as follows.
Let X = {uα | α ≤ γ } be a set of distinct urelements. Let f be such that

dom( f ) = X and for α ≤ γ , let

f (uα) =











{uβ | β < α} if α is a limit,
{uα, uα−1} if α is a successor,
∅ if α = 0.

Let g be the solution to f and let x = g(uγ ). We show by induction that
nwfrank(g(uα)) = α for α ≤ γ . It is clear that nwfrank(g(u0)) = 0.

Assume the claim for α. By the construction, there is a non-wellfounded sequence
Ex = 〈g(uα+1), g(uα+1), . . .〉 starting from g(uα+1). Let i < ω. Then g(uα) ∈ xi
and nwfrank(g(uα)) = α, hence by Corollary 5.6, nwfrank(g(uα+1)) ≥ α + 1. We
show that white wins Gα+1(g(uα+1)), whence nwfrank(g(uα+1)) = α + 1. For the
first move black has to choose Ex (other choices would be worse). But black cannot
win Gα+1(g(uα+1)) in Ex by Lemma 5.5 because for all i < ω, there is no y ∈ xi
such that black wins Gα(y).

Assume the claim for β < α. By the construction, g(uα) = {g(uβ) | β < α}.
For every β < α, nwfrank(g(uβ)) = β so nwfrank(g(uα)) ≥ α. We show that white
wins Gα(g(uα)). Black has to choose some non-wellfounded sequence starting from
g(uα), say Ex = 〈g(uβ), g(uβ), . . .〉. Then white chooses some ordinal γ such that
β < γ < α. Now black cannot win Gγ (g(uβ)) because nwfrank(g(uβ)) = β < γ .

�

Corollary 5.9 If α < γ , then V α
afa 6|H AFAγ .

Proof If we let f be the canonical equation system for a set x such that
nwfrank(x) = γ , then f ∈ Eγ . But f does not have a solution in V α

afa. �

Next we show that all the AFAα axioms together with AFA∞ imply AFA. But note
that ∀αAFAα 6` AFA.

Lemma 5.10 ` AFA ↔ (AFA∞ ∧ ∀α AFAα).

Proof Let f be an arbitrary system of equations, and assume that the white player
does not win Gα( f ) for any α. We show that then black wins G∞( f ). For a de-
scending sequence of indeterminates Eu of f , let

r(Eu) = sup{α | black wins Gα( f ) where the first move of black is Eu }.

There is an ordinal α such that if Eu is a descending sequence of indeterminates of
f and r(Eu) ≥ α, then r(Eu) = ∞. This is so because otherwise the set {Eu | Eu is a
descending sequence of indeterminates of f } and hence f would be a proper class.

We describe a winning strategy for black in the game G∞( f ) as follows. There is
a descending sequence of indeterminates Eu0 of f such that r(Eu0) ≥ α since otherwise
we could take

γ = sup{r(Eu) | Eu from f such that r(Eu) 6= ∞}
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and white would win Gγ+1( f ). Let Eu0 be the first move of black. Let n be the first
move of white. Because r(Eu0) ≥ α, then by the above, r(Eu0) = ∞. So there is a
descending sequence Eu1 such that it branches out of Eu0 below n and r(Eu1) ≥ α. So
this way we can continue the game arbitrarily long. �

By the previous lemma, we also see that V ∞
afa ∪ {x | ∃α(x ∈ V α

afa)} = Vafa.
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