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Shavrukov’s Theorem on the Subalgebras of
Diagonalizable Algebras for

Theories Containing I�0 + exp

DOMENICO ZAMBELLA

Abstract Recently Shavrukov pioneered the study of subalgebras of diagonaliz-
able algebras of theories of arithmetic. We show that his results extend to weaker
theories (namely to theories containing I�0 + exp).

1 Introduction A diagonalizable algebra (cf. Magari [4],[5], Bernardi [2], Bel-
lisima [1], and Montagna [6]) is a Boolean algebra (D,→,⊥) with an additional
operator � which satisfies the axioms:

∀x,y �(x → y) → (�x → �y) = �,

∀x �(�x → x) → �x = �,

�� = �
Let T be a sufficiently strong axiomatized theory in the language of arithmetic. The
predicate of provability of T generates in a natural way an operator on the Lindenbaum
algebra of T. The resulting diagonalizable algebra DT is called the diagonalizable
algebra of T. The subalgebras of DT have been studied in Shavrukov [7], in particular
the general problem of when a diagonalizable algebra D is embeddable in DT was
considered there. We intend to present a modification of Shavrukov’s construction
that allows us to prove the same results for a wider class of theories, namely all those
containing I�0 + exp.

We will translate this question about subalgebras into problems of provability
logic. For this we need some notation. Let L be the set of modal formulas generated
by the language (→,�,⊥,{pi }i∈ω). We write B |= A if A can be derived using modus
ponens and necessitation from the formula B and Löb’s axioms (hence |= A means
that A is a theorem of Löb’s logic and B |= A means |= �B → A, where �B is
B ∧ �B). We write B � A iff |= B → A. When A is a set of modal formulas in the
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language Lwe write A |= A, and A � A if for some conjunction B of formulas in A,
B |= A, resp. B � A. Given a set A, consider the equivalence relation on L: A ≈A B
iff A |= A ↔ B, and let L/A be the sets of ≈A-equivalence classes. The operator
which maps the equivalence class of A to that of �A is a well defined operator on L/A
which turns it into a diagonalizable algebra. For every (denumerable) diagonalizable
algebra D there is a set A such that D is isomorphic to L/A.

Let T be an axiomatized theory in the language of arithmetic and let Thm(.) be
the provability predicate of T. A T-interpretation is a map ι which maps formulas of
L to sentences of the language of arithmetic such that T proves:

(1) ι(�A) ↔ Thm[ι(A)];
(2) ¬ι(⊥);
(3) ι(A → B) ↔ (ι(A) → ι(B)).

(In the following we shall simply say an interpretation since the theory T will be
fixed.) If for every formula A in L, A |= A iff T 	 ι(A) we say that ι interprets A in
T. We say that A is interpretable in T if there exists an interpretation which interprets
A in T.

Given an interpretation of A in T one can construct in a natural way an embed-
ding of L/A in DT and vice versa: from an embedding one can easily construct an
interpretation. So for any given theory T, the problem of classifying the subalgebras
of DT reduces to classifying the sets of modal formulas A which are interpretable in
T.

We write as usual �0⊥ for ⊥ and �n+1⊥ for ��n⊥; the minimal n such that
A |= �n⊥ is called the height of A. If such an n does not exist, we say that A

has infinite height. We say that A has the strong disjunction property (s.d.p.) or,
equivalently, that A is strongly disjunctive (s.d.) iff A is consistent and for all formulas
A and B if A |= �A ∨ �B then either A |= A or A |= B. The same classification
is, mutatis mutandis, applied to diagonalizable algebras. In the following T will be
a fixed axiomatized theory (i.e., the theory is given along with a Kalmar elementary
axiomatization of it). The language of T contains the language of the arithmetic
and—only for the sake of convenience—a symbol for exponentiation. Thm(.) is the
provability predicate of T. We write Thm0(⊥) for the sentence 0 �= 0 and Thmn+1(⊥)

for Thm(Thmn(⊥)) (in the following we shall always omit the Gödel number symbols
��). The minimal n such that T 	 Thmn(⊥) is called the height of T. If such an n does
not exist we say that T has infinite height. The height of T is in fact the height of its
diagonalizable algebra DT . If all �1 sentences provable in T are true in the standard
model, then T is Σ1-sound, otherwise T is Σ1-ill. Shavrukov proved that every r.e. set
of modal formulas is interpretable in the diagonalizable algebra of every (sufficiently
strong) �1-ill theory provided it has the same height as the theory. Moreover an r.e. set
of modal formulas is interpretable in the diagonalizable algebra of every (sufficiently
strong) �1-sound theory if and only if it is s.d. Recall that the Gödel numbering of
arithmetical sentences gives a natural recursive enumeration of a set A such that L/A
is isomorphic to DT . So an interesting consequence is that diagonalizable algebras
of �1-sound theories are mutually embeddable. The same holds for �1-ill theories
of any fixed height.

The results mentioned above have been proved in [7] for theories which contain
�1 induction. In fact, the construction makes use of a Solovay function which ranges
over a Kripke model. In the case of infinite height theories the models used have
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nonstandard height, so �1 induction is needed to guarantee the existence of the
limit. In Section 3 we show by Theorems 3.1 and 3.2 that the use of �1 induction
is inessential and the result is valid for all theories containing I�0 + exp. (Actually
Theorems 3.1 and 3.2 consider only theories of infinite height; in fact in the case of
finite height the proof in [7] goes through for I�0 + exp with minor modifications.)

For �1-ill theories a stronger result holds. In [7] a characterization was given of
all (non necessarily r.e.) subalgebras of the diagonalizable algebra of a �1-ill theory.
Also this theorem holds for weaker theories than those considered in [7]. We shall
not give a proof of this fact since it is easily derivable from Shavrukov’s as follows.
To embed D in the diagonalizable algebra of some “weak” theory T, first apply the
result of [7] to embed D in the diagonalizable algebra of some sufficiently “strong”
theory T∗. Finally, embed DT ∗ in DT . Composing the two embeddings one obtains
the desired subalgebra.

2 A lemma In this section we prove a lemma which will be used to characterize
the r.e. sets of modal formulas interpretable in a theory T ⊇ I�0 + exp. We assume
the reader is familiar with the techniques introduced in Solovay [8].

A finite tree-like Kripke model k (in the sequel simply a model) is a triple (W ,R,�)
where (W ,R) is a finite tree with nodes w ∈ W strictly ordered by the relation R, and
� is a finite subset of W × ω. We call W the universe of k and (W ,R) the frame of k.
We write w � pi if (w, i) ∈ �. The relation w � A (w forces A) is then extended to
all the formulas of L in the usual way. We say that k′ = (W ′, R′, �′) is a generated
submodel (in the sequel simply a submodel) of k = (W, R, �) if the universe of k′ is
W ′ = {w} ∪ {u | wRu} for some node w of k, and R′ and �′ are the restrictions of
R and �. We write k � A (k forces A) iff the formula A is forced at the root of the
model k, and we write k |= A (k is a model of A) if every node of k forces A. Then
we have that k is a model of A iff k forces �A. If A is a finite set of formulas we
write k � A (resp. k |= A) if for every A ∈ A, k � A (resp. k |= A). Then it is easy
to check that, if A is finite, then A |= A iff every model of A is a model of A, and
A � A iff every model which forces A forces A (if A is infinite this may not be the
case).

In a first-order formula an occurrence of a quantifier is said to be bounded if it is
of the form ∀x < t or ∃x < t , where t is a term of the language of T. The �0-formulas
of T are the formulas provably equivalent to formulas with only bounded quantifiers
(having assumed exponentiation as a primitive function of the language we should
properly write �0(exp), but in the present paper there will be no risk of confusion).
The �1-formulas are those equivalent to a �0-formula preceded by an existential
quantifier. The theory whose axioms are those of Robinson arithmetic plus the
characteristic axioms for exponentiation and the induction schema for �0-formulas
is called I�0 + exp; the theory which contains also the schema of �1 induction is
called I�1. We refer the reader to Hájeck and Pudlák [3] for more details on these
theories.

We fix a natural coding of modal formulas and of models in arithmetic; we shall
use the same symbol both for a formula (resp. model) and its code. We require that
the coding assigns to proper submodels of k a smaller code than to k itself. Having
exponentiation as a primitive function, we may require without loss of generality that
k � A and k |= A translate into �0-formulas. We also use in the following that the
completeness theorem of Löb’s logic with respect to (finite) models is formalizable
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in I�0 + exp. Given an r.e. set A of modal formulas we may find, formalizing in the
language of arithmetic the algorithm enumerating A, a �0-formula “A ∈ A,x ” (here
A and x are the free variables of the formula) such that for every A ∈ L, A ∈ A iff
∃n ∈ω T 	 A ∈ A,n . We also require that (provably in T) if A ∈ A,x then A < x ,
i.e., the code of A is less than that of x . We call such a formula a description of A

(in T). We may formalize in T also the notion of Löb’s derivability so that we can
use the expression A,n |= A both when arguing in the real world and in the theory.
Formalizing the proof of the completeness theorem for Löb’s logic in I�0 + exp
one can find a �0-formula describing the relation A,n |= A. We shall also use the
expression “A |= A” when reasoning in T; this stands for ∃x (A,x |= A).

Once we fix a description of A, it makes perfect sense to say “T proves that A is
s.d.” This simply means:

T 	 ¬(A |= ⊥) ∧ ∀A,B(A |= �A ∨ �B) → (A |= A ∨ A |= B).

Obviously, an r.e. set of formulas A may have different descriptions, and for one
description the theory T may prove that A is s.d. whereas for another description it
may not. Note also that possibly the “opinion” of T about A may be incorrect. In
fact, when T is �1-ill there are descriptions of A which do not satisfy A ∈ A iff T 	
∃x(A ∈ A,x). So it may happen T proves A is s.d. when this fails to reflect reality.
We use essentially this fact in the next section; for the moment we keep the description
fixed and assume T proves that A is s.d.

Lemma 2.1 Let T be an axiomatized theory of infinite height containing I�0 +exp
and A an r.e. set of modal formulas. If there is a description of A in T such that T
proves that A is s.d. then A is interpretable in T.

Proof: Let T be an axiomatized theory and “A ∈ A,n” be a description of an r.e. set
of modal formulas as in the hypothesis of the lemma. We shall define a Solovay
function h(n) whose value is either 0 or the code of a model of A,m for some m ≤ n.
We agree that 0 � A is some fixed provably false sentence (e.g., 0 �= 0), so the
expression h(n) � A will always have a meaning. The Solovay function is defined
simultaneously with the sentences λ0 and λA, by an arithmetical fixed point. The
definition is the following.

Let λ0 be the sentence ∀n h(n) = 0. We order the modal formulas by increasing
code and let Ai be the i-th formula in this order (this enumeration of formulas is
redundant, since here formulas are actually codes, but we introduce it for better
readability). For every i and every string σ ∈ 2i define a formula:

Aσ : =
∧

{An | n < i and σ(n) = 1} ∧
∧

{¬An | n < i and σ(n) = 0}.

The formula λA (with free variable A) is:

λA : = ∃σ ∈2i+1[σ(i)

= 1 ∧ ∃∞n h(n) � Aσ ∧ ∀τ ∈2i+1(τ < σ → ∀∞n h(n) �� Aτ )],

where i is such that A = Ai and τ < σ has to be read as τ precedes σ in the
lexicographic order. ∃∞n is an abbreviation of ∀m∃n > m and ∀∞n of ¬∃∞n¬.

Let h(0) = 0. For n + 1 if n codes a proof of λ0 ∨ λA for some formula A, then:
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(a) if h(n) = 0 and A,n �|= A, then choose the minimal model k of A,n which
forces ¬A and define h(n + 1) = k.

(b) if h(n) = h �= 0 and the root of some submodel of h forces ¬A then let k
be the minimal such submodel and define h(n + 1) = k.

(c) in all other cases let h(n + 1) = h(n).

Note that (provably in T ) the graph of h is �0. A straightforward formalization of the
completeness theorem for Löb’s modal logic shows that h(n) is (roughly) bounded
by 22n

(h increases only if at stage n case (a) obtains; at that stage the code of ¬A
and of all the formulas in A,n is bounded by n). So �0 induction shows that h is a
total function.

If the theory T is strong enough one is able to use for λA simply the sentence
∃m∀n >m h(n) � A. Then λ0 ∨ λA simply means that the limit of h is either 0 or a
model which forces the formula A; in particular, if h moved to h(n+1)because n codes
a proof of λ0∨λA, there will be a proof that h(n+1) is not the limit of the function (in
fact h(n + 1) is chosen so that h(n + 1) � ¬A). But in I�0 + exp it we do not know
how to prove that the limit of the Solovay function exists (one needs �1 induction).
It cannot be excluded that for some formula A both h(n) � A and h(n) � ¬A occurs
for infinitely many n; thus one would not have as desired, λ¬A ↔ ¬λA. To help
the reader’s intuition we present the following semi-formal description of λA which
should clarify the definition above. To each formula A we attach an infinite set C(A)

such that either ∀n ∈ C(A) h(n) � A or ∀n ∈ C(A) h(n) � ¬A. The set C(A) is
defined in the following way. Let C(A0) = {n | h(n) � ¬A0} if this is infinite,
C(A0) = {n | h(n) � A0} otherwise. Let C(Ai+1) = {n ∈ C(Ai ) | h(n) � ¬Ai+1}
if this is infinite, C(Ai+1) = {n ∈ C(Ai ) | h(n) � Ai+1} otherwise. Finally, let λA

be the sentence ∀n ∈C(A) h(n) � A.

Claim 2.2 T proves ∀n [h(n) �= 0 → Thm[∃m h(m) is a proper submodel of
h(ṅ)] ].

Proof: In fact, if h(n) �= 0, then at some stage s < n for some formula A, s codes a
proof of λ0∨λA and h(s+1) = h(n) � ¬A. By provable �1 completeness Thm[¬λ0].
This together with Thm[λ0∨λA] yields Thm[λA] and in particular Thm[∃∞n h(n) � A].
From h(n) � ¬A we get Thm[h(ṅ) � ¬A] by provable �1 completeness, and the
claim follows.

Claim 2.3 ∀n ∈ω ∃m ∈ω such that T proves h(n) �= 0 → Thmm(⊥). (So, since T
has infinite height, for every standard n, h(n) = 0.)

Proof: This is an easy corollary of the previous claim.

To define ι(A) we need to assign “ad hoc” a model to 0. Following Shavrukov
we will construct a formula T in such a way that for all standard formulas A and B
the following properties are provable in T.

(1) ¬T(⊥)

(2) T(A → B) ↔ (T(A) → T(B))

(3) A |= A → T(A)

(4) T(�A) → A |= A.

(Roughly speaking the formula T(A) says that A belongs to some maximal consistent
set T containing A ∪ {¬�A | A �|= �A}. Such a set T exists (within T) since
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otherwise for some A0, . . . , An such that A �|= �A0, . . . , A �|= �An we would have
A |= �A0 ∨ . . . ∨ �An . This contradicts the provable s.d.p. of A.) For the proof of
the lemma only (1)–(4) are needed, so we prefer to postpone the definition of T and
the proof of (1)–(4) until after the proof of the lemma.

We define τA to be the sentence λ0 ∧T(A), and finally define: ι(A) : = λA ∨ τA,
i.e., λA ∨ [λ0 ∧ T(A)]. We shall prove that ι is an interpretation (Claim 2.6) and that
ι interprets A in T (Claim 2.7).

Claim 2.4 For every A ∈ L, T proves ∀∞n h(n) � A → λA.

Proof: Since A is standard we can replace in the defintion of λA the quantifications
over strings by finite conjunctions and disjunctions. So the claim is trivial.

Claim 2.5 For every A ∈ L, T proves ∀n[h(n) = 0 ∧ A,n |= A → ι(A)].

Proof: Assume h(n) = 0 and A,n |= A. Reasoning in T we want to show λA ∨ τA.
Since h(n) = 0 and A,n |= A, the function can leave 0 only to a model of A and
eventually move to some submodel of it. So ¬λ0 implies ∀∞n h(n) |= A. By the
previous claim, this implies λA. On the other hand, by (3), we have T(A), so λ0

implies τA.

Claim 2.6 The function ι is an interpretation (i.e., properties (1)–(3) from Section 1
are provable in T).

Proof: We have to prove that for every standard formula A properties (1)–(3) are
provable in T, i.e., ι(�A) ↔ Thm[ι(A)], ¬ι(⊥), and ι(A → B) ↔ (ι(A) → ι(B)).
The proof is more readable if we derive them both from T + λ0 and from T + ¬λ0.
In fact, under the hypothesis λ0, the sentence ι(A) is equivalent to T(A) (by our
convention that 0 �� A), and under the hypothesis ¬λ0, ι(A) is equivalent to λA.

T + λ0 	 ι(�A) → Thm[ι(A)]. Assume ι(�A) and λ0 and reason in T. As we
just remarked, under the assumption λ0, ι(�A) reduces to T(�A). By (4) we obtain
A |= A, so for some n, A,n |= A. Since we assume λ0, h(n) = 0. Both A,n |= A and
h(n) = 0 are �1 formulas, so by provable �1 completeness we have Thm[A,ṅ |= A]
and Thm[h(ṅ) = 0]. By Claim 2.5 we have Thm[ι(A)].

T + λ0 	 ι(�A) → ι(�A). Assume Thm[λA ∨ τA] and λ0. It suffices to show,
reasoning in T, that T(�A). Since Thm[λA ∨ τA], a fortiori Thm[λ0 ∨ λA]. Let n be
the code of a proof of λ0 ∨ λA. Since we assumed λ0, h(n) = 0. Then A,n |= A, or
else the function would leave 0 at stage n + 1, contradicting λ0. Then A |= A, and
so by (3), T(�A).

T + λ0 	 ¬ι(⊥). Immediate from (1).

T + λ0 	 ι(A → B) ↔ (ι(A) → ι(B)). Immediate from (2).

T + ¬λ0 	 ι(�A) → Thm[ι(A)]. Assume ι(�A) and ¬λ0. It suffices to prove
Thm[λA] in T. By our assumption λ�A holds, in particular for some n, h(n) � �A.
The latter is a �1 formula so Thm[h(ṅ) � �A]. Since h(n) �= 0, by Claim 2.2 we have
Thm[“∃m h(m) is a submodel of h(ṅ)”], thus Thm[∀∞n h(n) � A]. By Claim 2.4,
Thm[λA] follows.

T + ¬λ0 	 Thm[ι(A)] → ι(�A). Assume Thm[λA ∨ τA] and ¬λ0. It suffices to
derive λ�A reasoning in T. Since Thm[λA ∨ τA], a fortiori Thm[λ0 ∨ λA]. Let n be
the code of a proof of λ0 ∨ λA which is large enough to have h(n) �= 0. (Such an n
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exists since we assumed ¬λ0 and any provable sentence has arbitrary large proofs.)
If h(n) � �A then h(n + 1) = h(n), otherwise h(n + 1) will be the least submodel
of h(n) forcing ¬A. In both cases h(n + 1) � �A (recall that the code of a model is
larger than the code of its proper submodels). Afterwards, h remains confined in a
submodel of h(n + 1), so we can conclude that ∀∞n h(n) � �A. Thus λ�A follows
by Claim 2.4.

T + ¬λ0 	 ¬ι(⊥). Immediate.

T + ¬λ0 	 ι(A → B) ↔ (ι(A) → ι(B)). Proof is left to the reader.

This concludes the proof of Claim 2.6.

Claim 2.7 For every A ∈ L, A |= A iff T 	 ι(A).

Proof: (�⇒) Assume A |= A, so for some A,n |= A. Since n is standard, h(n) = 0
and, by �1 completeness, T 	 h(n) = 0 ∧ A,n |= A. So ι(A) by Claim 2.7.

(⇐�) Vice versa, if T 	 ι(A) we have in particular that T 	 λ0 ∨ λA. Assume
for a contradiction that A �|= A and let n be the code of the proof of λ0 ∨ λA. In
particular we have that A,n �|= A then h(n + 1) = 0. This n is a standard number, so
this contradicts the fact that h will spend all its standard life in 0.

The proof of the lemma is complete but for the definition of the predicate T. We
introduce the formula V (σ ) which says roughly: Aσ is �-conservative over A, i.e.,

V (σ ) : = ∀A[(A |= Aσ → �A) → (A |= �A)].

Assume strings have been coded into numbers in some natural way (e.g., choose
�σ(i)↓=12i as the code for σ ), so that on strings of equal length the relation “<”
coincides with the relation “precedes lexicographically,” or, when strings are thought
of as nodes of a binary tree, “is on the left of.” Let U (σ ) be the sentence which says
that σ is the leftmost string satisfying V (σ ):

U (σ ) : = V (σ ) ∧ ∀τ ∈2i+1 (τ < σ → ¬V (τ )).

If A = Ai let T(A) hold if there is σ ∈ 2i+1 such that U (σ ) and σ(i) = 1. We
have to show that for every standard formula properties (1)–(4) of T are provable
in T. First let us remark that for all standard i , T proves ∃σ ∈ 2i+1 U (σ ), i.e., there
exists the leftmost string σ satisfying V (σ ). Reason in T. A string satisfying V (σ )

must exist or else for every σ ∈ 2i+1 there would be a modal formula Cσ such that
A |= Aσ → �Cσ and A �|= �Cσ . Since

∨
σ∈2i+1 Aσ is a tautology, one would have

A |= ∨
σ∈2i+1 �Cσ . By the s.d.p. of A (provable in T), A |= �Cσ for some σ ,

a contradiction. Now once we know that one string σ exists satisfying V (σ ), the
existence of the minimal one is again a consequence of the standardness of i since
the quantifiers over strings in 2i+1 may be transformed in finite conjunctions and
disjunctions. This proves our remark. Now we check in turn that properties (1)–(4)
which we required for T are provable in T.

(1) ¬T(⊥)

(2) T(A → B) ↔ (T(A) → T(B))

(3) A |= A → T(A)

(4) T(�A) → A |= A.



154 DOMENICO ZAMBELLA

We reason in T. It is obvious that for no string σ such that V (σ ), σ(⊥) = 1, so
(1) holds. (We write σ(A) for σ(i) where A = Ai .) To prove (2) assume first
that T(A → B) and T(A). Let σ be a sufficiently long string such that U (σ ) and
σ(A → B) = σ(A) = 1. Then σ(B) = 1 or else Aσ ↔ ⊥ and surely could not
satisfy V (σ ). The converse is similar. Property (3) is also a direct consequence of the
existence of an arbitrary (standard) long string satisfying U (σ ). For such a string we
must have σ(A) = 1 or else A |= Aσ → ⊥ and, by the definition of V (σ ) we have
that A |= ⊥. Lastly, to prove (4) assume that T(�A). Let σ be a sufficiently long
string such that U (σ ) and σ(�A) = 1. Then A |= Aσ → �A, so, by the definition
of V (σ ), we have that A |= �A. By the s.d.p. of A we get A |= A.

This completes the proof of Lemma 2.1.

3 The theorems We shall use Lemma 2.1 to prove the two theorems announced
in the Introduction. They characterize the r.e. sets interpretable in a theory of infinite
height.

Theorem 3.1 If A is an r.e. set of modal formulas and T is a �1-sound theory
containing I�0 + exp, then A is interpretable in T iff A is s.d.

Theorem 3.2 If A is an r.e. set of modal formulas and T is a �1-ill theory of infinite
height containing I�0 + exp, then A is interpretable in T iff A has infinite height.

The “only if” parts of the theorems are trivial. To prove the first theorem we
show that, if A is an r.e. set with the s.d.p. and T is a �1-sound theory, then we can find
a description of A in T such that T proves the s.d.p. of A. Analogously for the second
theorem. For the sake of readiability we shall give these proofs in an informal style,
i.e., we shall merely describe algorithms and take for granted their formalizability in
the language of T.

Suppose A is an r.e. set of modal formulas and let A ∈ A,s be any description
of A. With this description we associate in a natural way the algorithm {A,s}s∈ω

enumerating A, i.e., an increasing recursive sequence of finite sets {A,s}s∈ω such that
A = ⋃

s∈ω A,s . We shall construct a new algorithm {V,s}s∈ω enumerating the same
set A such that the canonical translation of {V,s}s∈ω in the language of arithmetic
yields a description with the desired properties.

The proofs of Theorems 3.1 and 3.2 need two modal lemmas, respectively Lem-
mas 3.3 and 3.4. These are the adaptations of some lemmas from [7]. We shall
present them in a form which is easily formalized and proved in I�0 + exp. Their
proofs are moved to the end of this section.

A finite set C of formulas is said to be adequate if it is closed under subformulas
and (up to provable equivalence) closed under boolean connectives; i.e., (i) ⊥ ∈ C;
(ii) all subformulas of any B ∈ C are in C; and (iii) for every B, C ∈ C there exists
D ∈ C such that � D ↔ (B → C).

Lemma 3.3 Let C be a finite adequate set containing A. The following are equiv-
alent:

(a) A is s.d.;
(b) A �|= ⊥ and ∀B,C ∈C A |= �B ∨ �C �⇒ A |= B or A |= C.

Proof of Theorem 3.1: We are now ready to present the algorithm required to prove
Theorem 3.1. We may code finite sets of formulas with natural numbers. The property
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“s codes an adequate set” is �0. With the same notation as the example given above,
consider the following algorithm {V,s}s∈ω.

Stage 0. V,0 = ∅.
Stage s+1. Let A be the minimal formula (if such exists) such that A ∈ A,s −V,s .

If for some adequate set C of code less than s, A ∈ C, V,s ⊆ A,s ∩C, and condition (b)
of Lemma 3.3 holds for A,s ∩C, then let V,s+1 = (A,s ∩C); otherwise let V,s+1 = V,s .

We check by induction on the code of the (standard) formula A that A ∈ A iff A ∈⋃
s∈ω V,s . Since V,s ⊆ A,s , only one implication needs to be proved. Suppose for a

contradiction there is a formula such that A ∈ A,s − V,s for all large enough s ∈ ω.
Fix A and s such that for all r ≥ s, A is the least formula in A,r − V,r . Fix an
adequate set C such that {A} ∪ V,s ⊆ C. Clearly V,s ⊆ A,n ∩ C. Since A is s.d. and
we assumed it closed under |=, condition (b) of Lemma 3.3 holds for A,n ∩ C. So
V,n+1 = A,n ∩C, a contradiction. It remains to be checked that T proves the s.d.p. of⋃

s V,s . For this we need a formalized version of Lemma 3.3 in I�0 + exp, and
we invite the reader to check that all models used in the proof reported below are
bounded by a few nested exponentiations of the code of the given adequate set C.
Consequently, the theorem holds in any model of I�0 + exp. From Lemma 3.3 it
follows that for all stages s the sets V,s are s.d., which clearly suffices.

Lemma 3.4 Let C be a finite adequate set containing A. The following are equiv-
alent:

(1) A has infinite height;
(2) there exists B ∈ C such that B is s.d. and B |= ∧

A.

Proof of Theorem 3.2: Given a �1-ill theory T choose a �0 formula σ(x) such that
T 	 ∃x σ(x) and ω |= ∀x ¬σ(x). In every model of T there is a �0-definable
number n, namely the minimal witness of ∃x σ(x). The idea of the proof is the
following: given any algorithm A,s enumerating A, we construct a new algorithm
which simulates A,s until the nonstandard stage n. Once this stage is reached we
stop the simulation and enumerate some arbitrary s.d. set containing A,n . In the real
world this stage n is never reached, so this new algorithm enumerates the same set
as the old one. But in any model of T this algorithm enumerates a finite s.d. set.
Lemma 3.4 is used to guarantee that some s.d. formula B |= A,s always exists.

Stage 0. V,0 = ∅.
Stage s+1. Let A be the minimal formula (if such exists) such that A ∈ A,s −V,s .

If for some adequate set C of code less than s, A ∈ C, V,s ⊆ A,s ∩C, for some B ∈ C

condition (b) of Lemma 3.3 holds, and B |= A,s ∩ C, then:

Case 1: if ∀x ≤s ¬σ(x) let V,s+1 = V,s ∪ (A,s ∩ C).

Case 2: if ∃x <s σ(x) let V,s+1 = V,s ∪ {A}.
Otherwise, let V,s+1 = V,s .

We check by induction on the code of the formula A that A ∈ A iff A ∈ ⋃
s∈ω V,s .

Since V,s ⊆ A,s , only one implication needs to be proved. We need consider only
standard stages (recall that a description of A should verify: A ∈ A iff ∃s ∈ ω T 	
A ∈ V,s), so Case 2 never obtains. Suppose for a contradiction that there is a formula
such that A ∈ A,s − V,s for all s ∈ ω. Fix A and s such that for all r ≥ s, A is the
least formula in A,r − V,r . Fix an adequate set C such that {A} ∪ V,s ⊆ C (such an
adequate set exists since A is standard). Let n > s be larger than the code of C and
such that A∩C ⊆ A,n ∩C. Clearly V,s ⊆ A,n ∩C, and since A has infinite height, so
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does A,n ∩C. Thus, condition (2) of Lemma 3.4 holds for A,n ∩C. We may conclude
that V,n+1 = A,n ∩ C, a contradiction. To check that T proves the s.d.p. of

⋃
s V,s

recall that in every model of T ,
⋃

s V,s = ⋃
s<n+1 V,s , where n is the least number

such that σ(n) and
⋃

s<n+1 V,s is equivalent to a single s.d. formula B.

Proof of Lemma 3.3: The direction (a) �⇒ (b) is trivial. For the converse assume
(b). Fix a set At ⊆ C such that:

At : = {G ∈ C | ∀C ∈C either G � C or G � ¬C}.

The elements At are called atoms; roughly, they are conjunctions of maximal con-
sistent subsets of C. By the adequateness of C, for every C ∈ C, if �� ¬C then there
is some atom G � C . Also, �

∨
At , or else for some atoms G, G � ¬ ∨

At quod
non. Let γ = {G ∈ At | A �|= G}. From �

∨
At and A �|= ⊥ we can conclude that

γ �= ∅. We claim that there is a model of A ∪ {♦G | G ∈ γ }. In fact, if not then
A |= ∨

G∈γ �¬G. By (b), there is G ∈ γ such that A |= ¬G quod non. This proves
the claim.

Suppose now that for some formulas B1, B2 both A �|= B1 and A �|= B2, so we
may assume that there are two models k1 and k2 of A forcing respectively ¬B1 and
¬B2. We shall show that A �|= �B1 ∨ �B2 by constructing a model k′ of A which
contains k1 and k2 as proper submodels. The s.d.p. of A will follow.

Let k be a model of A∪{♦G | G ∈ γ }. Let r, r1 and r2 be the roots of respectively
k, k1, and k2. Let R, R1 and R2 be the respective accessibility relations. Let k′ be the
model obtained by grafting k1 and k2 above the root of k. More precisely, the universe
of k′ is the disjoint union of the universes of k, k1, and k2, and the accessibility relation
of k′ is the transitive closure of the relation R∪ R1∪ R2∪{(r, r1), (r, r2)}. The forcing
relation of k′ is the union of the forcing relations of k, k1, and k2.

We claim that k′ is a model of A and k′ � ¬�B1 ∧ ¬�B2. Obviously k′ forces
¬�B1 ∧ ¬�B2 because k1 and k2 are submodels of k′, forcing respectively B1 and
B2. To show that k′ is a model of A, we prove by induction on the complexity of
subformulas C ∈ C that k′ � C iff k � C . The basis step is trivial, as is the induction
for Boolean connectives. We prove the induction step for �. Assume k′ � ¬�C .
Then for some proper submodel w′ of k′, w′ � ¬C . The model w′ is a submodel of
k1 or k2 or is a proper submodel of k. If w′ is a proper submodel of k, then k � ¬�C
follows. Otherwise, let G be the atom forced in w′; since C ∈ C, by the definition of
an atom either G � C or G � ¬C . But G � C leads immediately to contradiction,
so G � ¬C . Since both k1 and k2 are models of A, G ∈ γ . By our choice of
k, k �

∧
G∈γ ♦G, so there is a proper submodel w of k which forces G. Hence

w � ¬C and k � ¬�C . Vice versa, if k � ¬�C then for some proper submodel w
of k, w � ¬C . Since w is also a proper submodel of k′, k′ � ¬�C follows. This
completes the proof of Lemma 3.3.

Proof of Lemma 3.4: (⇐�) is immediate. (�⇒) List the formulas of C = {C1, . . . ,

Cn}. Define A0 := A and for all i ≤ n let Ai+1 := Ai ∪{Ci } if this has infinite height,
Ai+1 := Ai otherwise. Finally choose in C a formula B equivalent to

∧
An+1. If

B |= �Ci ∨ �Cj then B ∧ Ci or B ∧ Cj has infinite height. (For suppose for
some n both B ∧ Ci |= �n⊥ and B ∧ Cj |= �n⊥ then B |= �Ci → �n+1 and
B |= �Cj → �n+1. Thus B |= �n+1⊥, quod non.) So, one of Ci and Cj , say Ci ,
has been enumerated in An+1, so B |= Ci . By Lemma 3.3, B is s.d.
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[3] Hájeck, P. and P. Pudlák, Metamathematics of First Order Arithmetic, Springer–Verlag,
Berlin, 1993.

[4] Magari, R., “Representation and duality theory for diagonalizable algebras,” Bolletino
dell’ Unione Matematica Italiana, vol. 12 (1975), pp. 117–125.

[5] Magari, R., “The diagonalizable algebras,” Studia Logica, vol. 34 (1975), pp. 305–313.

[6] Montagna, F., “On the diagonalizable algebra of Peano arithmetic,” Bolletino dell’
Unione Matematica Italiana, vol. 16 (1979), pp. 795–812.

[7] Shavrukov, V. Y., “Subalgebras of diagonalizable algebras of theories containing arith-
metic,” Dissertationes Mathematicae, vol. 323 (1993), 82 pp.

[8] Solovay, R., “Provability interpretations of modal logic,” Israel Journal of Mathematics,
vol. 25 (1976), pp. 287–304.

Department of Mathematics and Computer Science
University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
The Netherlands


