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On theorems of Gödel and Kreisel:
Completeness and Markov’s Principle

D. C. McCARTY

Abstract In 1957, G̈odel proved that completeness for intuitionistic predi-
cate logicHPL implies forms of Markov’s Principle,MP. The result first ap-
peared, with Kreisel’s refinements and elaborations, in Kreisel [14]. Featuring
large in the G̈odel-Kreisel proofs are applications of the axiom of dependent
choice,DC. Also in play is a form of Herbrand’s Theorem, one allowing a re-
duction ofHPL derivations for negated prenex formulae to derivations of nega-
tions of conjunctions of suitable instances. First, we here show how to deduce
Gödel’s results by alternative means, ones arguably more elementary than those
of Kreisel [14]. We avoidDC and Herbrand’s Theorem by marshalling simple
facts about negative translations and Markov’s Rule. Second, the theorems of
Gödel and Kreisel are commonly interpreted as demonstrating the unprovabil-
ity of completeness forHPL, if means of proof are confined within strictly intu-
itionistic metamathematics. In the closing section, we assay some doubts about
such interpretations.

1 Markov’s Principle and the Gödel-Kreisel Theorems In intuitionistic and con-
structivistic circles, ‘MP’ or ‘Markov’s Principle’ stands for a variety of attempts to
shoehorn an idea into one or another formalism. The idea, in brief, is that extensions
of semidecidable predicates are fixed under double negation. Here follow three at-
tempts to formalize this idea.

1. Definition: Markov’s Principle MP is the schema

¬¬∃nM(n) → ∃nM(n)

for primitive recursive numerical predicatesM(n).
2. Definition: Parametrized Markov’s Principle MP(α) is the schema

∀α¬¬∃nM(α, n) → ∀α∃nM(α, n)

for predicatesM(α, n) primitive recursive inα, whereα is a binary-valued
function of natural numbers.
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3. Definition: Weak Parametrized Markov’s Principle WMP(α) is

∀α¬¬∃nM(α, n) → ¬¬∀α∃nM(α, n)

for M(α, n) primitive recursive inα, whereα is once again a binary-valued
function.

The second and third renditions make room for the prospect thatM be primitive re-
cursive not only with respect to such basis functions as successor and identity but also
with respect to an arbitrary intuitionistic function (perhaps a choice sequence)α.

One should be aware that there is far more variety to formulations of the idea be-
hind MP than is captured in these three schemata. A survey of variant renditions of
MP and of their behaviors with respect to Heyting’s arithmetic appears in Smoryn-
ski [18]. For a study of equivalents ofMP within a language for intuitionistic set
theory—or within second-order Heyting arithmetic—see McCarty [17]. Suffice it to
remark here that none of the above formulations of Markov’s Principle is derivable in
(appropriate natural extensions of) the formal arithmeticHA. Either Kreisel [13] or
Troelstra [19] is a useful reference on that fact.

2 Strengths of completeness On moving from classical into intuitionistic mathe-
matics, we find that even (deceptively) rudimentary notions such as inequality and
finiteness splinter into a range of distinguishable subnotions. The situation is little dif-
ferent in intuitionistic metamathematics: we must there distinguish between variant
forms of completeness forHPL, even when it comes to completeness for individual
formulae.

1. Definition: HPL is strongly complete whenever|= ϕ implies that� ϕ, for all
formulaeϕ.

2. Definition: HPL is weakly complete whenever|= ϕ implies that¬¬ � ϕ, for
all formulaeϕ.

Should we assumeMP, these two types of completeness coincide extensionally. In
the absence ofMP, they are sharply separable: Kreisel proved weak completeness for
the negative fragment ofHPL constructively in [12]. It follows from the third of the
Gödel-Kreisel theorems listed below that no strong completeness result can be had
for the same fragment withoutMP.

We cannow present what G̈odel and Kreisel proved and the latter published.
There are three discriminable results:

1. Theorem 1: Strong completeness forHPL impliesMPα.
2. Theorem 2: Weak completeness forHPL impliesWMPα.
3. Theorem 3: Strong completeness for the negative fragment ofHPL implies

MP.

The relevant notion ofnegative formula is familiar and is defined in Troelstra and
van Dalen [20]. We refer throughout to the Gödel-Kreisel theorems as ‘Theorem 1,’
‘Theorem 2’ and ‘Theorem 3,’ respectively.

3 Completeness and Markov’s Rule What our proof does exploit, in place of Her-
brand’s Theorem, is the elementary fact that numerous intuitionistic systems,HA
among them, are closed under theproof rule MR. This is so even though these sys-
tems generally do not deriveMP.
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Definition A formal systemS is closed under Markov’s Rule MR provided that,
for any primitive recursiveM(x), wheneverS � ¬¬∃xM(x), S � ∃xM(x).

A particularly elegant proof thatHA and its relatives are closed underMR
comes from noting that these systems admit the Friedman-Dragalin translation. For
details on the translation and relevant proofs, one can consult either Friedman [4] or
the comprehensive Troelstra and van Dalen [20]. From these sources it is plain that
proofs of closure underMR are formulable within primitive recursive arithmetic.
Hence, it would seem that our proofs can be carried out within any extension of prim-
itive recursive arithmetic in which suitable notions of satisfaction and validity for for-
mulae and of completeness are formalizable.

4 Proving Theorem 3 Although Kreisel began his exposition of the theorems in
[14] by proving Theorem 1 first and then deducing the others as corollaries, since
Theorem 3 has such an easy proof—on our way of doing things—we prefer to begin
there.

Theorem 3 Strong completeness for the negative fragment of HPL implies MP.

Proof: Let M(n) be a primitive recursive predicate and letQ be a natural finite set of
arithmetic axioms and recursion equations sufficient for the following.

For anyn, N|= M(n) if and only if Q � M(n).

N is the standard model of arithmetic. We may assume that the axioms ofQ are drawn
exclusively from the negative fragment of the language ofHA—extended, perhaps,
by new symbols for the primitive recursive functions that enter into the definition of
M. SinceQ will be provably sound with respect toN,

N|= ∃xM(x) iff Q � ∃xM(x).

The axioms ofQ are all equations or, at worst, implications among and negations
of equations. Hence,Q will deduce the Friedman-Dragalin translation of any of its
axioms andQ is, therefore, closed underMR.

Now, assume thatN|= ¬¬∃nM(n) and that completeness holds for negative for-
mulae in the language ofQ, among them theQ axioms. SinceN|= ¬¬∃nM(n), we
know from the last line displayed that¬¬(Q � ∃xM(x)). Let � be any model forQ.
It follows from the soundness ofHPL that� |= ¬¬∃nM(n). Since� is an arbitrary
model ofQ,

Q |= ¬¬∃nM(n).

Given thatHPL is complete for negative formulae, it follows thatQ � ¬¬∃nM(n).
SinceQ is known to be closed underMR, wehave that

Q � ∃nM(n).

Finally, the soundness theorem reënters to yield

N|= ∃nM(n).

Hence,MP follows from completeness for negative formulae in the language of
HA—extended, perhaps, with symbols for primitive recursive functions.
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5 On pure predicate logic One could, with suitable circumspection and without
invoking DC, reformulate the foregoing to apply to the negative fragment of pure
predicate logic. For that, we need not assume thatHPL is complete for the negative
fragment of the language ofQ. We require only thatHPL be complete for a simple
language with a finite number of predicate signs—and without function signs or nu-
merals.

First, arrange matters so thatQ supports G̈odel’s negative translation: make it
so that, ifϕg is the G̈odel translation ofϕ, Q � Qg. Second and without loss of gen-
erality, we can assume that∃nM(n) is, in fact, the ‘halting statement’∃nT (e, e, n).
Weknow from standard proofs of the undecidability of pure predicate logic, such as
those appearing in Boolos and Jeffrey [1] on pp. 122ff or in Cutland [2] on pp. 109ff,
that there are pure predicate formulaeS and∃xH(x) which represent rudimentary ma-
chine behaviors in predicate logic.S describes the initial condition for a computation
and the instructions composing machinee’s program while∃xH(x) asserts that the
computation of{e}(e) eventually halts. For these formulae, it is easy to see that

N|= ∃nM(n) iff Q � ∃nM(n) iff S � ∃xH(x).

It is also plain that

S �c ∃xH(x) iff Q �c ∃nM(n),

where�c refers to derivability in classical predicate logic. These biconditionals are
provable, even intuitionistically, without the use ofDC.

To prove our result from the completeness ofHPL for pure redicate logic, in-
stead of completeness for an arithmetical language, it will suffice to show how to use
the former completeness property to go from the assumption that

Q |= ¬¬∃nM(n).

to the conclusion thatQ � ¬¬∃nM(n). For completeness played a role solely at this
juncture in the argument. To that end, we assume that

Q |= ¬¬∃nM(n).

It follows thatN|= ¬¬∃nM(n). This, in turn, implies that

¬¬(S � ∃xH(x) ).

Thanks to the negative translation—applied now to the language of pure predicate
logic—we have that

¬¬(Sg � ¬¬∃xH(x)g ).

As before, we can then show that it follows from the soundness ofHPL that

Sg |= ¬¬∃xH(x)g.

Sg is (or is equivalent to) a negative formula of the language of pure predicate logic,
as is¬¬∃xH(x)g. We now assume thatHPL is complete for single formulae in the
negative fragment of this language. It then follows that

Sg � ¬¬∃xH(x)g.

It is a consequence of the negative translation theorem that

S �c ∃xH(x).
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From the above, we know thatQ�c ∃nM(n) and, by the negative translation once
again, that

Q � ¬¬∃nM(n).

Now, we can continue as above but without assuming completeness for the language
of Q and with the assumption that pure predicate logic is complete for negative for-
mulae in its place.

6 Proving Theorem 1 Similar arguments—with extensions of the axiom system we
calledQ—give parallel proofs for the more general Gödel-Kreisel results, the ones
involving parametrized formsMPα andWMPα.

Theorem 1 Strong completeness forHPL impliesMPα.

Proof Assume thatHPL is strongly complete for single formulae and that the an-
tecedent ofMPα holds. LetM(α, n) be a primitive recursive predicate of functions
α : (N⇒2) and natural numbersn. For the present, fix a functionα. Asbefore, letQ
be a natural finite set of axioms and recursion equations sufficient for the following
to hold for alln:

N|= M(α, n) if and only if Q+Aα � M(α, n).

Here,N is the standard model andAα is the set of all formal equations of the form
α(n) = m such that functionα does indeed outputm on inputn. We assume that a
function symbol—autonymously known as ‘α’—is appended to the usual language
for arithmetic. As above, such axiom systems asQ or Q+Aα are closed underMR,
since the axioms ofQ+Aα plainly deduce their own Friedman-Dragalin translations.

From the assumption thatN|= ∀α¬¬∃nM(α, n) it follows, for our functionα,
that

¬¬( Q+Aα � ∃xM(α, x) ).

Just as in the earlier argument, we can show that

Q+Aα |= ¬¬∃xM(α, x).

Now, any model forQ can be expanded to a model ofQ plus Aα. Therefore,Q|=
¬¬∃xM(α, x).

From this point on, the argument proceeds as before to the conclusion that
∀α∃nM(α, n) is true.

Corollary Theorem 2.

Proof: Immediate.

Note Wecould have exercised here the circumspection necessary to rely solely upon
completeness for pure predicate logic. We would reason much as before, but, this
time, we busy ourselves with formulaeS and∃xH(x) describing the initial and halting
behavior of a machine armed with an oracle forα.

7 Who’s afraid of Markov’s Principle? Ought we to conclude from the theorems
of Gödel and Kreisel that a purely intuitionistic proof of the completeness ofHPL
will always lay beyond our grasp? One should answer “Yes” if there are convinc-
ing arguments thatMP is not, strictly speaking, intuitionistically correct. Yet these
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arguments—at least such as are in popular circulation—are not wholly convincing.
It has been argued thatMP stands in permanent conflict with themeanings of the in-
tuitionistic logical signs, while remaining in perfect congress with the classical con-
strual of the same signs. Naturally, appeal to this kind of conflict and congress has
force only if we agree (1) that the logical signs of the intuitionist differ in meaning
from those of the classical mathematician and (2) that from the meanings of the intu-
itionistic signs the failure ofMP is explicable. But it is nowise plain that we ought
to agree quite so much. The first set of remarks below concern claim (1) while the
second take up (2), concluding with a brief examination of an argument of Professor
Dummett’s.

8 Is the disagreement a matter of meaning? Doubtless, there are profound math-
ematical differences separating the intuitionists from their classical cousins. The
greater the weight of those differences, however, the less willing one should be to rest
them all upon a slender support, that of an as-yet-undeveloped idea for an ‘intuitionis-
tic semantics’ of the logical signs. It may well be that our best response to the realities
of intuitionistic mathematics is not to call upon a presumptive semantical divergence
between the sayings of intuitionistic mathematicians and those of their classical col-
leagues. It appears more appropriate—both historically and philosophically—to al-
low that intuitionists chose first to differ in their mathematics and, only at some later
date, found the leisure to mull over a precise semantics which might capture a portion
of that choice. And, when that ‘mulling over’ took place, it occurred not under the
guiding star of meaning and of metaphysics, but of mathematics.

If we look to the meanings of logical signs to explain and underwrite the dis-
agreements between classical and intuitionistic mathematics, there remain problems
about the very understanding of what intuitionists are up to. On the assumption of a
divergence in meaning, it is difficult to interpret even such familiar historical claims
as “Brouwer believed himself to have proved the failure of the law of the excluded
third.” For, if the intuitionist’s assertions differ in meaning from assertions classi-
cally expressed, it is likely that what the intuitionist refuses in denying the universal
validity of ϕ ∨ ¬ϕ is not what the classicist asserts by demanding it. Worse, perhaps
even the univocity of ‘acceptance’ and ‘refusal’ is questionable. So what, precisely,
ought we to take Brouwer as having (quasi)refused? Perhaps this worry was part of
the message Kreisel meant to convey in his remark about Hilbert from footnote 3 of
Kreisel [15]:

Considering that the intended meaning of the intuitionistic disjunction is differ-
ent from that of classical disjunction, the rejection oftertium non datur is much
more like depriving non-commutative algebra of the ruleab = ba than a boxer
of the use of his fists.

Besides, even if talk of meanings were the best way to clarify what remains
unclear about intuitionism, it nowise follows that the contested meanings can, even
in such seemingly simple cases as arithmetic, be reduced to a disagreement over
the meanings of thelogical signs. Were intuitionism’s disagreements with classical
mathematics semantical at bottom, it would not follow that every principle of intu-
itionistic arithmetic was liable to be called up to judgment before the court of pure
logic. (It is worth noting in this connection that we do not pass judgments on the ad-
equacy of principles of classical mathematics on the basis of their congruence with
the meanings of the classical logical signs. Why ought intuitionistic mathematics to
be any different?) Indeed, talk of reducing the intuitionist’s disagreement to one over
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meanings stands at odds with abasic idea of intuitionism: that the certification for
any piece of mathematics should be neither a bit of logic nor a bit of metaphysics.
Yet philosophers’ talk of alternative meanings is plainly a matter of both.

9 Is MP consistent with Heyting’s interpretation? One who insists that reflec-
tion upon the intuitionistic construals of the logical operators plainly proves that
MP is constructively unacceptable has some explaining to do about mathematical
expression and about the power of those construals. It is well known thatMP is
Dialectica-interpretable and, hence, that it is consistent with such theories asHAω—
intuitionistic arithmetic in all finite types—plus the Axiom of Choice.MP is also
demonstrably consistent with the intuitionistic set theoryIZF plusDC and Brouwer’s
Theorem. Therefore, if there is some aspect of the mereexplanation of the meanings
of the logical operators, as represented, say, in Heyting’s interpretation, which is at
odds withMP then, whatever that aspect is, it would exceed, in its mathematical pow-
ers, the reach of all ofHAω and all of intuitionistic set theory. On the other hand,MP
is known to be inconsistent with theories of lawless sequences and with Brouwer’s
ideas on the creative subject. Are we then to claim, in refusingMP on the basis of
meanings alone, that some part of the meanings of the connectives and quantifiers
requires the acceptance of such relative arcana as lawless sequences?

Lastly, it is worth pointing out that Dummett’s argument against the intuitionistic
character ofMP on the basis of its presumptive incongruence with the meanings of
intuitionistic statements (in Dummett [3]) does not seem wholly successful. Dummett
consideredMP in the form

¬¬∃n.P(n) → ∃n.P(n)

whereP(n) is decidable. He wrote on pages 246 and 247 of [3],
[T]he intuitionistic statement that¬¬∃n.P(n), or that¬∀n¬P(n), does not ex-
press the classical proposition that there exists ann such thatP(n), or that it will
not happen that we check eachn in turn, and find, in every case, that¬P(n). The
intuitionistic statement merely expresses that we shall never be able to prove
that∀n¬P(n); i.e. that, for however large a numberm we may have verified
that∀n ≤ m¬P(m), the possibility will remain open that we may find ann > m
for which P(n); and, from this proposition,∃n.P(n) does not follow, even in
its classical sense.

One can interpret this talk of mathematical possibility in terms of double nega-
tion. Should we do so, Dummett’s last assertion is tantamount to the claim that
∃n.P(n) does not follow (intuitionistically) logically from its double negation, even
in the presence of the assumption thatP(n) is decidable. This is uncontestable, since
MP is no principle of intuitionisticlogic. What remains highly contestable is the im-
plicit claim—that seems to be required if we are to conclude from the above thatMP
is constructively inappropriate—that, ifMP be true at all, it must be true as a matter
of logic (given, perhaps, some semantical reflections).

One might agree with Dummett over the status ofMP in logic (plus, perhaps,
semantics) and continue to maintain thatMP is a mathematically correct statement
governing the behavior of the constructions which guarantee the intuitionistic truth
of statements such as “P(n) is decidable.” Talk of “mathematical possibilities” can
equally well be brought to our aid in describing this behavior. If we allow that the
antecedent ofMP asserts the possibility that, for decidableP(n), there exists anm
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such thatP(m), then it seems reasonable to insist that this possibility be revealed to
me in reality by working the constructive recipe that, for eachn, decides the truth of
P(n). In these terms,MP might be construed as telling me that, by working a recipe in
virtue of whichP(n) is decidable to attempt to enumerate the truths¬P(0), ¬P(1),
. . ., I will eventually discoverP(m) for somem. There seems no intuitionistic pro-
hibition against allowing that this isone sort of mathematical fact in which the pre-
sumed “possibility” that∃n.P(n) may consist. Professor Dummett has here said little
to convince one that this reading ofMP remains inherently nonintuitionistic.
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