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The Complexity of Revision

GIAN ALDO ANTONELLI

Abstract In this paper we show that the Gupta-Belnap systems S# and S∗ are �1
2.

Since Kremer has independently established that they are �1
2-hard, this completely

settles the problem of their complexity. The above-mentioned upper bound is
established through a reduction to countable revision sequences that is inspired by,
and makes use of a construction of McGee.

1 Introduction In his [1], Kremer provides an answer to a question raised by Gupta
and Belnap in their [2]:

Is a [sound and] complete calculus for S# possible? If not, what is the complexity
of the theorems of S# relative to that of D? (p. 185)

Kremer settles the first part of the question and provides a partial answer to the
second one by showing, first, that the set of (Gödel numbers of) arithmetical truths
is reducible to the set of (Gödel numbers of) S# or S∗ validities, which is therefore
at least �1

1. This part is established by showing that for any arithmetical sentence ϕ

one can uniformly find a sentence ψ that is a theorem of S# (or S∗) if and only if ϕ is
true in the standard model of arithmetic. This fact is then used to characterize all �1

1
subsets of the natural numbers. This allows one to represent, in S# (or S∗), the relation
D |=i ϕ, (whose definition is given below). Since this relation is �1

2-complete, it
follows that the complexity of S# (or S∗) is at least �1

2.
This paper shows that this lower bound is optimal, in that the (Gödel numbers

of) (S∗- or) S#-validities can be written in �1
2 form.

2 The Lower Bound In this section, for the sake of completeness, we are going
briefly to rehearse the argument given by Kremer establishing a �1

2 lower bound for
the complexity of S# and S∗.

We first define |=i, the notion of validity mentioned above. Fix a countable
first-order language L, and let L+ be obtained by expanding L by a new predicate
constant G. Let D comprise the definition G def⇐⇒A(G), where A(G) is a formula in
which G occurs positively. Then we say that D |=i ϕ if and only if for every model
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M, the sentence ϕ is true in M when G is interpreted over the least fixed point of
the inductive definition D over M. This can be easily extended to the case in which
the language is expanded by finitely many new predicate constants and D comprises
finitely many definitions.

The set of (codes of) sentences ϕ such that D |=i ϕ is �1
2-complete, in the sense

that for any D it can be written in �1
2 form, and it is �1

2-hard for at least some D’s.1We
first show that this set can be written in �1

2-form. Observe that “Y is a fixed point”
can be expressed arithmetically:

∀x(x ∈ Y ↔ A(x, Y )).

However, the property of being the least fixed point is �1
1:

∀Z(∀x(x ∈ Z ↔ A(x, Z)) ⇒ Z ⊆ Y ).

Moreover, it is easy to convince oneself that the following properties are all �1
1 (in

X and Y ) once the syntax of L has been arithmetized (in fact, the first two properties
below can be expressed arithmetically in X and Y ):

• X is a model for L;
• X assigns Y as the interpretation of G;
• ϕ is true in X .

Therefore, the following sentence is indeed �1
2: “For all X , for all Y : if X is a model

for L and Y is the least fixed point of A(G) over X and X assigns Y to G, then ϕ is
true in X .”

It only requires a bit more work to show that for any �1
2 set S there is a system

of definitions D such that S is many-one reducible to {ϕ : D |=i ϕ}. Let S be �1
2.

This means that for an arithmetical predicate R and a set X of natural numbers, we
have

i /∈ S ⇐⇒ ∀Y¬R(i, X, Y ).

Let N[X ] be the standard model of arithmetic expanded by X . We know that a set is
�1

1[X ] if and only if it is many-one reducible to a set P that is inductively definable
over N[X ]. So let �X inductively define such a P for

{i : ∀Y¬R(i, X, Y )}.
If �X is the least fixed point of �X over N[X ], then there is a total recursive function
f such that

i /∈ S ⇐⇒ f (i) ∈ �X .

As shown in Kremer [1], let F1 be the inductive definition fixing the extension of a
new predicate constant G1 to be isomorphic to the natural numbers, and let F2 be
the inductive definition fixing the extension of a new predicate constant G2 to be the
isomorphic image of �X in (the extension of) G1. For each natural number i let Ai

be the sentence “∀xG1(x) → ¬G2(i).” Then we have

i ∈ �X ⇐⇒ F1, F2 	|=i Ai [G1, G2].

Hence, as promised,

i ∈ S ⇐⇒ F1, F2 |=i A f(i)[G1, G2].
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It only remains to observe that the systems S∗ and S# can mimick any inductive
definition over N, as shown in [1] (to which the reader is referred for the details). The
idea is first to mimick the inductive definition fixing the extension of a predicate P to
be isomorphic to the natural numbers, and then mimick inductive definitions over P .

3 Reduction to Countable Sequences In this section, we are going to show that
in a sense we can dispense with revision sequences of length unbounded in O, the
collection of all ordinals, and only look at revision sequences of countable length. In
order to show this, we will crucially employ ideas from a theorem due to McGee (see
his [4], p. 135, and also Gupta & Belnap [2], p. 176). We first restrict our attention to
the system S∗, and deal with S# later.

Definition 3.1 We say that ϕ is valid in S∗ if and only if ϕ is true in every model
M + h, where h is reflexive in some revision sequence for δM,D .2

Theorem 3.2 Let h be a reflexive hypothesis of a revision sequence S for δM,D,
and let κ = max(|M|, ℵ0). Then h is α-reflexive for some α < κ+, i.e., |α| = κ .

The import of this theorem, due to McGee (see [2], p. 176), is that if we want to
find out wheter a sentence ϕ is validated by some model M + h, where h is recurring
for M, we only need to look at revision sequences of length bounded by κ . The
theorem can indeed be strengthened (as shown in [4]) by taking κ to be cardinality
of the language (which in our case is assumed to be countable). Our main purpose in
this section is to establish the following result.

Theorem 3.3 A sentence ϕ is valid in S∗ if and only for any hypothesis h that is
reflexive in a countable revision sequence S relative to a countable model M, ϕ is
true in M + h.

Proof. For the “only if” direction of the theorem it suffices to show that if ϕ is false
in a countable model M + h, where h is reflexive in a countable revision sequence, it
is not valid in S∗. We use a construction due to McGee (see [4], p. 135).

So assume the antecedent, and let S be a countable revision sequence in which
h is reflexive. Let β be the length of S. Since any ordinal can be written in the form
(β ·γ )+δ, with δ < β, we can define a revision sequence T by setting for any ordinal
γ ,

T(β·γ )+δ = Sδ.

Now h is reflexive in T, which shows that ϕ is not valid in S∗.
Now for the “if” direction. Let ϕ be a sentence, and assume that ϕ is true in

N+h, where h is any hypothesis that is reflexive in some countable revision sequence
relative to a countable model N. Let M be any model, S a revision sequence for M,
and h a hypothesis that is reflexive in S. We need to show that ϕ is true in M + h.

Assume for contradiction that ϕ is false in M + h. We will show that there is
a countable model M′, a countable revision sequence S′ for M′ and a hypothesis h′
that is reflexive for S′ such that ϕ is false in M′ + h′.

By the downward Löwenheim-Skolem, let M′ + h′ be a countable elementary
submodel of M+h (where h = S0). Observe that also M′ is an elementary submodel
of M (relative to the original language L). We define a new revision sequence S′ by
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setting S′
0 = h′, and S′

α+1 = δM
′
,D

(S′
α)). In oder to define S′ at limit stages, for limit

ordinals λ (and in particular for limit ordinals < ω1) we set:

S′
λ = {d ∈ M′ : d ∈ Sλ}.

This definition makes sense since M′ ⊆ M.
We need to establish (i) that S′ is a revision sequence; (i i) that h′ is recurring

for S′; and (i i i) that ϕ is false in M′ + h′. In order to do so, we will first prove the
following auxiliary results.

Lemma 3.4 M′ + S′
α is an elementary submodel of M + Sα, for each ordinal α,

and in particular for α < ω1.

Proof. We proceed by induction on α. We already know that M′ ≺ M. The lemma
holds by definition for α = 0. We now deal with the case α + 1. We first argue that
S′

α+1 and Sα+1 agree on M:

d ∈ S′
α+1 ⇐⇒ d ∈ δM

′
,D

(S′
α)

⇐⇒ M′ + S′
α, d |= A(G)

⇐⇒ M + Sα, d |= A(G)

⇐⇒ d ∈ δM,D(Sα)

⇐⇒ d ∈ S′
α+1.

In particular, this shows that M′+S′
α+1 is a submodel of M+Sα+1. An easy induction

on the complexity of formulas ϕ(x1, . . . , xn) (which is left to the reader) now shows
that for d1, . . . , dn in M′,

M′ + S′
α+1 |= ϕ[d1, . . . , dn] ⇐⇒ M + Sα+1 |= ϕ[d1, . . . , dn],

as required. We now deal with the limit case. Let λ be a limit ordinal. By definition
of S′ we already know that M′+S′

λ is a submodel of M+Sλ, when λ is a limit ordinal.
In order to show that it is an elementary submodel we need to verify the condition
on ϕ(x1, . . . , xn) above. Proceeding by induction on the complexity of ϕ, the only
non-trivial case is for the new constant G, which is interpreted on S′

λ. But then we
only need to notice that by definition of S′, as required, S′

λ is the restriction of Sλ to
the universe of M′.

Lemma 3.5 S′ is a revision sequence.

Proof. We need to show that for each limit ordinal λ, S′
λ coheres with {S′

α : α < λ},
in the sense that if some d ∈ M′ is stably in S′

α as α approaches λ, then it is in S′
λ.

Using the previous lemma we have:

d ∈ S′
λ ⇐⇒ d ∈ Sλ

⇐ d ∈
⋃
α<λ

⋂
α<β<λ

Sβ

⇐⇒ d ∈
⋃
α<λ

⋂
α<β<λ

S′
β,

which establishes the lemma.
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Now we go back to the proof of theorem 3.3. By lemma 3.4, we know that each
S′

α is the restriction of Sα to the universe of M′. It follows that if h = S0 is reflexive
for S, then h′ = S′

0 is reflexive for M′. But M′ is countable, so by McGee’s theorem h′
is reflexive for some countable sequence T for M′. Moreover, M′ +h′ is elementarily
equivalent to M + h, so that ϕ is false in M′ + h′. This completes the proof of the
theorem.

In order to see that this section establishes a reduction to countable sequences
also for S#, recall the definition:

Definition 3.6 We say that ϕ is valid in S# if and only if for all hypotheses h that
are reflexive in some revision sequence for δM,D , there is n such that for all p ≥ n,
ϕ is true the model

M + δM,D · · · δM,D︸ ︷︷ ︸
p times

(h).

We now notice that the construction of the theorem can be easily modified to
apply to S#. Let M, M′, h and h′ be as in the theorem. Then, as we already know,
M′ + δM

′
,D

(S′
α) is an elementary submodel of M + δM,D(Sα). This shows that for

every n there is p ≥ n such that ϕ is false in the model

M + δM,D · · · δM,D︸ ︷︷ ︸
p times

(h),

as required.

4 The Upper Bound Given the reduction of the previous section, we now show how
to write S∗ in �1

2-form. This will be accomplished by writing out formally a long
series of definitions and by some simple quantifier manipulations. Leaving much of
the work to the reader, we will point out how this can be accomplished.

Let α be a function from pairs of natural numbers into {0, 1}. It is easy to see
that “α codes a linear ordering” can be written out arithmetically in α. However, as
is well known, the condition on well-orderings cannot be so expressed, as it requires
a second-order universal quantifier in an essential way. We need to say that there
are no infinite descending sequences; writing “x <α y” for “x precedes y in the
well-ordering (coded by) α:”

∀ f [∀n( f (n + 1) <α f (n)) → ∃n( f (n) = f (n + 1))].

Let us write W(α) for “α is a well-ordering of the natural numbers,” i.e., “α is a
countable ordinal.” (For this and other recursion-theoretic details see for instance
[3].)

Likewise, we can code a model by means of a function over the natural numbers
satisfying certain conditions, and in turn we can code a countable sequence of models
by means of such a function satisfying certain other conditions. These restrictions
can be expressed arithmetically in the corresponding second-order variables. We
will write, e.g., ∀M or ∃S as second-order quantifiers with the above-mentioned
restrictions.

We introduce predicates Rev(M, S, D, α) and Ref(h, S, α) meaning, respec-
tively, “S is a revision sequence for δM,D of length α” and “h is reflexive for S.”
Predicates Rev and Ref can be written arithmetically in their parameters. (We need
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α as an explicit parameter in Ref because we want to say S0 = h and for some β < α,
also Sβ = h.)

Finally, using the reduction to countable sequences given in the previous section,
we see that “ϕ is valid for S∗” can be written in �1

2 form as follows:

∀M∀h∀S∀α[W(α) ∧ Rev(M, S, D, α) ∧ Ref(h, S, α) ⇒ M + h |= ϕ].

Finally, it is again easy to see how to modify the above argument for S#. Since
the “jump” δM,D can be expressed in �1

1 form, we can write “ϕ is valid in S#” in �1
2

form by replacing the consequent M + h |= ϕ of the above sentence by

∃n(∀p ≥ n)M + δ
p

M,D
(h) |= ϕ,

where δ
p

M,D
(h) is δM,D · · · δM,D︸ ︷︷ ︸

p times

(h).
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NOTES

1. Kremer [1] mentions that a proof for this was sketched by Yiannis Moschovakis in
private correspondence.

2. The original definition of [2] is formulated with respect to recurring hypotheses, i.e.,
hypotheses that occur cofinally in some revision sequence. By theorem 5C.13, p. 174
of [2], these are the same as the reflexive hypotheses.
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