Σ_{1}^{1}-Completeness of a Fragment of the Theory of Trees With Subtree Relation

P. CINTIOLI and S. TULIPANI

Abstract

We consider the structure $I T_{S}$ of all labeled trees, called also infinite terms, in the first order language \mathcal{L} with function symbols in a recursive signature S of cardinality at least two and at least a symbol of arity two, with equality and a binary relation symbol \sqsubseteq which is interpreted to be the subtree relation. The existential theory over \mathcal{L} of this structure is decidable (see Tulipani (9), but more complex fragments of the theory are undecidable. We prove that the $\exists \Delta$ theory of the structure is in Σ_{1}^{1}, where $\exists \Delta$ formulas are those in prenex form consisting of a string of unbounded existential quantifiers followed by a string of arbitrary quantifiers all bounded with respect to \sqsubseteq. Since the fragment of the theory was already known to be Σ_{1}^{1}-hard (see Marongiu and Tulipani (5]), it is now established to be Σ_{1}^{1}-complete.

1 Preliminaries and Introduction A signature S is a set of operation symbols on which is defined a function $a r: S \rightarrow \mathbb{N}$ into the set of natural numbers, called arity. Symbols of arity zero are called constant symbols. Throughout this paper we assume at least that S is a nonempty recursive set.

For every nonempty set A let A^{*} denote the free monoid of finite sequences of elements of A, including the empty sequence Λ. Let \cdot be the operation of concatenation on A^{*}. A set $D \subseteq A^{*}$ is called prefix-closed if $p \cdot q \in D$ implies $p \in D$. A set D is called a domain-tree if:
(1) $D \subseteq \mathbb{N}_{+}^{*}$ and $\Lambda \in D$, where \mathbb{N}_{+}is the set of positive integers;
(2) D is prefix closed.

When D is a domain-tree, the elements of D are called positions. Moreover, a mapping $t: D \rightarrow S$ is called a tree (or infinite term) over the signature S if
(3) $\forall p \in D$, if $t(p)=g$ and $\operatorname{ar}(g)=k$ then $\forall j \in \mathbf{N}_{+}, \quad p \cdot j \in D \longleftrightarrow 1 \leq j \leq k$.

This also makes sense when g is a constant symbol. In such a case $k=0$ and p is maximal in D, i.e., there is no $q \in D$ such that p is a proper prefix of q.

The subtree t^{\prime} of a tree t at position p is a mapping $t^{\prime}: D^{\prime} \rightarrow S$ where $D^{\prime}=$ $\{q: p \cdot q \in D\}$ and $t^{\prime}(q)=t(p \cdot q)$. A rational tree is a tree with a finite number of subtrees. A finite tree is a tree with a finite domain. We denote by $I T_{S}$ the set of trees in the signature S. This can be made into an algebra of signature S, which we continue to denote $I T_{S}$, by defining, for every $f \in S$ of arity k and every $t_{1}, \ldots, t_{k} \in$ $I T_{S}$, the tree t, denoted $f\left(t_{1}, \ldots, t_{k}\right)$, as the unique tree where $t(\Lambda)=f$ and, if $k>0$, t_{1}, \ldots, t_{k} are subtrees at positions $1, \ldots, k$, respectively. Moreover, a relation \sqsubseteq is defined on $I T_{S}$ by $t^{\prime} \sqsubseteq t$ if and only if t^{\prime} is a subtree of t at some position. The relation \sqsubseteq is reflexive and transitive, i.e., a preorder, on $I T_{S}$. The set $R T_{S}$ of rational trees is a substructure of $I T_{S}$ and the set $F T_{S}$ of finite trees is a substructure of $R T_{S}$; moreover, the preorder \sqsubseteq is antisymmetric on $F T_{S}$, i.e., a partial order.

The first order theory $\operatorname{Th}\left(I T_{S}\right)$, in the first order language for the signature S, is decidable, moreover $T h\left(I T_{S}\right)=T h\left(R T_{S}\right)$, (see Maher [2], and Marongiu and Tulipani [3]). This is no longer true when the preorder relation \sqsubseteq is added and the signature has at least two symbols and a symbol is of arity at least two. In fact, under this hypothesis, every substructure of $\left(I T_{S}, \sqsubseteq\right)$ has an undecidable theory (see McCarthy [1], Marongiu and Tulipani [4], and Treinen (8). However, it was proved in Tulipani [9] that the existential fragment of $\operatorname{Th}\left(I T_{S}, \sqsubseteq\right)$ is decidable. This is the best result, since fragments more complex are undecidable, (see 47, 8, and [10]).

In [5] the fragment $\exists \Delta$ of existential quantification of Δ-formulas was investigated. Let \mathcal{T} be the set of first order terms in signature S, then Δ-formulas are defined recursively as the smallest set of first order formulas satisfying:

- $t_{1}=t_{2}$ and $t_{1} \sqsubseteq t_{2}$ are Δ-formulas, for $t_{1}, t_{2} \in \mathcal{T}$;
- if φ, ψ are Δ-formulas then $\varphi \wedge \psi, \varphi \vee \psi, \neg \varphi, \varphi \rightarrow \psi$ are Δ-formulas;
- if φ is a Δ-formula then $(\exists x \sqsubseteq t) \varphi$ and $(\forall x \sqsubseteq t) \varphi$ are Δ-formulas, for every $t \in \mathcal{T}$ and every variable x not in t.

It was observed in [4], and it is not difficult to prove, that the fragment $T h_{\exists \Delta}\left(R T_{S}, \sqsubseteq\right)$ of $\exists \Delta$-formulas, which are true in the structure of rational trees with subterm relation, is recursively enumerable. Moreover, this fragment is no longer equal to the fragment $T h_{\exists \Delta}\left(I T_{S}, \sqsubseteq\right)$ as in the case when \sqsubseteq is not present (see 3]). In fact, in $\sqrt[5]{ }$ it was proved that, when S has at least a constant symbol and a symbol of arity at least two, the fragment $T h_{\exists \Delta}\left(I T_{S}, \sqsubseteq\right)$ is Σ_{1}^{1}-hard. One may easily note that the result continues to hold also in the more general case when the signature S contains two function symbols and one of them is of arity at least two. Here, we prove membership in Σ_{1}^{1} of the fragment $T h_{\exists \Delta}\left(I T_{S}, \sqsubseteq\right)$ under the hypothesis that S is recursive. So, we may conclude that the fragment is Σ_{1}^{1}-complete when S is recursive, is of cardinality at least two, and has a symbol of arity at least two (for terminology see Odifreddi 6]).

2 Main Result We assume that the signature S is a recursive set. Our goal is to prove that the fragment $T h_{\exists \Delta}\left(I T_{S}, \sqsubseteq\right)$ is in Σ_{1}^{1}. We observe that we may also assume that S has cardinality greater than one and has a symbol of arity at least two. Otherwise the statement follows since the first order theory of $I T_{S}$ is decidable. In fact,
when S has cardinality one, the first order theory of $I T_{S}$ is clearly decidable since $I T_{S}$ is trivial with only one element, whereas, when no element in S has arity greater than one, the first order theory of $I T_{S}$ is decidable by the celebrated Rabin's Theorem on two successors (see Rabin (77).

Now, we are going to transform effectively every first order $\exists \Delta$-sentence φ, in the signature S possibly with the predicate symbol \sqsubseteq, into a second order Σ_{1}^{1}-sentence Ψ in the language of arithmetic such that
(4) $\left(I T_{S}, \sqsubseteq\right) \models \varphi \quad$ if and only if $\quad A R 2 \models \Psi$
where $A R 2$ is the second order arithmetic.
Theorem 2.1 Without loss of generality we can restrict ourselves to the case of sentences of the following kind:
(5) $\exists x_{0} Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \alpha$ where;
(6) $Q_{i} \in\{\forall, \exists\}$ and the quantifiers $Q_{i} x_{i}$, for $i=1, \ldots, n$, are all bounded with respect to \sqsubseteq to variables x_{j} with $0 \leq j<i$;
(7) α is quantifier-free with only atomic subformulas of the following two types $x=t, \quad x \sqsubseteq y$
where x, y are variables and t is a first order term.
Proof: Start with any φ in $\exists \Delta$. It is straightforward to transform φ, by adding existential quantifiers, if necessary, into a logically equivalent prenex formula $Q_{1}^{\prime} x_{1} \ldots$ $Q_{n}^{\prime} x_{n} \beta$ where the atomic subformulas are as in (7) and, for $i=1, \ldots, n$, the quantifier $Q_{i}^{\prime} x_{i}$ can be $\exists x_{i}, \exists x_{i} \sqsubseteq x_{j}$ or $\forall x_{i} \sqsubseteq x_{j}$, for some $j<i$.

Now, if the sentence does not have the desired form, then take a term t which contains all the variables x_{i} in $\left\{x_{1}, \ldots, x_{n}\right\}$ which are quantified by nonbounded quantifier $\exists x_{i}$. Such a t exists since the signature has a symbol of arity at least two. Hence, the following sentence
(8) $\exists x_{0} Q_{1} x_{1} \ldots Q_{n} x_{n}\left(x_{0}=t \wedge \beta\right)$
satisfies properties (6)-(7), where $Q_{i} x_{i}$ is $Q_{i}^{\prime} x_{i}$ if $Q_{i} x_{i}$ was bounded and $Q_{i} x_{i}$ is $\exists x_{i} \sqsubseteq$ x_{0} otherwise.

Our aim is to code trees of $I T_{S}$ as functions $F: \mathbb{N} \rightarrow \mathbb{N}$. This can be achieved easily, in a standard way, by fixing an encoding $\left\rangle_{k}: \mathbf{N}^{k} \rightarrow \mathbb{N}\right.$ of k-tuples of natural numbers. Then, a finite sequence $s_{1} \cdot s_{2} \cdots s_{l} \in \mathbf{N}_{+}^{*}$ will be coded by the integer $a=\left\langle l,\left\langle s_{1}, \ldots, s_{l}\right\rangle\right\rangle$. As usual, we denote the number l by length (a). It is assumed that $\langle n\rangle=n$, for every n, that $\langle 0\rangle=0$ codes the empty sequence and length $(0)=0$. So, every domain-tree D can be thought of, by coding, as a subset of \mathbf{N}. Moreover, we can assume, for convenience, that $S \subseteq \mathbb{N}_{+}$. Hence every tree $t: D \rightarrow S$ can be determined by a function $F: \mathbb{N} \rightarrow \mathbb{N}$ where the following hold
(9) $\operatorname{Im} F \subseteq S \cup\{0\}$;
(10) $\{a: F(a) \in S\}$ encodes a domain-tree;
(11) the analogous property of (3) obtained by encoding.

Now, we write a second order formula Tree (F) for defining in $A R 2$ functions which code elements of $I T_{S}$. We need the following primitive recursive relations on \mathbb{N} :

- $\operatorname{conc}(a, b, c)$, the concatenation, which holds iff $a=\left\langle l,\left\langle a_{1}, \ldots, a_{l}\right\rangle\right\rangle$, $b=\left\langle k,\left\langle b_{1}, \ldots, b_{k}\right\rangle\right\rangle, c=\left\langle l+k,\left\langle a_{1}, \ldots, a_{l}, b_{1}, \ldots, b_{k}\right\rangle\right\rangle ;$
- prec (a, b), which holds iff $\exists z \operatorname{conc}(a, z, b)$;
- notseq (a), which holds iff a does not code any sequence in \mathbb{N}_{+}^{*}.

Then, we consider the language \mathcal{L}_{2}^{*} of second order arithmetic with symbols for all primitive functions. Then, the formula $\operatorname{Tree}(F)$ will be the universal quantification, over all first order variables x, y, p, j, g, k, of the conjunction of the following formulas, which clearly can be written in \mathcal{L}_{2}^{*}. Remember that S and the arity function $a r: S \rightarrow \mathbb{N}$ are both recursive.
(12) $F(x) \in S \cup\{0\}$

$$
\begin{align*}
& F(0) \neq 0 \wedge \forall x(\operatorname{notseq}(x) \rightarrow F(x)=0) \tag{13}\\
& F(x) \neq 0 \wedge \operatorname{prec}(y, x) \longrightarrow F(y) \neq 0 \tag{14}\\
& \operatorname{ar}(g)=k \wedge F(p)=g \longrightarrow(\exists q(\operatorname{conc}(p,\langle 1, j\rangle, q) \wedge F(q) \neq 0) \leftrightarrow(1 \leq j \wedge j \leq \tag{15}\\
& k)) .
\end{align*}
$$

Note that (12) takes care of (9); (13) and (14) take care of (10) (see (1) and (2) and remember that 0 codes the empty sequence). Moreover, (15) takes care of (11), (see (3)). Note also that $\operatorname{ar}(c)=0$, for every constant symbol c, hence (15) means that $F(p)=c$ implies $F(q)=0$ for every immediate successor q of p and by (14), $F(q)=$ 0 for every q such that $\operatorname{prec}(p, q)$ and $q \neq p$.

We wish to transform every sentence as in (5) into a sentence of $A R 2$ where there exists a unique second order quantifier $\exists F$ and F is constrained to satisfy Tree (F). Moreover, we manage in such a way that all the quantifiers $Q_{1} x_{1}, \ldots, Q_{n} x_{n}$ range over natural numbers which are constrained to represent positions in the tree F and, on the other hand, positions determine subtrees of $F ; x_{0}$ represents the root of F. So, we need to define formulas $U g(F, x, t)$ of \mathcal{L}_{2}^{*} for every first order variable x and every term t in signature S. Such formulas will have $\{F, x\} \cup \operatorname{var}(t)$ as free variables and F is the only second order variable. The definition is by structural induction on t as follows:

$$
\begin{align*}
U g(F, x, c)= & F(x)=c \\
U g(F, x, y)= & \forall u \forall v \forall z(\operatorname{conc}(x, u, v) \wedge \operatorname{conc}(y, u, z) \\
& \rightarrow F(v)=F(z)) \tag{16}\\
U g\left(F, x, g\left(t_{1}, \ldots, t_{k}\right)\right)= & F(x)=g \wedge \exists z_{1} \ldots \exists z_{k} \bigwedge_{1 \leq i \leq k} \\
& \left(\operatorname{conc}\left(x,\langle 1, i\rangle, z_{i}\right) \wedge U g\left(F, z_{i}, t_{i}\right)\right),
\end{align*}
$$

where c is a constant symbol, y is a first order variable, g is an operation symbol of arity $k>0$ and z_{1}, \ldots, z_{k} are new first order variables not used elsewhere. Now, we are ready to prove our theorem.

Theorem 2.2 Let S be a nonempty recursive signature. Then, the fragment $T h_{\exists \Delta}\left(I T_{S}, \sqsubseteq\right)$ is Σ_{1}^{1}-complete if and only if S is of cardinality greater than one and with a symbol of arity at least two.
Proof: Going from left to right, suppose S is of cardinality one or all the symbols in S have arity less than two. Then the first order theory of $I T_{S}$ is decidable, as we
discussed before. Hence, under our hypothesis our fragment is decidable and it cannot be Σ_{1}^{1}-complete. Therefore, the left to right condition of the the theorem is necessary.

For the other direction, given the result of [5], we have to prove membership in Σ_{1}^{1} of our fragment. Start with a formula as in (5). First, transform the matrix α into a formula Θ_{α} of $A R 2$ by replacing all its atomic subformulas according to the following rules:

$$
\begin{array}{lll}
x=t & \text { replaced by } & U g(F, x, t) \tag{17}\\
x \sqsubseteq y & \text { replaced by } & \exists z(\operatorname{prec}(y, z) \wedge U g(F, z, x)),
\end{array}
$$

where z is a new first order variable not used elsewhere. Then, according to (7) and to (16), Θ_{α} is a formula for $A R 2$ where the free first order variables are the same as in α. Now, let Φ be the formula
(18) $\operatorname{Tree}(F) \wedge \Theta_{\alpha}\left[x_{0} \leftarrow 0\right]$
where $\left[x_{0} \leftarrow 0\right.$] is the substitution of x_{0} for 0 which is the code for the empty position. By (12)-(15) there exists a bijection $\delta: I T_{S} \longrightarrow\{F: \mathbb{N} \rightarrow \mathbb{N}, A R 2 \models$ Tree $(F)\}$. Fix $T \in I T_{S}$ and positions p_{1}, \ldots, p_{n} in the domain of T. Denote by T / p the subtree of T at position p and by F_{T} the corresponding of T under δ. Then, we can prove

Claim 2.3

$$
I T_{S} \models \alpha\left[x_{0} \leftarrow T, x_{1} \leftarrow T / p_{1}, \ldots, x_{n} \leftarrow T / p_{n}\right]
$$

if and only if

$$
A R 2 \models \Phi\left[F \leftarrow F_{T}, x_{1} \leftarrow \overline{p_{1}}, \ldots, x_{n} \leftarrow \overline{p_{n}}\right] .
$$

where \bar{p} denotes the code of the position p.
Proof: The proof of Claim 2.3 follows simply from (17) and from the meaning of the formula $\operatorname{Ug}(F, x, t)$ determined by (16).

Note that, if p, q are positions in T, then $\operatorname{AR2} \models U g(F, x, y)\left[F_{T}, \bar{p}, \bar{q}\right]$, (where x and y are distinct), means that $T / p=T / q$. Moreover, note that, if p is prefix of q, then $T / q \sqsubseteq T / p$.

Now, observe that a is the code of some position p in T if and only if $F_{T}(a) \neq 0$. The truth of the sentence (5) is determined by the existence of a tree $T \in I T_{S}$ assigned to x_{0} and by trees T_{1}, \ldots, T_{n} which interpret x_{1}, \ldots, x_{n}. Since every quantifier $Q_{i} x_{i}$, for $i=1, \ldots, n$, is bounded to x_{j} for some $0 \leq j<i$, the trees T_{1}, \ldots, T_{n} must be all subtrees of T. Then, to get our result, we have to put before the formula Φ the same list of quantifiers $Q_{1} x_{1} \ldots Q_{n} x_{n}$ which are before α in (5) and the variables have to be constrained to range on codes of positions in T. So, the Σ_{1}^{1}-sentence Ψ which works in (4) is

$$
\text { (19) } \exists F \tilde{Q}_{1} x_{1} \ldots \tilde{Q}_{n} x_{n} \Phi
$$

where $\tilde{Q}_{i} x_{i}$, for $i=1, \ldots, n$ denote the quantifiers $Q_{i} x_{i}$ of sentence in (5) relativized to the predicate $F\left(x_{i}\right) \neq 0$. In fact, the following claim holds for all $k=0, \ldots, n$, for every T in $I T_{S}$ and all positions p_{1}, \ldots, p_{k} in T :
Claim 2.4

$$
I T_{S} \models Q_{k+1} x_{k+1} \ldots Q_{n} x_{n} \alpha\left[x_{0} \leftarrow T, x_{1} \leftarrow T / p_{1}, \ldots, x_{k} \leftarrow T / p_{k}\right]
$$

if and only if

$$
A R 2 \models \tilde{Q}_{k+1} x_{k+1} \ldots \tilde{Q}_{n} x_{n} \Phi\left[F \leftarrow F_{T}, x_{1} \leftarrow \overline{p_{1}}, \ldots, x_{k} \leftarrow \overline{p_{k}}\right] .
$$

Proof: The proof is an easy induction on the number of quantifiers; the case of no quantifiers corresponds to $k=n$ and it is Claim 2.3.

Acknowledgments We thank anonymous referees for comments which improved the paper.

REFERENCES

[1] McCarthy, J., Representation of Recursive Programs in First Order Logic, Computer Science Department, Stanford University, Stanford, 1977.
[2] Maher, J., "Complete axiomatizations of the algebras of finite, infinite and rational trees," pp. 348-357 in Proceedings of the Third Annual Symposium on Logic in Computer Science, IEE Computer Society, New York, 1988.
[3] Marongiu, G., and S. Tulipani, "Quantifier elimination for infinite terms," Archives of Mathematical Logic, vol. 31 (1991), pp. 1-17. Zbl 0723.03016|MR 92i:03029 1.1
[4] Marongiu, G., and S. Tulipani, Decidability results for term algebras, AILA Preprint, 1991. 1, 1, 1
[5] Marongiu, G., and S. Tulipani, "Undecidable fragments of term algebras with subterm relation," Fundamenta Informaticae, vol. 19 (1993), pp. 371-382.Zbl 0788.03011 MR 95f:68145 1.1.|1. 2
[6] Odifreddi, P., Classical Recursion Theory, North-Holland, Amsterdam, 1989. Zbl 0661.03029||MR 90d:03072
[7] Rabin, M., "Decidable Theories," pp. 596-629 in Handbook of Mathematical Logic, edited by J. Barwise, North-Holland, Amsterdam, 1977. 2
[8] Treinen R., "A New Method for Undecidability Proofs of First Order Theories," Journal of Symbolic Computation, vol. 14 (1992), pp. 437-457. Zbl 0769.03026 MR 93m:03077 IT
[9] Tulipani, S., "Decidability of the Existential Theory of Infinite Terms with Subterm Relation," Information and Computation, vol. 108 (1994), pp. 1-33.ZZl 0801.68115 MR 94k:03012 1.1
[10] Venkataraman, K., "Decidability of the purely existential fragment of the theory of term algebras," Journal of the Association for Computing Machinery, vol. 34 (1987), pp. 410-471. MR 88g:68042

Department of Mathematics

University of Siena, via del Capitano
53100 Siena
Italy

Department of Mathematics and Physics
University of Camerino, via Madonna delle Carceri

62032 Camerino
Italy
email: tulipani@camvax.cineca.it

