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A System of Complete and Consistent Truth

VOLKER HALBACH

Abstract To the axioms of Peano arithmetic formulated in a language with
an additional unary predicate symbol T we add the rules of necessitation ϕ/T ϕ

and conecessitation T ϕ/ϕ and axioms stating that T commutes with the logical
connectives and quantifiers. By a result of McGee this theory is ω-inconsistent,
but it can be approximated by models obtained by a kind of rule-of-revision se-
mantics. Furthermore we prove that FS is equivalent to a system already studied
by Friedman and Sheard and give an analysis of its proof theory.

1 Preliminaries Let L be the first-order language of arithmetic with symbols for
all primitive recursive functions; that is, if [e] is a primitive recursive function with
index e, a function symbol fe for [e] is available in L . We suppose that L has =, ¬,
→ and ∃ as logical symbols. If we expand L by adding the new predicate constant
T we obtain the language LT. Throughout the whole paper we shall identify every
expression of LT with its Gödel number (under a standard gödelnumbering). Because
we also identify languages with the set of their formulas, a language will be a set of
natural numbers. All theories we shall discuss are extensions of Peano arithmetic: PA
is the theory containing all defining equations of the primitive recursive functions and
all the induction axioms in the full language LT. The index e of a primitive recursive
function [e] will provide the defining equation(s) for the symbol fe associated with
the index e.

If a primitive recursive function h is explicitly given by some equations, we have
a natural index e for this function which is again associated with a function symbol
fe in the language L . Usually we shall denote this function symbol for h by h. . So
h. naturally represents h in PA in the language L . It is useful to conceive of the log-
ical connectives as functions of expressions (i.e., of natural numbers). So we have
for negation a function symbol ¬. representing the operation of prefixing a negation
symbol to an expression (and similarly for material implication and the existential
quantifier). Hence we can show for every formula ϕ ∈ LT that:

PA � ¬. ϕ = ¬ϕ
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In general, n will denote the numeral of n, for instance in the above line ϕ is the nu-
meral of the sentence ϕ.

Similar properties hold for the two-place function symbols →. and ∃. . As usual
we use a dot above variables in order to indicate that the variable can be bound from
“outside” by the substitution function.

In order to state the axioms of our theories of truth we need some predicates in
the language L binumerating (strongly representing) certain properties of expressions
in a natural way. Let SentL (x) be a formula expressing in L the property of being a
sentence of L . Similarly At(x) shall mean that x is an atomic sentence of L , Ver(x)

that x is a true atomic sentence of L , and Var(x) that x is a variable.

2 Introduction Whereas most axiomatic theories of type-free truth were guided
by non-classical semantic constructions using partial or many-valued logic, our aim
in this paper is to give a theory of truth which is thoroughly classical. As a starting
point we consider the well-known theory Tr(L) of truth for the language L , which
is a formalization of the Tarskian definition of truth. It is equivalent to the statement
that there is a satisfaction class plus full induction in the language LT.

Definition 2.1 Tr(L) is given by the following axioms:

(i) axioms of PA formulated in the language of LT (including full induction)
(ii) ∀x[At(x) → (Tx ↔ Ver(x))]

(iii) ∀x[SentL (x) → (T¬. x ↔ ¬Tx)]
(iv) ∀x∀y[SentL (x) ∧ SentL (y) → (T(x →. y) ↔ (Tx → Ty))]
(v) ∀x∀v[SentL (x(0/v)) ∧ Var(v) → (T∃.vx ↔ ∃yTx( ẏ/v))]

In the last axiom x(0/v) designates the result of substituting the numeral 0 for the
free variable v in the formula x. The substitution function is understood to be defined
in such a way that x(0/v) is a formula of LT only if v is a variable. x( ẏ/v) is written
to indicate that the numeral of y is substituted for v in x.

For atomic formulas of L Tr(L) states in axiom (ii) simply that T coincides with
the truth definition for atomic L-sentences which can be given within the language L
itself, while the other axioms (iii) – (v) say that T commutes with all logical connec-
tives of sentences of the language L thus simulating Tarski’s definition of truth.

It is well-known that it is possible to show Tarski’s (uniform) biconditional for
each formula ϕ(x1, . . . , xn) of L with just x1, . . . , xn free by induction on the com-
plexity of ϕ(x1, . . . , xn):

Tr(L ) � Tϕ(ẋ1, . . . , ẋn) ↔ ϕ(x1, . . . , xn).

In order to give axioms for a truth theory for the whole language LT, we can try to
state the principles involved in the axiomatization of Tr(L), not only as above, for sen-
tences of L , but also for sentences of the language LT including sentences with the
truth predicate T. So we keep axioms (i) and (ii) and enlarge the range of the quanti-
fiers in axioms (iii) – (v). For this purpose let SentLT

(x) express the property of being
a sentence of LT.

Definition 2.2 FS1 is the theory consisting of:

(i) and (ii) as above
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(iii) ∀x[SentLT
(x) → (T¬. x ↔ ¬Tx)]

(iv) ∀x∀y[SentLT
(x) ∧ SentLT

(y) → (T(x →. y) ↔ (Tx → Ty))]

(v) ∀x∀v[SentLT
(x(0/v)) ∧ Var(v) → (T∃.vx ↔ ∃yTx( ẏ/v)]

With an easy model theoretic argument (see also Corollary 4.3 below) one can prove
the consistency of FS1. The axioms of FS1, especially (iii), are incompatible with
axioms usually used to characterize truth in non-classical models. Note that the left-
to-right direction of (iii) is easily seen to be equivalent to the “consistency” axiom

∀x[SentLT
(x) → ¬(Tx ∧ T¬. x)], (T-Cons)

whereas the right-to-left direction is equivalent to the completeness principle

∀x[SentLT
(x) → Tx ∨ T¬. x)]. (T-Comp)

So axiom (iii) says that the extension of T is a complete and consistent set of sen-
tences of LT ruling out interpretations of T as a partial (non-complete) predicate. In
contrast to the completeness principle T-Comp, axiom systems for partial truth usu-
ally include the axiom of consistency T-Cons. For similar reasons the right-to-left
direction fails in these systems, but T distributes over implication in such partial in-
terpretations.

Now FS1 has a major drawback: FS1 does not contain any axiom concerning it-

erations of truth. For example it is impossible to deduce the sentence TT0 = 0 within
FS1. A first idea to overcome this deficiency might consist in the addition of an axiom
resembling the other axioms of FS1:

∀x[SentLT
(x) → (TT. ẋ ↔ Tx)]. (1)

Unfortunately (1), together with the other axioms of FS1, yields an inconsistency. By
Gödel’s diagonal lemma we choose a closed term t satisfying PA � t = γ, where γ is
the sentence ¬Tt. We can employ axiom (iii) to derive the following contradiction in
FS1:

FS1 + (1) � γ ↔ ¬Tt

↔ ¬TTt

↔ T¬Tt

↔ Tγ.

So we get FS1 + (1) � γ ↔ ¬γ by the fixed point property of γ. Instead of adding
the full axiom (1) we could try to weaken (1) by discarding one direction of the bi-
conditional:

∀x[SentLT
(x) → (Tx → TT. ẋ)] (2)

∀x[SentLT
(x) → (TT. ẋ → Tx)]. (3)

Both FS1+(2) and FS1+(3) are consistent as shown by Friedman and Sheard in [5].
There they constructed models for variants of the two theories in the sections B “It
is true that everything is true” and C “It is true that everything is false.” It will fol-
low from a theorem below that the construction of these models may be formalized
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within the system ACA of arithmetical comprehension (see Theorem 5.9). As FS1 is
already as strong as ACA we shall be able to conclude the following proof-theoretical
equivalences:

FS1 ≡ FS1 + (2) ≡ FS1 + (3) ≡ Tr(L ) ≡ ACA.

But neither (2) nor (3) is an attractive axiom for truth, at least when taken together
with the other axioms of FS1 because one can show:

Lemma 2.3 There is a sentence γ such that

FS1 + (2) � TTγ ∧ TT¬γ.

Proof: We need the following result that will be shown later: for any sentence ϕ of
LT we have:

PA � ϕ =⇒ FS1 � Tϕ.

Let γ be the liar sentence as above.

PA � γ ↔ ¬Tγ

FS1 � T(γ ↔ ¬Tγ)

FS1 � Tγ ↔ ¬TTγ

FS1 + (2) � Tγ → TTγ

FS1 + (2) � ¬Tγ

FS1 + (2) � TTγ

FS1 + (2) � T¬γ

FS1 + (2) � TT¬γ

Because of this result (2) may hardly be considered as a good principle of itera-
tion of truth, while (3) is no principle of iteration at all. For example, it can be shown
by an easy model-theoretic argument that

FS1 + (3) �� TT0 = 0.

If S is a theory in the language LT, call the set of all S-derivable sentences the external
logic of S and the set of all sentences ϕ of LT such that

S � T ϕ

the internal logic of S. Using this terminology we can restate Lemma 2.3: The internal
logic of the internal logic of FS1 + (2) is inconsistent. For a system S of truth it is a
desirable feature that the internal logic of S equals the external logic of S. If we have

internal logic of S = external logic of S

or, in other words, for all sentences ϕ ∈ LT

S � T ϕ ⇐⇒ S � ϕ,

then TT0 = 0 is derivable in S, if T0 = 0 is. Now we are able to expand FS1 by the
principle stating the equivalence of internal and external logic:
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Definition 2.4 FS is the system FS1 with the following two additional rules:

(NEC)
ϕ

Tϕ
(CONEC)

Tϕ

ϕ

NEC reminds of the necessitation rule of modal logic, while CONEC is conecessita-
tion (a term coined by van Fraassen).

If the internal logic of a system S, formulated in the language LT, is classical,
that is, if S proves all classical tautologies, then the internal logic of S includes its
external logic, that is, NEC is a sound rule, and the internal logic is also classical.
For example, we get

S � T ϕ → ϕ

for every sentence ϕ ∈ LT. So NEC and CONEC are suitable for a system designed to
be a thoroughly classical theory of truth, though it may fail for systems characterizing
a conception of partial truth.

3 An Alternative Axiomatization FS is contained in the list of theories studied by
Friedman and Sheard in [5] (hence the designation FS), but they use different ax-
ioms.We shall call the axiom system considered in [5] F̃S. Because the system F̃S
is obtained by combining some attractive principles for truth it is interesting in itself
and gives further motivation to investigate FS. Let PRE be the theory formulated in
LT consisting of all the equations defining the primitive recursive functions, i.e. PA
without induction. We assume that PRE contains an axiom ∀xS(x) �= 0, where S is
the successor symbol, such that all atomic sentences of L are decided by PRE.

Definition 3.1 The theory F̃S is given by the following axioms and rules:

Axioms:

BaseT All axioms of PA including full induction in the language LT
∀x∀y[SentLT

(x) ∧ SentLT
(y) → (T(x →. y) → (Tx → Ty))]

PRE-Refl ∀x[SentLT
(x) ∧ BewPRE(x) → Tx]

T-Cons ∀x[SentLT
(x) → (¬(Tx ∧ T¬. x))]

T-Comp ∀x[SentLT
(x) → (Tx ∨ T¬. x)]

U-Inf ∀a∀v[SentLT
(x(0/v)) ∧ Var(v) → (∀yTx( ẏ/v) → T∀. vx)]

E-Inf ∀x[SentLT
(x(0/v)) ∧ Var(v) → (T∃.vx → ∃yTx( ẏ)/v)]

Rules:

T-Intro ϕ/Tϕ (NEC)
T-Elim Tϕ/ϕ (CONEC)
¬T-Intro ¬ϕ/¬Tϕ

¬T-Elim ¬Tϕ/¬ϕ

In [4] Feferman pointed out that PRE-Refl reminds of van Fraassen’s supervalu-
ation because by PRE-Refl all LT-sentences provable in classical logic are contained
in the extension of the truth predicate.
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Theorem 3.2 FS and F̃S are identical theories.

Proof: First we prove that all axioms of FS are derivable in F̃S. In order to get axiom
(ii), note that PRE decides all atomic and negated atomic sentences of L . This can be
shown in PA, because PA proves the consistency of PRE:

PA � ∀x[At(x) → (Ver(x) ↔ BewPRE(x))].

Hence using PRE-Refl we have:

F̃S � ∀x[SentLT
(x) ∧ At(x) → (¬Ver(x) → BewPRE(¬. x))]

→ (¬Ver(x) → T¬. x)]

→ (¬Ver(x) → ¬Tx)].

On the other hand we get, again using PRE-Refl:

F̃S � ∀x[SentLT
(x) ∧ At(x) → (Ver(x) → BewPRE(x))]

F̃S � ∀x[SentLT
(x) ∧ At(x) → (Ver(x) → Tx)].

As already mentioned, axiom (iii) of FS is equivalent to T-Cons and T-Comp.
As one direction of axiom (iv) is already an axiom of F̃S, it remains to show the other
direction:

F̃S � ∀x∀y[SentLT
(x) ∧ SentLT

(y) → BewPRE(¬. x →. (x →. y))]

→ T(¬. x →. (x →. y))]

→ (T¬. x → T(x →. y))]

→ BewPRE(y →. (x →. y))]

→ (Ty → T(x → y))]

→ (T¬. x ∨ Ty → T(x →. y))]

→ ((Tx → Ty) → T(x →. y))].

In a similar way we can prove axiom (v):

F̃S � ∀x∀v[SentLT
(x(0/v)) ∧ Var(v) → ∀yBewPRE(x( ẏ) →. ∃.vx)]

→ ∀yT(x( ẏ) →. ∃.vx)]

→ (∃yTx( ẏ) → T∃.vx)].

Having shown FS⊆ F̃S we still have to derive the axioms of F̃S in FS. By a for-
malized induction on the length of the proofs it is possible to prove PRE-Refl within
FS. All other axioms of F̃S are easily seen to be contained in FS, and the rules ¬T-
Intro and ¬T-Elim may be obtained from (NEC), (CONEC), T-Cons and T-Comp.

4 Semantics A consistent set of sentences containing all axioms of F̃S and closed
under (NEC) and (CONEC) was constructed by Friedman and Sheard in [5]. Instead
of repeating their proof we give a slightly different proof of the consistency of FS,
which can be converted into an estimate of the upper proof-theoretical bound of FS.

We obtain subsystems of FS by restricting the number of applications of the rules
NEC and CONEC. Put FS0 = PA, where PA is formulated in the full language LT.
FS1 was already defined in the introduction and for n > 1 we define:
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• A formula is derivable in FS∗
n, if and only if it is derivable in FS by a proof with

at most n − 1 applications of NEC and n − 2 applications of CONEC.
• A formula is derivable in FSn, if and only if it is derivable in FS by a proof with

at most n − 1 applications of NEC and n − 1 of CONEC.

So a formula can be derived in FS2 if it can be obtained from the FS1 axioms and an
application of NEC and CONEC. Obviously FS � ϕ if and only if there is n such that
FSn � ϕ.

We shall construct ω-models for the systems FSn. Let M be the class of all ex-
pansions of the standard-model of L to the language LT. Any such expansion M of
the standard-model of arithmetic is determined by the extension M(T) it gives to the
T-predicate. So the following function � from M into M is well-defined:

n ∈ (�(M))(T) ⇐⇒ n is a sentence ϕ ∈ LT such that M |= ϕ.

So T n is true in �(M), if and only if n is a sentence valid in M. The function � is
exactly the rule of revision of truth as studied by Gupta, Herzberger and others. If
N⊆M, we take �(N) to be the image {�(M) : M ∈ N} ⊆ M of N under �. For the
result of applying � n-times to a class N⊆M of models we write �n(N).

Lemma 4.1

(i) � : M → M is one-one.
(ii) �n(M) �= M for all n �= 0 and M ∈ M.

(iii) If m ≤ n then �n(M) ⊆ �m(M).
(iv) There is no infinite sequence of models A0,A1,A2 . . . such that �(An+1) = An

for all n.
(v)

⋂
n∈ω �n(M) is empty.

By (ii) it even follows that �n(M) �= �m(M) if n �= m; that is, � applied to M has no
loops, and, in fact, cannot have any loops at all. Note that in general �(N) ⊆ N fails
for arbitrary N⊆M.

Proof: (i) If A and B are different expansions of the standard model of L to LT,
there is a sentence ϕ such that A |= ϕ and B |= ¬ϕ. Hence �(A) |= Tϕ and �(B) |=
T¬ϕ, and �(A) and �(B) are different, too.

(ii) Here we use liar sentences γn satisfying PA � γn ↔ ¬T . . . T︸ ︷︷ ︸
n

γ. Because

�n(M) |= T . . . T γn ⇐⇒ M |= γn

it follows that �n(M) and M have to be different models.
(iii) Because �0(M) = M is the set of all expansions of the standard-model,

�1(M) ⊆ �0(M) is trivial. Now it is sufficient to prove �n+2(M) ⊆ �n+1(M).
Supposing A ∈ �n+2(M) we know that there is a model B ∈ �n+1(M) such that
�(B) = A. By induction hypothesis B is in �n(M), too. Consequently, A is in
�n+1(M).

(iv) Assume that there is such an infinite chain of models. Define a primitive
recursive function f satisfying for all n ∈ N und ϕ ∈ LT:

f (n, ϕ) := T . . . T︸ ︷︷ ︸
n

ϕ.
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By Gödel’s diagonal lemma there is a sentence γ ∈ LT such that

A0 |= γ ↔ ∃x¬T f. (x, γ).

We shall show that both A0 |= ¬γ and A0 |= γ lead to a contradiction so that there
cannot be such a chain. In the first case we have:

A0 |= ¬γ =⇒ ∀k > 0Ak |= γ

=⇒ ∀k > 0Ak |= ∃x¬T f. (x, γ)

=⇒ ∀k > 0∃i > k Ai |= ¬γ.

The first and the last of the above lines are contradictory. In the other case we reason
in a similar way:

A0 |= γ =⇒ A0 |= ∃x¬T f. (x, γ)

=⇒ ∃k > 0Ak |= ¬γ

=⇒ ∃k > 0∀i > k Ai |= γ.

So we arrive again at a contradiction.
(v) follows easily from (iv).

In the proof of part (iv) of the lemma we used the same fixed point as McGee did
in [9]. As far as we know, Cantini was the first to observe that McGee’s theorem in [9]
can be applied directly to FS to etablish the ω-inconsistency of FS. We shall briefly
outline the reasoning of McGee’s theorem. Choose γ as in the proof of (iv) of the
preceding lemma. Then FS1 � ¬γ → T γ is easily established, and by an application
of NEC we also obtain FS2 � T γ → γ, so we have FS2 � γ. By iterated applica-
tion of NEC we derive FS3 � T f. (0, γ), FS4 � T f. (1, γ), FS5 � T f. (2, γ), and so on.
Together with FS2 � ∃x¬T f. (x, γ) this renders FS ω-inconsistent.

Part (iv) of the preceding lemma exhibits the consequences of McGee’s theorem
on rule-of-revision semantics. In particular, it shows that there cannot be an infinite
descending chain of (standard) models where each model is obtained from the pre-
ceding one by an application of the revision rule.

We have the following “adequacy” result for the models in �n(M).

Theorem 4.2 For all M ∈ M: M ∈ �n(M) if and only if M |= FSn.

Proof: For n = 0 the claim is trivial, for FS0 is PA formulated in the full language
LT and M is the set of all expansions of the standard model of L to this language.

First we prove the left-to-right direction by induction on n. If M ∈ �(M) it is
easy to check that M |= FS1. So assume M ∈ �n+1(M), that is, there is A such
that M = �(A) and A ∈ �n(M). By (iii) of the above lemma M ∈ �(M) and
therefore M |= FS1. Hence it remains to check that M also satisfies all sentences
which can be deduced in FS by n applications of NEC and CONEC, respectively. If
FSn � ϕ for closed ϕ then by induction hypothesis A |= ϕ and consequently, M |= T ϕ.
So if FS∗

n+1 � T ϕ by an application of NEC we conclude M |= T ϕ. Supposing
FS∗

n+1 � T ψ for closed ψ we now know for all M ∈ �n+1(M) that M |= Tψ. From
the definition of � follows that M |= ψ for all M ∈ �n(M). By part (iii) of the above
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lemma this holds also true for all M ∈ �n+1(M) and the left-to-right direction of the
theorem is proved.

Hence, if M ∈ �n(M), we must have M |= FSn. Consequently all systems FSn

are consistent and each of them has an ω-model. We now show the right-to-left di-
rection of the theorem, again by induction on n.

Assume M |= FS1 and A = {ϕ : M |= T ϕ}; so A is a set consisting of sentences
of the language LT. A is a consistent set of sentences containing all true sentences of
L closed under logic and the ω-rule; so A determines a unique model A ∈ M. Obvi-
ously, M = �(A), therefore M ∈ �(M), and we are done with case n = 1.

If M |= FSn+1, we put again A := {ϕ : M |= T ϕ}. As in the above case, A
determines a model A ∈ M and we have to show that �n(M) contains A. From FSn �
¬ϕ we can conclude FSn+1 � T¬ϕ and by the axiom of consistency FSn+1 � ¬T ϕ

and by assumption M |= ¬T ϕ and hence ϕ �∈ A. So A ∪ FSn is consistent and for
this reason A |= FSn. By induction hypothesis A is member of �n(M) and we have
M = �(A) ∈ �n+1(M).

As a direct consequence we get the following corollary.

Corollary 4.3 FS is consistent.

Without using McGee’s direct proof we can show that part (v) of Lemma 4.1 and the
theorem above suffice to establish the ω-inconsistency of FS.

Corollary 4.4 FS is ω-inconsistent.

Proof: Because FS includes PA, the ω-models of FS0 are exactly the models in M.
Hence

⋂
n∈ω �n(M) is the set of all ω-models of FS and, since this set is empty, FS

has no ω-models. By a well-known model theoretic argument involving the omitting
types theorem we conclude that FS is ω-inconsistent.

M is the set of all standard models of PA with arbitrary extensions of the truth
predicate. If � is applied to M, we get models interpreting T as a truth predicate for
the language L without the truth predicate. So all models in �(M) are sound as mod-
els for noniterated truth. By further applications of � we get models which are sound
with respect to finite iterations of T, because �n(M) is sound with respect to n-times
iterated truth, and applications of the rules correspond to a gradual improvement of
the models. But according to Lemma 4.1 the chain �(M), �2(M), �3(M), . . . does
not have a natural limit in the sense of a union of all models of the chain (in [6], [1],
and [7] reasonable limit models were constructed by Gupta and Herzberger but these
limit models do not satisfy the axioms of FS1 and are therefore completely different
from the models of the chain from which these limit models are built up). So if we try
to characterize in a formal system this semantical process of revision which is given
by the iterated application of �, we should not expect to obtain a pleasing model for
the whole system. So the ω-inconsistency of FS directly corresponds to the fact that
the intersection of all �n(M) is empty.

5 Proof Theory By the observations above FS may be considered as a theory of
finitely iterated truth. In this section we shall show that FS is also proof-theoretically
equivalent to a system RT<ω of ramified truth up to ω. RT<ω is a system for Tarski’s
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hierarchy of languages. By a result of Feferman stated in [4], RT<ω is again equiva-
lent to the system RA<ω of ramified analysis up to ω, that is, the system of ω-times it-
erated arithmetical comprehension. For formulating the system RT<ω we need count-
ably many new truth predicates Tn (n ∈ N). Let L(k) be the language L expanded
by all symbols Tn such that n < k. Hence L(0) has no truth predicates at all and
is identical to L . Furthermore, we need formulas SentL(k) binumerating the set of
L(k)-sentences. Now the axioms of RTi are all axioms of PA formulated in the full
language LT plus for any n < i:

(i) ∀x[SentL(n)(x) ∧ At(x) → (Tnx ↔ Ver(x))]
(ii) ∀x[SentL(n)(x) → (Tn¬. x ↔ ¬Tnx)]

(iii) ∀x∀y[SentL(n)(x) ∧ SentL(n)(y) → (Tn(x →. y) ↔ (Tnx → Tn y))]
(iv) ∀x∀v[SentL(n)(x(0/v)) ∧ Var(v) → (Tn∃.vx ↔ ∃yTnx( ẏ/v))]
(v) ∀k < n ∀x[TnT. k ẋ ↔ Tnx ∧ SentL(k)(x)].

In the last axiom the quantification of the index k is possible, because Tk is in the
scope of another predicate. Although here we could easily drop the quantifier and
replace (v) by the conjunction of n sentences, because ∀k < n ranges only over finitely
many numbers, the quantification becomes essential if we would give axioms also for
transfinite levels RTα.

RT<ω is simply the union of all RTn:

RT<ω :=
⋃
n∈ω

RTn.

Note that Tarski’s equivalences are derivable in FS1 for sentences without truth-
predicate in a uniform way. This can be verified by an easy (meta-)induction on the
complexity of ϕ(�x).

Lemma 5.1 For all ϕ(�x) ∈ L we have:

FS1 � ∀�x[Tϕ( �̇x) ↔ ϕ(�x)].

In order to reduce RT<ω to FS we define sublanguages Ln of LT which will sim-
ulate the languages L(n). Simultaneously we shall define predicates SentLn (x) in the
language L expressing that x is a closed formula of the language Ln.

(i) L0 := L
(ii) Ln+1 is the language Ln expanded by all formulas of the following form (t is

an arbitrary term):
Tt ∧ SentLn (t).

Ln+1 is closed under the usual rules for the formation of formulas. It is impor-
tant that Tt appears only with the restriction SentLn (t) in a Ln+1-formula.

Theorem 5.2
FSn+2 � ∀x[SentLn (x) → (TT. ẋ ↔ Tx)].

Proof: By induction on n.
n = 0. First we verify the claim for atomic x:
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FS1 � ∀x[At(x) → (Tx ↔ Ver(x))]
FS2 � ∀x[At(x) → (TT. ẋ ↔ TVer. (ẋ))] (using NEC)
FS1 � ∀x[At(x) → (Ver(x) ↔ TVer. (ẋ))] (by Lemma 5.1)
FS1 � ∀x[At(x) → (Tx ↔ TVer. (ẋ))]
FS2 � ∀x[At(x) → (TT. ẋ ↔ Tx)].

The proof of the lemma in the case n = 0 is completed by an induction on the com-
plexity of x formalized within FS2. Auxiliary lemmas of the following type are useful
in proving the induction step:

FS2 � ∀x∀y[SentL (x) ∧ SentL (y) → (TT. (ẋ →. ẏ) ↔ (TT. ẋ → TT. ẏ))]. (4)

Auxiliary Lemma (4) may be obtained in the following way:

FS1 � ∀x∀y[SentL (x) ∧ SentL (y) → ((Tx → Ty) ↔ T(x →. y))]

FS2 � ∀x∀y[SentL (x) ∧ SentL (y) → (T(T. ẋ →. T. ẏ) ↔ TT. (ẋ →. ẏ))] (by NEC)

FS2 � ∀x∀y[SentL (x) ∧ SentL (y) → (TT. (ẋ →. ẏ) ↔ TT. ẋ → TT. ẏ)]

For the proof of the induction step in the case of → we can conclude employing (4)
and the axioms of FS1:

FS2 � ∀x∀y[SentL (x) ∧ SentL (y) →
[(TT. ẋ ↔ Tx) ∧ (TT. ẏ ↔ Ty) → (TT. (ẋ →. ẏ) ↔ T(x →. y))]].

The cases of ¬ and ∃ can be treated in a similar way.
n → n + 1. As in the preceding case, the claim is shown by a formalized induc-

tion on the complexity of x using the following as induction hypothesis:

FSn+2 � ∀x[SentLn (x) → (TT. ẋ ↔ Tx)].

By NEC and the FS1-axioms we obtain:

FSn+3 � ∀x[SentLn (x) → (TT. T. ẋ ↔ TT. ẋ)].

The induction step may be carried out in the same way as above, again using auxiliary
lemmata resembling (4). Hence we have:

FSn+3 � ∀x[SentLn+1 (x) → (TT. ẋ ↔ Tx)].

From the theorem we can derive a generalization of Lemma 5.1 by an induction
on the complexity of ϕ(�x):

Corollary 5.3 For all ϕ(�x) in Ln, FSn � Tϕ( �̇x) ↔ ϕ(�x) holds.

Now we can inductively define a sequence 〈hn : n ∈ N〉 of functions where hn trans-
lates all formulas of L(n) into formulas of the language Ln.

(i) If k < n then hk ⊂ hn, so hn is an extension of hk.
(ii) If i �∈ L(n) let hn(i) := ⊥, where ⊥ abbreviates of 0 = 1.

(iii) If ϕ ∈ L let hn(ϕ) := ϕ.
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(iv) Each of the hn commutes with the logical connectives and the quantifier.
(v) hn+1(Tnt) := SentL(n)(t) ∧ Th. n(t) for any term t.

Every function hn maps the formulas of L(n) to formulas of LT. This can be proved
within PA:

Lemma 5.4 PA � ∀x[SentL(n)(x) → SentLn (h. n(x))].

Using the hn’s we can reduce the systems RTn of finitely ramified truth to FS.

Lemma 5.5 RTn � ϕ ⇒ FSn � hn(ϕ).

Proof: It has to be shown that for every axiom ϕ of RTn its translation hn(ϕ) is deriv-
able in FSn. If n = 0 the claim is trivial, because RT0 = FS0 = PA and h0 replaces
only subformulas Tt by ⊥. So suppose k < n. Then the translations of all axioms are
easily established within FSn, except the following:

∀k < n ∀x[TnT. k ẋ ↔ Tnx ∧ SentL(k)(x)].

Now we reason as follows:

FSn+1 � ∀x[SentL(k)(x) → h. k(x) = h. n(x)]

∀x[SentL(k)(x) → (TT. h. k(ẋ) ↔ Th. n(x))] (by Th. 5.2, Lem. 5.4)

∀x[TTh. k(x) ∧ SentL(k)(x) ↔ Th. n(x) ∧ SentL(k)(x)]

∀x[SentL(n)(Tkx) ∧ TT. h. k(ẋ) ∧ SentL(k)(x) ↔ Th. n(x) ∧ SentL(k)(x)]

∀x[SentL(n)(Tkx) ∧ Th. k+1(T. k ẋ) ↔ Th. n(x) ∧ SentL(k)(x)]

∀x[SentL(n)(Tkx) ∧ Th. n(T. k ẋ) ↔ Th. n(x) ∧ SentL(k)(x)]

∀x[SentL(n)(Tkx) ∧ Th. n(T. k ẋ) ↔ SentL(n)(x) ∧ Th. n(x) ∧ SentL(k)(x)].

As k was arbitrary we conclude therefrom:

FSn+1 � ∀k < n ∀x[hn+1(TnT. kx) ↔ hn+1(Tnx) ∧ SentL(k)(x)]

hn+1(∀k < n ∀x[TnT. kx ↔ Tnx ∧ SentL(k)(x)]).

Hence we have reduced RT<ω to FS. For, if RT<ω � ϕ and ϕ ∈ L , then there
exists an n satisfying RTn � ϕ; by the above lemma it follows that FSn � hn(ϕ). But
because hn(ϕ) = ϕ for ϕ in L we also have FS � ϕ.

In the whole proof we did not use CONEC. By Theorem 5.9 below it can be con-
cluded that every FS-derivable arithmetical sentence can be proved without CONEC.
This result may be expanded to all sentences in any language Ln. But it is still an open
problem whether this holds true for all sentences of LT, that is, whether CONEC is
superfluous in the axiomatization of FS.

We now take up the task of reducing FS to RT<ω. By the previous section,
�n(M) is a model for FSn if M is a model in M. For simplicitity, we take M to be the
model with M(T) = ∅ declaring everything false. Because of a problem concerning
the rule CONEC we show within RT<ω that �2n(M) is a model for FSn instead of
employing �n(M). The following virtually shows that the construction of the model
�2n(M) can be carried out within RT2n thus reducing FSn to RT2n.

Again we shall define a sequence of functions gn where gn, applied to a formula
of LT, gives a formula of the typed language L(n).
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(i) Applied to a formula ϕ ∈ LT, g0 replaces each subformula Tt of ϕ by ⊥.
(ii) For gn there is a function symbol g. n

in L strongly representing gn in PA. Now
gn+1 replaces, applied to a formula of LT, each subformula Tt of ϕ by Tng. n

(t).
(iii) gn(k) := ⊥, if k is not a formula of LT.

We need the following two obvious properties of gn and their respective formal-
izations:

Lemma 5.6

(i) ∀k ∈ N gn(k) ∈ L(n)

(ii) PA � ∀x FormL(n)(g. n
(x))

(iii) gn(ϕ) = ϕ for ϕ ∈ L
(iv) PA � ∀x[FormL (x) → g. n

(x) = x]

In the lemma FormL(n)(x) represents the property of being a formula in the language
L(n). Now note that RTn proves the ramified Tarskian equivalences.

Lemma 5.7 Assuming that ϕ(�x) is a formula of L(n) and n < k, we have:

RTk � ∀�x [Tnϕ( �̇x) ↔ ϕ(�x)].

From this we get by part (i) of Lemma 5.6:

Lemma 5.8 For all ϕ(�x) ∈ LT we have: RTn+1 � ∀�x [Tng. n
(ϕ( �̇x)) ↔ gn(ϕ(�x))].

After this preliminary work we are ready to prove that FSn � ϕ implies RT2n � gi(ϕ).

Theorem 5.9 If i ≤ n and ϕ is sentence of the language LT, the following implica-
tion holds:

FSi � ϕ =⇒ RT2n � gi(ϕ) ∧ gi+1(ϕ) ∧ . . . ∧ g2n−i(ϕ).

Proof: Let n be fixed; then the claim can be proved by induction on i.

Case 1: i = 0. At first we show for k ≤ 2n

PA � ϕ =⇒ RT2n � gk(ϕ).

PA does not contain any axiom involving T, except the induction axioms. So if FS0 �
ϕ and in ϕ all subformulas Tt are replaced uniformly by an arbitrary formula resulting
in a new formula ϕ̂, we still have PA � ϕ̂ and therefore RT2n � gk(ϕ) if k ≤ 2n, too.

Case 2: i = 1. For this case we must show:

If ϕ is an axiom of FS1, then RT2n � g1(ϕ) ∧ g2(ϕ) ∧ . . . ∧ g2n−1(ϕ). (5)

For that purpose we show that all translations of FS1-axioms are derivable within
RT2n. The first axiom can be established in the following way (k < 2n):

RT2n � ∀x[At(x) → (Tk(x) ↔ Ver(x))]

RT2n � ∀x[At(x) → (Tkg. k
(x) ↔ Ver(x))] (from Lemma 5.6, part (iv))

RT2n � gk+1(∀x[At(x) → (T(x) ↔ Ver(x))]).
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So (5) is shown for the first axiom of FS1. Now for the second we reason again as-
suming k < 2n:

RT2n � ∀x[SentLT
(x) → (Tk¬. g. k

(x) ↔ ¬Tkg. k
(x))]

RT2n � ∀x[SentLT
(x) → (Tkg. k

(¬. x) ↔ ¬Tkg. k
(x))]

RT2n � gk+1(∀x[SentLT
(x) → (T(¬. x) ↔ ¬T(x))].

The other axioms are treated in a similar way, and from (5) the claim follows for the
case i = 0. For, if RT2n � gk+1(ϕ) and ψ is a logical consequence of ϕ, we also can
conclude that RT2n � gk+1(ψ).

i → i + 1 ≤ n. First we turn to the rule NEC of necessitation. Suppose FSi � ϕ.
Hence FS∗

i+1 � T ϕ if ϕ is a sentence of LT. By induction hypothesis it follows that

RT2n � gi(ϕ) ∧ gi+1(ϕ) ∧ . . . ∧ g2n−i(ϕ)

RT2n � Tig. i
(ϕ) ∧ Ti+1g. i+1

(ϕ) ∧ . . . ∧ T2n−ig. 2n−i
(ϕ) (by Lemma 5.8)

RT2n � gi+1(Tϕ) ∧ gi+2(T ϕ) ∧ . . . ∧ g2n−i+1(T ϕ).

The claim being already established for all FS1-axioms the following condition holds
for all ϕ ∈ LT.

FS∗
i+1 � ϕ ⇒ RT2n � gi+1(ϕ) ∧ . . . ∧ g2n−i(ϕ).

Now suppose FS∗
i+1 � T ϕ, ϕ being a sentence of LT. Using the induction hypothesis

we conclude:

RT2n � gi+1(T ϕ) ∧ . . . ∧ g2n−i(T ϕ)

RT2n � Tig. i
(ϕ) ∧ . . . ∧ T2n−i−1g. 2n−i−1

(ϕ)

RT2n � gi(ϕ) ∧ . . . ∧ g2n−(i+1)(ϕ) (by Lemma 5.8).

So we have for all sentences ϕ ∈ LT:

FSi+1 � ϕ ⇒ RT2n � gi+1(ϕ) ∧ . . . ∧ g2n−(i+1)(ϕ).

If we put i = n we obtain the following result:

FSn � ϕ =⇒ RT2n � gn(ϕ).

Since ϕ in L satisfies again
gn(ϕ) = ϕ

we know from Lemma 5.5 that RT<ω and FS have the same mathematical content,
i.e. a formula of L is provable in RT<ω, if and only if it is in FS. From Theorem 5.9
we can also conclude the following corollary which is worth noting because of the
ω-inconsistency of FS.

Corollary 5.10 FS is arithmetically sound.

Proof: RT<ω is easily seen to prove only true arithmetical statements, because its
standard interpretation is given by Tarski’s hierarchy of languages. If FS � ϕ for a
sentence ϕ ∈ L we know from Theorem 5.9 that ϕ is also deducible in RT<ω, and
must therefore be true.
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There is also an easy model-theoretic argument proving the arithmetical sound-
ness of FS. Assuming that ϕ ∈ L is a sentence such that FS � ϕ and M ∈ M, there must
be an n such that FSn � ϕ and therefore �n(M) |= ϕ. Since �n(M) is an ω-model
and yields all true arithmetical statements, ϕ is true. So FS is sound with respect to
its arithmetical content.

From a tiny variant of the theorem we can also obtain information about the sys-
tem FS with arithmetical induction only. For the following corollary let FSn�, FS�,
RTn� and RT� be the respective systems with the induction scheme restricted to the
language L .

Corollary 5.11 FS� is conservative over PA.

Proof: Note that FSn� can be interpreted in RT2n� in the same way as it was done
for both systems with full induction in the theorem. We can now establish the claim
by showing inductively each RTn+1� to be conservative over RTn� and hence over
RT0�= PA with respect to all formulas of the language L . If RTn� �� ϕ there is a model
M of RTn� such that M �|= ϕ. By the downward Löwenheim-Skolem theorem choose
an elementarily equivalent countable submodel M1 of M and let M2 be a recursively
saturated elementary extension of M1. It follows from an argument similar to that of
Kotlarski, Krajewski and Lachlan in [8] that M2 has a satisfaction class and hence
can be expanded to a model of RTn+1� satisfying exactly the same sentences of L(n)

as RTn�, so RTn+1� �� ϕ.

Although we already know that RT<ω and FS prove the same arithmetical state-
ments and that they are in this sense equivalent, we do not know whether both systems
are equivalent if other notions of reducibility are considered. Our partial reductions
via the functions hi and gi are problematic, because in contrast to many proof theo-
retical interpretations of theories we have not exhibited a single function commuting
with the connectives and the quantifier when reducing FS to RT<ω and vice versa,
and by the ω-inconsistency of FS there cannot be such a function. But without much
trouble we can prove that they are equivalent in the sense of Feferman [3].

Theorem 5.12 There is a partial recursive function f satisfying the following con-
dition: If ϕ ∈ L and B is a proof of ϕ within FS, then f(B) is defined and f(B) is a proof
of ϕ in RT<ω. Moreover this can be shown within RT<ω.

Proof: We roughly outline how to construct f . Assume that B is a proof of a for-
mula ϕ ∈ L in FS and let n be the number of applications of NEC in B and m that
of CONEC. Hence if k := max(m, n) + 1 we know that FSk � ϕ. According to the
construction in the proof of Theorem 5.9 let f replace B by a proof for gk(ϕ) = ϕ in
RT<ω making use of the function g0, . . . , g2k (It has to be checked that this can be
done effectively.). As usual it is also left to the reader that this property of f may be
established within RT<ω.

Of course, RT<ω is also reducible to FS in this sense as can be shown in a similar
way as in the sketch of the proof of the above theorem.

Because FS is ω-inconsistent it may seem difficult to obtain a global interpreta-
tion, that is, a single function interpreting FS into RT<ω and vice versa. But we can
apply Orey’s compactness theorem of [10] to get such an interpretation.

Theorem 5.13 There is a syntactical interpretation of FS in RT<ω and vice versa.
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Proof: Although Orey’s paper deals only with theories in the language L , his ar-
gument can be carried out as in [10] if we can show that both FS and RT<ω are re-
flexive theories, that is, they prove the consistency of all their finite subtheories, re-
spectively. For the latter this is obvious. So let A be a finite set of theorems of FS.
Hence there must be an n such that FSn � ϕ for all ϕ ∈ A and so RT2n � gn(ϕ). Since
RT2n+1 � ConRT2n

and therefore by formalization RT2n+1 � ConFSn
and ConFSn

is an
arithmetical sentence, ConFSn

is also derivable in FS2n+1 and therefore FS � ConA.

It should be noted that a global interpretation, like the above obtained by Orey’s
theorem, cannot map every arithmetical statement onto itself, in contrast to the lo-
cal interpretations hn and gn, because the translation of an unrestricted quantifier in
a global interpretation has to be a restricted quantifier. The reason for this is the ω-
inconsisteny of FS.
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