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A System of Complete and Consistent Truth

VOLKER HALBACH

Abstract  To the axioms of Peano arithmetic formulated in a language with
an additional unary predicate symbol T we add the rules of necessitation ¢ /T @
and conecessitation T ¢/ ¢ and axioms stating that T commutes with the logical
connectives and quantifiers. By aresult of McGeethistheory is w-inconsistent,
but it can be approximated by models obtained by akind of rule-of-revision se-
mantics. Furthermorewe provethat FSisequivalent to asystem already studied
by Friedman and Sheard and give an analysis of its proof theory.

1 Preiminaries Let £ bethe first-order language of arithmetic with symbols for
all primitive recursive functions; that is, if [€] is a primitive recursive function with
index e, afunction symbol fe for [€] isavailablein L. We suppose that £ has =, —,
— and 3 aslogical symbols. If we expand £ by adding the new predicate constant
T we obtain the language Ly. Throughout the whole paper we shall identify every
expression of Lt withits Godel number (under astandard godel numbering). Because
we also identify languages with the set of their formulas, alanguage will be a set of
natural numbers. All theorieswe shall discuss are extensions of Peano arithmetic: PA
isthetheory containing all defining equations of the primitive recursivefunctionsand
all theinduction axiomsin the full language Ly. Theindex e of aprimitive recursive
function [e] will provide the defining equation(s) for the symbol fe associated with
theindex e.

If aprimitiverecursivefunction hisexplicitly given by some equations, we have
anatural index e for this function which is again associated with a function symbol
fe in the language L. Usually we shall denote this function symbol for h by h. So
h naturally represents h in PA in the language L. It is useful to conceive of the log-
ical connectives as functions of expressions (i.e., of natura humbers). So we have
for negation a function symbol — representing the operation of prefixing a negation
symbol to an expression (and similarly for material implication and the existential
quantifier). Hence we can show for every formulag € Ly that:
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In general, n will denote the numeral of n, for instance in the above line ¢ isthe nu-
meral of the sentence ¢.

Similar properties hold for the two-place function symbols — and 3. As usua
we use adot above variablesin order to indicate that the variable can be bound from
“outside” by the substitution function.

In order to state the axioms of our theories of truth we need some predicatesin
thelanguage £ binumerating (strongly representing) certain propertiesof expressions
inanatural way. Let Sent(X) be aformulaexpressing in L the property of being a
sentence of £. Similarly At(x) shall mean that x is an atomic sentence of L, Ver(x)
that x is atrue atomic sentence of £, and Var(x) that x isavariable.

2 Introduction Whereas most axiomatic theories of type-free truth were guided
by non-classical semantic constructions using partial or many-valued logic, our aim
in this paper isto give a theory of truth which is thoroughly classical. Asa starting
point we consider the well-known theory Tr(L£) of truth for the language £, which
isaformalization of the Tarskian definition of truth. It is equivalent to the statement
that there is a satisfaction class plus full induction in the language L.

Definition 2.1 Tr(L£) isgiven by the following axioms:

(i) axiomsof PA formulated in the language of Lt (including full induction)
(i) VX[At(X) — (Tx < Ver(x))]
(i) vx[Sent,(X) = (T—X <> —=Tx)]
(iv) Vxvy[Sent,(x) A Sent(y) — (T(X—Y) < (TX— Ty))]
(v) VxVu[Sent,(x(0/v)) A Var(v) — (Tvx < AyTx(y/v))]

In the last axiom x(0/v) designates the result of substituting the numeral 0 for the
freevariable v inthe formula x. The substitution function is understood to be defined
in such away that x(0/v) isaformulaof L7 only if visavariable. x(y/v) iswritten
to indicate that the numeral of y is substituted for v in x.

For atomic formulasof £ Tr(L) statesin axiom (ii) simply that T coincideswith
the truth definition for atomic L-sentences which can be given within the language £
itslf, while the other axioms (iii) —(v) say that T commutes with all logical connec-
tives of sentences of the language L thus simulating Tarski’s definition of truth.

It iswell-known that it is possible to show Tarski’s (uniform) biconditional for
each formula g(xy, ..., X,) of L with just X4, ..., X, free by induction on the com-
plexity of ¢(Xq, ..., Xn):

TrL)FTeXg, ..., Xn) < @(X1, ..., Xn).

In order to give axioms for a truth theory for the whole language L, we can try to
statethe principlesinvol ved in the axiomatization of Tr(.£), not only asabove, for sen-
tences of L, but also for sentences of the language Ly including sentences with the
truth predicate T. So we keep axioms (i) and (ii) and enlarge the range of the quanti-
fiersinaxioms(iii) —(v). For thispurposelet Sent Ly (X) expressthe property of being
asentence of L.

Definition 2.2  FS; isthe theory consisting of:
(i) and (ii) as above
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(iii) Vx[SentDT(x) — (T=X < =TX)]

(iv) Vxvy[Sent, () A Sents (Y) = (T(X—y) < (Tx— Ty))]

v) Vva[SentLT (X(0/v)) AVar(v) — (TIvx < IYyTx(y/v)]
With an easy model theoretic argument (see also Corollary [2.3lbelow) one can prove
the consistency of FS;. The axioms of FS;, especialy (iii), are incompatible with

axioms usually used to characterize truth in non-classical models. Note that the left-
to-right direction of (iii) is easily seen to be equivalent to the “ consistency” axiom

VX[ Sent L7 (X) = =(TXA T=x)], (T-Cons)
whereas the right-to-left direction is equivalent to the completeness principle
VX[ Sent L7 (X) = Txv T=x)]. (T-Comp)

So axiom (iii) says that the extension of T is a complete and consistent set of sen-
tences of Ly ruling out interpretations of T as apartial (non-complete) predicate. In
contrast to the compl eteness principle T-Comp, axiom systems for partial truth usu-
aly include the axiom of consistency T-Cons. For similar reasons the right-to-left
direction fails in these systems, but T distributes over implication in such partial in-
terpretations.

Now FS; hasamajor drawback: FS; does not contain any axiom concerning it-
erations of truth. For exampleit isimpossible to deduce the sentence TTO = 0 within
FS;. A firstideato overcome thisdeficiency might consist in the addition of an axiom
resembling the other axioms of FS;:

VX[ Sent oy (X) = (TTx < TX)]. (D]

Unfortunately (1), together with the other axioms of FSy, yields an inconsistency. By
Godel’s diagona lemmawe choose aclosed term t satisfying PA -t =7, where y is
the sentence —Tt. We can employ axiom (iii) to derive the following contradiction in

FS;:

—Tt
—TTt
T-Tt
Ty.

FS S+ )=y

rPe e

Soweget FS; + (1) F y < —y by the fixed point property of y. Instead of adding
the full axiom (1) we could try to weaken (1) by discarding one direction of the bi-
conditional:
Vx[SentLT(x) — (Tx— TTX)] 2
VX[ Sent Ly X) = (TTx— Tx)]. 3
Both FS;+(2) and FS;+(3) are consistent as shown by Friedman and Sheard in [5].
There they constructed models for variants of the two theories in the sections B “It

is true that everything istrue” and C “It is true that everything is false.” It will fol-
low from a theorem below that the construction of these models may be formalized
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within the system ACA of arithmetical comprehension (see Theorem[5.9). AsFS; is
already asstrong as ACA we shall be able to conclude the following proof-theoretical
equivalences:

FS1 = FS; + (2) = FS; + (3) = Tr(£) = ACA.

But neither (2) nor (3) is an attractive axiom for truth, at least when taken together
with the other axioms of FS; because one can show:
Lemma2.3 Thereisa sentence y such that

FSi+ 2 FTTy ATT=y.

Proof: We need the following result that will be shown later: for any sentence ¢ of
L7 we have:

PAFgp — FSFTo.

Let y bethe liar sentence as above.

PA + vy Ty

FS, + Ty < —Ty)

FS, + Ty < =TTy
FSi+(Q) + Ty—>TTy
FSi+(Q2) + —-Ty
FSi+(2) + TTy
FSi+(2 + T=y
FSi+(2) F TT=y

Because of thisresult (2) may hardly be considered as a good principle of itera-
tion of truth, while (3) isno principle of iteration at all. For example, it can be shown
by an easy model-theoretic argument that

FS1+ (3) 1 TTO=0.

If Sisatheory inthelanguage L, call the set of all S-derivable sentencesthe external
logic of Sand the set of all sentences ¢ of L such that

STy

theinternal logic of S. Using thisterminol ogy we can restate Lemmal2.3] Theinternal
logic of theinternal logic of FS; + (2) isinconsistent. For asystem Sof truthitisa
desirable feature that the internal logic of S equalsthe external logic of S. If we have

internal logicof S = external logic of S
or, in other words, for al sentences ¢ € Lt

SFTy <= St o,

then TTO = O isderivablein S, if TO = 0 is. Now we are able to expand FS; by the
principle stating the equivalence of internal and external logic:
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Definition 2.4  FSisthe system FS; with the following two additional rules:

T
(NEC) 2 (CONEC) -?
Te @

NEC reminds of the necessitation rule of modal logic, while CONEC is conecessita-
tion (aterm coined by van Fraassen).

If the internal logic of a system S, formulated in the language L, is classical,
that is, if S proves all classical tautologies, then the internal logic of S includes its
externa logic, that is, NEC is a sound rule, and the internal logic is also classical.
For example, we get

SFTeo—=¢
for every sentence ¢ € L. So NEC and CONEC are suitablefor asystem designed to

beathoroughly classical theory of truth, though it may fail for systems characterizing
aconception of partial truth.

3 An Alternative Axiomatization FSiscontained inthelist of theories studied by
Friedman and Sheard in [[5] (hence the designation FS), but they use different ax-
ioms.We shall call the axiom system considered in [5] FS. Because the system FS
is obtained by combining some attractive principlesfor truth it isinteresting in itself
and gives further mativation to investigate FS. Let PRE be the theory formulated in
Ly consisting of all the equations defining the primitive recursive functions, i.e. PA
without induction. We assume that PRE contains an axiom VxS(x) # 0, where Sis
the successor symbol, such that all atomic sentences of L are decided by PRE.

Definition 3.1 Thetheory FSis given by the following axioms and rules:
Axioms:

Baser All axioms of PA including full induction in the language Lt
VXVy[Sent . (¥) A Sentz (y) = (T(X—= y) = (Tx— Ty))]

PRE-Refl  Vvx[Sent oy (X) A Bewprg(X) — TX]

T-Cons VX[ Sent oy (X) = (—(TXA T=x)]

T-Comp  Vx[Sent o (X) = (TxV T=x)]

U-Inf VaVv[Sent[,T(x(O/v)) AVar(v) = (VYTX(y/v) = TVuX)]

E-Inf Vx[SentLT (X(0/v)) AVar(v) — (TIvx — JyTX(Y)/v)]

Rules:

T-Intro ¢/Te (NEC)
T-Elim Te/¢ (CONEC)
=T-Intro —¢/—Te
—-T-Elim  —=T¢/—¢

In [4]l Feferman pointed out that PRE-Refl reminds of van Fraassen’s superval u-
ation because by PRE-Refl all Ly-sentences provablein classical logic are contained
in the extension of the truth predicate.
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Theorem 3.2 FSand FSareidentical theories.

Proof. Firstweprovethat all axiomsof FSarederivablein FS. Inorder to get axiom
(i), note that PRE decides all atomic and negated atomic sentences of £. Thiscan be
shown in PA, because PA proves the consistency of PRE:

PA F VX[At(X) — (Ver(x) <> Bewprg(X))].
Hence using PRE-Refl we have:
FSE vx[Sent () AALX) —  (=Ver(x) > Bewpgg (+X)]
- (=Ver(x) = Tox)]
—  (=Ver(x) —» =Tx)].
On the other hand we get, again using PRE-Refl:
FSE vxX[Sent () AALX) —  (Ver(x) — Bewpgg ()]
FSH Vx[SentLT X) AAL(X) —  (Ver(x) = Tx)].
As dready mentioned, axiom (iii) of FSis equivalent to T-Cons and T-Comp.

Asonedirection of axiom (iv) isalready an axiom of FS, it remainsto show the other
direction:

FSH Vxvy[Sents () A Sentor (y) —  Bewpre(-X—> (X— )]
T(=X— (X—=Y))]

(Tox— T(x—y)]
Bewpre(Y - (X— ¥))]
(Ty— T(x— y))]
(ToxVvTy— T(X— y))]
(Tx—= Ty) = T(x— y))].

[

In asimilar way we can prove axiom (v):

FSH vxvu[Sent s (XO/v) AVar(v) —  VyBewpgg(X(y) = )]
—  VYT(X(y) — Fvx)]
—  AyTx(y) — TIvx)].

Having shown FSC FSwe still have to derive the axioms of FSin FS. By afor-
malized induction on the length of the proofsit is possible to prove PRE-Refl within
FS. All other axioms of FS are easily seen to be contained in FS, and the rules —T-
Intro and —T-Elim may be obtained from (NEC), (CONEC), T-Cons and T-Comp.

4 Semantics A consistent set of sentences containing all axioms of FSand closed
under (NEC) and (CONEC) was constructed by Friedman and Sheard in [5]l. Instead
of repeating their proof we give a dightly different proof of the consistency of FS,
which can be converted into an estimate of the upper proof-theoretical bound of FS.

We obtain subsystems of FS by restricting the number of applicationsof therules
NEC and CONEC. Put FS; = PA, where PA is formulated in the full language L.
FS, was already defined in the introduction and for n > 1 we define;
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e Aformulaisderivablein FSy;, if and only if itisderivablein FS by aproof with
at most n — 1 applications of NEC and n — 2 applications of CONEC.

e Aformulaisderivablein FS,, if and only if it isderivablein FSby aproof with
at most n — 1 applications of NEC and n — 1 of CONEC.

So aformulacan be derived in FS; if it can be obtained from the FS; axioms and an
application of NEC and CONEC. Obviously FSt ¢ if and only if thereisn such that
FSh F .

We shall construct w-models for the systems FS,,. Let M be the class of all ex-
pansions of the standard-model of £ to the language L. Any such expansion 9t of
the standard-model of arithmetic is determined by the extension 91(T) it givesto the
T-predicate. So the following function @ from M into M is well-defined:

ne (®M))(T) <= nisasentence ¢ € Ly suchthat M = ¢.

So Tnistruein ® (M), if and only if nisasentence valid in M. The function @ is
exactly the rule of revision of truth as studied by Gupta, Herzberger and others. If
NCM, wetake ©(N) to betheimage {®(901) : 9t € N} € M of N under ®. For the
result of applying ® n-timesto aclass NCM of models we write ®"(N).

Lemma4.1l

(i) ®: M — M isone-one.
(i) ®" (M) # M foral n#£0and M € M.
(@iii) If m< nthen ®"(M) € ®M(M).
(iv) Thereisnoinfinite sequenceof models2p, 21, 2. .. suchthat ® (A1) = An
for al n.

(V) MNhew P"(M) isempty.
By (ii) it even followsthat ®"(M) £ ®™(M) if n# m; that is, ® applied to M hasno
loops, and, in fact, cannot have any loops at all. Notethat in general ®(N) C N fails
for arbitrary NCM.

Proof: (i) If 2 and B are different expansions of the standard mode! of L to Ly,
thereisasentence ¢ suchthat 2 = ¢ and B = —¢. Hence ® () = Tgand ®(B) &=
T=g, and ®(2() and ®(*B) are different, too.
(ii) Here we use liar sentences y,, satisfying PA - yn <> =T ... T7y. Because
n

"M ET.. Ty = MEw

it follows that ®" (M) and 9t have to be different models.

(iii) Because ®°(M) = M is the set of all expansions of the standard-model,
(M) € ®O°(M) istrivial. Now it is sufficient to prove ®"2(M) € d"1(M).
Supposing 2 € ®"2(M) we know that there is a model B € ®"t1(M) such that
®(B) = 2. By induction hypothesis B isin ®"(M), too. Consequently, 2l isin
q)n+l(M).

(iv) Assume that there is such an infinite chain of models. Define a primitive
recursive function f satisfying foral ne Nund ¢ € Ly

fng =T...Ta.

n
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By Godel’s diagonal lemmathere is a sentence y € Ly such that
Ao =y < I-TH(X,P).

We shall show that both 2(p = —y and 2y = y lead to a contradiction so that there
cannot be such achain. In thefirst case we have:

WAoE=—-y = Vk>02%kFy
= Vk> 02 = 3IX-TF(Xx,y)
= Vk> 03i > k& = —y.

Thefirst and the last of the above lines are contradictory. In the other case we reason
inasimilar way:

Ey = AoEIX-THXY)
= k>0 E—y
— k> 0Vi> Kk =7,

So we arrive again at a contradiction.
(v) follows easily from (iv).

Inthe proof of part (iv) of thelemmawe used the samefixed point as McGee did
in[[Q). Asfar asweknow, Cantini wasthefirst to observe that McGee'stheoremin [
can be applied directly to FS to etablish the w-inconsistency of FS. We shall briefly
outline the reasoning of McGee's theorem. Choose y as in the proof of (iv) of the
preceding lemma. Then FS, - —y — Ty iseasily established, and by an application
of NEC we dlso obtain FS, - Ty — y, so we have FS, - y. By iterated applica
tionof NEC wederiveFS3 = Tf(0,3), F&4 = Tf(1,y), FSSF Tf(2,y), and so on.
Together with FS, - 3x—T f (x, 7) this renders FS w-inconsistent.

Part (iv) of the precedihg lemma exhibits the consequences of McGee'stheorem
on rule-of-revision semantics. In particular, it shows that there cannot be an infinite
descending chain of (standard) models where each model is obtained from the pre-
ceding one by an application of the revision rule.

We have the following “adequacy” result for the modelsin ®"(M).

Theorem 4.2 For all M € M: M € ®"(M) if and only if 9 = FS,.

Proof: For n = 0theclaimistrivial, for FSy is PA formulated in the full language
L7 and M isthe set of all expansions of the standard model of £ to this language.
First we prove the left-to-right direction by inductionon n. If 9t € ®(M) itis
easy to check that 90t = FS;. So assume Mt € ®"t1(M), that is, there is 2 such
that M = ®R) and A € ®"(M). By (iii) of the above lemma M € &(M) and
therefore 9t = FS;. Hence it remains to check that 91 also satisfies all sentences
which can be deduced in FS by n applications of NEC and CONEC, respectively. If
FSh - ¢ for closed ¢ then by induction hypothesis2l = ¢ and consequently, 0t = T .
So if FS;,; F Ty by an application of NEC we conclude 9t = Tg. Supposing
FS: , F T for closed v we now know for al 90t € ®"1(M) that 1 = Ty From
the definition of @ followsthat 9t = v for al 9t € ®"(M). By part (iii) of the above



COMPLETE AND CONSISTENT TRUTH 319

lemmathis holds aso true for al Mt € ®"+1(M) and the left-to-right direction of the
theorem is proved.

Hence, if M € ®" (M), we must have 00t = FS,,. Consequently all systems FS,,
are consistent and each of them has an w-model. We now show the right-to-left di-
rection of the theorem, again by induction on n.

AssumeM = FS;and A = {¢: M =Ty}, SOA isaset consisting of sentences
of thelanguage L. A isaconsistent set of sentences containing all true sentences of
L closed under logic and the w-rule; so A determines a unique model 2 € M. Obvi-
oudly, 9t = ® (), therefore M € & (M), and we are done with case n = 1.

If M = FShp1, we put again A := {¢ : 9 = Ty}, Asin the above case, A
determinesamodel 2l € M and we haveto show that ®"(M) contains2(. From FS;, -
—¢ we can conclude FS, 1 -+ T=¢ and by the axiom of consistency FS,,1 - —Tg
and by assumption 9t = —Tg and hence ¢ ¢ A. S0 A UFS; is consistent and for
thisreason 2 = FS,. By induction hypothesis 2l is member of ®"(M) and we have
M= dRA) € dHL(M).

As adirect consegquence we get the following corollary.
Corollary 4.3 FSisconsistent.

Without using McGee's direct proof we can show that part (v) of Lemmal4.1land the
theorem above suffice to establish the w-inconsistency of FS.

Corollary 4.4 FSisw-inconsistent.

Proof: Because FSincludes PA, the w-models of FS, are exactly the modelsin M.
Hence (., ®"(M) is the set of all w-models of FS and, since this set is empty, FS
has no w-models. By awell-known model theoretic argument involving the omitting
types theorem we conclude that FSis w-inconsistent.

M isthe set of al standard models of PA with arbitrary extensions of the truth
predicate. If ® isapplied to M, we get models interpreting T as a truth predicate for
thelanguage £ without the truth predicate. So all modelsin ® (971) are sound as mod-
elsfor noniterated truth. By further applications of ® we get modelswhich are sound
with respect to finite iterations of T, because ®"(M1) is sound with respect to n-times
iterated truth, and applications of the rules correspond to a gradual improvement of
the models. But according to Lemmald_1the chain & (90), ®2(9), 3(M), . .. does
not have anatural limit in the sense of a union of al models of the chain (in [6], [[J,
and [[Z] reasonable limit models were constructed by Gupta and Herzberger but these
limit models do not satisfy the axioms of FS; and are therefore completely different
from the model s of the chain from which these limit modelsare built up). Soif wetry
to characterize in aformal system this semantical process of revision which is given
by theiterated application of @, we should not expect to obtain a pleasing model for
the whole system. So the w-inconsistency of FS directly corresponds to the fact that
the intersection of all ®"(M) isempty.

5 Proof Theory By the observations above FS may be considered as a theory of
finitely iterated truth. In this section we shall show that FSis also proof-theoretically
equivalent to asystem RT _,, of ramified truth up to w. RT ., isasystem for Tarski’s
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hierarchy of languages. By aresult of Feferman stated in [4]], RT_,, is again equiva-
lent to the system RA _,, of ramified analysisup to w, that is, the system of w-timesit-
erated arithmetical comprehension. For formulating the system RT ., we need count-
ably many new truth predicates T, (n € N). Let L(K) be the language £ expanded
by all symbols Ty, such that n < k. Hence L(0) has no truth predicates at all and
isidentical to L. Furthermore, we need formulas Sent (, binumerating the set of
L (k)-sentences. Now the axioms of RT; are all axioms of PA formulated in the full
language L1 plusfor any n < i:
(i) vx[Sent,n)(X) A At(X) = (TpX <> Ver(x))]

(i) vx[Sent, ) (X) = (Ta7X < —=ThX)]

(iii) VXvy[Senty ) (X) A Sent ) (Y) = (Th(X—Y) < (Tax— Tny))]

(iv) YXVo[Sent, ) (x(0/v)) A Var(v) — (Tadvx < IyTaX(¥/v))]

(V) VK < nVX[ThT\ X < TaX A Senty ) (X)].
In the last axiom the quantification of the index k is possible, because Ty isin the
scope of another predicate. Although here we could easily drop the quantifier and
replace (v) by the conjunction of n sentences, because Vk < nirangesonly over finitely
many numbers, the quantification becomes essential if wewould give axiomsalso for
transfinite levels RT,,.

RT .., issimply the union of al RTp:

RT_, = URTn.

New

Notethat Tarski’s equivalences are derivable in FS; for sentences without truth-
predicate in a uniform way. This can be verified by an easy (meta-)induction on the
complexity of ¢(X).

Lemmab5.1 For all ¢(X) € £ we have:

FS; F VX[ To(X) < ¢(X)].

Inorder to reduce RT ., to FS we define sublanguages L, of L1 whichwill sim-
ulate the languages L (n). Simultaneously we shall define predicates Sent ., (x) in the
language L expressing that x is a closed formula of the language L.

() Ly:=L
(i) Lny1 isthe language £, expanded by all formulas of the following form (t is
an arbitrary term):
Tt A Sent, (t).

L1 isclosed under the usual rulesfor the formation of formulas. It isimpor-
tant that Tt appears only with the restriction Sent, (t) in a Ly1-formula

Theorem 5.2
FShi2 F VX[Sent,, (X) — (TTXx < Tx)].

Proof: By induction on n.
n = 0. First we verify the claim for atomic x:
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FS F VYX[At(X) — (Tx < Ver(x))]

FS, F VXAt(X) — (TTX < TVer(X))] (using NEC)
FS; F VXAt(x) — (Ver(x) < TVer(x))] (by Lemmals.1}
FS F YX[At(X) — (Tx < TVer(x))]

FS, + VxAt(X) — (TTx < TX)].

The proof of the lemmain the case n = 0 is completed by an induction on the com-
plexity of x formalized within FS,. Auxiliary lemmas of thefollowing type are useful
in proving the induction step:

FS, B xvy[Sent,(X) A Sents(y) - (TT(X— y) < (TTX—> TTy)].  (4)

Auxiliary Lemma (4) may be obtained in the following way:

FS1 F Vxvy[Sent,(X) A Sent,(y) = ((Tx— Ty) < T(Xx—= y))]
FS; F vxvy[Sent,(x) A Sents(y) — (T(TX— Ty) < TT(X— ¥))] (by NEC)
FS F wxvy[Sent.(X) ASentL(y) — (TT(X—y) < TTx— TTy)]

For the proof of the induction step in the case of — we can conclude employing (4)
and the axioms of FS;:

FS, F VxVy[Sent,(X) A Sents(y) —
[(TTX<T)ATATY < Ty) — (TT(X—y) < T(xX— y)ll.

The cases of — and 3 can be treated in asimilar way.
n — n+ 1. Asinthe preceding case, the claim is shown by aformalized induc-
tion on the complexity of x using the following as induction hypothesis:

FShi2 F VX[Sent,, (X) — (TTX < Tx)].
By NEC and the FS;-axioms we obtain:
FSnis F VX[Senty, (X) — (TTTXx < TTX)].

Theinduction step may be carried out in the sameway as above, again using auxiliary
lemmata resembling (4). Hence we have:

FSnia - ¥X[Senty, , (x) — (TTx < TX)].

From the theorem we can derive ageneralization of Lemmals.1lby an induction
on the complexity of ¢(X):

Corollary 5.3  For all ¢(X) in Ly, FS, - T(p()._(') < @(X) holds.
Now we can inductively define asequence (h, : n e N) of functions where hy, trans-
lates all formulas of L(n) into formulas of the language L.
(i) If k < nthen hg C hp, so h, isan extension of hy.
(i) 1fi ¢ L(n) let hy(i) := L, where L abbreviates of 0 = 1.
(iii) If o € Llethy(p) = .
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(iv) Each of the h, commutes with the logical connectives and the quantifier.

(V) hny1(Tht) := Senty ) (t) A Th, (1) for any term t.
Every function h, maps the formulas of L(n) to formulas of Ly. This can be proved
within PA:
Lemma54 PAF Vx[Sent, n (X) — Sentg, (h,(X))].
Using the h,’s we can reduce the systems RT, of finitely ramified truth to FS.
Lemmabb5 RTat¢ = FSFhy(e).

Proof: It hastobeshown that for every axiom ¢ of RT, itstrandation h, (¢) isderiv-
ablein FS,. If n=0theclamistrivial, because RTg = FSy = PA and hg replaces
only subformulas Tt by L. So suppose k < n. Then the translations of all axiomsare
easily established within FS,,, except the following:

VK < NVYX[Th T X <> TaX A Senty ) (X)].
Now we reason as follows:

FSi1 F  Wx[Sent ) (X) — h(¥) = hy(X)]
YX[Senty g (X) — (TTh (%) < Thy(x)]  (by Th.E2]Lem.E4]
VX[TTh(X) A Senti k) (X) <> Th,(X) A Senty ) (X)]
VX[Senty ) (TkX) A TTh (X) A Senty ) (X) <> Th,(X) A Senty ) (X)]
VX[ Senty n) (TkX) A Thy, 1 (TeX) < Thy(X) A Senty k) (X)]
VX[Senty ) (TkX) A Th (T X) < Th,(X) A Senty ) (X)]
VX[Senty (n) (TkX) A Th, (T X) <> Senty iy (X) A Th,(X) A Senty g (X)].

As k was arbitrary we conclude therefrom:

FSv1 F VK< NVX[hnp1(TnTX) < hngp 1 (TnX) A Senty ) (X)]
hnt1(VK < AYX[Th T, X < TaX A Senty g (X)]).

Hence we have reduced RT _,, to FS. For, if RT_, - ¢ and ¢ € L, then there
exists an n satisfying RTy, F ¢; by the above lemmait follows that FS, F h,(¢). But
because hp(¢) = ¢ for ¢ in L weaso have FSH ¢.

In the whole proof we did not use CONEC. By Theorem[B.9lbel ow it can be con-
cluded that every FS-derivable arithmetical sentence can be proved without CONEC.
Thisresult may be expanded to al sentencesin any language L. Butitisstill anopen
problem whether this holds true for all sentences of Ly, that is, whether CONEC is
superfluous in the axiomatization of FS.

We now take up the task of reducing FS to RT_,. By the previous section,
®"(9) isamodel for FS, if M isamodel in M. For simplicitity, we take 9t to bethe
model withM(T) = @ declaring everything false. Because of aproblem concerning
the rule CONEC we show within RT _,, that ®2"(90t) isamodel for FS, instead of
employing ®"(90t). Thefollowing virtually showsthat the construction of the model
®2"(M) can be carried out within RT,, thus reducing FSy, to RTop.

Again we shall define asequence of functions g, where gy, applied to aformula
of Ly, givesaformulaof the typed language L (n).
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(i) Appliedtoaformulag € Ly, go replaces each subformula Tt of ¢ by L.
(if) For gn thereisafunction symbol g_in L strongly representing gn in PA. Now
On.1 replaces, applied to aformulaof Ly, each subformulaTt of ¢ by Tng 1.
(iii) gn(k) := L, if kisnot aformulaof Ly.

We need the following two obvious properties of g, and their respective formal-
izations:

Lemmab5.6

(i) Vke N gn(k) € L(n)
(if) PA = VxFormy (g, (X))

(iii) gn(p) =gpforpe L
(iv) PA F Vx[Formg(x) — gn(x) =X]

In the lemma Formy_ ) (X) represents the property of being aformulain the language
L(n). Now note that RT, proves the ramified Tarskian equivalences.

Lemmab5.7 Assuming that ¢(X) isaformula of L(n) and n < k, we have:

RTk F VX[The(X) < o(X)].

From this we get by part (i) of Lemma[5.6]
Lemma5.8 For all ¢(X) € Lt wehave: RTy 1 - VX[Tng (¢(X)) <> Gn(9())].
After thispreliminary work we areready to provethat FS, F ¢ impliesRTo, = gi ().

Theorem 5.9 Ifi < nand ¢ issentence of the language L, the following implica-
tion holds:

FSF¢ = RIxnkFgi(p) Adiy1(@) A...AGon-i(9).

Proof: Let n befixed; then the claim can be proved by induction oni.
Casel: i=0. Atfirst weshow for k < 2n

PAF¢ =— RTF ogk(p).

PA does not contain any axiom involving T, except theinduction axioms. Soif FSy -
@ andin g al subformulas Tt arereplaced uniformly by an arbitrary formularesulting
inanew formula ¢, we still have PA ¢ and therefore RTo, - gk (@) if k < 2n, too.

Case2: i =1. For this case we must show:
If p isanaxiom of FSy, then RTon - g1(@) A Go(@) A ... A Qon_1(@). 5)

For that purpose we show that al trandations of FS;-axioms are derivable within
RT>,. Thefirst axiom can be established in the following way (k < 2n):

RTon F YX[AL(X) = (Tk(X) < Ver(x))]
RTan VXAt — (Tkg, () < Ver(x))]  (from Lemmal5.6] part (iv))
RTon Gk (YX[AL(X) — (T(X) < Ver(x))]).
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So (5) is shown for the first axiom of FS;. Now for the second we reason again as-
suming k < 2n:

RTan F  ¥X[Sents () — (Tkmg, (0 < =Tkg, (0)]
RTan F ¥X[Sents () — (Tkg, (7)< =Tkg, ()]
RTon F Qe (VX[Sentsr (X) = (T(7X) < =T(X))].
The other axioms are treated in a similar way, and from (5) the claim follows for the

casei = 0. For, if RTon F ks 1(9) and ¢ isalogical consequence of ¢, we also can
conclude that RTon - Gk 1 ().

i — i+ 1 <n. First weturn to the rule NEC of necessitation. Suppose FS + ¢.
Hence FS' ; F Ty if ¢ isasentence of Ly. By induction hypothesis it follows that

RTon F di(@) AGig1(@) Ao A Oonsi(@)
RTon B Tig (@ ATisag, @ A ATonsig,, (@  (by Lemmab.s)
RTon F Gix1(Te) AQis2(To) Ao A Qoneit1 (T ).

The claim being already established for all FS;-axiomsthe following condition holds
forall ¢ € L7.

FS1iF¢ = RTaFgiyi(@ A AGni(e).

Now suppose FSf, ; - Tg, ¢ being asentence of L. Using theinduction hypothesis
we conclude:

RTon F Git(TO A ... AGni(TH)
RTon E Tig @ A ... ATon-i-19,, (@)
RTon F Gi(@) A...AGn +1)(®@  (by Lemmal58).

So we have for all sentences ¢ € Ly
FSiiFe = RlonFGir1(@) Ao A Qon—qivn) (@).
If we put i = nwe obtain the following result:
FShb¢ =  RTanbgn(e).
Since ¢ in L satisfies again
On(p) =@

we know from Lemmal5.5lthat RT _,, and FS have the same mathematical content,
i.e. aformulaof £isprovablein RT_,, if and only if itisin FS. From Theorem[5.9]
we can also conclude the following corollary which is worth noting because of the
w-inconsistency of FS.

Corollary 5.10 FSisarithmetically sound.

Proof: RT._, iseasily seen to prove only true arithmetical statements, because its
standard interpretation is given by Tarski’s hierarchy of languages. If FS+ ¢ for a
sentence ¢ € L we know from Theorem [5.9]that ¢ is aso deducible in RT _,,, and
must therefore be true.



COMPLETE AND CONSISTENT TRUTH 325

Thereis aso an easy model-theoretic argument proving the arithmetical sound-
nessof FS. Assumingthat ¢ € Lisasentencesuchthat FSH ¢ and9Jt € M, there must
be an n such that FS,, - ¢ and therefore ®"(9M) = ¢. Since ®"(M) is an w-model
and yields all true arithmetical statements, ¢ istrue. So FSis sound with respect to
its arithmetical content.

From atiny variant of the theorem we can a so obtain information about the sys-
tem FS with arithmetical induction only. For the following corollary let FS,[, FS],
RT,l and RT| be the respective systems with the induction scheme restricted to the
language L.

Corollary 5.11 FS isconservative over PA.

Proof: Note that FS,[ can be interpreted in RT,,| in the same way as it was done
for both systems with full induction in the theorem. We can now establish the claim
by showing inductively each RT,, 1] to be conservative over RT,[ and hence over
RT o= PA with respect to all formulas of thelanguage L. If RT, | I# ¢ thereisamodel
M of RT, suchthat M £ ¢. By the downward L dwenheim-Skolem theorem choose
an elementarily equivalent countable submodel 2, of 91 and let 971, bearecursively
saturated elementary extension of 9J1;. It follows from an argument similar to that of
Kotlarski, Krajewski and Lachlan in [8] that 91, has a satisfaction class and hence
can be expanded to amodel of RT, 1] satisfying exactly the same sentences of L(n)
as RTyl, S0 RTniaf 17 ¢.

Although we already know that RT _,, and FS prove the same arithmetical state-
ments and that they arein this sense equival ent, we do not know whether both systems
are equivaent if other notions of reducibility are considered. Our partial reductions
viathe functions h; and g; are problematic, because in contrast to many proof theo-
retical interpretations of theories we have not exhibited a single function commuting
with the connectives and the quantifier when reducing FSto RT _,, and vice versa,
and by the w-inconsistency of FSthere cannot be such afunction. But without much
trouble we can prove that they are equivalent in the sense of Feferman [[3].

Theorem 5.12 Thereisapartial recursivefunction f satisfying the following con-
dition: If ¢ € L and B isaproof of ¢ within FS, then f(B) isdefined and f(B) isa proof
of ¢ in RT _,,. Moreover this can be shown within RT _,,.

Proof: We roughly outline how to construct f. Assume that B is a proof of afor-
mula ¢ € L in FS and let n be the number of applications of NEC in B and m that
of CONEC. Henceif k := max(m, n) + 1 we know that FS I ¢. According to the
construction in the proof of Theorem[5.9]let f replace B by aproof for g (¢) = ¢ in
RT .., making use of the function go, ..., gk (It has to be checked that this can be
done effectively.). Asusual it isaso left to the reader that this property of f may be
established within RT _,.

Of course, RT _,, isalso reducibleto FSin this sense as can be showninasimilar
way asin the sketch of the proof of the above theorem.

Because FSis w-inconsistent it may seem difficult to obtain aglobal interpreta-
tion, that is, asingle function interpreting FS into RT _,, and vice versa. But we can
apply Orey’s compactness theorem of [[10] to get such an interpretation.

Theorem 5.13 Thereisa syntactical interpretation of FSin RT_,, and vice versa.
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Proof: Although Orey’s paper deals only with theories in the language L, his ar-
gument can be carried out as in [10] if we can show that both FSand RT_,, are re-
flexive theories, that is, they prove the consistency of all their finite subtheories, re-
spectively. For the latter thisis obvious. So let A be afinite set of theorems of FS.
Hencetheremust be an n such that FS, - ¢ for all ¢ € A and so RTo, = gn(¢). Since
RT2n41 - Congr,, and thereforeby formalization RTon 1 - Congg, and Congg, isan
arithmetical sentence, Congg_ isaso derivablein FS;n, 3 and therefore FSH Conp .

It should be noted that a global interpretation, like the above obtained by Orey’s
theorem, cannot map every arithmetical statement onto itself, in contrast to the lo-
cal interpretations h, and gy, because the trandation of an unrestricted quantifier in
a global interpretation has to be arestricted quantifier. The reason for thisis the w-
inconsisteny of FS.
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