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Representations for Small Relation Algebras

HAJNAL ANDREKA and ROGER D. MADDUX

Abstract There are eighteen isomorphism types of finite relation algebras
with eight or fewer elements, and all of them are representable. We determine
all the cardinalities of sets on which these algebras have representations.

1 Introduction We say that a relation algebrassiall if it has no more than eight
elements. A relation algebra is a Boolean algebra with additional operators, so every
small relation algebra has cardinality 1, 2, 4, or 8. There are eighteen isomorphism
types of small relation algebras. One of the types contains one-element algebras, thir-
teen of them contain simple algebras, and the remaining four contain direct products
of simple relation algebras.
A simple or one-element relation algeli¥ais representable if it is isomorphic
to a subalgebra dReU, for some set), whereReU = (ReU, U, ~, |, 7%, Idy) is the
relation algebra of all binary relations on the BetA representation of 2 on U is an
isomorphism that embed$into $ReU. Direct products of representable relation al-
gebras are also representable. It has long been known that every simple small relation
algebra is representable. Therefore all small relation algebras are representable.
Let® = (G, s 1) be a group. Theomplex algebra of & is the Boolean alge-
bra of all subsets d& augmented with the binary operatipdefined byX; Y = {xy:
xe X, ye Y}forall X, Y C G, the unary operation', whereX~1 = {x 1 : x e X},
and the distinguished subgdf}. Using the fact that is isomorphic to a group of
permutations of5, it is easy to show that the complex algebrafofs representable.
Many of the results presented here are quite elementary and previously known,
if not explicitly stated in print. For example, Lyndon noted (i€}, p. 307, foot-
note 13) that every small integral relation algebra is commutative and isomorphic to
a subalgebra of the complex algebra of either the group of rational numbers under
addition, or a cyclic group of order not exceeding thirteen. (See also McKédie [
p. 286, Section 5). This observation implies that every small relation algebra is rep-
resentable, and that some special representations exist for these algebras. Therefore
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Lyndon knew that every small relation algebra is representable on a set of cardinal-
ity either w or else not more than thirteen. Some explicit representations for sim-
ple small relation algebras were given in McKenzie's dissertaliéh pp. 38-40,
and in Backer’s seminar repoff][ pp. 11-20. A simple 8-element relation algebra
was missed in the latter survey, and an 8-element direct product of two simple rela-
tion algebras was omitted from the formét] §ontains a representation on infinitely
many elements for the relation algebra of type #18 (defined below). A representa-
tion on 9 elements was found by Wostner and communicated to the second author in
the early 1970s. This 9-element representation has undoubtedly been found indepen-
dently. Comer§] and others have accumulated many representations for many finite
relation algebras. This work is still in progress. Not much of this work has been pub-
lished, but see Come], [B], [4], [E], [E], and [, and Wostnerd]. We decided
to undertake a survey of representations of small relation algebras with the follow-
ing goal in mind: to determine all the cardinalities of sets on which small relation
algebras have representations, and the cardinalities for which the representations are
uniquely determined. The investigation has produced a few surprises.

The spectrum of a simple or one-element relation algeBras the set of cardi-
nalities of sets on which there is a representatiofl afo

specR) = {x: A € ISReU, |U| =«}.

There are different ways to extend the notion of spectrum to algebras that are not sim-
ple, but we do not consider such extensions here. In any case, the representations of
an algebra that is not simple are completely determined by the representations of its
simple homomorphic images.

In this paper we determine the spectra of all thirteen types of simple small re-
lation algebras. We will also determine some cardinalities for which a given simple
small relation algebr@l has a unique representation.l landH are representations
of 2 onU andV, respectively, then andH areconjugate if there is a bijectionf
from U to V such that, for everx € A, H(x) = f~1|I(x)| f. The representatioh
of 2l onU is uniqueiff | is conjugate to every representatiorRobn a set with the
same cardinality ad. The representatiohis minimal if there is no representation of
2 on asmaller set, i.e., il embedlintoReV then|V| > |U|. We will see that the
minimal representations of the thirteen simple small relation algebras/angique.

Letx be any cardinal. The representatiois «-extendible if there is a representation
H of 2l on a seW such thaty C V, |V ~ U| = «, and| is the restriction oH to U,
e, 1 (x) = HX)N (U x U) for every elemenk of 2l. A representation iBnitely ex-
tendibleifitis x-extendible for some finite > 0. The representatidnis «-redundant

if the restriction ofl to W C U is a representation & whenevertU ~ W| = .

2 Relation algebras and first-order theories Let 2 be a simple finite relation al-
gebra withn atoms. Supposét?l = {ag, ..., an_1}, and, for some&k < n, 1' =
ay+ -+ + ak. Lett be afirst-order language with equality and binary relation sym-
bolsRy, ..., Rh_1. Let Th(2) be the theory in L determined 8% as follows:

1. VXVY(XRoYy V ... V XRy_1Y) is in Th(2), and VXVy(XRjy — —xR;jy) is in
Th(2l) whenevel < j < n,
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2. VXVY(X =Y <> XRgy V... V XRyy) is in Th(2l),

if & = aj; andi < | < n, then¥xVy(xR;y < YR;x) isin Th(2),

4. ifi, j <n,0<manda; aj = ag, + - - + a,_,, thenyxvVyFz(xRizA zR;y) <
XRi,YV ...V XRy ,y)isin Th().

w

It is fairly easy to prove that ifl is a finite simple relation algebra, th&his
representable ifT h(2) has a model. Infact, fl = (U, Ry, ..., Rq_1) is a model of
Th(Ql), whereRy, ..., Ry_1 are binary relations obJ, then the functiorh, defined
byh(a) = R; foralli < n, has a unique extension to an embeddihgf 2 into ReU.
Conversely, if2l is representable, then there is an isomorphigiinom 2 into ReU
for some set, and(U, H(ag), ..., H(an_1)) is a model ofTh(2).

A similar construction is used iflf], pp. 108-109, and also irbdsson [1].
McKenzie and dnsson use a relation symbol for every element of the algebra. Their
method therefore works even for infinite relation algebras, but for finite ones the re-
sulting theory is exponentially larger than the one built here.

This connection between relation algebras and theories allows results about fi-
nite relation algebras to be translated into results about their first-order theories. The
spectrum of a finite simple relation algeliais defined in such a way that it co-
incides with the (model-theoretic) spectrum of the associated tHEof§(). Thus
21 has a unique representation @moints just in case the theofh(l) is categor-
ical in powera. Also, if spec(2l) is infinite or contains an infinite cardinal, then
{k:w <k} Cspec®l), by theUpward Lowenheim-Skolem-Tarski Theorem.

3 The eighteen types of small relation algebras Listed below are the eighteen
types of small relation algebras. For each type we give a representative algebra, and
state its spectrum if it is simple or trivial. If the type contains simple algebras, then
the representative algebra is a subalgebféafthat is generated either by the empty
set, or by a single relation anwherex is the minimum cardinal in the spectrum. For
any algebra and any subsex of the universe o, we letSGg‘® X be the subalgebra
of ¢ that is generated b(.
The relations we use for the representative algebras are defined as follows. Let
be the set of rational numbers, andllet {(x, y) : X, y € Q, X < y}. Whenevek <
o <o letPy={(A,u) A u<a p—r=«x (Mmoda)}andQ¥=P*U P 1
If, in addition, » < B < , thenQ¥f = {((1. v}, (£ 0)) 1 (1. &) € Q2. (v.¢) € Q}}.
Supposel is a finite relation algebra. Then

C@)={(ab,c):ab,ce A, a;b>c}.
The triples inC(2() are calleccycles. For any atoms, b, c,
[a,b,c] = {(a,b,c), (&, b), (b, & 4d), (b&¢), (&ab), (cbal

Then eitherf, b, c] € C() orelse i, b, c] NCRl) = &. ThusC(l) is a union of
sets of the forma4, b, c], each of which may contain up to six different cycles. The
cycles completely determine the operatigisincea; b = ) {c: (a, b, c) € C(2)}
for all atomsa, b.

For each isomorphism type we describe a typical algebra by listing its atoms and
cycles. Leta be an atom. We say thais an identity atom i < 1', ais symmetric if
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a = a, anda s antisymmetric ifa anda are disjoint. We first list the identity atoms,
then the symmetric atoms, and finally the pairs of antisymmetric atoms. Wause
e1, etc., to denote identity atoms, unlessslitself an atom. Pairs of antisymmetric
atoms are denoted lay &, andb, b, etc., while symmetric atoms are denoted by just
a, b, éc., since they coincide with their converses. Thuarid™ are determined by
the list of atoms.

#1 RepresentativeRe0. Spectrum{0}.
No atoms. No cycles.
#2 RepresentativéiRel. Spectrum{1}.
Atom: 1. Cycle: [T, 1, T'].
#3 RepresentativéRel x Rel.
Atoms: ey, €;. Cycles: [eo, €, €], [€1, €1, &1].
#4 RepresentativeSg ™2 5. Spectrum:{2}.
Atoms: 1, 0. Cycles: [1,1,1],[1,0,0].
#5 Representative5g™*® . Spectrum:{x : 3 < «}.
Atoms: 1, 0. Cycles: [1,1',1],[1', 0,07, [0", 0, O7].
#6 Representativéiel x Rel x Rel.
Atoms: ey, €1, €. Cycles: ko, €, &), [e1, &1, &1, [&2, &, &7].
#7 Representativéel x Sg ™2 g,
Atoms: &, e, 0'. Cycles: [y, €, €], [€1, €1, &1], [e1, 0, 0.
#8 Representativeéiiel x g3 g,
Atoms: e, €1, 0. Cycles: ky, €, €], [€1, €1, €1], [e1, 0, 0], [0", O, O]
#9 Representativesg®*® (P3}. Spectrum:{3}.
Atoms: 1,4, 4. Cycles: [1,1',1],[1',a,4a],[a, 1, a], [a a 4]
#10 Representativesg™*@(L}. Spectrumi{x : » < k).
Atoms: 1,4, a. Cycles: [2,1',1],[1',4a,4], [a 1,4d],[a a, a].
#11 Representative&g®¢”{P7 UPJUP}}. Spectrum:{7} U {«:9 < «}.
Atoms: 1,4, 4. Cycles: [1,1,1],[1',a,4a],[a, 1,4a],[a & d],][a a, a].
#12 Representativesg™?{Q?}). Spectrum:{4).
Atoms: 1,a, b. Cycles: [2,1',17],[1", a,4], [1", b, b], [a, b, b].
#13 Representativesg™®{QS). Spectrum:{x : 6 < «}.
Atoms: 1,a,b. Cycles: [2,1,1],[1",a,4],[1",b,b],[a b,b], [a a, a].
#14 Representativesg™*®{QS}. Spectrum:{ 2« : 3 < k).
Atoms: 1, a, b. Cycles: [1,1',1],[1",a,a], [1",b,b], [a, b, b], [b, b, b].
#15 Representativesg™*?{Q3}. Spectrum:{x : 9 < «}.
Atoms: I, a, b. Cycles: [1,1,1], [1',a, 4], [1',b,b], [a, b,b], [a a a],
[b, b, b].
#16 Representative&g™>{Q3}). Spectrum:{5}.
Atoms: 1,a,b. Cycles: [2,1,17,[1",a,4],[1",b,b],[a b,b],[a a, b].
#17 Representativesg™*®(Q8 U Q). Spectrumi{x : 8 <« ).
Atoms: 1, a, b. Cycles: [1,1,71], [1',a,4], [1',b, b], [a, b, b], [a,a,b],
[b, b, b].
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#18 Representativag”*®3)(Q}3). Spectrum:{x: 9 < k).
Atoms: I, a, b. Cycles: [1,1,71], [1',a,4a], [1',b,b], [a, b, b], [a &, b],
[a, &, 4], [b,b,b].

The action of on pairs of atoms can be deciphered from the list of cycles, butitis
rather tedious to do so. The tables for the products of atoms in the algebras described
above are therefore given here explicitly. Many properties of the algebras can be more
easily recognized from these tables.

#2| 1 73| & &
T T % & O

€1 €1
#4111 O #5111 O
r|1r o A I R O
o |0 1 0|0 1
# | e e & #7 e & 0O
& |e& 0 O & | & 0 O
e 10 e O e |0 e O
e |0 0 & 0|0 O e
#8 | e e O #|1 a a
& |e 0 O ' [1 a a
e |0 e O a|a a 71
0|0 O e+0 a |a 1 a
#10|1' a a #1111 a a
1 1' a a 1 1' a a
a a a1l a a 0 1
a a 1 a a a 1 o
#1211 a b #13| 1 a b
1 ' a b 1 1' a b
a a 1 b a a 1+a b
b b b 1+a b b b I'+a
#14(1 a b #15| 1 a b
1 ' a b 1 1' a b
a a 1 b a a 1+4+a b
b b b 1 b b b 1
#16| 1 a b #17|1 a b
1 1' a b 1 1 a b
a a 1+4+b O a a 1+b O
b b 0O I'+a b b 0 1
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#18(1 a b
1 ' a b
a a 1 0O
b b 0 1

4 Minimal Representations In this section we give representations for each of the
thirteen types of simple small relation algebras, and prove that these representations
are minimal and unique. Among the eighteen types of small relation algebras, those
that are simple are the ones of type #2, #4, #5, and #9—18. To describe the repre-
sentations, it is necessary to specify just the images of the atoms. This is done in the
following tables, except for type #18, where the imagRisf(3 x 3) ~ lds,3 ~ Q33

a relation for which we have introduced no convenient designation. ’

1|0
#2 | 1dy | ©
#4 | 1d, | Dip
#5 | 1ds | Dis
r a a
#9 | 1dg | P3 P3
#10| 1dg | L Lt
#11 | 1d; | PJUPJUP] | PLUPLUP]

r a b
#12| 1ds | Q3 Qf
#13| 1ds | QS QSUQS
#14| 1ds | QS QSUQS
#15| 1dg | Q3 QuQuQ)
#16 | 1ds | Q3 QS
#17 | 1dg | QQUQS | QSuQ}
#18 | lds.s | Q7

From results inGnsson and TarsKif] we can draw some conclusions concern-
ing some of the small algebras. Recall that an elemenfunctional ifX; x < 1'. The
algebras in which every atom is a functional element are those of type #2, #3, #4, #6,
#7, and #9. These algebras are all representable by Theorem 4[24 oAmong
these algebras, the ones of type #2, #4, and #9 are integral. It follows from Theorem
5.11 of [[4] that #2, #4, and #9 are isomorphic to the complex algebras of certain
groups. By Theorem 4.32 diLf], a simple relation algebra in which 1 is the join
of m functional elements is representable on a set with at maslfements. It fol-
lows that the integers 1, 2, and 3 belong to the spectra of #2, #4, and #9, respectively.
Among the small algebras that are simple, the ones in wHicl' G< 1' are #2 and
#4. By Theorem 4.33 off[4] these algebras are both representable on sets containing
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at most two elements. The only simple small algebra in whicl’0= 0 is#2. By
Theorem 4.35 (i) of14], algebra #2 is representable on a set containing exactly one
element. The only simple small algebra in which@ = 1' is #4. By Theorem 4.35

(ii) of [[14], algebra #4 is representable on a set containing exactly two elements. By
Theorem 4.35 (iii) of[[4], if 2 is a simple representable relation algebra in which

0'; 0 = 1, then neither 1 nor 2 is in the spectrunaf These observations serve to
prove several parts of the following theorem. (The theorem is so elementary that it
must be regarded as well known by everyone who has studied small relation algebras.)

Theorem 4.1 Assumethat 2l isa small smplerelation algebra, and that | isa rep-
resentation of 2 on U.

(i) IfAis#2then |U| =1, | isunique, and spec (A) = {1}.

(i) IfAis#4then |U| = 2, | isunique, and spec () = {2}.
(i) IfAis#5then U] > 3, | isunique, and spec (/) = {«x : « > 3}.

(iv) IfAis#9then |U| =3, | isunique, and spec (A) = {3}.

(V) If Ais#10then |U| > w, | isuniqueif |U| = w, and spec (A) = {«x : k > w}.

Note that the table for type #9 is actually the multiplication table for a three-
element group. According to the tabbe,a=1,a;4=1,anda+a= 0. These
equations imply thak(a) is a permutation o) that is disjoint from its inverse, such
thatl(a) U | (@)~ = Diy. Such a permutation can only be a cyclic permutation of
a 3element set. Part (iv) is actually a special case of the easily proved fact that the
complex algebra of a group of ordehas a one-element spectrum, namgly This
fact can also be easily generalized.

Concerning part (v), note that¥f is type #10, then the theoyh(2l) states that
| (@) is adense linear ordering bfwithout endpoints. Also, the relation algebra gen-
erated by any dense linear ordering without endpoints is of type #10. The theory of
dense linear orderings without endpoints has specfrunz > w} and is categorical
in powerw, S0 the same is true ¢l

The next theorem contains one of the surprises of our investigation. The rep-
resentation of algebra #11 on seven elements is well known, as is its unigueness, al-
though this has not yet been explicitly stated in print. From the evidence of the spectra
of the other small algebras it would be natural to suspect that the spectrum of type #11
would be{n: n > 7}, butit turns out that 8 is missing. This was discovered first by a
computer search.

Theorem 4.2 If Aisalgebra #11 and | isarepresentationof 2lonU, then|U| > 7,
I isuniqueif |U| =7, and spec () = {7} U {k : k > 9}.

Proof: Let A= I(a). We will use the following proposition several times.

(1) Assumeu € U, and eitherX = {x: uAx} or X = {x: XAu}. For everyx € X
there arey, z € X such thaty AXAz, u, X, y, zare distinct, and thusX| > 3.

To prove (1), suppose first that = {x: uAx}. From 1 < a; dwe get(u, u) €
ldy = 1(I') C I(a; &) = AJA 1, SOX # @. Letxe X. Froma< a;a-a;awe get
(ux) e A=l(a) C I(a;a-a;d) = AJAN AJA™L, sothere arey, z € U such that
UAy, YAX, UAZ, andzA-1x. Thereforey, ze X, yAxAz andu, X, Y, z are distinct
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sincea-1 =0=a-a. If X={x:xAu}, then the same conclusions follow from
a<a;a-a;a

It follows immediately from (1) thatJ| > 7.

SupposeU| = 7. Chooseu € U. Let X = {x: xAu} andY = {y:uAy}.
Since|U| = 7, (1) implies thatf X| = |Y| = 3 and the restrictions oA to X and
to Y are 3-cycles. Hence there axg xo, X3, Y1, Y2, Y3 such thatX = {xq, X2, X3},

Y = {y1, ¥2, Y3}, X1 AXz, X2 AX3, X3 AX1, Y1 AYz, Y2Ays, andyszAy;. By (1), x;
must have exactly one othé+image, which must be ilY. So we may also assume
X1 Ayi, Yo AXq, andys Ax;. By (1), the restrictions oAto {z: x; Az} = {u, Xp, y1}
andto{ z: zAx; } = { Xs, Yo, Y3} must be 3-cycles, so we also getAx,, y3 Axs, and
X3 Ay,. Now y, must have one morA-image, hencg, Ax,, and thenx, must have
one more, sy Ays, and finally,y; must have one mora-image, which must bgs.
This completely determines, so the representation is unique whigh = 7.

AssumelU| = 8. We will derive a contradiction. By (1), evetye U has either
three or fourA-images. If everyl € U has exactly threéd-images, thefA| = 3-8 =
24, but| A| = 28, so we get some € U with exactly four A-images, say1, Y, Ya,
andyy. LetY = {vy1, Yo, ¥3, Va} and X = { Xy, X2, X3} = { z: zAu}. By (1) we may
assumexg AXp, X2 Axz, andxz Ax;. Also by (1), everyy € Y has anA-image inY,
and is theA-image of something ilY. Up toisomorphism there is just one restriction
of Ato Y that has these properties, and we may therefore assumg,, y» Ays,

V3 AVYa, Y4 Ay1, Y1 AYys, andy, Ay, Since(y,, y3) € 1(0') = AJA, there is some
ze U such thaty, AzandzAys. Thenz € X, so we may assum@g, AX; andx; Ays.
Then(y,, %) € 1(0') = A~1|A, o there must be somesuch thatzAy, andzAx,,
but the only possibility forzis y1, soy; Ax,. There is some such thaty, Az and
X2 Az, but the only possibility isxz, soy4 Axz. Finally, there must be sonmesuch
thatxg Azandys Az, but there is no possibility far, o we have a contradiction. Thus
8 ¢ spec().

We get a representation on 9 points by settin@) = P$ U PS U P§ U Pg,
so 9 € spec?l). LetTg = {1,3,4,5,9}, and, for everya < w, let Ty 1 =
{JU{20+12—k:k €Tq}. Setly(a) = J{P?™!:keT,}. Straightforward
calculations show thdt, determines a 1-redundant representationsf 2.1 points,
so by deleting any point we also get a representatiod oh 2x + 10 points. Thus
{rk:10<«k} C spec).

For our next theorem we need the following simple lemma, concerning the small
relation algebras in which % ais an equivalence element. An elemgig an equiv-
alence element i; x = x andX = x. Parts (ii) and (iii) of the lemma contain obser-
vations that are also made (in slightly different terminology) in the remarks following
Definition 9.1 on page 41 obhsson[L2].

Lemma4.3 IfAistype#12, #13, #14, or #15,and E = I (a+ 1), then

(i) Eisanequivalencerelationon U,
(ii) each E-class has exactly two elementsiiff [a, a, a] ishot acycle (i.e., A is#12
or #14),

(iii) each E-classhasthree or more elementsiff [a, a, a] isacycle (i.e., A is#13 or
#15),

(iv) thereareexactly two E-classesiff [b, b, b] isnot acycle(i.e.,, 2 is#12 or #13),
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(V) therearethree or more E-classesiff [b, b, b] isa cycle (i.e., 20 is#14 or #15).

In Theorem 10.2 offZ], Jonsson notes that there are four isomorphism types
of simple relation algebras generated by an equivalence elexseich that 1< e.
These types are #12, #13, #14, and #1&ns3on mentions only that they are rep-
resentable on sets with nine or fewer elements. Of course, the exact cardinalities of
their minimal representations, and the uniqueness of their minimal representations
have been clear to many who have studied small relation algebras. We summarize
these facts in the next theorem, together with our observations concerning spectra and
extendibility of representations.

Theorem 4.4 Assumethat 2 isa small smplerelation algebra, and that | isarep-
resentation of 2 on U.

(i) IfAis#12then |U| =4, | isunique, and spec () = {4}.
(i) IfAis#13then|U| > 6, | isl-extendible, | isuniqueiff |U|=60or U =7, and
spec () = {k : k > 6}.
(iii) IfAis#ldthen|U| > 6, |U]|iseven, | isunique, | is2-extendible, and spec(2l)
= {2 :k >3}
(iv) IfAis#15then|U| > 9, | isl-extendible, | isuniqueiff |U| =9 or |U| = 10,
and spec (1) = {«k : k > 9}.

Proof Proof of (i): By Lemma 4.3, there are exactly tw@a + 1')-classes with ex-
actly two elements each.

[Proof of (ii)] By Lemma 4.3 (a+ 1') is an equivalence relation with exactly
two classes, each of which contains three or more elements. Thejdfore6, and
any representation may be extended by one element by increasing the size of one or
the other equivalence class. Note that therenamenisomorphic representations of
type #13 on 2+ 4 and 21+ 5 dements. Sd is unique iff|[U| is 6 or 7. There are
representations over every cardinality greater than 6 since every representation is 1-
extendible.

[Proof of (iii)] By Lemma 4.3, there are at least thiga + 1')-classes with ex-
actly two elements each. Therefokd > 6 and|U| must be even. Clearlyis unique.
To obtain a 2-extension, just add one more equivalence class to the representation. By
repeatedly forming 2-extensions, we get representatiofisfof all even finite car-
dinalities larger than 6, and all infinite cardinalities.

[Proof of (iv)] By Lemma 4.3] (a+ 1) is an equivalence relation with three or
more classes, each of which contains three or more elements. Thetéfer®, and
any representation may be extended by one element by increasing the size of one of
the equivalence classes. The number of nonisomorphic representations is not so easy
to compute, but it is easy to see that uniqueness occurs just itdaae just nine or
ten elements.

The next result is quite well known (see, for example, Madfgk pp. 369-70,
or Comer[).)

Theorem 4.5 Ifis#16 and | isarepresentation of 2l on U, then |U| =5, | is
unique, and spec (1) = {5}.
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Proof: Let A= I(a) andB = I(b). Note A and B form a partition ofDiy with

Al1= A B1=B,andAJAN A= B|BN B = @. We may therefore apply Theo-

rem 1 of Greenwood and Gleasdif) to conclude thatU| < 5. (The theorem ap-
peared as a question in the William Lowell Putham Mathematical Competition of
March 1953. “Six points are in general position in space (no three in a line, no four
in a plane). The fifteen line segments joining them are drawn, and then painted, some
segments red, some blue. Prove that some triangle has all its sides the same color.”)
Since O£ a < (b-a;a); (b-a;a), there aralg, U, Uy, Uz, Us € U such thaug Auy,

Up Bus, uzBuy, Ug Aug, Usg Auz, Uy Aup, andusz Au,. Thus|U| = 5. Finally, ugBuy,

Uz Bug, andus Bu, sinceA|AN A= @, sol is unique.

Lemmad4.6 IfAis#17 or #18 then for every x e U, |{y: (X, ¥) € 1 (@)}| = 3 and
{y: (x,y) € (D)} > 4

Proof: Let A= I(a) andB = I(b). Chooseu; so thatxAu;. By the type of2,
a<a; (b-b;b), sothere arai,, us € U such thak Au,, u; Bu,, u, Bus, uz Buy, and
[{X, U1, Up, Us}| = 4. If XAug thenuy, Uy, Uz € {y: (X, y) € | (a)}, SO assumexBus.
Sinceb < a; athere is some, € U such thak Aug andus Aus. Note thatuy, # ug, Uy
sinceu; Buz andu, Bus. So in either case we géty : (X, y¥) € | (a)}| > 3.

Next choosey; € U so thatxBu;. The type oflissuchthab<b; (b-a; (b-
b; (b-a;b))), sothere aral,, us, Us, Us € U such thak Bu,, u; Bu,, X Bus, Uy Aus,
X Buyg, Uz Bug, XBus, andug Aus. Clearlyu; # Uy # Uz # Ug # Us, Ug # Uz, Uy # Uy,
andus # us. Notice also that eithar, # ug or u, = us. Hence|{uy, Uy, Us, Ug, Us}| >
4,

Theorem 4.7 1f2Ais#17then|U| > 8,if |[U| = 8then | isunique, and spec () =
{k:k>8}.

Proof: It follows from Lemma 4.6 thatJ| > 8.

SupposgU| = 8. Let A= |(a) andB = I (b). There are ndA-triangles since
AlAN A= @. Sincea < (b-a;a); (b-a;a), there areug, uy, Uy, Uz, Uy € U such
thatug Auy, Ug Buy, uy Buy, ug Aus, Uz Auy, Ux Aus, andug Aus. It follows thatug,
Uy, Uy, Ug, Uy are distinct. Since there are detriangles, we also gely Buy, Uz Bus,
anduz Buy. Let X = {ug, U1, Uy, Uz, Us}. Notice thatl is now completely determined
on X, and the restrictions oA andB to X are 5-cycles.

LetY =U ~ X ={us, Ug, U7}. By Lemma 4.6, everx € U has exactly fouB-
images and exactly thre&-images. For every € Y, the threeA-images ofy cannot
all be in X, since there are né-triangles, but every three-element subseXafon-
tains a pair inA. So every y € Y has anA-image inY. SinceY does not contain an
A-triangle, there is essentially only one way this can happen, namélyg, us Auy,
andug Buy.

Now us has one moré\-image, which must be iX. By the symmetry ofA and
B on X we may assume thag Aug. Next, u; has exactly one othek-image besides
Up anduy. It cannot baus sinceus already has threé-images. Hence either; Aug
or u; Auy. But ug anduy are still interchangeable, so we may assum@ug. The
remaining A-image ofus must be inY, cannot beus sinceus has threeA-images,
and cannot belg since otherwisel;, us, andug would form anA-triangle. Hence
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ug Auy. Sofar, u; has twoA-images. The remaining one cannotugg uy, Or Uy,
since otherwise there would be &atriangle. Henceiz Auy.

At this point every element dfl has threeA-images except, andug, each of
which has only twoA-images. It follows thati, Aug. Now all elements ofJ have
three A-images, henc® must be all pairs of distinct elementsldfthat are not inA.
Thus A and B have been completely determined, and the representation is unique.
Incidentally, if f is the mapping fronJ to 8 that takeslg, U, Uy, Us, Uy, Us, Ug, and
urto 0, 1,6,7,2, 4,5, and 3, respectively, tf@hu Q8 = f 1Al f.

The unique representation of #17 on eight elements happens to be finitely ex-
tendible but not 1-extendible. We will construct explicit representions on all car-
dinalities of 9 or more. Letr be any cardinal, and l&l = {u, : ¥ < o} U {v, :
kK <a}U{we:k <a}U{X Y, 2z, sothat|U| = 3¢ + 3. Letl(a) = RUR ! and
I(b) = (U x U) ~ (I(a) U ldy), whereR s the relation orJ that contains the fol-
lowing pairs:

* (X, ¥), (Y. 2,

X, Ue), K < o,

y’ vK)!K <a1
Z W), kK <,

(
(
(
(Ue, V), kK < A < «,
(Ue, wie), kK < a,

(

o (U, Wy), kK < .

Thenl yields a representation @f on 3x + 3 points whenevew > 2. Furthermore,
if « > 3, then the restriction dfto U ~ {x} is a representation & on 3x + 2 points,
and the restriction of to U ~ {X, y} a representation ol on 3x + 1 points. Itis
interesting to note that # = 3 then the restriction oAto U ~ {X, y} is the Peterson

graph (B], pp. 186-7).

Theorem 4.8 1f2Ais#18then|U| > 9,if |[U| = 9then | isunique, and spec () =
{k:k>9}.

Proof: Letue U. By Lemma 4.6u has at least fouB-images. There is an auto-
morphism of2 that interchangea andb, so by Lemma 4.6 it also follows that has
at least fourA-images. Henc@J| > 9.

Assume|U| = 9. Let X = {Xg, X1, X2, X3} be the set ofA-images ofu, and let
Y = {Yo, Y1, V2, Y3} be the set oB-images ofu. Sincea < a; a, everyx € X has
an A-image in X, sox has at most twd-images inX. Therefore everi € X has
at least twoB-images inY, and|BN (X x Y)| > 8. Similarly,|AN (X x Y)| > 8.
But [ X x Y| =16, s0|lBN (X x Y)|=8=|AN (X x Y)|, everyx € X has one
A-image inX, two B-images inX, andtwo B-images inY, and everyy € Y has one
B-image inY, two A-images inY, andtwo A-images inX. It follows thatf AN X?| =
2=|BNY?, BN X% =4=|ANY?, AN X?andBn Y? are transpositions, and
BN X?andAN Y2 are 4-cycles. For every pdi, X) € BN X?, there is somg such
thatxBy andyBx'. There is noB-triangle in{u} U X, soy € Y. Notwo suchy’s are
the same, since otherwise some element afould have more than fouB-images.
Wemay therefore assume thatBxo, X, Bz, X3 BX4, X4 BX1, X1 AX3, X2 AX4, X1 By1,
X2By1, X2 Byz, X3BYz, X3BY3, X4 Bys, X4 Bys, andx; Bys. Supposey; Ays. Then
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there must be somee U ~ {y,, y3} such thaty; AzandzAys, sincea < a; a. But
everyze U ~ {y,, y3} is B-related to eithel; or y3. Hencey; Bys, and, similarly,
Y2 Bys. Wetherefore havey; Ays, yo Ays, Y3 Ayy, andys Ays, so A and B are now
completely determined.

Leta > 2. LetU ={u ik <a}U{v ik <alU{w,:x <a}U{X y}. LetR
be the relation otJ that contains the following pairs:
(Ue, W), kK < A <
(Ve, V), K < A < «,
(We, Wy ), kK < A <,
(Ue, Vi), (Ui, wie)s (Ui, W), K < @
(X, wo), (X, vo), (X, v1), (X, Uo),
(Y, wa), (Y, w2), (Y, vo), (Y, v1).
Thenl yields a representation &f on 3x + 2 points, the restriction of to U ~ {y}

is a representation ¢ on 3x + 1 points, and the restriction df to U ~ {x, y} a
representation ol on 3x points. Thus spe@l) = {« : « > 9}.
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