
550

Notre Dame Journal of Formal Logic
Volume 35, Number 4, Fall 1994

Representations for Small Relation Algebras

HAJNAL ANDRÉKA and ROGER D. MADDUX

Abstract There are eighteen isomorphism types of finite relation algebras
with eight or fewer elements, and all of them are representable. We determine
all the cardinalities of sets on which these algebras have representations.

1 Introduction Wesay that a relation algebra issmall if it has no more than eight
elements. A relation algebra is a Boolean algebra with additional operators, so every
small relation algebra has cardinality 1, 2, 4, or 8. There are eighteen isomorphism
types of small relation algebras. One of the types contains one-element algebras, thir-
teen of them contain simple algebras, and the remaining four contain direct products
of simple relation algebras.

A simple or one-element relation algebraA is representable if it is isomorphic
to a subalgebra ofReU, for some setU, whereReU = 〈

Re U,∪,∼, |, −1, IdU
〉
is the

relation algebra of all binary relations on the setU. A representation of A on U is an
isomorphism that embedsA into ReU. Direct products of representable relation al-
gebras are also representable. It has long been known that every simple small relation
algebra is representable. Therefore all small relation algebras are representable.

Let G = 〈
G, ·, −1,1

〉
be a group. Thecomplex algebra of G is the Boolean alge-

bra of all subsets ofG augmented with the binary operation; defined byX ; Y = {xy :
x ∈ X, y ∈ Y} for all X, Y ⊆ G, the unary operation−1, whereX−1 = {x−1 : x ∈ X},
and the distinguished subset{1}. Using the fact thatG is isomorphic to a group of
permutations ofG, it iseasy to show that the complex algebra ofG is representable.

Many of the results presented here are quite elementary and previously known,
if not explicitly stated in print. For example, Lyndon noted (in [16], p. 307, foot-
note 13) that every small integral relation algebra is commutative and isomorphic to
a subalgebra of the complex algebra of either the group of rational numbers under
addition, or a cyclic group of order not exceeding thirteen. (See also McKenzie [19],
p. 286, Section 5). This observation implies that every small relation algebra is rep-
resentable, and that some special representations exist for these algebras. Therefore
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Lyndon knew that every small relation algebra is representable on a set of cardinal-
ity either ω or else not more than thirteen. Some explicit representations for sim-
ple small relation algebras were given in McKenzie’s dissertation [18], pp. 38–40,
and in Backer’s seminar report [1], pp. 11–20. A simple 8-element relation algebra
was missed in the latter survey, and an 8-element direct product of two simple rela-
tion algebras was omitted from the former. [1] contains a representation on infinitely
many elements for the relation algebra of type #18 (defined below). A representa-
tion on 9 elements was found by Wostner and communicated to the second author in
the early 1970s. This 9-element representation has undoubtedly been found indepen-
dently. Comer [8] and others have accumulated many representations for many finite
relation algebras. This work is still in progress. Not much of this work has been pub-
lished, but see Comer [2], [3], [4], [5], [6], and [7], and Wostner [20]. We decided
to undertake a survey of representations of small relation algebras with the follow-
ing goal in mind: to determine all the cardinalities of sets on which small relation
algebras have representations, and the cardinalities for which the representations are
uniquely determined. The investigation has produced a few surprises.

Thespectrum of a simple or one-element relation algebraA is the set of cardi-
nalities of sets on which there is a representation ofA, so

spec(A) = {κ : A ∈ ISReU, |U| = κ } .

There are different ways to extend the notion of spectrum to algebras that are not sim-
ple, but we do not consider such extensions here. In any case, the representations of
an algebra that is not simple are completely determined by the representations of its
simple homomorphic images.

In this paper we determine the spectra of all thirteen types of simple small re-
lation algebras. We will also determine some cardinalities for which a given simple
small relation algebraA has a unique representation. IfI andH are representations
of A on U andV , respectively, thenI and H areconjugate if there is a bijectionf
from U to V such that, for everyx ∈ A, H(x) = f −1|I(x)| f . The representationI
of A on U is unique iff I is conjugate to every representation ofA on a set with the
same cardinality asU. The representationI is minimal if there is no representation of
A on a smaller set, i.e., ifH embedsA into ReV then|V | ≥ |U|. We will see that the
minimal representations of the thirteen simple small relation algebras areall unique.
Let κ be any cardinal. The representationI is κ-extendible if there is a representation
H of A on a setV such thatU ⊆ V , |V ∼ U| = κ, and I is the restriction ofH to U,
i.e., I(x) = H(x) ∩ (U × U) for every elementx of A. A representation isfinitely ex-
tendible if it is κ-extendible for some finiteκ > 0. The representationI isκ-redundant
if the restriction ofI to W ⊆ U is a representation ofA whenever|U ∼ W| = κ.

2 Relation algebras and first-order theories Let A be a simple finite relation al-
gebra withn atoms. SupposeAtA = {a0, . . . , an−1}, and, for somek < n, 1

, =
a0 + · · · + ak. Let Ł be a first-order language with equality and binary relation sym-
bolsR0, . . . ,Rn−1. Let Th(A) be the theory in Ł determined byA as follows:

1. ∀x∀y(xR0y ∨ . . . ∨ xRn−1y) is in Th(A), and∀x∀y(xRi y → ¬xR j y) is in
Th(A) wheneveri < j < n,



552 HAJNAL ANDRÉKA and ROGER D. MADDUX

2. ∀x∀y(x = y ↔ xR0y ∨ . . . ∨ xRk y) is in Th(A),
3. if ăi = a j andi < j < n, then∀x∀y(xR j y ↔ yRix) is in Th(A),
4. if i, j < n, 0< m andai; a j = ak0 +· · ·+ akm−1, then∀x∀y(∃z(xRiz ∧ zR j y) ↔

xRk0 y ∨ . . . ∨ xRkm−1 y) is in Th(A).

It is fairly easy to prove that ifA is a finite simple relation algebra, thenA is
representable iffTh(A) has a model. In fact, ifU = 〈U, R0, . . . , Rn−1〉 is a model of
Th(A), whereR0, . . . , Rn−1 are binary relations onU, then the functionh, defined
by h(ai) = Ri for all i < n, has a unique extension to an embeddingH of A intoReU.
Conversely, ifA is representable, then there is an isomorphismH from A into ReU
for some setU, and〈U, H(a0), . . . , H(an−1)〉 is a model ofTh(A).

A similar construction is used in [18], pp. 108–109, and also in Jónsson [11].
McKenzie and J́onsson use a relation symbol for every element of the algebra. Their
method therefore works even for infinite relation algebras, but for finite ones the re-
sulting theory is exponentially larger than the one built here.

This connection between relation algebras and theories allows results about fi-
nite relation algebras to be translated into results about their first-order theories. The
spectrum of a finite simple relation algebraA is defined in such a way that it co-
incides with the (model-theoretic) spectrum of the associated theoryTh(A). Thus
A has a unique representation onα points just in case the theoryTh(A) is categor-
ical in powerα. Also, if spec(A) is infinite or contains an infinite cardinal, then
{κ : ω ≤ κ } ⊆ spec(A), by theUpward L̈owenheim-Skolem-Tarski Theorem.

3 The eighteen types of small relation algebras Listed below are the eighteen
types of small relation algebras. For each type we give a representative algebra, and
state its spectrum if it is simple or trivial. If the type contains simple algebras, then
the representative algebra is a subalgebra ofReκ that is generated either by the empty
set, or by a single relation onκ, whereκ is the minimum cardinal in the spectrum. For
any algebraC and any subsetX of the universe ofC, we letSg

(C) X be the subalgebra
of C that is generated byX.

The relations we use for the representative algebras are defined as follows. LetQ

be the set of rational numbers, and letL = {〈x, y〉 : x, y ∈ Q, x < y}. Wheneverκ <

α < ω, letPα
κ = {〈λ,µ〉 : λ,µ < α, µ − λ ≡ κ (modα) } andQα

κ = Pα
κ ∪ (Pα

κ )−1.
If, in addition,λ < β < ω, thenQα,β

κ,λ
= {〈〈µ, ν〉 , 〈ξ, ζ〉〉 : 〈µ, ξ〉 ∈ Qα

κ , 〈ν, ζ〉 ∈ Qβ
λ

}
.

SupposeA is a finite relation algebra. Then

C(A) = {〈a, b, c〉 : a, b, c ∈ AtA, a ; b ≥ c
}
.

The triples inC(A) are calledcycles. For any atomsa, b, c,

[a, b, c] = {〈a, b, c〉 ,
〈
ă, c, b

〉
,
〈
b, c̆, ă

〉
, 〈b̆, ă, c̆〉, 〈c̆, a, b̆〉, 〈c, b̆, a〉}.

Then either [a, b, c] ⊆ C(A) or else [a, b, c] ∩ C(A) = ∅. ThusC(A) is a union of
sets of the form [a, b, c], each of which may contain up to six different cycles. The
cycles completely determine the operation;, sincea ; b = ∑{c : 〈a, b, c〉 ∈ C(A)}
for all atomsa, b.

For each isomorphism type we describe a typical algebra by listing its atoms and
cycles. Leta be an atom. We say thata is an identity atom ifa ≤ 1

,
, a is symmetric if
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ă = a, anda is antisymmetric ifa andă are disjoint. We first list the identity atoms,
then the symmetric atoms, and finally the pairs of antisymmetric atoms. We usee0,
e1, etc., to denote identity atoms, unless 1

,
is itself an atom. Pairs of antisymmetric

atoms are denoted bya, ă, andb, b̆, etc., while symmetric atoms are denoted by just
a, b, etc., since they coincide with their converses. Thus 1

,
and˘ are determined by

the list of atoms.

#1 Representative:Re0. Spectrum:{0}.
No atoms. No cycles.

#2 Representative:Re1. Spectrum:{1}.
Atom: 1

,
. Cycle: [1

,
,1

,
,1

,
].

#3 Representative:Re1× Re1.
Atoms: e0, e1. Cycles: [e0, e0, e0], [e1, e1, e1].

#4 Representative:Sg
(Re2)∅. Spectrum:{2}.

Atoms: 1
,
, 0

,
. Cycles: [1

,
,1

,
,1

,
], [1

,
,0

,
,0

,
].

#5 Representative:Sg
(Re3)∅. Spectrum:{κ : 3 ≤ κ }.

Atoms: 1
,
, 0

,
. Cycles: [1

,
,1

,
,1

,
], [1

,
,0

,
,0

,
], [0

,
,0

,
,0

,
].

#6 Representative:Re1× Re1× Re1.
Atoms: e0, e1, e2. Cycles: [e0, e0, e0], [e1, e1, e1], [e2, e2, e2].

#7 Representative:Re1× Sg
(Re2)∅.

Atoms: e0, e1, 0
,
. Cycles: [e0, e0, e0], [e1, e1, e1], [e1,0

,
,0

,
].

#8 Representative:Re1× Sg
(Re3)∅.

Atoms: e0, e1, 0
,
. Cycles: [e0, e0, e0], [e1, e1, e1], [e1,0

,
,0

,
], [0

,
,0

,
,0

,
].

#9 Representative:Sg
(Re3){P3

1}. Spectrum:{3}.
Atoms: 1

,
, a, ă. Cycles: [1

,
,1

,
,1

,
], [1

,
, a, a], [a,1

,
, a], [a, a, ă].

#10 Representative:Sg
(ReQ){L}. Spectrum:{κ : ω ≤ κ }.

Atoms: 1
,
, a, ă. Cycles: [1

,
,1

,
,1

,
], [1

,
, a, a], [a,1

,
, a], [a, a, a].

#11 Representative:Sg
(Re7){P7

1 ∪ P7
2 ∪ P7

4}. Spectrum:{7} ∪ {κ : 9 ≤ κ }.
Atoms: 1

,
, a, ă. Cycles: [1

,
,1

,
,1

,
], [1

,
, a, a], [a,1

,
, a], [a, a, ă], [a, a, a].

#12 Representative:Sg
(Re4){Q4

1}. Spectrum:{4}.
Atoms: 1

,
, a, b. Cycles: [1

,
,1

,
,1

,
], [1

,
, a, a], [1

,
, b, b], [a, b, b].

#13 Representative:Sg
(Re6){Q6

2}. Spectrum:{κ : 6 ≤ κ }.
Atoms: 1

,
, a, b. Cycles: [1

,
,1

,
,1

,
], [1

,
, a, a], [1

,
, b, b], [a, b, b], [a, a, a].

#14 Representative:Sg
(Re6){Q6

3}. Spectrum:{2κ : 3 ≤ κ }.
Atoms: 1

,
, a, b. Cycles: [1

,
,1

,
,1

,
], [1

,
, a, a], [1

,
, b, b], [a, b, b], [b, b, b].

#15 Representative:Sg
(Re9){Q9

3}. Spectrum:{κ : 9 ≤ κ }.
Atoms: 1

,
, a, b. Cycles: [1

,
,1

,
,1

,
], [1

,
, a, a], [1

,
, b, b], [a, b, b], [a, a, a],

[b, b, b].

#16 Representative:Sg
(Re5){Q5

1}. Spectrum:{5}.
Atoms: 1

,
, a, b. Cycles: [1

,
,1

,
,1

,
], [1

,
, a, a], [1

,
, b, b], [a, b, b], [a, a, b].

#17 Representative:Sg
(Re8){Q8

1 ∪ Q8
4}. Spectrum:{κ : 8 ≤ κ }.

Atoms: 1
,
, a, b. Cycles: [1

,
,1

,
,1

,
], [1

,
, a, a], [1

,
, b, b], [a, b, b], [a, a, b],

[b, b, b].
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#18 Representative:Sg
(Re(3×3)){Q3,3

1,1}. Spectrum:{κ : 9 ≤ κ }.
Atoms: 1

,
, a, b. Cycles: [1

,
,1

,
,1

,
], [1

,
, a, a], [1

,
, b, b], [a, b, b], [a, a, b],

[a, a, a], [b, b, b].

The action of; on pairs of atoms can be deciphered from the list of cycles, but it is
rather tedious to do so. The tables for the products of atoms in the algebras described
above are therefore given here explicitly. Many properties of the algebras can be more
easily recognized from these tables.

# 2 1’
1’ 1’

#3 e0 e1

e0 e0 0
e1 0 e1

#4 1’ 0’
1’ 1’ 0’
0’ 0’ 1’

#5 1’ 0’
1’ 1’ 0’
0’ 0’ 1

#6 e0 e1 e2

e0 e0 0 0
e1 0 e1 0
e2 0 0 e2

#7 e0 e1 0’
e0 e0 0 0
e1 0 e1 0’
0’ 0 0’ e1

#8 e0 e1 0’
e0 e0 0 0
e1 0 e1 0’
0’ 0 0’ e1 + 0’

#9 1’ a ă
1’ 1’ a ă
a a ă 1’
ă ă 1’ a

#10 1’ a ă
1’ 1’ a ă
a a a 1
ă ă 1 a

#11 1’ a ă
1’ 1’ a ă
a a 0’ 1
ă ă 1 0’

#12 1’ a b
1’ 1’ a b
a a 1’ b
b b b 1’+ a

#13 1’ a b
1’ 1’ a b
a a 1’+ a b
b b b 1’+ a

#14 1’ a b
1’ 1’ a b
a a 1’ b
b b b 1

#15 1’ a b
1’ 1’ a b
a a 1’+ a b
b b b 1

#16 1’ a b
1’ 1’ a b
a a 1’+ b 0’
b b 0’ 1’+ a

#17 1’ a b
1’ 1’ a b
a a 1’+ b 0’
b b 0’ 1
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#18 1’ a b
1’ 1’ a b
a a 1 0’
b b 0’ 1

4 Minimal Representations In this section we give representations for each of the
thirteen types of simple small relation algebras, and prove that these representations
are minimal and unique. Among the eighteen types of small relation algebras, those
that are simple are the ones of type #2, #4, #5, and #9 – 18. To describe the repre-
sentations, it is necessary to specify just the images of the atoms. This is done in the
following tables, except for type #18, where the image ofb is (3×3) ∼ Id3×3 ∼ Q3,3

1,1,
a relation for which we have introduced no convenient designation.

1’ 0’
#2 Id1 ∅

#4 Id2 Di2
#5 Id3 Di3

1’ a ă

#9 Id3 P3
1 P3

2

#10 IdQ L L−1

#11 Id7 P7
1 ∪ P7

2 ∪ P7
4 P7

6 ∪ P7
5 ∪ P7

3

1’ a b

#12 Id4 Q4
2 Q4

1

#13 Id6 Q6
2 Q6

1 ∪ Q6
3

#14 Id6 Q6
3 Q6

1 ∪ Q6
2

#15 Id9 Q9
3 Q9

1 ∪ Q9
2 ∪ Q9

4

#16 Id5 Q5
1 Q5

2

#17 Id8 Q8
1 ∪ Q8

4 Q8
2 ∪ Q8

3

#18 Id3×3 Q3,3
1,1

From results in J́onsson and Tarski [14] we can draw some conclusions concern-
ing some of the small algebras. Recall that an elementx is functional ifx̆ ; x ≤ 1

,
. The

algebras in which every atom is a functional element are those of type #2, #3, #4, #6,
#7, and #9. These algebras are all representable by Theorem 4.29 of [14]. Among
these algebras, the ones of type #2, #4, and #9 are integral. It follows from Theorem
5.11 of [14] that #2, #4, and #9 are isomorphic to the complex algebras of certain
groups. By Theorem 4.32 of [14], a simple relation algebra in which 1 is the join
of m functional elements is representable on a set with at mostm elements. It fol-
lows that the integers 1, 2, and 3 belong to the spectra of #2, #4, and #9, respectively.
Among the small algebras that are simple, the ones in which 0

, ;0
, ≤ 1

,
are #2 and

#4. By Theorem 4.33 of [14] these algebras are both representable on sets containing
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at most two elements. The only simple small algebra in which 0
, ;0

, = 0 is #2. By
Theorem 4.35 (i) of [14], algebra #2 is representable on a set containing exactly one
element. The only simple small algebra in which 0

, ;0
, = 1

,
is #4. By Theorem 4.35

(ii) of [ 14], algebra #4 is representable on a set containing exactly two elements. By
Theorem 4.35 (iii) of [14], if A is a simple representable relation algebra in which
0
, ;0

, = 1, then neither 1 nor 2 is in the spectrum ofA. These observations serve to
prove several parts of the following theorem. (The theorem is so elementary that it
must be regarded as well known by everyone who has studied small relation algebras.)

Theorem 4.1 Assume that A is a small simple relation algebra, and that I is a rep-
resentation of A on U.

(i) If A is #2 then |U| = 1, I is unique, and spec (A) = {1}.
(ii) If A is #4 then |U| = 2, I is unique, and spec (A) = {2}.

(iii) If A is #5 then |U| ≥ 3, I is unique, and spec (A) = {κ : κ ≥ 3}.
(iv) If A is #9 then |U| = 3, I is unique, and spec (A) = {3}.
(v) If A is #10 then |U| ≥ ω, I is unique if |U| = ω, and spec (A) = {κ : κ ≥ ω}.

Note that the table for type #9 is actually the multiplication table for a three-
element group. According to the table,ă ; a = 1

,
, a ; ă = 1

,
, anda + ă = 0

,
. These

equations imply thatI(a) is a permutation ofU that is disjoint from its inverse, such
that I(a) ∪ I(a)−1 = DiU . Such a permutation can only be a cyclic permutation of
a 3-element set. Part (iv) is actually a special case of the easily proved fact that the
complex algebra of a group of ordern has a one-element spectrum, namely{n}. This
fact can also be easily generalized.

Concerning part (v), note that ifA is type #10, then the theoryTh(A) states that
I(a) is a dense linear ordering ofU without endpoints. Also, the relation algebra gen-
erated by any dense linear ordering without endpoints is of type #10. The theory of
dense linear orderings without endpoints has spectrum{κ : κ ≥ ω} and is categorical
in powerω, so the same is true ofA.

The next theorem contains one of the surprises of our investigation. The rep-
resentation of algebra #11 on seven elements is well known, as is its uniqueness, al-
though this has not yet been explicitly stated in print. From the evidence of the spectra
of the other small algebras it would be natural to suspect that the spectrum of type #11
would be{n : n ≥ 7}, but it turns out that 8 is missing. This was discovered first by a
computer search.

Theorem 4.2 If A is algebra #11 and I is a representation of A on U, then |U| ≥ 7,
I is unique if |U| = 7, and spec (A) = {7} ∪ {κ : κ ≥ 9}.
Proof: Let A = I(a). Wewill use the following proposition several times.

(1) Assumeu ∈ U, and eitherX = { x : u Ax } or X = { x : x Au }. For everyx ∈ X
there arey, z ∈ X such thaty Ax Az, u, x, y, z are distinct, and thus|X| ≥ 3.

To prove (1), suppose first thatX = { x : u Ax }. From 1
, ≤ a ; ă we get〈u, u〉 ∈

IdU = I(1
,
) ⊆ I(a ; ă) = A|A−1, soX �= ∅. Let x ∈ X. Froma ≤ a ; a · a ; ă we get

〈u, x〉 ∈ A = I(a) ⊆ I(a ; a · a ; ă) = A|A ∩ A|A−1, sothere arey, z ∈ U such that
u A y, y Ax, u Az, andzA−1x. Thereforey, z ∈ X, y Ax Az, andu, x, y, z are distinct
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sincea · 1
, = 0 = a · ă. If X = { x : x Au }, then the same conclusions follow from

ă ≤ ă ; ă · ă ; a.
It follows immediately from (1) that|U| ≥ 7.
Suppose|U| = 7. Chooseu ∈ U. Let X = { x : x Au } and Y = { y : u A y }.

Since|U| = 7, (1) implies that|X| = |Y | = 3 and the restrictions ofA to X and
to Y are 3-cycles. Hence there arex1, x2, x3, y1, y2, y3 such thatX = { x1, x2, x3 },
Y = { y1, y2, y3 }, x1 Ax2, x2 Ax3, x3 Ax1, y1 A y2, y2 A y3, and y3 A y1. By (1), x1

must have exactly one otherA-image, which must be inY . So we may also assume
x1 A y1, y2 Ax1, andy3 Ax1. By (1), the restrictions ofA to { z : x1 Az } = { u, x2, y1 }
and to{ z : z Ax1 } = { x3, y2, y3 } must be 3-cycles, so we also gety1 Ax2, y3 Ax3, and
x3 A y2. Now y2 must have one moreA-image, hencey2 Ax2, and thenx2 must have
one more, sox2 A y3, and finally,y1 must have one moreA-image, which must bex3.
This completely determinesA, so the representation is unique when|U| = 7.

Assume|U| = 8. We will derive a contradiction. By (1), everyu ∈ U has either
three or fourA-images. If everyu ∈ U has exactly threeA-images, then|A| = 3 · 8 =
24, but|A| = 28, so we get someu ∈ U with exactly fourA-images, sayy1, y2, y3,
andy4. Let Y = { y1, y2, y3, y4 } andX = { x1, x2, x3 } = { z : z Au }. By (1) we may
assumex1 Ax2, x2 Ax3, andx3 Ax1. Also by (1), everyy ∈ Y has anA-image inY ,
and is theA-image of something inY . Up to isomorphism there is just one restriction
of A to Y that has these properties, and we may therefore assumey1 A y2, y2 A y3,
y3 A y4, y4 A y1, y1 A y3, and y2 A y4. Since〈y2, y3〉 ∈ I(0

,
) = A|A, there is some

z ∈ U such thaty2 Az andz A y3. Thenz ∈ X, so wemay assumey2 Ax1 andx1 A y3.
Then〈y2, x2〉 ∈ I(0

,
) = A−1|A, so there must be somez such thatz A y2 andz Ax2,

but the only possibility forz is y1, so y1 Ax2. There is somez such thaty4 Az and
x2 Az, but the only possibility isx3, so y4 Ax3. Finally, there must be somez such
thatx3 Az andy3 Az, but there is no possibility forz, so wehave a contradiction. Thus
8 /∈ spec(A).

We get a representation on 9 points by settingI(a) = P9
1 ∪ P9

2 ∪ P9
4 ∪ P9

6,
so 9 ∈ spec(A). Let 	0 = {1,3,4,5,9}, and, for everyα < ω, let 	α+1 =
{1} ∪ {2α + 12− κ : κ ∈ 	α }. Set Iα(a) = ⋃{

P2α+11
κ : κ ∈ 	α

}
. Straightforward

calculations show thatIα determines a 1-redundant representation on 2α + 11 points,
so by deleting any point we also get a representation ofA on 2α + 10 points. Thus
{κ : 10≤ κ } ⊆ spec(A).

For our next theorem we need the following simple lemma, concerning the small
relation algebras in which 1

, + a is an equivalence element. An elementx is an equiv-
alence element ifx ; x = x andx̆ = x. Parts (ii) and (iii) of the lemma contain obser-
vations that are also made (in slightly different terminology) in the remarks following
Definition 9.1 on page 41 of Jónsson [12].

Lemma 4.3 If A is type #12, #13, #14, or #15, and E = I(a + 1
,
), then

(i) E is an equivalence relation on U,

(ii) each E-class has exactly two elements iff [a, a, a] is not a cycle (i.e., A is #12
or #14),

(iii) each E-class has three or more elements iff [a, a, a] is a cycle (i.e., A is #13 or
#15),

(iv) there are exactly two E-classes iff [b, b, b] is not a cycle (i.e., A is #12 or #13),
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(v) there are three or more E-classes iff [b, b, b] is a cycle (i.e., A is #14 or #15).

In Theorem 10.2 of [12], Jónsson notes that there are four isomorphism types
of simple relation algebras generated by an equivalence elemente such that 1

,
< e.

These types are #12, #13, #14, and #15. Jónsson mentions only that they are rep-
resentable on sets with nine or fewer elements. Of course, the exact cardinalities of
their minimal representations, and the uniqueness of their minimal representations
have been clear to many who have studied small relation algebras. We summarize
these facts in the next theorem, together with our observations concerning spectra and
extendibility of representations.

Theorem 4.4 Assume that A is a small simple relation algebra, and that I is a rep-
resentation of A on U.

(i) If A is #12 then |U| = 4, I is unique, and spec (A) = {4}.
(ii) If A is #13 then |U| ≥ 6, I is 1-extendible, I is unique iff |U| = 6 or U = 7, and

spec (A) = {κ : κ ≥ 6}.
(iii) If A is #14 then |U| ≥ 6, |U| is even, I is unique, I is 2-extendible, and spec(A)

= {2κ : κ ≥ 3}.
(iv) If A is #15 then |U| ≥ 9, I is 1-extendible, I is unique iff |U| = 9 or |U| = 10,

and spec (A) = {κ : κ ≥ 9}.
Proof Proof of (i): By Lemma 4.3, there are exactly twoI(a + 1

,
)-classes with ex-

actly two elements each.
[Proof of (ii)] By Lemma 4.3,I(a + 1

,
) is an equivalence relation with exactly

two classes, each of which contains three or more elements. Therefore|U| ≥ 6, and
any representation may be extended by one element by increasing the size of one or
the other equivalence class. Note that there aren nonisomorphic representations of
type #13 on 2n + 4 and 2n + 5 elements. SoI is unique iff |U| is 6 or 7. There are
representations over every cardinality greater than 6 since every representation is 1-
extendible.

[Proof of (iii)] By Lemma 4.3, there are at least threeI(a + 1
,
)-classes with ex-

actly two elements each. Therefore|U| ≥ 6 and|U| must be even. ClearlyI is unique.
Toobtain a 2-extension, just add one more equivalence class to the representation. By
repeatedly forming 2-extensions, we get representations ofA for all even finite car-
dinalities larger than 6, and all infinite cardinalities.

[Proof of (iv)] By Lemma 4.3,I(a + 1
,
) is an equivalence relation with three or

more classes, each of which contains three or more elements. Therefore|U| ≥ 9, and
any representation may be extended by one element by increasing the size of one of
the equivalence classes. The number of nonisomorphic representations is not so easy
to compute, but it is easy to see that uniqueness occurs just in caseU has just nine or
ten elements.

The next result is quite well known (see, for example, Maddux [17], pp. 369–70,
or Comer [2].)

Theorem 4.5 If A is #16 and I is a representation of A on U, then |U| = 5, I is
unique, and spec (A) = {5}.
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Proof: Let A = I(a) and B = I(b). Note A and B form a partition ofDiU with
A−1 = A, B−1 = B, andA|A ∩ A = B|B ∩ B = ∅. We may therefore apply Theo-
rem 1 of Greenwood and Gleason [10] to conclude that|U| ≤ 5. (The theorem ap-
peared as a question in the William Lowell Putnam Mathematical Competition of
March 1953. “Six points are in general position in space (no three in a line, no four
in a plane). The fifteen line segments joining them are drawn, and then painted, some
segments red, some blue. Prove that some triangle has all its sides the same color.”)
Since 0�= a ≤ (b · a ; a); (b · a ; a), there areu0, u1, u2, u3, u4 ∈ U such thatu0 Au1,
u0 Bu3, u3 Bu1, u0 Au4, u4 Au3, u1 Au2, andu3 Au2. Thus|U| = 5. Finally,u0Bu2,
u2 Bu4, andu4 Bu1 sinceA|A ∩ A = ∅, so I is unique.

Lemma 4.6 If A is #17 or #18 then for every x ∈ U, |{y : 〈x, y〉 ∈ I(a)}| ≥ 3 and
|{y : 〈x, y〉 ∈ I(b)}| ≥ 4.

Proof: Let A = I(a) and B = I(b). Chooseu1 so thatx Au1. By the type ofA,
a ≤ a ; (b · b ; b), sothere areu2, u3 ∈ U such thatx Au2, u1 Bu2, u2 Bu3, u3 Bu1, and
|{x, u1, u2, u3}| = 4. If x Au3 thenu1, u2, u3 ∈ {y : 〈x, y〉 ∈ I(a)}, so assumex Bu3.
Sinceb ≤ a ; a there is someu4 ∈ U such thatx Au4 andu4 Au3. Note thatu4 �= u1, u2

sinceu1 Bu3 andu2 Bu3. So in either case we get|{y : 〈x, y〉 ∈ I(a)}| ≥ 3.
Next chooseu1 ∈ U so thatx Bu1. The type ofA is such thatb ≤ b ; (b · a ; (b ·

b ; (b · a ; b))), sothere areu2, u3, u4, u5 ∈ U such thatx Bu2, u1 Bu2, x Bu3, u2 Au3,
x Bu4, u3 Bu4, x Bu5, andu4 Au5. Clearlyu1 �= u2 �= u3 �= u4 �= u5, u1 �= u3, u2 �= u4,
andu3 �= u5. Notice also that eitheru1 �= u4 or u2 �= u5. Hence|{u1, u2, u3, u4, u5}| ≥
4.

Theorem 4.7 If A is #17 then |U| ≥ 8, if |U| = 8 then I is unique, and spec (A) =
{κ : κ ≥ 8}.
Proof: It follows from Lemma 4.6 that|U| ≥ 8.

Suppose|U| = 8. Let A = I(a) and B = I(b). There are noA-triangles since
A|A ∩ A = ∅. Sincea ≤ (b · a ; a); (b · a ; a), there areu0, u1, u2, u3, u4 ∈ U such
thatu0 Au1, u0 Bu2, u2 Bu1, u0 Au3, u3 Au2, u2 Au4, andu4 Au1. It follows thatu0,

u1, u2, u3, u4 are distinct. Since there are noA-triangles, we also getu0 Bu4, u4 Bu3,
andu3 Bu1. Let X = {u0, u1, u2, u3, u4}. Notice thatI is now completely determined
on X, and the restrictions ofA andB to X are 5-cycles.

Let Y = U ∼ X = {u5, u6, u7}. By Lemma 4.6, everyx ∈ U has exactly fourB-
images and exactly threeA-images. For everyy ∈ Y , the threeA-images ofy cannot
all be in X, since there are noA-triangles, but every three-element subset ofX con-
tains a pair inA. So every y ∈ Y has anA-image inY . SinceY does not contain an
A-triangle, there is essentially only one way this can happen, namelyu5 Au6, u5 Au7,
andu6 Bu7.

Now u5 has one moreA-image, which must be inX. By the symmetry ofA and
B on X we may assume thatu5 Au0. Next,u1 has exactly one otherA-image besides
u0 andu4. It cannot beu5 sinceu5 already has threeA-images. Hence eitheru1 Au6

or u1 Au7. But u6 andu7 are still interchangeable, so we may assumeu1 Au6. The
remainingA-image ofu4 must be inY , cannot beu5 sinceu5 has threeA-images,
and cannot beu6 since otherwiseu1, u4, andu6 would form anA-triangle. Hence
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u4 Au7. So far, u7 has twoA-images. The remaining one cannot beu0, u1, or u2,
since otherwise there would be anA-triangle. Henceu3 Au7.

At this point every element ofU has threeA-images exceptu2 andu6, each of
which has only twoA-images. It follows thatu2 Au6. Now all elements ofU have
threeA-images, henceB must be all pairs of distinct elements ofU that are not inA.
Thus A and B have been completely determined, and the representation is unique.
Incidentally, if f is the mapping fromU to 8 that takesu0, u1, u2, u3, u4, u5, u6, and
u7 to 0, 1, 6, 7, 2, 4, 5, and 3, respectively, thenQ8

1 ∪ Q8
4 = f −1|A| f .

The unique representation of #17 on eight elements happens to be finitely ex-
tendible but not 1-extendible. We will construct explicit representions on all car-
dinalities of 9 or more. Letα be any cardinal, and letU = {uκ : κ < α} ∪ {vκ :
κ < α} ∪ {wκ : κ < α} ∪ {x, y, z}, so that |U| = 3α + 3. Let I(a) = R ∪ R−1 and
I(b) = (U × U) ∼ (I(a) ∪ IdU ), whereR is the relation onU that contains the fol-
lowing pairs:

• 〈x, y〉, 〈y, z〉,
• 〈x, uκ〉, κ < α,
• 〈y, vκ〉, κ < α,
• 〈z,wκ〉, κ < α,
• 〈uκ, vλ〉, κ < λ < α,
• 〈uκ,wκ〉, κ < α,
• 〈vκ,wκ〉, κ < α.

Then I yields a representation ofA on 3α + 3 points wheneverα ≥ 2. Furthermore,
if α ≥ 3, then the restriction ofI to U ∼ {x} is a representation ofA on 3α + 2 points,
and the restriction ofI to U ∼ {x, y} a representation ofA on 3α + 1 points. It is
interesting to note that ifα = 3 then the restriction ofA to U ∼ {x, y} is the Peterson
graph ([9], pp. 186–7).

Theorem 4.8 If A is #18 then |U| ≥ 9, if |U| = 9 then I is unique, and spec (A) =
{κ : κ ≥ 9}.
Proof: Let u ∈ U. By Lemma 4.6,u has at least fourB-images. There is an auto-
morphism ofA that interchangesa andb, so by Lemma 4.6 it also follows thatu has
at least fourA-images. Hence|U| ≥ 9.

Assume|U| = 9. Let X = {x0, x1, x2, x3} be the set ofA-images ofu, and let
Y = {y0, y1, y2, y3} be the set ofB-images ofu. Sincea ≤ a ; a, everyx ∈ X has
an A-image inX, so x has at most twoB-images inX. Therefore everyx ∈ X has
at least twoB-images inY , and|B ∩ (X × Y )| ≥ 8. Similarly, |A ∩ (X × Y )| ≥ 8.
But |X × Y | = 16, so|B ∩ (X × Y )| = 8 = |A ∩ (X × Y )|, every x ∈ X has one
A-image inX, two B-images inX, andtwo B-images inY , and everyy ∈ Y has one
B-image inY , two A-images inY , andtwo A-images inX. It follows that|A ∩ X2| =
2 = |B ∩ Y2|, |B ∩ X2| = 4 = |A ∩ Y2|, A ∩ X2 and B ∩ Y2 are transpositions, and
B ∩ X2 andA ∩ Y2 are 4-cycles. For every pair

〈
x, x′〉 ∈ B ∩ X2, there is somey such

thatxBy andyBx′. There is noB-triangle in{u} ∪ X, soy ∈ Y . No two suchy’s are
the same, since otherwise some element ofY would have more than fourB-images.
Wemay therefore assume thatx1 Bx2, x2 Bx3, x3 Bx4, x4 Bx1, x1 Ax3, x2 Ax4, x1 B y1,
x2 B y1, x2 B y2, x3 B y2, x3 B y3, x4 B y3, x4 B y4, andx1 B y4. Supposey1 A y3. Then
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there must be somez ∈ U ∼ {y1, y3} such thaty1 Az andz A y3, sincea ≤ a; a. But
everyz ∈ U ∼ {y1, y3} is B-related to eithery1 or y3. Hencey1 B y3, and, similarly,
y2 B y4. We therefore havey1 A y2, y2 A y3, y3 A y4, andy4 A y1, so A andB are now
completely determined.

Let α > 2. LetU = {uκ : κ < α} ∪ {vκ : κ < α} ∪ {wκ : κ < α} ∪ {x, y}. Let R
be the relation onU that contains the following pairs:

• 〈uκ, uλ〉, κ < λ < α,
• 〈vκ, vλ〉, κ < λ < α,
• 〈wκ,wλ〉, κ < λ < α,
• 〈uκ, vκ〉, 〈uκ,wκ〉, 〈vκ,wκ〉, κ < α,
• 〈x,w0〉, 〈x, v0〉, 〈x, v1〉, 〈x, u0〉,
• 〈y,w1〉, 〈y,w2〉, 〈y, v0〉, 〈y, v1〉.

Then I yields a representation ofA on 3α + 2 points, the restriction ofI to U ∼ {y}
is a representation ofA on 3α + 1 points, and the restriction ofI to U ∼ {x, y} a
representation ofA on 3α points. Thus spec(A) = {κ : κ ≥ 9}.
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Andréka, J. Monk, and I. Ńemeti, Colloqium Mathematical Society J. Bolyai, vol. 54,
North-Holland, Amsterdam, 1991.Zbl 0749.03048 MR 93c:03082 4

[18] McKenzie, R.,The representation of relation algebras, Doctoral dissertation, Univer-
sity of Colorado, Boulder, 1966.1, 2

[19] McKenzie, R., “The representation of integral relation algebras,”Michigan Mathemat-
ical Journal, vol. 17 (1970), pp. 279–287.1

[20] Wostner, U., “Finite relation algebras,”Notices of the American Mathematical Society,
vol. 23 (1976), p. A–482.1

Mathematical Institute
Hungarian Academy of Science, Reáltanoda u. 13–15
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