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Levi Contractions and AGM Contractions:
a Comparison

SVEN OVE HANSSON and ERIK J. OLSSON

Abstract A representation theorem is obtained for contraction operators that
are based on Levi’s recent proposal that selection functions should be applied to
the set of saturatable contractions, rather than to maximal subsets as in the AGM
framework. Furthermore, it is shown that Levi’s proposal to base the selection
on a weakly monotonic measure of informational value guarantees the satisfac-
tion of both of G̈ardenfors’ supplementary postulates for contraction. These re-
sults indicate that Levi has succeeded in constructing a well-behaved operation
of contraction that does not satisfy the postulate of recovery.

1 Introduction Much of the recent development in the study of belief change is
based on ideas from Levi’s early work, for example his [8]. In later years, the for-
mal development has to a large part focused on a set of proposals from Alchourrón,
Gärdenfors, and Makinson, (see their [1]), commonly referred to as the AGM model
of belief change. In his recent book [9], Levi has proposed a way of performing be-
lief contraction that differs in important respects from the AGM model. In this paper,
we are going to present a formal development of Levi’s ideas that allows for precise
comparisons with the AGM model.

Both Levi and the AGM trio assume that belief states can be represented by a
logically closed set of sentences, the “corpus” (Levi) or “belief set” (AGM). Opera-
tions of change, such as belief contraction, are applied to the corpus.

The basic mechanism for contraction in the AGM model is that ofpartial meet
contraction. It is defined by the following identity:

K ÷ p = ∩γ(K⊥p).

K⊥p is the set of all inclusion-maximal subsets ofK that do not implyp. γ is a
selection function, such thatγ(K⊥p) is a nonempty subset ofK⊥p unless the latter
is empty, in which caseγ(K⊥p) = {K}. Thus, in the principal case, the outcome of
partial meet contraction is equal to the intersection of the maximally inclusive subsets
of K that do not implyp.

A selection function, and the operator of partial meet contraction that it gener-
ates, arerelational if and only if there is a relation� such that for all nonemptyK⊥p:
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γ(K⊥p) = {K ′ ∈ K⊥p|K ′′�K ′ for all K ′′ ∈ K⊥p}.
It is transitively relational if and only if it is relational by a relation that is transitive.

AGM obtained a set of elegant representation theorems for partial meet contrac-
tion, referring to the following set of postulates, commonly called the Gärdenfors pos-
tulates:

(G–1) K÷ p is logically closed ifK is logically closed (closure),
(G–2) K ÷ p ⊆ K (inclusion),
(G–3) if p �∈ Cn(K) thenK ÷ p = K (vacuity),
(G–4) if p �∈ Cn(∅) then p �∈ K ÷ p (success),
(G–5) if p ↔ q ∈ Cn(∅) thenK ÷ p = K ÷ q (extensionality),
(G–6) K ⊆ Cn((K ÷ p) ∪ {p}) (recovery),
(G–7) (K ÷ p) ∩ (K ÷ q) ⊆ K ÷ (p&q) (intersection),
(G–8) if p �∈ K ÷ (p&q) thenK ÷ (p&q) ⊆ K ÷ p (conjunction).

An operator÷ on a belief setK is a partial meet contraction if and only if it sat-
isfies the first six of these postulates, the “basic Gärdenfors postulates.” It is a transi-
tively relational partial meet contraction if and only if it also satisfies the remaining
two postulates, the “supplementary” Gärdenfors postulates, see [1].

The most controversial among the basic Gärdenfors postulates is that of recov-
ery. According to that postulate, if we contractp from K and then addp, nothing will
be lost. In the presence of the other basic postulates recovery implies that we in this
case indeed end up inK. Gärdenfors argues for the recovery postulate by appealing
to informational economy: “information is in general not gratuitous, and unnecessary
losses of information are therefore to be avoided,” (see page 48 of his [4]).

In his book, Levi argues forcefully against the recovery postulate. His main
point is that “measures of informational value ought to be carefully distinguished
from measures of information” (see page 123 of [9]). Not all information is of value to
the inquiring agent; hence, not every piece of information needs to be retained when
moving from one belief state to another. However, the agent should retain as much
as possible of thevaluable information. Levi’s recommendation is that we, instead
of trying to minimize the loss of information, should try to minimize the loss of in-
formational value. This may lead to violations of the postulate of recovery.

Several other authors have expressed doubts concerning the recovery postulate.
For example, Makinson remarked that recovery is “the only one among the six [basic
Gärdenfors postulates] that is open to query from the point of view of acceptability
under its intended reading” (see page 385 of his [10]). For further criticism of the
recovery postulate, see Hansson [5] and Niedeŕee [11].

The intuitive doubtfulness of the recovery postulate provides a good reason to
try to find alternative constructions satisfying the other basic Gärdenfors postulates
but not recovery. In his book, Levi presented such an alternative construction, which
is quite similar to partial meet contraction. It is based on a selection, not among the
maximally inclusive subsets ofK that fail to imply p, but among the “saturatable con-
tractions,” a larger set of subsets ofK that fail to imply p.

In order to compare AGM’s and Levi’s contractions, they must be brought into
the same formal apparatus. In this paper we are going to achieve this mainly by ex-
pressing what we believe to be Levi’s basic ideas in the same formal framework that
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is used by AGM. This paper is a formal investigation of Levi’s solution to the prob-
lem ofhow to contract. It should be emphasized that this is but one of many aspects of
Levi’s complete theory of contraction, which also deals at length with, for example,
the problems ofwhether to contract in a given situation and, provided that contraction
is admissable,what belief to remove.

2 Formal preliminaries In this section, some definitions and a postulate are given
that will prove to be useful in the formal study of Levi-contractions.

Definition 2.1 Let L (the language) be a set of expressions that is closed under
truth-functional operations. A consequence operation onL is a functionCn from
P (L ) to P (L ) such that, for all subsetsA andB of L :

(i) A ⊆ Cn(A) (inclusion),

(ii) if A ⊆ B, thenCn(A) ⊆ Cn(B) (monotony),

(iii) Cn(A) = Cn(Cn(A)) (iteration).

A subsetA of L is consistent if and only if there is nox ∈ L such that bothx ∈ Cn(A)

and¬x ∈ Cn(A).

The elements ofL will be denoted by lowercase letters. Subsets ofL will be de-
noted by uppercase letters. The relational notationA 
 x will be used interchangeably
with x ∈ Cn(A). It will be assumed that the consequence operator includes classical
truth-functional logic and satisfies the properties of deduction and compactness:

Proposition 2.2 Cn satisfies the following three properties:

(iv) if x can be derived from A by classical truth-functional logic, then x ∈ Cn(A)

(supraclassicality),

(v) y ∈ Cn(A ∪ {x}) if and only if (x → y) ∈ Cn(A) (deduction),

(vi) if x ∈ Cn(A), then x ∈ Cn(A′) for some finite subset A′ ⊆ A (compactness).

The following notation is adopted from the AGM literature (see Alchourrón and
Makinson [2]):

Definition 2.3 Let K ⊆ L and A ⊆ L . Then X ∈ K⊥A if and only if:

(i) X ⊆ K,

(ii) X � a, for all a ∈ A,

(iii) if X ⊂ Y ⊆ K, thenY 
 a for somea ∈ A.

Thus,K⊥A is the set of inclusion-maximal subsets ofK that do not imply any of
the sentences inA. Welet K⊥x abbreviateK⊥{x}. A simple consequence of Defini-
tion 2.3is that if K is logically closed, andX ∈ K⊥A, thenX is also logically closed.
As a special case of this notational convention,L⊥⊥ is a convenient way to denote
the set of maximally consistent subsets ofL .

Below, selection functions will be used as choice mechanisms, see Rott, [14].
The idea is that, given a set of possible states after contraction, the selection function
should choose the optimal elements from that set. For example, if the input to the
selection function isK⊥x, the inclusion-maximal subsets ofK that do not implyx, the
output should be a subset ofK⊥x containing only its optimal elements. We will return
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to the issue of standards of optimality in a subsequent section. The formal definition
of a selection function amounts to the following:

Definition 2.4 Let K be a subset ofL . γ is a selection function on K iff γ is a
function fromP P (K) to P P (K), such thatγ(�) is a nonempty subset of�, unless
� is empty, in which caseγ(�) = {K}.

If � is empty, so that there is no possible contraction option, then the agent
should remain inK. Technically, this is provided for by setting the output of the se-
lection function equal to the singleton{K} if � is empty.

Two limiting cases of selection functions are, first, those that (for allx) select a
single optimal element ofK⊥x and, second, those that (for allx) pick out every ele-
ment ofK⊥x as optimal. We can now introduce the three basic types of contraction
that have been discussed by AGM: maxichoice, full meet and partial meet contrac-
tion:

Definition 2.5 Let γ be a selection function onK.

(i) γ is opinionated iff γ(K⊥x) is a singleton for allx.
(ii) γ is ignorant iff K⊥x ⊆ γ(K⊥x) for all x.

Furthermore:

(iii) ÷ is amaxichoice AGM-contraction operator for K iff there exists an opinion-
ated selection functionγ on K such that for allx ∈ L, K ÷ x = ∩γ(K⊥x).

(iv) ÷ is a full meet AGM-contraction operator for K iff there exists an ignorant
selection functionγ on K such that for allx ∈ L, K ÷ x = ∩γ(K⊥x).

(v) ÷ is apartial meet AGM-contraction operator for K iff there exists a selection
functionγ on K such that, for allx ∈ L, K ÷ x = ∩γ(K⊥x).

If the selection function picks out more than one element ofK⊥x as optimal,
then the agent is presented with a new decision problem: how should one choose be-
tween the different optimal elements? The solution which AGM offer to this problem
is to take what is common to the all the optimal elements, i.e., the meet of these ele-
ments.

3 Levi-contractions It was noted already by Alchourrón and Makinson in [2] that
if x ∈ K, then all elementsX of K⊥x have the property thatCn(X ∪ {¬x}) ∈ L⊥⊥.
(For a proof, see Lemma4.5below of which this result is an immediate consequence.)
In other words, ifx is deleted using maxichoice contraction and¬x is then added,
then the logical closure of the resulting set is a maximally consistent set. However,
the elements ofK⊥x are not all the sets that have this property. Levi’s basic proposal
is that we, instead of restricting ourselves toK⊥x, should focus on a superset ofK⊥x
consisting of all the logically closed subsets ofK that have this property, i.e., allX ⊆
K such thatX = Cn(X) andCn(X ∪{¬x}) ∈ L⊥⊥. These are, in Levi’s terminology,
the set of saturatable contractions ofK by removingx. This set will, following Levi,
be denoted byS(K, x).

Definition 3.1 Let K be a logically closed subset ofL and x ∈ L . Then X ∈
S(K, x) if and only if:

(i) X = Cn(X),
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(ii) X ⊆ K,

(iii) Cn(X ∪ {¬x}) is maximally consistent inL .

The following lemma shows thatS(K, x) is indeed a superset ofK⊥x.

Lemma 3.2 Let K be a logically closed subset of L , and let x ∈ K. Then K⊥x ⊆
S(K, x).

Proof: The proof is based on Observation 3.2 in [2]. If x is a tautology, thenK⊥x =
∅ ⊆ S(K, x) and we are finished. LetX ∈ K⊥x for a nontautologicalx ∈ K. We
will show that X ∈ S(K, x). It follows from the definition ofK⊥x that X is a log-
ically closed subset ofK so that (i) and (ii) are satisfied. For (iii), suppose to the
contrary that there is somey such thaty �∈ Cn(X ∪ {¬x}) and¬y �∈ Cn(X ∪ {¬x}).
Then¬x → y �∈ Cn(X) and¬x → ¬y �∈ Cn(X), and thus¬x → y �∈ X and
¬x → ¬y �∈ X. Since both¬x → y and¬x → ¬y follow logically from x, and
x ∈ K, they are both elements ofK. It follows from¬x → y ∈ K\X andX ∈ K⊥x
that X ∪ {¬x → y} 
 x, and similarly from¬x → ¬y ∈ K\X andX ∈ K⊥x that
X ∪ {¬x → ¬y} 
 x. It follows from X ∪ {¬x → y} 
 x andX ∪ {¬x → ¬y} 
 x
that X 
 x, contrary toX ∈ K⊥x.

Note that it follows from Definition3.1 that if X ∈ S(K, x), thenx �∈ Cn(X).
Note also that ifx is a tautology, then there exists no saturatable contraction ofK by
removingx. Thus,S(K, x) is empty if and only ifK⊥x is empty.

The following example, adopted from page 121 of Levi [9] should serve to give
an intuitive idea of what saturatable contractions are. LetL be the language contain-
ing only the truth-functional compounds ofp andq. Let K = Cn({p, q}). The ele-
ments ofS(K, p) are the following:

(1) Cn({p ↔ q}),
(2) Cn({q}),
(3) Cn({q → p}), and

(4) Cn({¬q → p}).
It is easily seen that, for instance,Cn({q → p}) ∈ S(K, p). For it is the case that

Cn(Cn({q → p}) ∪ {¬p}) = Cn({¬p,¬q}), which is maximally consistent inL .
It can also be verified thatCn({q → p}) is not maxichoice, sinceCn({q → p}) ⊂
Cn({p ↔ q}) ⊆ K andCn({p ↔ q}) � p. Thus, not all saturatable contractions are
maxichoice contractions. The definition of saturatable contractions is not empty; in
this example there are two nonsaturatable logically closed subsets ofK that do not
containp : Cn({p → q}) andCn(∅). However, the latter two sets are both meets
of saturatable contractions. ForCn({p → q}) is the meet of options (1) and (2), and
Cn(∅) is the meet of options (3) and (4).

Recall that a selection function is opinionated if it selects exactly one element
from K⊥x for all x, and ignorant if it selects all elements ofK⊥x for all x such that
K⊥x is nonempty. In a parallel fashion, we may call a selection function saturatably
opionionated if it selects exactly one element fromS(K, x) for all x, and saturatably
ignorant if it selects all elements ofS(K, x) for all x such thatS(K, x) is nonempty.
Once these concepts have been introduced, we can define the counterparts in Levi’s
theory to maxichoice, full meet and partial meet contraction.
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Definition 3.3 Let γ be a selection function onK.

(i) γ is saturatably opinionated iff γ(S(K, x)) is a singleton for allx.
(ii) γ is saturatably ignorant iff S(K, x) ⊆ γ(S(K, x)) for all x.

Furthermore:

(iii) ÷ is amaxichoice Levi-contraction operator for K iff there exists a saturatably
opinionated selection functionγ on K such that for allx ∈ L : eitherx ∈ K and
K ÷ x = ∩γ(S(K, x)) or x �∈ K andK ÷ x = K.

(iv) ÷ is a full meet Levi-contraction operator for K iff there exists a saturatably
ignorant selection functionγ on K such that for allx ∈ L : eitherx ∈ K and
K ÷ x = ∩γ(S(K, x), or x �∈ K andK ÷ x = K.

(v) ÷ is a partial meet Levi-contraction operator for K iff there exists a selec-
tion functionγ on K such that, for allx ∈ L : either x ∈ K and K ÷ x =
∩γ(S(K, x)), or x �∈ K andK ÷ x = K.

Note that contrary to AGM contraction, Levi-contraction is not defined for belief
bases, i.e., for sets of sentences that are not logically closed.

As Definition 3.3 reveals, defining the Levi-contraction operators is slightly
more complicated than defining the corresponding AGM operators. At first, one
might wish to define Levi-contraction so thatK ÷ x = ∩γS(K, x) for all x, not just
for x ∈ K. This is the way the corresponding definition for AGM-contraction is for-
mulated, and Levi’s text gives the impression that this is how he wants the definition.
It turns out however that forx �∈ K this mode of defining saturatable contraction does
not work. The reason for this is that forx �∈ K the postulate of vacuity (G–3) may
not be satisfied, as can be seen from the following example. LetL be the language
containing all truth-functional combinations ofa andb. Let K = Cn({a, b}) and let
K ′ = Cn({a}). Of course,¬b �∈ K. Since{K, K ′} ⊆ S(K,¬b), it may well be the
case thatγS(K,¬b) = {K, K ′}, and thus∩γS(K,¬b) = ∩{K, K ′} = K ′.

Levi, as well as the originators of the AGM-theory, considers vacuity to be a
desirable property of contraction, and he explicitly intends thatx �∈ K should imply
that K ÷ x = K. To quote from Levi: “. . . if we are instructed to give upA from
K when A is not in K, there is nothing we are instructed to give up. . . So . . . we
should take the value of the contraction to beK itself,” (See [9], p. 133; Levi uses
underlined capitals to denote sentences as well as corpora). We concur with Levi that
vacuity should be satisfied. In the definition of Levi-contractions, contrary to that of
AGM-contractions, the case of vacuous contraction must be separately provided for.

Note thatx being a tautology implies thatS(K, x) is empty, and hence that
γ(S(K, x)) = {K}. In this caseK ÷ x = K. This fully accords with Levi’s intention:
“In contraction,A is removed fromK. This can happen consistently with (K–1) if
and only if A is not a logical truth,” (page 133 of [9], our emphasis).

4 An axiomatic characterization Levi does not give an axiomatic characterization
of his contractions. However, he notes that the postulates of closure, inclusion, vacu-
ity, success and extensionality are satisfied by any partial meet Levi-contraction, (see
page 134 of [9]). An operator that satisfies these five postulates is awithdrawal in the
sense of Makinson, (page 388 of [10]). As we have seen, the withdrawal postulates
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together with the recovery postulate characterize partial meet AGM-contraction. As
it turns out, just dropping the recovery postulate is not sufficient to characterize par-
tial meet Levi-contraction. The following representation theorem is the main result
of this section:

Theorem 4.1 Let K = Cn(K) ⊆ L . ÷ is a partial meet Levi-contraction operator
on K if and only if:

(i) K ÷ p = Cn(K ÷ p) (closure),
(ii) K ÷ p ⊆ K (inclusion),

(iii) if � p, then K ÷ p � p (success),
(iv) if 
 p ↔ q, then K ÷ p = K ÷ q (extensionality),
(v) if K � p, then K ÷ p = K (vacuity),

(vi) if 
 p, then K ÷ p = K (failure).

In the proof, the following postulate will be referred to:

Proposition 4.2 (uniformity) If ∀B [ B ⊆ K ⇒ B 
 p iff B 
 q ], then K ÷ p =
K ÷ q.

The following lemmas will be used in the proof:

Lemma 4.3 Let K be a logically closed subset of L . If ÷ satisfies extensionality
and vacuity, then ÷ satisfies uniformity.

Proof: Let K be a logically closed set and÷ an operator forK that satisfies exten-
sionality and vacuity. In order to prove that uniformity is satisfied, letp andq be two
sentences such that for all subsetsB of K, B 
 p if and only if B 
 q. We are going
to show thatK ÷ p = K ÷ q.

First, let us treat the case whenK � p. It follows by vacuity thatK ÷ p = K.
SinceK is a subset of itself, it follows fromK � p thatK � q. By vacuity,K ÷ q = K,
so thatK ÷ p = K ÷ q.

Next, let us treat the principal case, in whichp ∈ K. SinceK is logically closed
we haveCn({p}) ⊆ K. SinceCn({p}) ⊆ K andCn({p}) 
 p, Cn({p}) 
 q. Hence,

 p → q. In asimilar fashion we proveCn(q) 
 p and consequently
 q → p. It
follows that
 p ↔ q. Wemay conclude by extensionality thatK ÷ p = K ÷ q.

Lemma 4.4 Let K be a logically closed subset of L and x a sentence. If K ′ ∈ K⊥x,
then K ′ ∈ K⊥y for any y ∈ K such that y �∈ K ′.

Proof: Suppose thatK ′ ∈ K⊥x andy ∈ K\K ′. To show thatK ′ ∈ K⊥y, it suffices
to show that, wheneverK ′ ⊂ K ′′ ⊆ K, y ∈ Cn(K ′′). Let K ′′ be such thatK ′ ⊂ K ′′ ⊆
K. BecauseK ′ ∈ K⊥x, we havex ∈ K ′′. Now suppose thatx → y �∈ K ′. It then
follows from K ′ ∈ K⊥x that (x → y) → x ∈ K ′, and thusx ∈ K ′, yielding a
contradiction. We may conclude thatx → y ∈ K ′. Sincex ∈ K ′′ andx → y ∈ K ′,
we can conclude fromK ′ ∪ {x} ⊆ K ′′ that y ∈ Cn(K ′′).

Lemma 4.5 Let p ∈ K and X ∈ K⊥p. Then for all sentences r, either r ∈ Cn(X ∪
{¬p}) or ¬r ∈ Cn(X ∪ {¬p}).
Proof: Let p ∈ K andX ∈ K⊥p. It isclearly sufficient to show that for every sen-
tencer, either p ∨ r ∈ X or p ∨ ¬r ∈ X. It follows from X ∈ K⊥p that� p. Suppose
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for contradiction thatp ∨ r �∈ X and p ∨ ¬r �∈ X. BecauseX ∈ K⊥p, it follows that
X ∪{p ∨ r} 
 p and likewiseX ∪{p ∨¬r} 
 p. HenceX ∪{r} 
 p andX ∪{¬r} 
 p,
and thusX 
 p. But this contradicts our assumption thatX ∈ K⊥p.

Proof: (Theorem4.1) Let ÷ be a partial meet Levi-contraction operator. We first
show that÷ satisfies the properties given in the theorem.

• Closure: By definition K ÷ p = ∩γ(S(K, p)). Since, by definition, saturat-
able contractions are logically closed, so are intersections of saturatable con-
tractions.

• Inclusion: Trivial.

• Success: It follows directly from the definition ofS(K, p) that if � p, thenp �∈
X for all X ∈ S(K, p).

• Extensionality: Assume that
 p ↔ q. It suffices to show that∩γ(S(K, p)) =
∩γ(S(K, q)). We prove thatS(K, p) = S(K, q). Then the desired result fol-
lows, sinceγ is a function. To prove thatS(K, p) ⊆ S(K, q), assume thatX ∈
S(K, p). It follows from
 p ↔ q thatCn(X ∪ {¬p}) = Cn(X ∪ {¬q}). Thus,
Cn(X ∪ {¬q}) is maximally consistent inL . By definition, X is a logically
closed subset ofK. Thus,X ∈ S(K, q). Similarily, we prove thatS(K, q) ⊆
S(K, p).

• Vacuity: Directly from the definition.

• Failure: If 
 p, thenS(K, p) = ∅ and thusγS(K, p) = {K}.
For the other direction of the theorem, let÷ be an operation that satisfies (i) –

(vi). To show that÷ is a partial meet Levi-contraction operator we need to find a
selection functionγ on K such thatK ÷ p = ∩γ(S(K, p)) if p ∈ K. (The case when
p �∈ K follows trivially since vacuity holds.) Letγ be such that:

(1) γ(S(K, p)) = {K}, if S(K, p) = ∅,

(2) γ(S(K, p)) = {X ∈ S(K, p)|K ÷ p ⊆ X}, otherwise.

Wehave to prove: (a)γ is a well-defined function; (b)γ is a selection function; and,
(c) for all p ∈ K : ∩γ(S(K, p)) = K ÷ p.

(a) To prove thatγ is well-defined, we have to show that ifS(K, p) = S(K, q),
thenγ(S(K, p)) = γ(S(K, q)). Let S(K, p) = S(K, q). We are going to show
that if B ⊆ K thenB 
 p iff B 
 q. Suppose for contradiction thatB 
 q but B �

p. Then there exists aB′ such thatB ⊆ B′ and B′ ∈ K⊥p. Thus, by Lemma
3.2, B′ ∈ S(K, p). But B′ �∈ S(K, q) sinceB′ 
 q. We have a contradiction.
Since÷ satisfies extensionality and vacuity, it follows from Lemma4.3 that
K ÷ p = K ÷ q. By the definition ofγ, γ(S(K, p)) = γ(S(K, q)).

(b) Next we show thatγ is a selection function. By definition, ifS(K, p) = ∅, then
γ(S(K, p)) = {K}. Wehave to show that ifS(K, p) �= ∅, thenγ(S(K, p)) �=
∅. SupposeS(K, p) �= ∅. Then� p. Success implies thatK ÷ p � p. By
inclusionK ÷ p ⊆ K. Thus there exists anX such thatK ÷ p ⊆ X ∈ K⊥p.
Hence, by Lemma3.2, X ∈ S(K, p). It follows from the definition ofγ that
X ∈ γS(K, p), and thusγS(K, p) �= ∅.

(c) Finally, we must prove that, for allp ∈ K,∩γS(K, p) = K ÷ p.
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Case 1: S(K, p) = ∅. It follows from S(K, p) = ∅ and Lemma3.2 that
K⊥p = ∅, hence
 p. It follows from failure thatK ÷ p = K. Furthermore
∩γS(K, p) = K by clause (1) in the definition ofγ. Thus the desired result
holds in this case.

Case 2: S(K, p) �= ∅. K ÷ p ⊆ ∩γS(K, p) holds sinceK ÷ p ⊆ X, for ev-
ery X ∈ γ(S(K, p)). For the other direction we show that ifq �∈ K ÷ p, then
q �∈ ∩γS(K, p). This holds ifq �∈ K, since ∩ γS(K, p) = K.
Assumeq ∈ K\(K ÷ p). It suffices to show that there exists an X such that:

(1) q �∈ X,

(2) K ÷ p ⊆ X ⊆ K,

(3) X = Cn(X),

(4) Cn(X ∪ {¬p}) ∈ L⊥p.

Subcase 1: K ÷ p � p ∨ q. Let X be any set such thatK ÷ p ⊆ X ∈ K⊥p ∨ q.
It follows directly that (1), (2) and (3) are satisfied. It remains to show that
(4) is satisfied. It follows from Lemma4.4 that X ∈ K⊥p. By Lemma4.5,
Cn(X ∪ {¬p}) is a maximal consistent subset of the language, and since it does
not containp we haveCn(X ∪ {¬p}) ∈ L⊥p.

Subcase 2: K ÷ p 
 p ∨ q. Let X be any set such thatK ÷ p ⊆ X ∈
K⊥{p, q}. It follows that (1), (2) and (3) are satisfied. It remains to be shown
that (4) is satisfied. Letr �∈ Cn(X ∪ {¬p}). We are going to show that¬r ∈
Cn(X ∪ {¬p}). It follows from r �∈ Cn(X ∪ {¬p}), by the deduction prop-
erty of Cn, that p ∨ r �∈ Cn(X) and consequently, sinceX is logically closed,
p ∨ r �∈ X. Since p ∈ K, and K is logically closed, we havep ∨ r ∈ K. It
follows from p ∨ r ∈ K\X and X ∈ K⊥{p, q} that eitherX ∪ {p ∨ r} 
 p or
X ∪ {p ∨ r} 
 q.
Suppose thatX ∪ {p ∨ r} 
 q. It then follows thatX 
 p → q. This, however,
is incompatible withX 
 p ∨ q and X � q, that follow immediately from our
definition of X. We can conclude thatX ∪ {p ∨ r} � q, and consequentlyX ∪
{p ∨ r} 
 p. It follows from X ∪ {p ∨ r} 
 p that X 
 r → p, and thusX 

¬p → ¬r, from which we can conclude that¬r ∈ Cn(X ∪ {¬p}), asdesired.
Just as in the first subcase it follows thatCn(X ∪ {¬p}) is a maximal consistent
subset of the language, and since it does not containp we haveCn(X ∪{¬p}) ∈
L⊥p.

It follows from this theorem that all partial meet AGM contractions are partial
meet Levi-contractions, as Levi indeed indicates, see pages 125–126 in his [9]. The
postulate of failure, that was introduced in Fuhrmann and Hansson [3], serves to en-
sure that contraction by a tautology leads to no change of the corpus (belief set). The
motivation for this is that logical truths are elements of all corpora. The postulate of
failure is a formal means of saying that when instructed to do the impossible, you do
nothing.

Partial meet contraction satisfies failure. As was pointed out to us by an anony-
mous referee, to see that failure is not implied by the postulates (i) – (v) mentioned
in the theorem, we can let÷ be such thatK ÷ p = K wheneverp �∈ K andK ÷ p =
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Cn(∅) wheneverp ∈ K. (This example can also be used to show that the further ad-
dition of the postulates (G–7) and (G–8) to (i) – (v) does not guarantee the satisfaction
of the failure postulate.)

For an example showing that saturatable contraction does not in general satisfy
recovery, letL be the language containing only the truth-functional compounds of
p and q, and let K = Cn({p, q}). Then Cn({q → p}) ∈ S(K, p), and we can
let γ be such thatγS(K, p) = {Cn({q → p})}. We seethat K is not a subset of
Cn(Cn({q → p}) ∪ {p})) = Cn({p}), which means that recovery fails.

The following postulate of core-retainment was introduced in [5] as aweaker al-
ternative to recovery. The intuition is that ifq is excluded fromK whenp is removed,
thenq plays some role for the fact thatK implies p.

Proposition 4.6 (Core-retainment) If q ∈ K and q �∈ K ÷ p, then there is some sub-
set A of K such that A ∪ {q} 
 p and A � p.

However, as was shown in [5], the seemingly much weaker notion of core-
retainment implies recovery in the presence of the postulates of closure, inclusion,
success and preservation. The following example illustrates that saturatable con-
traction does not satisfy core-retainment. LetL consist of p, q and their truth-
functional combinations and (as was shown above to be possible) setK ÷ p equal
to Cn({q → p}). Then p → q ∈ K\(K ÷ p). Assume for contradiction that
core-retainment is satisfied. Then there exists anA ⊆ K such thatA ∪ {p → q} 

p and A � p. But, by the deduction property,A ∪ {p → q} 
 p implies A 

(p → q) → p, which entailsA 
 p. And thus we have a contradiction.

5 The limiting cases All maxichoice AGM-contractions are maxichoice Levi con-
tractions:

Theorem 5.1 If ÷ is a maxichoice AGM-contraction operator for K, then ÷ is a
maxichoice Levi-contraction operator for K.

Lemma 5.2 Let p ∈ K and q ∈ K. If S(K, p) = S(K, q), then K⊥p = K⊥q.

Proof: (Lemma5.2) Suppose to the contrary thatS(K, p) = S(K, q) andK⊥p �=
K⊥q. Without loss of generality, we may assume that there is someX such thatX ∈
K⊥p andX �∈ K⊥q.

It follows from X ∈ K⊥p by Lemma3.2thatX ∈ S(K, p) and thusX ∈ S(K, q),
so thatq �∈ X. From this andX ∈ K⊥p it follows by Lemma4.4that X ∈ K⊥q. This
contradiction concludes the proof.

Proof: (Theorem5.1) Let ÷ be a maxichoice AGM-contraction that is based on the
selection functionγ. Let γ ′ be the selection function such that for allp, γ ′S(K, p) =
γ(K⊥p). It follows from Lemmas3.2and5.2thatγ ′ is a well-defined selection func-
tion. Let÷′ be the Levi-contraction that is based onγ ′. Then clearlyK ÷ p = K ÷′ p
for all p.

However, Theorem5.1cannot be strengthened to say that ifγ generates a maxi-
choice AGM-contraction operator forK, then it also generates a maxichoice Levi-
contraction operator forK. Tosee this, letγ generate a maxichoice AGM-contraction
operator forK. This means thatγ mapsK⊥x on a single element ofK⊥x. It may



LEVI CONTRACTIONS 113

nevertheless be the case thatγ maps the wider setS(K, x) on a subset ofS(K, x) with
more than one member. If this is the case, then the Levi-contraction operator gener-
ated byγ is not maxichoice, althoughγ generates a maxichoice AGM-operator. For
an example, let the language consist ofp, q and their truth-functional combinations.
Let K = Cn({p&q}), let γ(K⊥p) = {Cn({q})}, and letγ(S(K, p)) = {Cn({p ↔
q}), Cn({p ∨ q})}. In this exampleγ(K⊥p) is a singleton butγ(S(K, p)) is not a
singleton.

In their [2], Alchourrón and Makinson proved the following result for full meet
AGM contraction:

∩(K⊥p) = K ∩ Cn({¬p}).
Hence, full meet AGM contraction involves a radical deformation of the belief set. As
Gärdenfors observes, “full meet [AGM-] contraction in general results in contracted
belief sets that are far too small,” (see page 79 of [4]). It is therefore not regarded to
be a realistic operation of change. As the following theorem shows, full meet Levi
contraction fares still worse in this respect. (It should be emphasized that Levi does
not himself propose the application of ignorant selection functions to saturatable con-
tractions.)

Theorem 5.3 If ÷ is a full meet Levi-contraction operator for K, then K ÷ p =
Cn(∅) for all nontautological p ∈ K.

Proof: Let ÷ be a full meet Levi-contraction operator forK. Let p ∈ K\Cn(∅).
Then K ÷ p = ∩γS(K, p) = ∩S(K, p). We will prove that∩S(K, p) = Cn(∅).
Since allX ∈ S(K, p) are logically closed, it follows thatCn(∅) ⊆ ∩S(K, p). It
remains to be shown that∩S(K, p) ⊆ Cn(∅), i.e., that if x �∈ Cn(∅) then x �∈
∩S(K, p). This is trivial unlessx ∈ K. Let x ∈ K\Cn(∅).

Case 1: x ∨ p �∈ Cn(∅). Then K⊥(x ∨ p) is nonempty. LetY ∈ K⊥(x ∨ p).
Clearly, x �∈ Y . It follows by Lemma4.4 that Y ∈ K⊥x. It follows by Lemma3.2
thatx �∈ Y ∈ S(K, p).

Case 2: x ∨ p ∈ Cn(∅). Let Z ∈ K⊥p andY ∈ Z⊥x. Since
 x ∨ p, we have
Y ∪ {¬p} 
 x, and thusCn(Y ∪ {x}) ⊆ Cn(Y ∪ {¬p}). By the recovery property,
Cn(Y ∪ {x}) = Z, and consequentlyZ ⊆ Cn(Y ∪ {¬p}). Then Cn(Z ∪ {¬p}) ⊆
Cn(Y ∪{¬p}). SinceCn(Y ∪{¬p}) is consistent(p �∈ Cn(Y )), andCn(Z ∪{¬p}) ∈
L⊥⊥ (by Lemma4.5), we haveCn(Y ∪ {¬p}) = Cn(Z ∪ {¬p}), so that Cn(Y ∪
{¬p}) ∈ L⊥⊥ and thusx �∈ Y ∈ S(K, p).

We may conclude that there is no nontautological sentence in∩S(K, p), and,
consequently, that∩S(K, p) ⊆ Cn(∅). This fact and the previous observation that
Cn(∅) ⊆ ∩S(K, p) yields the desired conclusion.

6 Informational value Both Levi’s account and that of the AGM trio are based on
the assumption that the “best” or most valuable contraction should be chosen. Let
V be a measure on the set of logically closed subsets ofK. Following Levi, we will
considerV to represent the informational value of various belief sets smaller thanK.
Levi distinguishes between two monotonicity requirements onV , (see page 82 of his
[9]):
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if A ⊂ B, thenV (A) < V (B) (strong monotonicity),
if A ⊂ B, thenV (A) ≤ V (B) (weak monotonicity),

Levi argues that contraction should be guided by some measureV of informa-
tional value that satisfies weak monotonicity. He provides two equivalent formula-
tions of how contraction can be based onV . One of these formulations is thatK ÷ p
is the meet of all saturatable contractions ofK removingp that minimize the loss of
informational value, (see page 130 of [9]). In other words,K ÷ p = ∩γ(S(K, p))

where the selection functionγ is defined so that (whenS(K, p) �= ∅):

(1) γ(S(K, p)) = {X ∈ S(K, p) |V (Y ) ≤ V (X) for all Y ∈ S(K, p)}.
As Levi notes, the problem with contraction based on informational value is

that the recommended contraction strategy need not be optimal. To see this, recall
from the example in Section 3 that the meet of two saturatable contractions might
well be nonsaturatable and, hence, suboptimal. Since Levi adheres to the decision-
theoretically motivated idea that the recommended contraction alternative should be
optimal, he offers an alternative way to interpret contraction. The alternative formula-
tion is based on a modification of the measureV . The modified measureVD (damped
informational value) assigns to each logically closed subsetX of K the minimum
(greatest lower bound) ofV (Y ) for any saturatable contractionY such thatX ⊆ Y .
In this formulation,K ÷ p is the meet of all logically closed subsets ofK removingp
that minimize the loss ofdamped informational value, see page 128 of [9]. Levi con-
cludes that although the definition of÷ using informational value and the one that ap-
peals to damped informational value are formally interchangeable, the notion based
on damped informational value is better motivated from a decision-theoretical point
of view, (see page 129 of [9]).

Since the two formulations yield the same result, we are going to use the formu-
lation in terms ofV , that better brings out the similarities between Levi’s approach
and that of AGM.

Definition 6.1 ÷ is a value-based Levi-contraction iff:

(i) if p ∈ K, then K ÷ p = ∩γ(S(K, p)) whereγ(S(K, p)) = {X ∈ S(K, p)|
V (Y ) ≤ V (X) for all Y ∈ S(K, p)} andV is a real-valued measure on the
logically closed subsets ofK satisfying weak monotonicity;

(ii) if p �∈ K, thenK ÷ p = K.

Definition 6.1does not, however, have the full structure of Levi’s proposal for
belief contraction. The measureV is intended to be probability-based, an aspect that
will not be covered in this paper.

The transitively relational contractions of AGM are based on a transitive relation
� defined over the setUK = {X | X ∈ K⊥p for somep ∈ K}. Such a relation gives
rise to a selection function according to the following relationship:

(2) γ(K⊥p) = {X ∈ K⊥p | Y�X for all Y ∈ K⊥p}.
It was shown by AGM that a selection function is based in the manner of (2) on

some transitive relation� if and only if it is based in that way on some transitive
and connected relation�′, see [1]. Since all transitive and connected relations can
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be represented by real-valued measures, see pages 110–111 of Roberts [12], there is
ameasureV such that:

(3) γ(K⊥p) = {X ∈ K⊥p |V (Y ) ≤ V (X) for all Y ∈ K⊥p}.
Since it holds for all distinctX, Y ∈ UK that X is not a subset ofY (see [1]),V

(vacuously) satisfies strong monotonicity.
It is essential for value-based Levi-contraction that the weakly monotonic mea-

sureV is applied only to the elements ofS(K, p). (If S(K, p) is replaced byC(K, p),
i.e., the set of logically closed subsets ofK not implying p, in (1), thenV will have to
be replaced by the more complex measureVD to yield the same result.) On the other
hand, it is not difficult to show that it makes no difference if a strongly monotonic
measure chooses between the elements ofK⊥p (as in the AGM theory) or between
the elements ofS(K, p) or those ofC(K, p):

Theorem 6.2 Let V be a measure on the logically closed subsets of K satisfying
strong monotonicity. Then:

∩{X ∈ K⊥p |V (Y ) ≤ V (X) for all Y ∈ K⊥p}
= ∩{X ∈ S(K, p) |V (Y ) ≤ V (X) for all Y ∈ S(K, p)}
= ∩{X ∈ C(K, p) |V (Y ) ≤ V (X) for all Y ∈ C(K, p)}.

Proof: Let V be a measure satisfying strong monotonicity. It suffices to show that
{X ∈ C(K, p)|V (Y ) ≤ V (X) for all Y ∈ C(K, p)} ⊆ K⊥p. If p is a tautology, then
this follows fromC(K, p) = ∅. Assume thatp is nontautological and letX ∈ {X ∈
C(K, p)|V (Y ) ≤ V (X) for all Y ∈ C(K, p)}. It follows immediately thatX ⊆ K and
not X 
 p. It remains to show that ifX ⊂ Z ⊆ K, thenZ 
 p. AssumeX ⊂ Z ⊆ K.
Assume for contradiction thatZ ∈ C(K, p). By the definition ofX,V (Z) ≤ V (X).
However, strong monotonicity andX ⊂ Z entails thatV (X) < V (Z). Thus we have
a contradiction. We may conclude thatZ �∈ C(K, p). We may conclude thatZ 
 p.
Hence,X ∈ K⊥p as desired.

The main results of this section are the following two theorems, that show that
partial meet Levi-contraction satisfies Gärdenfors’ supplementary postulates.

Theorem 6.3 Value-based Levi-contraction satisfies:

(K ÷ a) ∩ (K ÷ b) ⊆ K ÷ (a&b).

The following lemmas will be used in the proof:

Lemma 6.4 S(K, a&b) ⊆ S(K, a) ∪ S(K, b).

Proof: (Lemma6.4) Let X ∈ S(K, a&b). Then Cn(X ∪ {¬a ∨ ¬b}) is maximally
consistent. Since it is maximally consistent and contains¬a ∨ ¬b it contains either
¬a or ¬b.

Case 1: ¬a ∈ Cn(X ∪ {¬a ∨ ¬b}). ThenCn(X ∪ {¬a}) = Cn(X ∪ {¬a ∨ ¬b}),
so thatCn(X ∪ {¬a}) is maximally consistent. Since we already know thatX =
Cn(X) ⊆ K, we can conclude thatX ∈ S(K, a).

Case 2: ¬b ∈ Cn(X ∪ {¬a ∨ ¬b}). It follows in the same way thatX ∈ S(K, b).
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Lemma 6.5 Let γ be a selection function that is based on a weakly monotonic mea-
sure. Then if Z ∈ γS(K, p) and Z ⊆ Z ′ ∈ K⊥p then Z ′ ∈ γS(K, p)

Proof: (Lemma6.5) Assume thatZ ∈ γS(K, p) and thatZ ⊆ Z ′ ∈ K⊥p. It follows
from the weak monotonicity ofV thatV (Z) ≤ V (Z ′). It follows from Z ∈ γS(K, p)

andZ ′ ∈ S(K, p) thatV (Z ′) ≤ V (Z). Thus,V (Z ′) = V (Z). Wecan conclude that
Z ′ ∈ γS(K, p).

Proof: (Theorem6.3) Let γ be the selection function on which÷ is based.

Case 1: a ∈ Cn(∅). Westart with the left side of the equation.K ÷ a = ∩γ(∅) =
∩{K} = K so thatK ÷ a ∩ K ÷ b = K ÷ b. For the right side of the equation, note
that if a ∈ Cn(∅) thenb anda&b are logically equivalent. Since extensionality is
satisfied (Theorem4.1), K ÷ (a&b) = K ÷ b.

Case 2: b ∈ Cn(∅). This case is symmetrical to Case 1.

Case 3: a �∈ K. Westart with the left side. Ifa �∈ K, then it follows from the defini-
tion of ÷ that K ÷ a = K. Consequently, the left side is equal toK ÷ b. Concerning
the right side, we note thata �∈ K entailsa&b �∈ K. Hence, from the definition of÷,
K ÷ (a&b) = K. Since inclusion is satisfied,K ÷ b ⊆ K.

Case 4: b �∈ K. This case is symmetrical to Case 3.

Case 5: a, b ∈ K\Cn(∅). Let e ∈ (K ÷ a) ∩ (K ÷ b). We have to prove that
e ∈ K ÷ (a&b). It follows from e ∈ (K ÷ a) ∩ (K ÷ b) that if X ∈ γS(K, a) or
X ∈ γS(K, b), thene ∈ X. Now let Y ∈ γS(K, a&b). It follows from Lemma6.4
that eitherY ∈ S(K, a) or Y ∈ S(K, b). Without loss of generality, we may assume
that Y ∈ S(K, a). There is then someY ′ such thatY ⊆ Y ′ ∈ K⊥a. By Lemma
4.4, Y ′ ∈ K⊥(a&b). By Lemma6.5, Y ′ ∈ γS(K, a&b). We are going to prove
that Y ∈ γS(K, a). To do this, it is sufficient to prove that ifZ ∈ S(K, a), then
V (Z) ≤ V (Y ). Suppose to the contrary thatZ ∈ S(K, a) andV (Y ) < V (Z). It
follows from Z ∈ S(K, a) that there is someZ ′ such thatZ ⊆ Z ′ ∈ K⊥a. By Lemma
4.4, Z ′ ∈ K⊥(a&b). By weak monotonicity,V (Z) ≤ V (Z ′). We therefore have
V (Y ′) = V (Y ) < V (Z) ≤ V (Z ′), i.e.,V (Y ′) < V (Z ′). This, however, cannot hold
sinceY ′ ∈ γS(K, a&b) andZ ′ ∈ S(K, a&b). We can conclude from this contradic-
tion that if Z ∈ S(K, a), thenV (Z) ≤ V (Y ), and consequently thatY ∈ γS(K, a).
It follows from Y ∈ γS(K, a) thate ∈ Y .

Theorem 6.6 Let ÷ be a value-based Levi-contraction on K. Then if a �∈ K ÷
(a&b), then K ÷ (a&b) ⊆ K ÷ a.

The following lemma will be used in the proof:

Lemma 6.7 Let a, b and d be elements of K. If d �∈ Y ∈ S(K, a), then there is some
Z such that Y ⊆ Z ∈ S(K, a&b) and d �∈ Z.

Proof: (Lemma6.7) Let d �∈ Y ∈ S(K, a). There are three cases:

Case 1: a ∨ d �∈ Y . Let Z = Cn(Y ∪ {a → b}). It follows thatCn(Z ∪ {¬a ∨
¬b}) = Cn(Y ∪ {¬a}). SinceY ∈ S(K, a), wehaveCn(Y ∪ {¬a}) ∈ L⊥⊥, and thus
Cn(Z ∪ {¬a ∨ ¬b}) ∈ L⊥⊥. Suppose thatd ∈ Z. Then, sinceZ ⊆ Cn(Y ∪ {¬a}),
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we haveY ∪ {¬a} 
 d, and thusY 
 a ∨ d, contrary to the condition for this case.
Thusd �∈ Z.

Case 2: b → d �∈ Y . Let Z = Cn(Y ∪ {a → b}). It follows just as in Case 1 that
Cn(Z ∪ {¬a ∨ ¬b}) ∈ L⊥⊥. Suppose thatd ∈ Z. Then Y 
 (a → b) → d, from
which followsY 
 b → d, contrary to the condition. Thusd �∈ Z.

Case 3: {a ∨ d, b → d} ⊆ Y . Let Y ′ = Cn(Y ∪ {a, d → b}). We are going to
show thatY ′

� a&b. Suppose to the contrary thatY ′ 
 a&b. ThenY ′ ∪ {¬a ∨ ¬b} is
inconsistent, i.e.,Y ∪ {a, d → b,¬a ∨ ¬b} 
 ⊥. However, since{a ∨ d, b → d} ⊆
Y , we haveCn(Y ∪{a, d → b,¬a ∨¬b}) ⊆ Cn(Y ∪{¬d}), sothatCn(Y ∪{¬d}) 

⊥, contrary tod �∈ Y . We can conclude from this contradiction thatY ′

� a&b.

SinceY ′ ⊆ K, there is someZ such thatY ′ ⊆ Z ∈ K⊥(a&b). It follows from
Lemma3.2 that Z ∈ S(K, a&b). It remains to be shown thatd �∈ Z. Suppose to the
contrary thatd ∈ Z. Since{a, d → b} ⊆ Z we then havea&b ∈ Z, contrary to
Z ∈ S(K, a&b). We can conclude from this contradiction thatd �∈ Z.

Proof: (Theorem6.6) Let a �∈ K ÷ (a&b). There are five cases:

Case 1: a �∈ K. Then, by the definition of÷, K ÷ a = K. Alsoa&b �∈ K, and con-
sequentlyK ÷ (a&b) = K. HenceK ÷ (a&b) ⊆ K ÷ a as desired.

Case 2: b �∈ K. Thus,a&b �∈ K, so that K ÷ (a&b) = K. Since by hypothesisa �∈
K ÷ (a&b), it follows thata �∈ K. By the same reasoning as in Case 1, we conclude
that K ÷ (a&b) ⊆ K ÷ a.

Case 3: a ∈ Cn(∅). Thena ∈ K ÷ (a&b) so that the theorem is vacuously true.

Case 4: b ∈ Cn(∅). Thena&b is equivalent toa, and since extensionality is satis-
fied (Theorem4.1), K ÷ (a&b) = K ÷ a.

Case 5: a, b ∈ K\Cn(∅). Suppose thata �∈ K ÷ (a&b). Then there is someZ such
thata �∈ Z ∈ γS(K, a&b). We haveCn(Z ∪ {¬a ∨ ¬b}) ∈ L⊥⊥, and thus eithera
or ¬a is an element ofCn(Z ∪ {¬a ∨ ¬b}). Suppose thata ∈ Cn(Z ∪ {¬a ∨ ¬b}).
ThenZ 
 ¬a ∨ ¬b → a, or equivalentlyZ 
 a, contrary to the conditions. It fol-
lows that¬a ∈ Cn(Z ∪ {¬a ∨ ¬b}) or equivalentlya → b ∈ Z. Sincea → b ∈ Z
we haveCn(Z ∪ {¬a ∨ ¬b}) = Cn(Z ∪ {¬a}), and thusZ ∈ S(K, a). Now let
X be any element ofS(K, a). Then there is someX ′ such thatX ⊆ X ′ ∈ K⊥a.
Since, by Lemma4.4, K⊥a ⊆ K⊥a&b, we also haveX ′ ∈ K⊥a&b, and thus, by
Lemma3.2, X ′ ∈ S(K, a&b). It follows fromX ⊆ X ′ thatV (X) ≤ V (X ′), and from
X ′ ∈ S(K, a&b) and Z ∈ γS(K, a&b) thatV (X ′) ≤ V (Z). ThusV (X) ≤ V (Z).
Since this holds for allX ∈ S(K, a), wecan conclude thatZ ∈ γS(K, a). We are now
ready to show thatK ÷ (a&b) ⊆ K ÷ a, i.e., that∩γS(K, a&b) ⊆ ∩γS(K, a). Let
d �∈ ∩γS(K, a). Then there is someY ∈ γS(K, a) such thatd �∈ Y . It follows from
Lemma6.7that there is someW such thatY ⊆ W ∈ S(K, a&b) andd �∈ W. It follows
from Z, Y ∈ γS(K, a) thatV (Z) = V (Y ) and fromY ⊆ W, by weak monotonicity,
thatV (Y ) ≤ V (W ). Thus,V (Z) ≤ V (W ). It follows fromV (Z) ≤ V (W ), Z ∈
γS(K, a&b) andW ∈ S(K, a&b) thatW ∈ γS(K, a&b). Sinced �∈ W, we can con-
clude thatd �∈ ∩γS(K, a&b), as desired.
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7 Conclusions This paper contains two major formal results: (1) an axiomatic
characterization of partial meet Levi contractions in terms of the postulates of clo-
sure, inclusion, vacuity, success, extensionality, and failure; and, (2) a demonstration
that value-based Levi-contractions satisfy the two supplementary Gärdenfors postu-
lates.

Levi has not to our knowledge commented on the intuitive reasonableness of
the supplementary postulates. However, it seems to us that these postulates are fairly
reasonable demands on belief contraction, that are well in tune with his basic ideas
on the relation between belief contraction and informational value.

In summary, value-based Levi-contractions satisfy seven out of Gärdenfors’
eight postulates for contraction, with recovery as the sole exception. The same ap-
plies to at least two other constructions that have been proposed in the belief revision
literature, namely: (1) Rott’s entrenchment-based contraction (see his [13]); and, (2)
the operators of contraction on a belief set that are generated by transitively, maximiz-
ingly relational partial meet contraction on a finite and disjunctively closed base for
that belief set, see Hansson [7]. The further interrelations between these three classes
of operations remain to be investigated.

The formal results of this paper confirm that Levi has succeeded in constructing
awell-behaved operation of contraction that does not satisfy recovery.

Acknowledgments Wewould like to thank Isaac Levi and an anonymous referee for valu-
able comments on earlier versions of this paper.

REFERENCES

[1] Alchourrón, D.E., P. G̈ardenfors, and D. Makinson, “On the Logic of Theory Change:
Partial Meet Functions for Contraction and Revision,”The Journal of Symbolic Logic,
vol. 50 (1985), pp. 510–530.Zbl 0578.03011 MR 87c:03020 1, 1, 6

[2] Alchourrón, D.E., and D. Makinson, “The Logic of Theory Change: Contraction Func-
tions and Their Associated Revision Functions,”Theoria, vol. 48 (1982), pp. 14–37.
Zbl 0525.03001 MR 85g:03023 2, 3, 3, 5

[3] Fuhrmann, A., and S.O. Hansson, “A survey of multiple contraction,”Journal of Logic,
Language and Information, vol. 3 (1994), pp. 39–76.MR 95i:68129 4

[4] Gärdenfors, P.,Knowledge in Flux, MIT Press, Cambridge, 1988.MR 89k:00015 1, 5

[5] Hansson, S.O., “Belief Contraction Without Recovery,”Studia Logica, vol. 50 (1991),
pp. 251–260.Zbl 0748.03008 MR 93a:03017 1, 4, 4

[6] Hansson, S.O., “A Dyadic Representation of Belief,” pp. 89–121 inBelief Revision,
edited by P. G̈ardenfors, Cambridge University Press, Cambridge, 1992.MR 1173425

[7] Hansson, S.O., “Changes on Disjunctively Closed Bases,”Journal of Logic, Language
and Information, vol. 2 (1993), pp. 255–284.Zbl 0798.03029 MR 95i:68130 7

[8] Levi, I., The Enterprise of Knowledge, MIT Press, Cambridge, 1980.1

[9] Levi, I., The Fixation of Belief and Its Undoing, Cambridge University Press, Cam-
bridge, 1991.1, 1, 3, 3, 3, 4, 4, 6, 6, 6, 6

[10] Makinson, D., “On the Status of the Postulate of Recovery in the Logic of Theory
Change,”Journal of Philosophical Logic, vol. 16 (1987), pp. 383–394.Zbl 0632.03008
MR 89b:03019 1, 4

http://www.emis.de/cgi-bin/MATH-item?0578.03011
http://www.ams.org/mathscinet-getitem?mr=87c:03020
http://www.emis.de/cgi-bin/MATH-item?0525.03001
http://www.ams.org/mathscinet-getitem?mr=85g:03023
http://www.ams.org/mathscinet-getitem?mr=95i:68129
http://www.ams.org/mathscinet-getitem?mr=89k:00015
http://www.emis.de/cgi-bin/MATH-item?0748.03008
http://www.ams.org/mathscinet-getitem?mr=93a:03017
http://www.ams.org/mathscinet-getitem?mr=1173425
http://www.emis.de/cgi-bin/MATH-item?0798.03029
http://www.ams.org/mathscinet-getitem?mr=95i:68130
http://www.emis.de/cgi-bin/MATH-item?0632.03008
http://www.ams.org/mathscinet-getitem?mr=89b:03019


LEVI CONTRACTIONS 119
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