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Semantics-based Nonmonotonic Inference

HEINRICH WANSING

Abstract In this paper we discuss Gabbay’s idea of basing nonmonotonic
deduction on semantic consequence in intuitionistic logic extended by a consis-
tency operator and Turner’s suggestion of replacing the intuitionistic base sys-
tem by Kleene’s three-valued logic. It is shown that a certain counterintuitive
feature of these approaches can be avoided by using Nelson’s constructive logic
N instead of intuitionistic logic or Kleene’s system. Moreovemiamore gen-

eral notion of consistency can be defined and nonmonotonic deduction can thus
be based on a logical system satisfying the Deduction Theorem.

1 Introduction  The aim of this paper is to revive interest in Gabbay’s approach
to defining nonmonotonic deduction, see B [The strategy consists in: (i) show-
ing that a rather unpleasant property of the original suggestion can easily be circum-
vented by choosing a particular (monotonic) base logic which is natural and useful in
the field of knowledge representation anyway; and, (ii) emphasizing the richness and
flexibility of Gabbay’s idea.

In order to avoid fixed-point definitions of nonmonotonic inference@r({ab-
bay suggested basing nonmonotonic deduction on semantic consequence in a logi-
cal system extended by a consistency opefdt(see also Clark@ and Clarke and
Gabbay[B]). MA is to be read as ‘it is consistent to assume at this stagethd
this approach a wfA is said to nonmonotonically follow from a set of assumptions
A={Aq, ..., A} (A~A) if thereare wffsBy, ..., By such that

Al,...,An’\f} Bl
Aly---aAnv Bl/\’)BZ

Al,...,An, B]_,,BmM A,

and ~» is defined as follows:Cy, ..., Cx ~ C if there exist extra assumptions
D4, ..., Djsuch that: (i{Cy, ..., Cx, MDq, ..., MDj} is consistent; and, (ii)Cq,
..+, G, MDy, ..., MDj} = C. This notion of nonmonotonic inference requires, of
course, a clear semantics for consistency asserlibAis Gabbay'’s idea is to inter-
pretM as possibility with respect to the ‘information ordering’in Kripke models
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for intuitionistic logic, thatisM A is true at an information stateiff there is a statg
such thatr C gandA s true ats. Let us refer to the result of extending intuitionistic
propositional logic byM asH (M).

Assuming that nonmonotonic inferences are appropriate only in the presence
of incomplete information, Turnelif] suggested using Gabbay’s definition of non-
monotonic inference based on a systenparttial, in efect Kleene’s three-valued
logic. Turner considers model structurdsC), wherel is the set of all partial in-
terpretations of the atomic sentences ant a ‘plausibility’ relation onl, that is,

a reflexive transitive relation such thatC g impliesa < 8, where< is the natu-
ral ‘information ordering’ on partial interpretations. Consistency assertibAsare
evaluated as true at an information state | like in H(M), M A s defined to be false
ata, if Ais false at every information stagewhich is at least as plausible asand
MA is evaluated as undefinedeabtherwise. Let us call Turner’s systefi(M).

Gabbay’s and Turner’s approaches both sucessfully deal with various counter-
intuitive features of McDermott and Doylel&@ nonmonotonic formalism. In Mc-
Dermott and Doyle’s logic, for instancé;"M p} is nonmonotonically inconsistent,
since the nonderivability ofp forcesM p to be assumed. Moreover,

{Mp>Q),—q} isinconsistent

{Mp, —p} is satisfiable
{(M(pAQ),—p} issatisfiable
M(pAQ) A~ Mp.

However, Gabbay’s and Turner’s nonmonotonic systems suffer from another weak-
ness (see tukaszewidg]], namely, the fact thavip > p i~ —p, since inH (M) as
wellasinK (M), {(Mp> p), M=p} = —pand{(Mp D p), M—p} is consistent. In-
tuitively Mp D p |~ —p clearly fails to be sound, no matter that ald@ > p |~ p:

—p should simply not be nonmonotonically derivable from the assumptionptisat

true by default. According tdg] this weakness renders it problematic to apply Gab-
bay’s and Turner’s definitions of nonmonotonic inference to formalizing common-
sense reasoning.

In the present paper it is observed that if Gabbay’s definition of nonmonotonic
inference is based on semantic consequence in Kripke models for Nelson’s system
N of constructive logic with strong negation (see Almukdad and Nel&§n then
(Mp> p) AM~ pE~ pdoes not hold, where denotes strong negatiofl com-
bines the advantages of: (i) having a constructive and hence a genuine implication sat-
isfying the Deduction Theorem; and, (ii) semantically being based on partial, three-
valued interpretations. As we shall see, this indeed suffices to overcome the problem
with the approaches of Gabbay and Turner. Moreover, we shall discuss justifying the
choice of a suitable base logic, and, in the course of this discussion, suggest evaluating
MA as true at an information statdff A fails to be false at any possible extension of
a. Itwill turn out that this notion of consistencydsfinablein N itself and, moreover,
its definition inN directly expresses a natural and basic constraint on formalMing

2 Intuitionistic base  The systenH (M) is the theory of the class of all intuition-
istic Kripke models in the languade-, M, D, A, V}. Anintuitionistic Kripke frame
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is a structurgl, C), wherel is a nonempty set angd is a reflexive transitive rela-
tion onl. Anintuitionistic Kripke model is a structurgl, C, v), where(l, C) is an
intuitionistic Kripke frame is a total valuation function assigning to each proposi-
tional variable a subset of and for every propositional variabfeand everyy, g € I:

(persistence) if @ C B, thena € v(p) impliesB € v(p).

Kripke [8] suggested the following ‘informational’ reading of framgsC): | is a
set of information states and is the relation of possible expansion of information
states over time. LeM = (I, C, v) be an intuitionistic Kripke modely € | andA a
wif. M, « = A (Ais verified atw in M) isinductively defined as follows:

M,ak=p iff o€ wv(p), wherepis a propositional variable
M,a=BAC iff M,a=BandM,a}=C

M,a=BvC iff M,aE=BorM,a=C

M,a=B>DC iff (VBel)ifaC B, thenM, B = BimpliesM,B=C
M,al=—B iff (VBel)if«aC B, then™M, B~ B

M,al=MB iff 3pel,a = BandM, B = B.

If A is aset of wifs, theV, o = A iff M, o = AforeveryAec A. Awff A
is said to be entailed by (A = A) iff for every intuitionistic Kripke modeiVf =
(I,C,v)and everyx € |: M, a = A implies M, « = A. Whereas formulad\ in
{—, D, A, v} satisfy

(persistence) it C B, thena = Aimplies &= A,

(persistence) fails to hold for arbitrary formulas. Also the Deduction Theorem does
not hold. Although{Mp, Mp D g} = g, in the following modelkr = Mp anda (=
(Mpo>a>Da

Mp e Mp p

3 Kleene 3-valued base In his [13] Turner suggested basing Gabbay’s definition
of nonmonotonic inference on Kleene’s three-valued logic. In Kleene’s logic impli-
cation is defined byA D B =4¢t =A Vv B, resulting in the following truth table for

D:

ADB|

~Cc c|c
= <€ Olo

oc U
(I T Y =
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where the third truth valug s to be read as “undecided.” Since there are no tautolo-
gies, the Deduction Theorem does not hold in Kleene's logic.

Turner’s semantics fok (M) makes use gbartial interpretations. A partial in-
terpretation is a mapping from the set of propositional variables into the set of truth
values{1, 0, u}. The natural ‘definedness ordering’ on the set of truth values is
given byu<u, 1<1, 0<0,u<1, andu < 0; it gives rise to an ‘information or-
dering’ < on partial interpretationsv < v’ iff for every propositional variablep,
v(p) <v'(p). A binary relation= on a set of partial interpretatiotss called glau-
sibility relation on I, if C is a reflexive transitive relation and for everyv’ € I:

v C v impliesv < v/. A model structure is a pair(l, C), wherel is the set of all
partial interpretations, and is a plausibility relation ori. Obviously, every model
structure is an intuitionistic Kripke frame. L8¢ = (1, =) be a model structure, |
and A a wff in the language witiM. The notionsM, o =" A (A is verified ata in
M)andM, « == A (Ais falsified atw in M) are inductively defined as follows:

M,a =t p iff «(p) =1, wherepis a propositional variable
M,al="p iff «(p) =0, wherepis a propositional variable
M,a=" BAC iff M,a =T BandM,a =t C

M,al="BAC iff Ma="BorM,a="C

M,a="BvC iff M,aE="BorM,a="C

M,al="BvC iff M,aE="BandM,a="C

M,a="B>C iff M,a="BorM,a="C

M,a="B>C iff M,a=tBandM,a =" C

M,a="-B iff M,aE="B

M,a = -B iff M,a="B

M,a =tMB iff 3pel,aCpandM,B="B

M,a =" MB iff VBel,aC BimpliesM, B =" B.

It can be shown that eveM-free wff A satisfies the following persistence properties:

(persistence)  if « = B, thena =1 Aimpliesg =" A
(persistence) if « C B,thena =~ Aimpliesg =~ A

4 The problematic case When applied to the s¢tiVip > p}, the nonmonotonic
consequence relations basedt(V) andK (M) turn out to be problematic, since
Mp D p I~ —p, by virtue of: (i) {Mp D p), M—p} being consistent; and, (ii)
{(Mp D> p), M—p} = —p. Weshall now take a closer look at why (ii) holds true.

Intuitionistic base: Supposex = Mp D p, o = M—=p. The second assumption
means that-p is verified at some possible expansionugfand hence, due to (per-
sistence)p cannot be verified ai. If « j= —p, then there is a statesuch thatr C y
andy & p. Inother wordsp = M p. With the first assumptiony &= p, quod non.
Hence, using the semantic clause for intuitionistic negatiqmis verified atx. If, as

in partial logic, we use partial valuations and define the negatigntofbe verified
at a state iffp is falsified at that very state, then, of courséViip > pis verified atw
and—pis not, this does not imply thai is verified atc.
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Kleene 3-valued base: Suppose that =" (Mp D p) A M=p anda & —p. Con-
sider the following two cases (as @]

(@) a =~ —p,i.e.,a =1 p. By (persistence), B =1 pforeverys suchthat: = 8.
But sincex =" M—p, there is a statg such thate = gandg =~ p, quod non.

(b) Neithera == —p nora =1 —p. By the verification conditions for implica-
tions,a == Mp, sincea =" Mp D p. HenceB =" p for every 8 such that
o C B. In particular,a =~ p, quod non. Clearly, in this case the problem can
be seen to arise by defining> Bas—Av B.

5 Constructivebase Nelson’s constructive logic (sel&]) combines the virtues of
intuitionistic logic (namely its constructive implication) and partial logic (hamely its
suitability for representing incomplete information). From a philosophical point of
view, one main advantage of Nelson’s logic is that it allows to falsify formulas on the
spot in intuitionistic Kripke frames.

A Nelson model is a structur€l, C, v), where(l, C) is an intuitionistic Kripke
frame andv a mapping that assigns to eaghe | a partial interpretatiorv,, such that
for every propositional variablp and everyy, g € I:

(persistenc)
(persistencg)

if « C B, thenv,(p) = Limpliesvg(p) =1
if « C B, thenv, (p) = 0impliesvg(p) = 0.

Let M = (I, C, v) be a Nelson modely € | and letA be a wff in the language
{~,M, D, A, V}. The notionsM, o =" A (Ais verified ate in M) and M, a =~ A
(Ais falsified ate in M) are inductively defined as follows:

M,a =" p
M,al="p
M,a =" BAC
M, =" BAC
M,a=" BvC
M,a="BvC
M,a =t B>C
M,al="B>C
M,a ="~ B
M,a="~B
M,a =+ MB
M, o= MB

iff
iff
iff
iff

iff
iff

ve(P) =1, wherepis a propositional variable
ve(p) =0, wherepis a propositional variable
M, =t BandM,a =" C

M, =" BorM,al="C
M,a="BorM,a =" C

M,a =" BandM,a="C

vVBel)ifaC B, thenM, B =" BimpliesM, =" C
M, =t BandM,a =" C

M,a =" B

M,a =B

3pel,aC BandM,B="B

VBel,aC BimpliesM, g =" B.

Nelson’s systenN is the theory of the class of all Nelson models in the lan-
guage{~, D, A, V}. It can easily be shown that every wifin this language satisfies
(persistence) and (persistence. Moreover, for every modeV = (I, C, v) and ev-

erya € | we have

a =" Aimpliesa =1 A
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The law of contraposition does not holdiih Moreover, provable equivalence fails to

be a congruence relation on the set of wffs. If wifsaind B are defined to bstrongly
equivalent iff both A and B and their strong negatiorns A and~ B are provably
equivalent, then it can be shown that strong equivalence is a congruence relation in
N. In Wansing[[L§] it is agued that in the context of abstract information structures
these are desirable propertres.

Obviously, N is closely related to three-valued logic. If one permits only one-
state Nelson models, one obtains a three-valued logic that differs from the well known
systems of Kleene, tukasiewicz, and Bochvar insofar as it has the following truth
table for>:

ADB\luO
1 1 uo
u 1 1 1
0 1 1 1

This system can be axiomatized by adding the axiom schgme ~ A) D~
(AD~ A)) D Ato the Hilbert-style axiomatization df given in the Appendix, see
Gurevich ].

Let us refer to the above extensionfasN(Md). In N(Md) we have adopted
Turner’s ‘dynamic’ falsification conditions for consistency assertibha. This,
however, is a deviation from the remainigg -clauses, which exemplify falsifica-
tion “on the spot.” If we want to stick to the idea of direct falsification, then Turner’s
E="-clause for wifsM A should be replaced by the less general

M,a =" MBiff M,a ="~ B.

The resulting systeni (M), like N(Md), isnot only void of the problematic features
of McDermott and Doyle’s approach, we also have

{(Mp > p), M~ p} ¥ gy ™ Ps

{(Mp> p), M~ p} ¥y~ P

6 Justifying the choice of the base system  Apart from: (i) (implicitly) claiming

that the semantic clause fdtin H(M) captures the notion of consistency in a plau-
sible way; and, (ii) considerably improving on McDermott and Doyle’s approach,
Gabbay gives little further justification of using amuitionistic base system. Addi-
tional evidence for the suitableness of working with intuitionistic logic is, according
to Gabbay, given by a certain approximation of the “main formal equatiokfd¢for
consistent wifsA):

(x1) A¥ =B iff A-MB
or rather its semantic counterpart
(x2) A=—-B iff A= MB.

Gabbay points out that in a certain naturally defined intuitionistic Kripke madel
one can show that
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(*3) M, A= —B iff M, A= MB,

whereAandB are formulas if—, A, D} and the information states are the wifs in this
fragment themselves. The justificatory power of this approximation is not quite clear.
Whereaq*2) asserts an equivalence between the existence of certain countermodels
and a property oéll models,(x3) is a claim aboubne particular model. Moreover,

the intuition behind 1) rather seems to be this:

(x4) AL —B iff A~B.

If one wants to confine the meaning\dfin the logical base system by a general “main
formal equation,” then the following is a natural and fundamental equivalence (again
for consistent wffsA):

(*5) A,—BE L iff A= MB.

In case—in (x5) is taken to be intuitionistic negation addintuitionistic falsity (that

is, WVa € I)a (£ 1), one obtains a slightly stronger consistency operator than Gab-
bay’s, namely intuitionistic double negatien-.2 The verification conditions for
——=Aimply those for Gabbay'MA:

o E=——A iff (VB e l)a C Bimpliesg & —A
iff (VBel)a T gimplies((Fy e l)BC yandy &= A)
onlyif (38el)aC Bands k= A.

Since in intuitionistic logicm——A is equivalent to—~ A, one still has{(Mp > p),
M=p} = —~pand hencg(Mp > p)}r~—p.

Without doubt, both interpretinyl as possibility with respect to the informa-
tion ordering in intuitionistic Kripke models and interpreting it as intuitionistic dou-
ble negation prima facie captures interesting and plausible notions of consistency. If
one, however, agrees with Turner insofar as nonmonotonic inferences are justified
only in the presence of incomplete information, then these notions of consistency are
not general enough. For, if there is no possible extensienadfwhich A is decided,
that is, is either true or false, it should still be consistent to assumeéhett A. The
more general intuition, appropriate also in the three-valued setting, therefore is this:

M,a =" MA iff (YBel)a T Bimpliesg =~ A
M,a == MA iff af=T~A.

In N intuitionistic negation— can be defined by A =4et A D~ A, and the more
general consistency operatdrturns out to be definable M A =gt = ~ A:

akE=t~AD~~ A
iff (VBel)if a T B, thenp ="~ Aimpliesg =" A
iff not(@3Bel)aC Bandp =~ Aandp =t A
iff not(@Bel)aC Bandp=t~ A
iff (VBel)aC gimpliesp =~ A,

aE=E"~AD~~A
iff oE="~Aanda ="~~ A
iff op="~A.
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Note that, due to (persistenceand the reflexivity ofC, for the defined we
have

M, =" MAff M, o=t~ Aiff VBel,a C gimpliesM, =" A,

that is, Turner’s falsification conditions amount to falsification on the spot.
Obviously, the definet¥ satisfies(x5):

A~BE*t L
iff AEt~B> L
iff Aet—-~B
iff At MB.

Also in N the counterintuitive results of McDermott and Doyle and the problem with
Gabbay’s and Turner’s systems do not arise: the sets of assumfitigns g, ~

g} and{~ Mp} are satisfiablefM p, ~ p} and{M(p A q), ~ p} are not satisfiable,
M(pAQ)Mp, and{(Mp > p), M ~ p} K=~ p.

According to Clarke and Gabbay (see page 177 ff. of tii&@) [[i]t could be
viewed as a justifiable criticism of the intuitionistic system thi@ > C is equivalent
toCv —=C,i.e., neutral with respect © or —C. This,” they continue, “is not the usual
intention behind defaults.” Note that neitheMi{Md) norin N(M) nor in N we have
thatMA D Ais equivalent toAv ~ A.

7 Summaryandoutlook Itseems as if the fact that on the basisi@giV) andK (M)

we haveM p D p |~ —p has been considered the main obstacle to working with Gab-
bay’s definition of nonmonotonic inference instead of nonconstructive fixed-point
definitions. We have seen that this obstacle can easily be removed by using Nelson’s
constructive logid\ as the underlying base system, that is, by working Wtihd)

or N(M). Moreover, we have seen that in NelsoNs notion of consistency appro-
priate for three-valued interpretations can be defined, and nonmonotonic inference
thus can be based on a system of partial logic: (i) having a clear and intuitive se-
mantics; and, (ii) still satisfying the Deduction Theorem, which is nice, because the
Deduction Theorem expresses the central idea of interaction between syntactical con-
sequence and implication.

The beauty of Gabbay's definition of nonmonotonic deduction resides in the
flexibility provided by the choice of the underlying base logic. In principle any logic
given by a class of ‘information models’ will do. What is needed is some kind of in-
formation orderinge to interpret the consistency operaMand, if necessary, some
successful strategy to avoid undesirable results like the one discussed at length in this
paper. To be more specific, the various persistence conditions and the presence or
absence of properties of (like reflexivity, seriality, transitivity, etc.) give rise to
a semantics-driven landscape of subsystemsl@¥1d), N(M) and N. This route
to weaker systems is plausible foi(M) andK (M), too, since in the absence of
(persistence) the derivation 8fp > p |~ —p is blocked forH (M) and in the ab-
sence of either (persistencdeor reflexivity of C the derivation is blocked fdf (M).

There exists thus a large variety of different notions of consistency and hence no-
tions of nonmonotonic deduction, which may be compared, tested against benchmark
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problems, and applied in knowledge representation. It should also be pointed out
that in semantics-based nonmonotonic reasoning there is no need for the underly-
ing base logic to be monotonic. It is well known that in intuitionistic logic the per-
sistence property corresponds with the validity of the monotonicity axiom scheme
AD (B> A). IfthusMp D p |~ —pis avoided by giving up the persistence re-
quirement inH (M), one obtains a relevance logical base system. There is nothing
wrong with semantically basing nonmonotonic inference on a nonmonotonic logic,
since nonmonotonicitgs such is only a symptom, comparable to the absence of con-
traction or permutation of premise occurrences in certain substructural logicsidVhat
important is the naturalness of the nonmonotonic inference mechanism. | daresay that
Gabbay’s definition describes such a simple and natural mechanism for nonmono-
tonic inference.

There is an open problem, namely to axiomatiz@d) andN(M).

Appendix Let A= Babbreviatd AD B) A (B D A). The propositional systerN
can be axiomatized by modus ponens and the following axiom schemes:

AD (B> A
(ADBDC)HD((ADB)D(ADCO))
AD (BD (AAB))

(AANB)D A

(AAB)D B

AD (Av B)

B> (AvB)
(ADC)D((BDC)D((AvB)D(O))
~(ADB)=(AA~B)

~ (AAB)=(~ Av ~ B)

~ (AvV B)=(~ AA~ B)

A=~~ A

AD (~ AD B).

©CoNo kWD

el ol
wph P o

An axiomatization of intuitionistic propositional logic is given by modus po-
nens, 1-8, and

14 AD> (—-ADB)
15 (AD>B)D> ((AD—=B) D> —A).

Acknowledgments | wish to thank David Pearce and Seiki Akama for their comments on
an earlier version of this paper.

NOTES

1. A more detailed motivation of Nelson’s (systems of) constructive logic with strong nega-
tion and additional references may, for instance, be found in Warlghlgpd Jaspars
[[). Recently, strong negation has become rather prominent in extensions of logic pro-
gramming, see, for example, Pearce and Wadh# Wagner [L4], Pearcel[1], and
Wagner[L5).
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. Nelson models have intensively been studied by Jaspars ihidif logic ud for up-

dating and downdating does not contain constructive implication as a primitive connec-
tive. However, the truth conditions fd@ updated byA ([ A],B) coincide with the truth
conditions forA > B (while the falsity conditions for- (A A ~ B) still coincide with

those forA O B).

A semantic treatment of intuitionistic double negation as a modal operator can be found
in Dosen ] Note that D&en regards:— as a necessity operatar However, he notes

that one “can prové&l A <~ —0O—-A, which goes some way towards explaining why in-
tuitively O . .. has some features of possibility,” see page 1§f [
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