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Urquhart’s C with Intuitionistic Negation:
Dummett’s LC without the Contraction Axiom

JOŚE M. MÉNDEZ and FRANCISCO SALTO

Abstract This paper offers a particular intuitionistic negation completion of
Urquhart’s systemC resulting in a super-intuitionistic contractionless proposi-
tional logic equivalent to Dummett’sLC without contraction.

1 Introduction Ono and Komori [3] is ageneral study of propositional contraction-
less logic, i.e., propositional logics without the rule

�, α, α, � → χ

�, α, � → χ

in a Gentzen-type formulation, or without the axiom

[ A → (A → B)] → (A → B)

in a Hilbert-type one.
In the “concluding remarks” of their paper, Ono and Komori encourage the study

of intermediate logics (i.e., logics between the intuitionistic and the classical logic)
without the contraction principle. Moreover, in Urquhart [5] a most interesting posi-
tive propositional logicC is introduced, which can intuitively be described as the pos-
itive fragment of Dummett’sLC (see [1]) minus the contraction axiom. There are es-
sentially two possibilities for extendingC with a negation connective. The first one, a
kind of “semiclassical negation,” gives as a result Łukasiewicz’s infinite-valued logic
Lw. The second, a kind of semi-intuitionistic negation, generates a logicCI, which
is, from a intuitive point of view, Dummett’sLC without the contraction or reductio
(i.e., (A → ¬A) → ¬A) axioms (a complete semantics forCI is offered in Ḿendez
and Salto [2]).

But there is still a third possibility left, namely adding the reductio axiom toCI.
The resulting system (let us refer to it byCIr) is, intuitively, Urquhart’sC with in-
tuitionistic negation or, alternatively, Dummett’sLC without the contraction axiom.
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SoCIr is a prominent component in the class of super-intuitionistic logics Ono and
Komori refer to.

In what follows, we shall slightly modify the standard techniques of Routley-
Meyer type semantics (see [4]) so as to deal withCIr-nonrelevant consistent theories.
Weshall introduce negation as a primitive connective, but it would be easy to define
it by means of a falsity constant (see [2]). In the development of these semantics a
point of interest is, we think, to show that the contraction axiom is not derivable from
CIr. So in§5 the reader can find the simplestCIr-model falsifying the contraction
axiom. The results of [2] are not presupposed in this paper as far asCIr is concerned.

2 Urquhart’s C with semi-intuitionistic negation: the system CI Urquhart’sC can
be axiomatized as follows.

Axioms:

A1. (B → C) → [(A → B) → (A → C)]
A2. [ A → (B → C)] → [ B → (A → C)]
A3. (A∧ B) → A (A∧ B) → B
A4. A → [ B → (A∧ B)]
A5. A → (A∨ B) B → (A∨ B)

A6. [(A → B) ∧ (A → C)] → [(A∨ B) → C]
A7. (A → B) ∨ (B → A)

Rule:

modus ponens: If� A and� A → B, then� B.

In order to formulateCI we add to the sentential language ofC the unary connective
¬ (negation) and the following axioms.

A8. (A → ¬B) → (B → ¬A)

A9. A → (¬A → B)

3 Semantics for CI A CI-model is the structure〈K, R, |=〉 whereK is a set and
R is a ternary relation onK subject to the following definitions and postulates for all
a, b, c, d ∈ K with quantifiers ranging overK.

d1. a ≤ b =def ∃x Rxab
d2. R2abcd=def ∃x[ RabxandRxcd]
P1. a ≤ a
P2. a ≤ b andRbcd⇒ Racd
P3. R2abcd⇒ ∃x[ RbcxandRaxd]
P4. Rabc⇒ Rbac
P5. RabcandRade⇒ b ≤ e or d ≤ c.

Finally, |= is a valuation relation fromK to the sentences ofC satisfying the following
conditions for alla ∈ K:

1. For each propositional variablep anda, b ∈ K, a |= p anda ≤ b ⇒ b |= p;
2. a |= A∧ B iff a |= A anda |= B;
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3. a |= A∨ B iff a |= A or a |= B;
4. a |= A → B iff for all b, c ∈ K, Rabcandb |= A ⇒ c |= B;
5. a |= ¬A iff for all b, c ∈ K not-Rabcor b �|= A.

A formula isvalid iff a |= A for all a ∈ K in all models. We have shown in [2] that
A is a theorem ofCI if A is valid.

4 Adding the reductio axiom to CI: the system CIr To formulateCIr we add to
CI the reductio axiom:

A10. (A → ¬A) → ¬A.

Now, we note:

1. CIr and the Łukasiewicz’sn-valued logic are independent systems:A10 is not
a theorem ofLn; CIr does not count with nonintuitionistic principles such as,
e.g., strong De Morgan Laws.

2. CIr clearly includesCI (which is, of course, included inLn) but for pur-
poses of comparison only (see§5 below), we describe aCI-model falsifying
the reductio axiom. Consider aCI-model〈K, R, |=〉 with K = {a, b} and let
Rabb, Raaa, but not-Raba, not-Rbba, not-Rbbb; b |= A, but a �|= A. It is
clear thata �|= ¬A, and it is not difficult to show thata |= A → ¬A. Thus,
a �|= (A → ¬A) → ¬A, and soA10 is not valid.

3. As shown in§5 below, the contraction axiom is not a theorem ofCIr.

5 Semantics for CIr together with a model falsifying the contraction axiom
A CIr-model is just like aCI-model but with the addition of the postulate:

P6. Rabc⇒ ∃xRcbx.

Now, semantic consistency is easy. As an illustration, we show the validity ofA10,
for which we use the equivalence between the propositions “A10 is valid” and “if
a |= A → ¬A, thena |= ¬A for all a ∈ K in all models” (see [4]). So suppose for
reductio a model with somea ∈ K such thata |= A → ¬A anda �|= ¬A. By clause
(5) there are someb, c ∈ K such thatRabcandb |= A. Thus,c |= ¬A (sincea |=
A → ¬A, Rabc, b |= A), which contradictsRcbd(sinceRabc, P6) andb |= A (by
clause (5)). Therefore,A10 is valid.

Now, we provide aCIr-model falsifying the contraction axiom. Consider aCIr-
model〈K, R, |=〉 whereK = {a, b, c, d}; a |= A, b |= A, c |= A, d �|= A, a �|=
B, b �|= B, c |= B andd �|= B; Raab, Raac, Rada, Rabc, Racc, Radb, Radc,
Rbac, Rbbc, Rbdb, Rbcc, Rbdc, Rccc, Rcac, Rcbc, Rcdc, Rdaa, Rdbb,
Rddd, Rdab, Rdac, Rdda, Rdbc, Rdcc, Rddb, andRddc.

It is an easy but certainly tedious task to prove that P1–P6 are verified. It is no
more difficult either to show thata |= A → (A → B) (note thatb |= A → B andc |=
A → B) and thata �|= A → B (Raab, a |= A, b �|= B). So [A → (A → B)] → (A →
B) is not true in this model, which is the smallest falsifying the contraction axiom,
since there is no model withK = {a, b, c} falsifying the principle under consideration.

Wefinish this section by noting that the postulate P6′,

P6′. ∃x Raax(for eacha ∈ K),
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is equivalent to P6 in presence of the intuitionistic postulate.

6 Completeness of CIr We begin with some definitions and then we prove some
previous lemmas.

A theory is a set of formulas ofCIr closed under adjunction and provable entail-
ment (that is,a is atheoryif wheneverA, B ∈ a, thenA∧ B ∈ a; if wheneverA → B
is a theorem andA ∈ a, thenB ∈ a); a theorya is null iff no wff belongs toa; prime
iff wheneverA∨ B ∈ a, thenA ∈ a or B ∈ a; regular if all theorems ofCIr belongs
to a; finally, a is consistentif a does not contain the negation of a theorem ofCIr.

Wenow define theCIr-canonical structure as the pair〈Kc, Rc〉 whereKc is the
set of all nonnull prime consistent theories, andRc is defined onKc as follows: for
all formulasA, B anda, b, c ∈ Kc, Rabciff if A → B ∈ a andA ∈ a, thenB ∈ c.

Lemma 6.1 If a is a nonnull theory, then a is regular.

Proof: SupposeA is a theorem, and letB∈ a. By the theoremA→ (B→ A), B→
A is a theorem. Then,B ∈ a. �

Lemma 6.2 For any wff A and theory a, a is inconsistent iff A∧ ¬A ∈ a.

Proof: (⇒) Supposea is inconsistent. Then,¬B ∈ a for some theoremB. By A9,
¬B → (A∧¬A) is a theorem. Thus,A∧¬A ∈ a. (⇐) SupposeA∧¬A ∈ a. Given
CIr, ¬(A ∧ ¬A) and(A → ¬A) → ¬A are interchangeable. So¬(A ∧ ¬A) and
(A∧ ¬A) → ¬B (with B a theorem) are theorems. Thus,¬B ∈ a. �

Lemma 6.3 If A is not provable inCIr, then there is a nonnull prime consistent
theory T which does not contain A.

Proof: CIr is a nonnull consistent theory; by Zorn’s lemma, there is a maximal non-
null consistent theoryT without A. If T is not prime, thenB∨ C ∈ T, B /∈ T, andC /∈
T. Define [T, B] = {E|∃D[ D ∈ T and(B∧ D) → E ∈ CIr]}, [T, C] = {E|∃D[ D ∈ T
and(C ∧ D) → E ∈ CIr]}. It iseasy to show that [T, B] and [T, C] are nonnull the-
ories that strictly includeT. By the maximality ofT, there are three possible cases.

Case 1: [T, B] and [T, C] are inconsistent.
By definition and Lemma6.2, (B ∧ D) → (E ∧ ¬E′), (C ∧ D′) → (E ∧ ¬E′) ∈
CIr for some wffsE, E′ andD, D′ ∈ T. By elementary properties of∧, ∨, and¬,
[(B∨ C)∧ (D ∧ D′)] → (E∧¬E) ∈ CIr. Then,¬(E∧¬E) → ¬[(B∨ C)∧ (D ∧
D′)] ∈ CIr by contraposititon. But then¬[(B∨ C) ∧ (D ∧ D′)] ∈ CIr. Now, since
¬¬[(B∨ C) ∧ (D ∧ D′)] ∈ T (by (B∨ C) ∧ (D ∧ D′) ∈ CIr and double negation),
we conclude thatT is inconsistent, which is impossible.

Case 2: A∈ [T, B] and A ∈ [T, C].
By definition, (B ∧ D) → A, (C ∧ D′) → A ∈ CIr for someD, D′ ∈ T. Then,
[(B∨ C) ∧ (D ∧ D′)] → A ∈ CIr, henceA ∈ T, which is impossible.

Case 3: [T, B] is inconsistent andA ∈ [T, C], or [T, C] is inconsistent andA ∈
[T, B].
Weconsider the first alternative, the second being similar. By definition,(B∧ D) →
(E∧ E′), (C∧ D′) → A ∈ CIr for some wffsE andD, D′ ∈ T. Now, it is clear that
(B∧ D) → A ∈ CIr. So A ∈ T, which is impossible (as in Case (2) above).
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Each of Cases (1), (2), and (3) is untenable. Therefore,T is prime, which ends the
proof of Lemma6.3. �

Lemma 6.4 Let 〈Kc, Rc〉 be the canonical structure. For all a, b ∈ Kc, a ≤ b iff
a ⊆ b.

Proof: Supposea ≤ b. By definition, Rxabfor somex ∈ Kc. SinceA → A ∈ x,
wheneverA ∈ a we haveA ∈ b, i.e., a ⊆ b. Suppose nowa ⊆ b. It is clear that
RCIab (becauseRCIaa anda ⊆ b). Soa ≤ b by definition.

Next we prove thatx can be extended to a prime nonnull consistent theoryx′

such thatRx′ab. Thus, consider the set of all nonnull consistent theoriesy such that
x ⊆ y and Ryab. By Zorn’s Lemma, there is a maximal elementx′ in this set such
thatx ⊆ x′ andRx′ab. If x′ is not prime, thenA ∨ B ∈ x′, A /∈ x′, B /∈ x′ for some
wffs A, B. Then, define the nonnull theories [x′, A], [x′, B] that strictly includex′

(cf. Lemma6.3).
By the maximality ofx′, there are three possible cases.

Case 1: [x′, A] and [x′, B] are inconsistent.
Thenx′ is inconsistent (cf. Lemma6.2).

Case 2: not-R[x′, A]ab and not-R[x′, B]ab.
By definition, (A ∧ E) → (C → D), (B ∧ E′) → (C′ → D′) ∈ CIr, C, C′ ∈
a, E, E′ ∈ x, D /∈ b, D′ /∈ b for some wffsC, C′, E, E′, D, D′. Hence, [(A∨ B) ∧
(E ∧ E′)] → [(C → D) ∨ (C′ → D′)] ∈ CIr by elimination of disjunction and dis-
tribution. Then, [(C → D) ∨ (C′ → D′)] ∈ x′ (since(A∨ B) ∧ (E ∧ E′) ∈ x′), and
so (C ∧ C′) → (D ∨ D′) ∈ x′. Thus,D ∨ D′ ∈ b (sinceRx′ab, C ∧ C′ ∈ a). But b
is prime. Therefore,D ∈ b or D′ ∈ b, contradicting our hypothesis.

Case 3: not-R[x′, A]ab and [x′, B] is inconsistent, or not-R[x′, B]ab and [x′, A] is
inconsistent.
Suppose not-R[x′, A]aband [x′, B] is inconsistent. By definition,(A∧ E) → (C →
D), (B ∧ E′) → (H ∧ ¬H) ∈ CI, E, E′ ∈ x′, C ∈ a, D /∈ b for some wffs
E, E′, C, D, H. Now, it is clear that(B∧ E′) → (C → D) ∈ CIr. SoC → D ∈ x′ as
in Case (2) above, and thusD ∈ b by Rx′ab, contradicting the hypothesis. The proof
that not-R[x′, B]ab and [x′, A] is inconsistent leads also to contradiction is similar.

Each of Cases (1), (2), and (3) is untenable, thereforex′ is prime, which ends the proof
of Lemma6.4. �

Lemma 6.5 The canonical structure is indeed a model structure.

Proof: We have to prove that the postulates P1–P6 hold in the canonical structure.
Now, P1 and P2 are trivial by Lemma6.4; P4 is easy using the theoremA → [(A →
B) → B], and P5 is inmediate byA7 and Lemma6.4. Thus, it remains to be proved
that P3 and P6 hold.

P3. R2abcd⇒ ∃x[ RbcxandRaxd].
Given RabyandRycd, wehave to show that there is a prime nonnull consistent the-
ory x′ such thatRbcx′ andRax′d. Thus, define the nonnull theoryx = {B|∃A[ A ∈ c
andA → B ∈ b]}. Now, Rbcxis trivial andRaxdeasily follows from the hypothesis
andA1. Next, we prove thatx is consistent. Suppose it is not. Then,B ∧ ¬B ∈ x.
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But, as(B∧¬B) → ¬A (A is a theorem) is a theorem,(B∧¬B) → ¬A ∈ a, whence
¬A ∈ d by Raxd, contradicting the consistency ofd.

Consider now the set of all nonnull consistent theoriesy such thatx ⊆ y and
Rayd. By Zorn’s Lemma, there is a maximal elementx′ in this set such thatRax′d and
Rbcx′ (Rbcxandx ⊆ x′). If x′ is not prime, define the nonnull theories [x′, A], [x′, B]
strictly includingx′. By the maximality ofx′, there are three possibilities:

1. [x′, A] and[x′, B] are inconsistent;
2. not-Ra[x′, A]d and not-Ra[x′, B]d;
3. not-Ra[x′, A]d and [x′, B] is inconsistent, or not-Ra[x′, B]d and [x′, A] is in-

consistent.

As in the proof of Lemma6.4, it can be shown that each one of these possibilities is
impossible. Therefore,x′ is a prime nonnull consistent theory, which ends the proof
that P3 holds in the canonical model.

P6. Rabc⇒ ∃xRcbx.
SupposeRabc. Define the nonnull theoryx = {B|∃A[ A ∈ b and A → C ∈ c]}. It
is clear thatRcbx. Thus, it remains to be proved how to extendx to a prime con-
sistent theory. We begin by proving thatx is consistent. Suppose it is not. Then,
by definition,B → (A ∧ ¬A) ∈ C, B ∈ b. Contraposing,¬(A ∧ ¬A) → ¬B ∈ c,
and so¬B ∈ c (sinceRcxcby P1 and P4, and¬(A ∧ ¬A) ∈ x by x ∈ Kc; cf. Lem-
mas6.1 and6.2). Now, B → ¬(B → B) ∈ a by Rabcand B ∈ b. Contraposing,
¬¬(B → B) → ¬¬B ∈ c, and thus¬¬B ∈ c. Therefore,¬B ∧ ¬¬B ∈ c, contra-
dicting the consistency ofc.

Consider now the set of all nonnull consistent theoriesy such thatx ⊆ y and
Rcby. By Zorn’s lemma there is a maximal elementx′ such thatRcbx′. If x′ is not
prime, define, as in previous lemmas, the nonnull theories [x′, A], [x′, B] that strictly
includex′. Now, we note thatRcb[x′, A] and Rcb[x′, B] trivially hold, sinceRcbx
andx′ ⊆ [x′, A], [x′, B]. So [x′, A] and[x′, B] are inconsistent by the maximality of
x′. But if [ x′, A] and[x′, B] are inconsistent, thenx′ is inconsistent (cf. Lemma6.3),
which is impossible. Therefore,x′ is a prime nonnull consistent theory; this ends the
proof that P6 holds in the canonical structure, and Lemma6.5 is proved. �

Lemma 6.6 Let〈Kc, Rc, |=c〉 be the canonical model where〈Kc, Rc〉 is the canon-
ical structure and|=c is a relation from Kc to the sentences ofCIr such that for each
wff A and a∈ Kc, a |=c A iff A ∈ a. Then, the canonical model is indeed a model.

Proof: We have to prove that the canonical|=c satisfies the conditions (1)–(5) of
the valuation relation. Now, clauses (1)–(3) are trivial. It remains to prove clauses
(4) and (5).

Clause (4):a |= A → B iff for all b, c ∈ Kc, if Rabcandb |= A, thenc |= B.
Proof from left to right is simple. So supposea �|= A → B. We show that there are
b′, c′ ∈ Kc such thatRab′c′, b′ |= A andc′ |= B. Then, defineb = {C|A → C ∈
CIr}, c = {C|∃D[ D ∈ bandD→ C ∈ a]}. It is easy to prove thatb andc are non-
null theories such thatRabc. Wenow prove thatb andc are consistent. Suppose that
b is inconsistent. Then,A → (C∧¬C) ∈ CIr whence, contraposing,¬(C∧¬C) →
¬A ∈ CIr, and so¬A ∈ CIr. Thus,A → B ∈ a, and thena |= A → B, which con-
tradicts the hypothesis. The proof thatc is consistent is similar.
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Now, consider the setZ of all nonnull consistent theoriesx such thatc ⊆ x and
B /∈ x. An argument similar to that in the proof of Lemma6.3 shows that there is
a prime nonnull consistent theoryc′ such thatc ⊆ c′ and B /∈ c′. By definition of
R, Rabc′. Let nowY be the set of all consistent theoriesy such thatb ⊆ y andRayc′.
Reasoning as in the proof of Lemma6.4, it iseasy to show that there is a prime con-
sistent theoryb′ such thatb ⊆ b′ andRab′c. But since clearlyA ∈ b, wehaveA ∈ b′.
Hence, there are prime consistent theoriesb′, c′ such thatRab′c′, A ∈ b′, andB /∈ c′.
By definition of|=, b |= A andc �|= B, which ends the proof of clause (4).

Clause (5):a |= ¬A iff there areb, c ∈ K such that not-Rabcor b �|= A.
Proof from left to right is easy. So supposea �|= ¬A. We show that there areb′, c′ ∈ K
such thatRab′c′ andb′ |= A. Defineb = {B|A → B ∈ CIr}, c = {C|∃B[ B ∈ b and
B → C ∈ a]}. The proof is similar to that of clause (4). �
Finally we prove, the following.

Theorem 6.7 (Completeness) If A is valid, then A is a theorem ofCIr.

Proof: Suppose thatA is not a theorem. Then,A /∈ T by Lemma6.3. So A is not
valid by Lemmas6.4and6.5. �
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