Urquhart's C with Intuitionistic Negation: Dummett's LC without the Contraction Axiom

JOSÉ M. MÉNDEZ and FRANCISCO SALTO

Abstract

This paper offers a particular intuitionistic negation completion of Urquhart's system C resulting in a super-intuitionistic contractionless propositional logic equivalent to Dummett's $\mathbf{L C}$ without contraction.

1 Introduction Ono and Komori [3] is a general study of propositional contractionless logic, i.e., propositional logics without the rule

$$
\begin{gathered}
\Gamma, \alpha, \alpha, \Delta \rightarrow \chi \\
\Gamma, \alpha, \Delta \rightarrow \chi
\end{gathered}
$$

in a Gentzen-type formulation, or without the axiom

$$
[A \rightarrow(A \rightarrow B)] \rightarrow(A \rightarrow B)
$$

in a Hilbert-type one.
In the "concluding remarks" of their paper, Ono and Komori encourage the study of intermediate logics (i.e., logics between the intuitionistic and the classical logic) without the contraction principle. Moreover, in Urquhart [5] a most interesting positive propositional $\operatorname{logic} \mathbf{C}$ is introduced, which can intuitively be described as the positive fragment of Dummett's LC (see (11) minus the contraction axiom. There are essentially two possibilities for extending \mathbf{C} with a negation connective. The first one, a kind of "semiclassical negation," gives as a result Łukasiewicz's infinite-valued logic $\mathbf{L w}$. The second, a kind of semi-intuitionistic negation, generates a logic CI, which is, from a intuitive point of view, Dummett's $\mathbf{L C}$ without the contraction or reductio (i.e., $(A \rightarrow \neg A) \rightarrow \neg A$) axioms (a complete semantics for $\mathbf{C I}$ is offered in Méndez and Salto [2]).

But there is still a third possibility left, namely adding the reductio axiom to $\mathbf{C I}$. The resulting system (let us refer to it by $\mathbf{C I r}$) is, intuitively, Urquhart's \mathbf{C} with intuitionistic negation or, alternatively, Dummett's LC without the contraction axiom.

So CIr is a prominent component in the class of super-intuitionistic logics Ono and Komori refer to.

In what follows, we shall slightly modify the standard techniques of RoutleyMeyer type semantics (see 44) so as to deal with CIr-nonrelevant consistent theories. We shall introduce negation as a primitive connective, but it would be easy to define it by means of a falsity constant (see [2]). In the development of these semantics a point of interest is, we think, to show that the contraction axiom is not derivable from CIr. So in $\$ 5$ the reader can find the simplest CIr-model falsifying the contraction axiom. The results of [2] are not presupposed in this paper as far as $\mathbf{C I r}$ is concerned.

2 Urquhart's C with semi-intuitionistic negation: the system CI Urquhart's C can

 be axiomatized as follows.
Axioms:

A1. $(B \rightarrow C) \rightarrow[(A \rightarrow B) \rightarrow(A \rightarrow C)]$
A2. $[A \rightarrow(B \rightarrow C)] \rightarrow[B \rightarrow(A \rightarrow C)]$
A3. $(A \wedge B) \rightarrow A \quad(A \wedge B) \rightarrow B$
A4. $A \rightarrow[B \rightarrow(A \wedge B)]$
A5. $A \rightarrow(A \vee B) \quad B \rightarrow(A \vee B)$
A6. $[(A \rightarrow B) \wedge(A \rightarrow C)] \rightarrow[(A \vee B) \rightarrow C]$
A7. $(A \rightarrow B) \vee(B \rightarrow A)$
Rule:
modus ponens: If $\vdash A$ and $\vdash A \rightarrow B$, then $\vdash B$.
In order to formulate $\mathbf{C I}$ we add to the sentential language of \mathbf{C} the unary connective \neg (negation) and the following axioms.

A8. $(A \rightarrow \neg B) \rightarrow(B \rightarrow \neg A)$
A9. $A \rightarrow(\neg A \rightarrow B)$

3 Semantics for CI A CI-model is the structure $\langle K, R, \models\rangle$ where K is a set and R is a ternary relation on K subject to the following definitions and postulates for all $a, b, c, d \in K$ with quantifiers ranging over K.
d1. $a \leq b=_{\text {def }} \exists x$ Rxab
d2. $R^{2} a b c d={ }_{d e f} \exists x[R a b x$ and $R x c d]$
P1. $a \leq a$
P2. $a \leq b$ and Rbcd \Rightarrow Racd
P3. $R^{2} a b c d \Rightarrow \exists x[R b c x$ and Raxd $]$
P4. $R a b c \Rightarrow$ Rbac
P5. Rabc and Rade $\Rightarrow b \leq e$ or $d \leq c$.
Finally, \models is a valuation relation from K to the sentences of \mathbf{C} satisfying the following conditions for all $a \in K$:

1. For each propositional variable p and $a, b \in K, a \models p$ and $a \leq b \Rightarrow b \models p$;
2. $a \models A \wedge B$ iff $a \models A$ and $a \models B$;
3. $a \models A \vee B$ iff $a \models A$ or $a \models B$;
4. $a \models A \rightarrow B$ iff for all $b, c \in K, R a b c$ and $b \models A \Rightarrow c \models B$;
5. $a \models \neg A$ iff for all $b, c \in K$ not- Rabc or $b \not \models A$.

A formula is valid iff $a \models A$ for all $a \in K$ in all models. We have shown in [2] that A is a theorem of $\mathbf{C I}$ if A is valid.

4 Adding the reductio axiom to CI: the system CIr To formulate CIr we add to CI the reductio axiom:

A10. $(A \rightarrow \neg A) \rightarrow \neg A$.
Now, we note:

1. CIr and the Łukasiewicz's n-valued logic are independent systems: A10 is not a theorem of $\mathbf{L n}$; CIr does not count with nonintuitionistic principles such as, e.g., strong De Morgan Laws.
2. CIr clearly includes CI (which is, of course, included in $\mathbf{L n}$) but for purposes of comparison only (see $\$ 5$ below), we describe a CI-model falsifying the reductio axiom. Consider a CI-model $\langle K, R, \models\rangle$ with $K=\{a, b\}$ and let Rabb, Raaa, but not-Raba, not-Rbba, not-Rbbb; $b \models A$, but $a \not \models A$. It is clear that $a \not \models \neg A$, and it is not difficult to show that $a \models A \rightarrow \neg A$. Thus, $a \not \models(A \rightarrow \neg A) \rightarrow \neg A$, and so $\mathbf{A 1 0}$ is not valid.
3. As shown in $\$ 5$ below, the contraction axiom is not a theorem of $\mathbf{C I r}$.

5 Semantics for CIr together with a model falsifying the contraction axiom

A CIr-model is just like a CI-model but with the addition of the postulate:
P6. $R a b c \Rightarrow \exists x R c b x$.
Now, semantic consistency is easy. As an illustration, we show the validity of A10, for which we use the equivalence between the propositions "A10 is valid" and "if $a \models A \rightarrow \neg A$, then $a \models \neg A$ for all $a \in K$ in all models" (see (47). So suppose for reductio a model with some $a \in K$ such that $a \models A \rightarrow \neg A$ and $a \not \vDash \neg A$. By clause (5) there are some $b, c \in K$ such that Rabc and $b \models A$. Thus, $c \models \neg A$ (since $a \models$ $A \rightarrow \neg A$, Rabc, $b \models A$), which contradicts Rcbd (since Rabc, P6) and $b \models A$ (by clause (5)). Therefore, A10 is valid.

Now, we provide a CIr-model falsifying the contraction axiom. Consider a CIrmodel $\langle K, R, \models\rangle$ where $K=\{a, b, c, d\} ; a \models A, b \vDash A, c \vDash A, d \not \vDash A, a \not \vDash$ $B, b \not \vDash B, c \vDash B$ and $d \not \vDash B ;$ Raab, Raac, Rada, Rabc, Racc, Radb, Radc, Rbac, Rbbc, Rbdb, Rbcc, Rbdc, Rccc, Rcac, Rcbc, Rcdc, Rdaa, Rdbb, Rddd, Rdab, Rdac, Rdda, Rdbc, Rdcc, Rddb, and Rddc.

It is an easy but certainly tedious task to prove that P1-P6 are verified. It is no more difficult either to show that $a \models A \rightarrow(A \rightarrow B)$ (note that $b \models A \rightarrow B$ and $c \models$ $A \rightarrow B)$ and that $a \not \vDash A \rightarrow B($ Raab, $a \models A, b \not \models B)$. So $[A \rightarrow(A \rightarrow B)] \rightarrow(A \rightarrow$ $B)$ is not true in this model, which is the smallest falsifying the contraction axiom, since there is no model with $K=\{a, b, c\}$ falsifying the principle under consideration.

We finish this section by noting that the postulate $\mathrm{P}^{\prime}{ }^{\prime}$,
P6'. $\exists x$ Raax (for each $a \in K$),
is equivalent to P 6 in presence of the intuitionistic postulate.

6 Completeness of CIr We begin with some definitions and then we prove some previous lemmas.

A theory is a set of formulas of CIr closed under adjunction and provable entailment (that is, a is a theory if whenever $A, B \in a$, then $A \wedge B \in a$; if whenever $A \rightarrow B$ is a theorem and $A \in a$, then $B \in a$); a theory a is null iff no wff belongs to a; prime iff whenever $A \vee B \in a$, then $A \in a$ or $B \in a$; regular if all theorems of CIr belongs to a; finally, a is consistent if a does not contain the negation of a theorem of CIr.

We now define the CIr-canonical structure as the pair $\left\langle K^{c}, R^{c}\right\rangle$ where K^{c} is the set of all nonnull prime consistent theories, and R^{c} is defined on K^{c} as follows: for all formulas A, B and $a, b, c \in K^{c}, \operatorname{Rabc}$ iff if $A \rightarrow B \in a$ and $A \in a$, then $B \in c$.

Lemma 6.1 If a is a nonnull theory, then a is regular.
Proof: Suppose A is a theorem, and let $B \in a$. By the theorem $A \rightarrow(B \rightarrow A), B \rightarrow$ A is a theorem. Then, $B \in a$.

Lemma 6.2 For any wff A and theory a, a is inconsistent iff $A \wedge \neg A \in a$.
Proof: (\Rightarrow) Suppose a is inconsistent. Then, $\neg B \in a$ for some theorem B. By A9, $\neg B \rightarrow(A \wedge \neg A)$ is a theorem. Thus, $A \wedge \neg A \in a$. (\Leftarrow) Suppose $A \wedge \neg A \in a$. Given $\mathbf{C I r}, \neg(A \wedge \neg A)$ and $(A \rightarrow \neg A) \rightarrow \neg A$ are interchangeable. So $\neg(A \wedge \neg A)$ and $(A \wedge \neg A) \rightarrow \neg B$ (with B a theorem) are theorems. Thus, $\neg B \in a$.

Lemma 6.3 If A is not provable in CIr, then there is a nonnull prime consistent theory T which does not contain A.

Proof: CIr is a nonnull consistent theory; by Zorn's lemma, there is a maximal nonnull consistent theory T without A. If T is not prime, then $B \vee C \in T, B \notin T$, and $C \notin$ T. Define $[T, B]=\{E \mid \exists D[D \in T$ and $(B \wedge D) \rightarrow E \in \mathbf{C I r}]\},[T, C]=\{E \mid \exists D[D \in T$ and $(C \wedge D) \rightarrow E \in \mathbf{C I r}]\}$. It is easy to show that $[T, B]$ and $[T, C]$ are nonnull theories that strictly include T. By the maximality of T, there are three possible cases.
Case 1: $[T, B]$ and $[T, C]$ are inconsistent.
By definition and Lemma 6.2. $(B \wedge D) \rightarrow\left(E \wedge \neg E^{\prime}\right),\left(C \wedge D^{\prime}\right) \rightarrow\left(E \wedge \neg E^{\prime}\right) \in$ CIr for some wffs E, E^{\prime} and $D, D^{\prime} \in T$. By elementary properties of \wedge, \vee, and \neg, $\left[(B \vee C) \wedge\left(D \wedge D^{\prime}\right)\right] \rightarrow(E \wedge \neg E) \in \mathbf{C I r}$. Then, $\neg(E \wedge \neg E) \rightarrow \neg[(B \vee C) \wedge(D \wedge$ $\left.\left.D^{\prime}\right)\right] \in \mathbf{C I r}$ by contraposititon. But then $\neg\left[(B \vee C) \wedge\left(D \wedge D^{\prime}\right)\right] \in \mathbf{C I r}$. Now, since $\neg \neg\left[(B \vee C) \wedge\left(D \wedge D^{\prime}\right)\right] \in T\left(\right.$ by $(B \vee C) \wedge\left(D \wedge D^{\prime}\right) \in \mathbf{C I r}$ and double negation $)$, we conclude that T is inconsistent, which is impossible.

Case 2: $A \in[T, B]$ and $A \in[T, C]$.
By definition, $(B \wedge D) \rightarrow A,\left(C \wedge D^{\prime}\right) \rightarrow A \in \mathbf{C I r}$ for some $D, D^{\prime} \in T$. Then, $\left[(B \vee C) \wedge\left(D \wedge D^{\prime}\right)\right] \rightarrow A \in \mathbf{C I r}$, hence $A \in T$, which is impossible.

Case 3: $[T, B]$ is inconsistent and $A \in[T, C]$, or $[T, C]$ is inconsistent and $A \in$ [T, B].
We consider the first alternative, the second being similar. By definition, $(B \wedge D) \rightarrow$ $\left(E \wedge E^{\prime}\right),\left(C \wedge D^{\prime}\right) \rightarrow A \in \mathbf{C I r}$ for some wffs E and $D, D^{\prime} \in T$. Now, it is clear that ($B \wedge D) \rightarrow A \in \mathbf{C I r}$. So $A \in T$, which is impossible (as in Case (2) above).

Each of Cases (1), (2), and (3) is untenable. Therefore, T is prime, which ends the proof of Lemma6.3.

Lemma 6.4 Let $\left\langle K^{c}, R^{c}\right\rangle$ be the canonical structure. For all $a, b \in K^{c}, a \leq b$ iff $a \subseteq b$.

Proof: Suppose $a \leq b$. By definition, Rxab for some $x \in K^{c}$. Since $A \rightarrow A \in x$, whenever $A \in a$ we have $A \in b$, i.e., $a \subseteq b$. Suppose now $a \subseteq b$. It is clear that $R \mathbf{C I} a b$ (because $R \mathbf{C I} a a$ and $a \subseteq b$). So $a \leq b$ by definition.

Next we prove that x can be extended to a prime nonnull consistent theory x^{\prime} such that $R x^{\prime} a b$. Thus, consider the set of all nonnull consistent theories y such that $x \subseteq y$ and Ryab. By Zorn's Lemma, there is a maximal element x^{\prime} in this set such that $x \subseteq x^{\prime}$ and $R x^{\prime} a b$. If x^{\prime} is not prime, then $A \vee B \in x^{\prime}, A \notin x^{\prime}, B \notin x^{\prime}$ for some wffs A, B. Then, define the nonnull theories $\left[x^{\prime}, A\right],\left[x^{\prime}, B\right]$ that strictly include x^{\prime} (cf. Lemma6.3).

By the maximality of x^{\prime}, there are three possible cases.
Case 1: $\quad\left[x^{\prime}, A\right]$ and $\left[x^{\prime}, B\right]$ are inconsistent.
Then x^{\prime} is inconsistent (cf. Lemma6.2].
Case 2: not- $R\left[x^{\prime}, A\right] a b$ and not- $R\left[x^{\prime}, B\right] a b$.
By definition, $(A \wedge E) \rightarrow(C \rightarrow D),\left(B \wedge E^{\prime}\right) \rightarrow\left(C^{\prime} \rightarrow D^{\prime}\right) \in \mathbf{C I r}, C, C^{\prime} \in$ $a, E, E^{\prime} \in x, D \notin b, D^{\prime} \notin b$ for some wffs $C, C^{\prime}, E, E^{\prime}, D, D^{\prime}$. Hence, $[(A \vee B) \wedge$ $\left.\left(E \wedge E^{\prime}\right)\right] \rightarrow\left[(C \rightarrow D) \vee\left(C^{\prime} \rightarrow D^{\prime}\right)\right] \in \mathbf{C I r}$ by elimination of disjunction and distribution. Then, $\left[(C \rightarrow D) \vee\left(C^{\prime} \rightarrow D^{\prime}\right)\right] \in x^{\prime}\left(\right.$ since $\left.(A \vee B) \wedge\left(E \wedge E^{\prime}\right) \in x^{\prime}\right)$, and so $\left(C \wedge C^{\prime}\right) \rightarrow\left(D \vee D^{\prime}\right) \in x^{\prime}$. Thus, $D \vee D^{\prime} \in b$ (since $\left.R x^{\prime} a b, C \wedge C^{\prime} \in a\right)$. But b is prime. Therefore, $D \in b$ or $D^{\prime} \in b$, contradicting our hypothesis.

Case 3: not- $R\left[x^{\prime}, A\right] a b$ and $\left[x^{\prime}, B\right]$ is inconsistent, or not $R\left[x^{\prime}, B\right] a b$ and $\left[x^{\prime}, A\right]$ is inconsistent.
Suppose not- $R\left[x^{\prime}, A\right] a b$ and $\left[x^{\prime}, B\right]$ is inconsistent. By definition, $(A \wedge E) \rightarrow(C \rightarrow$ $D),\left(B \wedge E^{\prime}\right) \rightarrow(H \wedge \neg H) \in \mathbf{C I}, E, E^{\prime} \in x^{\prime}, C \in a, D \notin b$ for some wffs E, E^{\prime}, C, D, H. Now, it is clear that $\left(B \wedge E^{\prime}\right) \rightarrow(C \rightarrow D) \in \mathbf{C I r}$. So $C \rightarrow D \in x^{\prime}$ as in Case (2) above, and thus $D \in b$ by $R x^{\prime} a b$, contradicting the hypothesis. The proof that not- $R\left[x^{\prime}, B\right] a b$ and $\left[x^{\prime}, A\right]$ is inconsistent leads also to contradiction is similar.

Each of Cases (1), (2), and (3) is untenable, therefore x^{\prime} is prime, which ends the proof of Lemma 6.4.

Lemma 6.5 The canonical structure is indeed a model structure.
Proof: We have to prove that the postulates P1-P6 hold in the canonical structure. Now, P1 and P2 are trivial by Lemma 6.4: P 4 is easy using the theorem $A \rightarrow[(A \rightarrow$ $B) \rightarrow B]$, and P5 is inmediate by A7 and Lemma 6.4. Thus, it remains to be proved that P3 and P6 hold.

P3. $R^{2} a b c d \Rightarrow \exists x[R b c x$ and $R a x d]$.
Given Raby and Rycd, we have to show that there is a prime nonnull consistent theory x^{\prime} such that Rbcx' and Rax'd. Thus, define the nonnull theory $x=\{B \mid \exists A[A \in c$ and $A \rightarrow B \in b]\}$. Now, Rbcx is trivial and Raxd easily follows from the hypothesis and A1. Next, we prove that x is consistent. Suppose it is not. Then, $B \wedge \neg B \in x$.

But, as $(B \wedge \neg B) \rightarrow \neg A(A$ is a theorem $)$ is a theorem, $(B \wedge \neg B) \rightarrow \neg A \in a$, whence $\neg A \in d$ by Raxd, contradicting the consistency of d.

Consider now the set of all nonnull consistent theories y such that $x \subseteq y$ and Rayd. By Zorn's Lemma, there is a maximal element x^{\prime} in this set such that Rax' d and $R b c x^{\prime}\left(R b c x\right.$ and $\left.x \subseteq x^{\prime}\right)$. If x^{\prime} is not prime, define the nonnull theories $\left[x^{\prime}, A\right],\left[x^{\prime}, B\right]$ strictly including x^{\prime}. By the maximality of x^{\prime}, there are three possibilities:

1. $\left[x^{\prime}, A\right]$ and $\left[x^{\prime}, B\right]$ are inconsistent;
2. not- $R a\left[x^{\prime}, A\right] d$ and not- $R a\left[x^{\prime}, B\right] d$;
3. not- $R a\left[x^{\prime}, A\right] d$ and $\left[x^{\prime}, B\right]$ is inconsistent, or not- $R a\left[x^{\prime}, B\right] d$ and $\left[x^{\prime}, A\right]$ is inconsistent.

As in the proof of Lemma6.4. it can be shown that each one of these possibilities is impossible. Therefore, x^{\prime} is a prime nonnull consistent theory, which ends the proof that P3 holds in the canonical model.

P6. $R a b c \Rightarrow \exists x R c b x$.
Suppose Rabc. Define the nonnull theory $x=\{B \mid \exists A[A \in b$ and $A \rightarrow C \in c]\}$. It is clear that Rcbx. Thus, it remains to be proved how to extend x to a prime consistent theory. We begin by proving that x is consistent. Suppose it is not. Then, by definition, $B \rightarrow(A \wedge \neg A) \in C, B \in b$. Contraposing, $\neg(A \wedge \neg A) \rightarrow \neg B \in c$, and so $\neg B \in c$ (since $R c x c$ by P1 and P4, and $\neg(A \wedge \neg A) \in x$ by $x \in K^{c}$; cf. Lemmas 6.1 and 6.2. Now, $B \rightarrow \neg(B \rightarrow B) \in a$ by Rabc and $B \in b$. Contraposing, $\neg \neg(B \rightarrow B) \rightarrow \neg \neg B \in c$, and thus $\neg \neg B \in c$. Therefore, $\neg B \wedge \neg \neg B \in c$, contradicting the consistency of c.

Consider now the set of all nonnull consistent theories y such that $x \subseteq y$ and Rcby. By Zorn's lemma there is a maximal element x^{\prime} such that $R c b x^{\prime}$. If x^{\prime} is not prime, define, as in previous lemmas, the nonnull theories $\left[x^{\prime}, A\right],\left[x^{\prime}, B\right]$ that strictly include x^{\prime}. Now, we note that $\operatorname{Rcb}\left[x^{\prime}, A\right]$ and $\operatorname{Rcb}\left[x^{\prime}, B\right]$ trivially hold, since $R c b x$ and $x^{\prime} \subseteq\left[x^{\prime}, A\right],\left[x^{\prime}, B\right]$. So $\left[x^{\prime}, A\right]$ and $\left[x^{\prime}, B\right]$ are inconsistent by the maximality of x^{\prime}. But if $\left[x^{\prime}, A\right]$ and $\left[x^{\prime}, B\right]$ are inconsistent, then x^{\prime} is inconsistent (cf. Lemma6.3], which is impossible. Therefore, x^{\prime} is a prime nonnull consistent theory; this ends the proof that P6 holds in the canonical structure, and Lemma 6.5 is proved.

Lemma 6.6 Let $\left\langle K^{c}, R^{c}, \models^{c}\right\rangle$ be the canonical model where $\left\langle K^{c}, R^{c}\right\rangle$ is the canonical structure and \models^{c} is a relation from K^{c} to the sentences of $\mathbf{C I r}$ such that for each wff A and $a \in K^{c}, a \models^{c} A$ iff $A \in a$. Then, the canonical model is indeed a model.
Proof: We have to prove that the canonical \models^{c} satisfies the conditions (1)-(5) of the valuation relation. Now, clauses (1)-(3) are trivial. It remains to prove clauses (4) and (5).

Clause (4): $a \models A \rightarrow B$ iff for all $b, c \in K^{c}$, if $R a b c$ and $b \models A$, then $c \models B$.
Proof from left to right is simple. So suppose $a \not \vDash A \rightarrow B$. We show that there are $b^{\prime}, c^{\prime} \in K^{c}$ such that $R a b^{\prime} c^{\prime}, b^{\prime} \models A$ and $c^{\prime} \models B$. Then, define $b=\{C \mid A \rightarrow C \in$ $\mathbf{C I r}\}, c=\{C \mid \exists D[D \in$ band $D \rightarrow C \in a]\}$. It is easy to prove that b and c are nonnull theories such that Rabc. We now prove that b and c are consistent. Suppose that b is inconsistent. Then, $A \rightarrow(C \wedge \neg C) \in \mathbf{C I r}$ whence, contraposing, $\neg(C \wedge \neg C) \rightarrow$ $\neg A \in \mathbf{C I r}$, and so $\neg A \in \mathbf{C I r}$. Thus, $A \rightarrow B \in a$, and then $a \models A \rightarrow B$, which contradicts the hypothesis. The proof that c is consistent is similar.

Now, consider the set Z of all nonnull consistent theories x such that $c \subseteq x$ and $B \notin x$. An argument similar to that in the proof of Lemma 6.3 . hows that there is a prime nonnull consistent theory c^{\prime} such that $c \subseteq c^{\prime}$ and $B \notin c^{\prime}$. By definition of $R, R a b c^{\prime}$. Let now Y be the set of all consistent theories y such that $b \subseteq y$ and Rayc ${ }^{\prime}$. Reasoning as in the proof of Lemma.6.4 it is easy to show that there is a prime consistent theory b^{\prime} such that $b \subseteq b^{\prime}$ and $R a b^{\prime} c$. But since clearly $A \in b$, we have $A \in b^{\prime}$. Hence, there are prime consistent theories b^{\prime}, c^{\prime} such that $R a b^{\prime} c^{\prime}, A \in b^{\prime}$, and $B \notin c^{\prime}$. By definition of $\vDash, b \models A$ and $c \not \models B$, which ends the proof of clause (4).

Clause (5): $a \models \neg A$ iff there are $b, c \in K$ such that not-Rabc or $b \not \vDash A$.
Proof from left to right is easy. So suppose $a \not \vDash \neg A$. We show that there are $b^{\prime}, c^{\prime} \in K$ such that $R a b^{\prime} c^{\prime}$ and $b^{\prime} \models A$. Define $b=\{B \mid A \rightarrow B \in \mathbf{C I r}\}, c=\{C \mid \exists B[B \in b$ and $B \rightarrow C \in a]\}$. The proof is similar to that of clause (4).
Finally we prove, the following.
Theorem 6.7 (Completeness) If A is valid, then A is a theorem of CIr.
Proof: Suppose that A is not a theorem. Then, $A \notin T$ by Lemma6.3. So A is not valid by Lemmas 6.4 and 6.5.

Acknowledgments Partially supported by the Spanish Agency for Science and Technology, grant number PB90-0854.

REFERENCES

[1] Dummett, M., "A propositional calculus with a denumerable matrix," The Journal of Symbolic Logic, vol. 24 (1959), pp. 97-106. Zbl 0089.24307
[2] Méndez, J. M., and F. Salto, "A natural negation completion of Urquhart's many-valued logic C." forthcoming in Journal of Philosophical Logic. Zbl 0904.03011 MR 991:03021 T.1.1.3
[3] Ono, H., and Y. Komori, "Logics without the contraction rule," The Journal of Symbolic Logic, vol. 50 (1985), pp. 169-201. Zbl 0583.03018|MR 87a:03053 1
[4] Routley, R., and R. K. Meyer, "The semantics of entailment IV," pp. 407-424 in Relevant Logics and Their Rivals, volume 1, edited by R. Routley et al., Ridgeview Press, Ridgeview, 1982.
[5] Urquhart, A., "Many-valued logic," pp. 71-116 in Handbook of Philosophical Logic, volume 3, edited by D. Gabbay and F. Guenthner, Reidel, Dordrecht, 1986. Zbl 0875.03054 1

Departamento de Filosofía

Universidad de Salamanca
Campus Unamuno, Edificio F.E.S.
37007 Salamanca
Spain
email: salto@gusuusales.

