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Automorphisms of Countable Recursively
Saturated Models of PA: a Survey

HENRYK KOTLARSKI

Abstract We give a survey of automorphisms of countable recursively satu-
rated models of Peano Arithmetic.

Let me begin with the pre-history of the subject. The question whether PA has a
model with a nontrivial automorphism (i.e., such that its elements cannot be “indi-
vidualized”) was due to Haseiger. It was solved positively by Ehrenfeucht and
Mostowski B]. Their result and the idea of indiscernibility is nowadays so well
known that Hodged5] writes “today model theorists use it at least once a week,”
so let me omit the statement of the Ehrenfeucht-Mostowski Theorem.

Another result | would like to put to the pre-history of the subject is

Theorem 1 (The Kueker-Reyes Theoref@ad]) Let A be a countable homoge-
neous model and X € M. Assume that for every finite sequence a of elements of M
thereexist by € X and b, ¢ X sothat (M; &, by) ~ (M; &, b,). Then X has contin-
uum many automorphicimages, i.e., {Y € M : 3g € Aut(M) Y = g= X} isof power
280,
In the early seventies Ressay#&] and independently Barwise and Schi{g] [ntro-
duced the notion of recursive saturation. Barwise and Schlipf used it to show that
some weak system @econd Order Arithmetic (namely Aj-comprehension-X1-
choice scheme) is in fact a conservative extension of PA.

So let me state the definition.

Definition 2 A model M is recursively saturated iff for every recursive sequence
©o(vo, ..., Un—1,Un)s - .., ®m(vo, ..., Un_1, Up), ... and every sequencey, ...,
bn_1 of elements ofM, if for everyk

M = Ix /X\wm(bo,...,bn_l, X)

m<k

then there exista € M so that for everyn

M '= (pm(bo, ey bn—la a).
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Thus, this is the usual notion of saturation (to be more specific-s@turation be-
cause only finitely many parameters are allowed) but restrictegctosive types.
| shall assume some familiarity with recursively saturated models (see Sshkdsy
survey [BJ or Kaye’s book[f]). Let me state only one nontrivial result.

Theorem 3 (The Barwise-Ressayre Theorem).et M be a countable and recur-
sively saturated structure for the language L. Let ag, ..., an_1 be elements of M
and let T be a recursively enumerable theory in the language of the form L U
{ag, ..., am-1} U{Xo, ..., X_1}, where Xo, ..., X,_1 are new relation symbols. As-
sumethat TU Th(M ) a,. .. a,, 4} iScCOnsistent. Then there exist Ay, ..., Ar_1, which
areinterpretations of X, ..., X,_1 respectively, so that (M, ag, ..., a8m-1, Ao, - . .,
Ar_1) E T. Moreover, Ao, ..., A._1 may be chosen in such a way that the above-
mentioned structure is recursively saturated.

The property of countable recursively saturated models stated in the first part of this
result is known asesplendence. The property stated in the moreover clause is known
aschronical resplendence.

Schlipf worked out applications of the notion of recursive saturation and
resplendence in Model Theory eliminating the use of saturated models (whose ex-
istence needs some form of Generalized Continuum Hypothesis) or special models
(whose existence is provable ZC set theory, but they are of quite large cardinal-
ity). This was possible because of

Theorem 4 (Barwise and Schlipf]]) Every structure M has an elementary ex-
tension of the same cardinality which is recursively saturated.

Schlipf (in the same papdg]) also showed

Theorem 5 Every countable recursively saturated structure M has 2% automor-
phisms.

Here and below AutM) denotes the group of all automorphisms of the strucidte
Schlipf derived the above result from the Kueker-Reyes Theorem and the Barwise-
Ressayre Theorem.

All the results up to now, including the existence theorem for recursively satu-
rated models were true for models for any theory. After the celebrated work on mod-
els of PA, done in mid-seventies, mainly by Kirby and Paris, it was soon noticed that
countable recursively saturated models for this theory arise very naturally. Roughly
speaking each construction of a model for PA either gives directly a recursively sat-
urated model (for example the Arithmetized Completeness Theorem) or an inessen-
tial variant of the construction yields a recursively saturated model (e.g., the indica-
tor construction). Thus countable recursively saturated models of PA are natural ob-
jects to study, and so are their automorphism groups. The obvious problems here are:
(i) how does AutM) act onM, and (i) what are the properties of Ad¥) (either as
an abstract group or as a topological group). | shall survey below all known results
following the order of appearance of papers. This will show the reader the evolution
of ideas.

Before stating the results we would like to point out that automorphisms groups
of nonrecursively saturated models behave in a different manner. Thus Gdffnan |
proved that every group of the form AX, <), where(X, <) is a linear ordering,
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is isomorphic with Au¢) for someM = PA. In particular, for some modélf of

PA, Aut(M) is isomorphic with the group of order preserving permutations of ratio-
nals. We shall see below (Theorfi) that suchtM cannot be countable recursively
saturated.

At about 1980 Smorfyski and | worked on automorphisms of countable recur-
sively saturated models of PA. The first result | would like to mention is a condition
which allows one to construct an automorphisnifivhich fixes (pointwise) the set
{x € M : x < a}, aset of nonstandard finite cardinality.

Lemma 6 (Kotlarski L9, Smoryhski [21], Vencovska [unpublished]) Let M bea
countable recursively saturated model of PA. Let a, b, ¢, d € M be such that

1. MEa<h, 22<b, 22 <b,...

2. Foreveryformulag M = VX < b[p(x, ¢) & ¢(x, d)].

Then there exists g € Aut(M) sothat gc = d and ¥x < a gx = X.
Smoryhski’s application was

Theorem 7 ([21])) Let M bea countable recursively saturated model for PA. Let |
be an initial segment of M which is closed under exponentiation. Then there exists
ge Aut(M) sothat gl =idandVvb > | 3c < bgc#c.

It is convenient to denote bif, (g) the set{x € M : Vy < xg(y) = y}. Thus,
Smonyhski’s result gives an exact condition for a duto be s (g) for someg €
Aut(M).

My paper was published only in 1984. In order to state the results, let us define
asubsetX € M, whereM = PA tobeclosed iff for every b € M \ X there exists
g € Aut(M) with gb # b andg[ X = id. Thus, this is the usual notion of a closed
subset in the sense of the Galois theory.

Theorem 8 ([19)) If X isan initial segment of a countable recursively saturated
M = PA and X isnot closed then there exists b € M so that X = M [b], where
M[b] = {ae M : for every Skolem ternt(v) M = t(a) < b}.

(Treat this notion as undefined if some ¢ > b is definable).

In order to see what this result means, observe at first thatif/ is closed therX
is the universe of an elementary submodeff Moreover, put, fob € M

M(b) ={ae M : there exists a Skolem terttw) M = a < t(b)}.

Then it is easy to see thal (b) is the smallest elementary cut 8 containinga.
Also, M[a] isthe greatest elementary cut @f which does not contaia. That is,
there is no elementary cut 8f between them. This justifies the name “gap” for their
difference, i.e., we put

gapa) = M(a) \ M[a]
and call this set thgap arounda. It is dso easy to check that i/ is a countable
recursively saturated model of PA then

1. {M(b) : b e M} is ordered by inclusion in the order type-fiationals.
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2. The set of all elementary cuts 64 is ordered in the order type of the Cantor
set.

Thus, M has 2o elementary cuts, and all but countably many of tham closed
because there are only countably many cuts of the foffh).

The natural question whether cuts of the fa{b] are closed is settled in the
following way: both may happen.

Theorem 9 (L))  There exists a recursive type q(-) such that for every M = PA
and b realizing gin M, M[b] is not closed.

Theorem 10 ([L9)) There exists a recursive type p(-) such that for every recur-
sively saturated M = PA and every b realizing p in M, M[b] is closed.

Note1l Theorem9 may be proved using Gaifman’s minimal types and henceare-
cursively saturated M hasinfinitely many essentially different nonclosed elementary
cuts. It was recently verified (Piekart [[26]) that under the same assumption M has
also infinitely many essentially different closed elementary cuts.

One more result should be mentioned in this place. Namely fer/, b >
M (0) we defined above
gap(b) = M (b) \ M[b]

thegap aroundb. As pointed out above, the name is justified by the fact that sets of
this form correspond to gaps in the Cantor &t : Al < M is an initial segment

The result | have in mind is the following (I knew it at least in 1985, but it is published
for the first time in§3 of K aye, Kossak, Kotlarskild].)

Theorem 12 (The Moving Gaps Lemma) Let M be a countable recursively satu-
rated model of PA. Let a, b, c € M be such that M (a) < M(b) < M(c) and let
g € Aut(M) besuch that ga # a. Thenthereexist u, w € M with M (b) < M (u) <
M(w) < M(c) and either gu > w or gw < U.

This result has a clear topological meaning. It is as follows.gdf# a then
{(N=<endM : g% N = N Aa< N} is nowhere dense in the Cantor set mentioned
above. In particular every nontrivial automorphism must move some gap, i.e., there
existsb € M so that gapb) # g gap(b). Also: every nontrivialg € Aut(M) must
move (setwise) some elementary cutdt In many respects, for a countable recur-
sively saturated, Aut(‘M) acts onM like Aut(Q, <) acts on the orderingQ, <)
of rationals, the moving gaps lemma shows a drastic difference.

The next paper | would like to mention is SchmBi®]. The result is as follows.

Theorem 13 ([Iﬁ) Let M be a countable and recursively saturated model of PA.
Then M is generated by a set of order indiscernibles. Infact, if (X, <) isany given
countable linear order with no greatest element then A is generated by a set of order
indiscernibles of order type of (X, <).

We obtain the following as an immediate corollary.

Corollary 14  If M isa countable and recursively saturated model of PA then the
group Aut(Q, <) isembeddablein Aut(M).
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Schmerl's proof of Theorefa3lheavily depends on the combinatorial theorem due
to Abramson-HarringtorfI]] (earlier this result was obtained by d&il and Rodl).
The more familiar constructions, also the ones involving minimal typesihfdp
not yield a recursively saturated model.

In order to state the next result we need a definition (KifB))[ If M = PA
and| CengM we say thalN | codes | in M iff there exists a functiorf € M such
thatl = {xe M :¥ne N x < f(n)}.

Theorem 15 (Kossak, Kotlarskil[4]) Let  bea countable recursively saturated
model for PA and let J <gng M. Assume N does not | code J in M. Then for g €
Aut(J), g is extendable to some § € Aut(M) iff for every X € Jif X = Jnb for
some b € M then g X, g~ % X are also both of the form J N b for some b € M
(i.e., g, g~ send subsets of J coded in M onto sets that are still coded in ). Here
by J N b we denote the intersection of J with the set (coded by) b.

Note16  Recently Kossak [[15] showed that the special assumption M does not |
code J in M is necessary. But of course only countably many J<engM are | coded
in M by N (because there are only countably many possibilities for the coding func-
tion).

For many years it was not known whether Atif) depended oM/ at all
(providedM is a countable recursively saturated model of PA). Kd8]eaftacked
this problem, the problem of recovering at least some information af6ditom
Aut(M). His result is the following theorem.

Theorem 17 (Kaye [B]) Let M, A\ be countable recursively saturated models for
the same complete extension of PA. Then M, A\ are isomorphic iff there exists an
isomorphism j : Aut(M) — Aut(A) suchthat for every f, g € Aut(M), (M, f, 9)
isrecursively saturated iff (A(, jf, jg) isrecursively saturated.

This was the first result in this direction, nowadays a much stronger result (due to
Kossak and Schmerl) is known, we shall speak about it later.
Another result off§] which is interesting is as follows.

Theorem 18 (Kaye E) If M is a countable and recursively saturated structure
then F,, the free group with Xy generators, is embeddable in Aut(M) as a dense
subset.

The topology for AutM) is defined like in other algebraic considerations. A subba-
sisis{Uf: a, b e M}, whereUP = {g € Aut(‘M) : ga = b}. Inthe case of models of
PA this family is in fact a basis (because of the pairing function in PA).

Theorem 18 is an extension of a result of Macphergah |

The next paper | would like to mention in this survey is due to Kossak and
Schmerl [L7. They proved the following theorem.

Theorem 19  Let M |= PA be countable and recursively saturated. Then there ex-
ists a countable recursively saturated A >eng M such that id is the only element of
Aut(M) which extends to some element of Aut(4\).

The proof of TheorerfiQlis based on the notion ofrainimal satisfaction class, i.e.,
such satisfaction classthat (4, S) is pointwise definable.
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The next paper | would like to mention here is Kaye, Kossak, Kotlal8; |
where several results are proved. The firstis the moving gaps lemma, i.e., Tfigdrem
above.

As an immediate corollary we get the following theorem.

Theorem 20 If M isa countable recursively saturated model of PA then Aut(M)
is embeddable into Aut(Q, <) as a dense subset.

The topology for AutQ, <) is defined exactly as for Aud/) as above. The idea
of the proof of Theorer2Qlis as follows. Pick a minimal typg(-) realized inM
(see ] for more in this direction) and & = {b € M : brealizesq}. Itis easy to
check thaqM is ordered in the order type ¢f), <). Then forg € Aut(M) we put
g = glg™. Again it is easy to check tha} € Aut(q™, <) and the functiory — §
is a group homomorphism. It follows from the moving gaps lemma that it is one-to-
one. Finally, minimality ofq ensures that the image is dense, becausE]ogMery
minimal type is indiscernible.

Thus, Theoref2dland Corollar{L4kuggest that Aut\) and Au(Q, <) being
mutually embeddable should be isomorphic. This is not so:

Theorem 21 (Lascar,[[Q)) If M = PAiscountableand recursively saturated then
Aut(M) isnot isomorphic to Aut(Q, <).

The property distinguishing these groups is:
for every operH < Aut(Q, <), {K < Aut(Q, <) : H < K} is finite.

Then AutM) fails to have this property. In order to eliminate topology one uses
the result due to TrusBP): Aut(Q, <) has thesmall index property, (i.e., for every

H < Aut(Q, <), H is open iff the index [AuQ, <) : H] is countable). A small
trick allows one to use the small index property of AUt <) here, this property of
Aut(M) is not needed in this place.

The first result showing that Aul/), as atopological group, depends oW,
is due to Kaye. In order to state it we need a definition (due to K{Id)[ A cut
J of M is strong in M iff for every function f € M with J € Dom( f) there exists
ue M\ Jsuchthavae J f(a) > J= f(a) > u. Itisalso known from[[1] that
there exist (countable recursively saturated) models in wRithstrong and models
in which it is not strong.

Theorem 22 (Kaye, [L0}) Let M be a countable recursively saturated model of
PA. Then N is strong in M iff there exists g € Aut(“) and an open subgroup H
of Aut(M) such that

vieAut(M) flogo féeH.

This result shows that Agfi/) as a topological group depends @i Later we shall
see that the topology can be eliminated in this place.

Kaye derived Theoref@2lfrom a result which connects the strengthMoiin
M with the existence of) e Aut(M) with few fixpoints. This connection was ob-
tained, in three different forms, by Kaye in Oxford, Kossak and me in Warsaw and by
Schmerl in Storrs. Rather than stating this result in the most general form (we would
need some definitions to do this), | shall state several related results.
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Theorem 23 (L)) Let M = PAbecountableand recursively saturated. Then the
following are equivalent:

1. Nisstrongin M

2. thereexists g € Aut(M) which moves all undefinable elements of M

3. thereexists g € Aut(M) and a type q whichisrealized in M and g moves all
elementsrealizing q

4. for somea € M thereexistsg € Aut(M) with ga = aand g movesall elements
undefinable from a

5. for all a € M there exists g € Aut(M') with ga = a and g moves all elements
undefinable from a.

Let me derive Theorefa2lfrom Theoren3] Assume thaN is strong in. Pick
a € M, aundefinable. By Theoref3] point 2, pickg € Aut(M) which moves all
undefinable elements 6. LetalsoH = Aut(M), = {f € Aut(M) : fa=a}. |
claim thatg, H have the desired property. Indeed, fet Aut(M) be given. Pub =
fa. Thenbis undefinable (bacausgs) and hencgb # b. Thusf~1gb+# f~lb=a,
so f~1gf ¢ H.

For the converse assume tits not strong infM. Pick g € Aut(M) and and
any openH C Aut(M). Pick a with Aut(M), € H (it is easy to see that every
open subgrougd of Aut(4) must contain a subgroup of this form,basic sub-
group). By Theorer23 point 3, g fixes someb with tp(b) =tp(a). By homogene-
ity of M, there existsf € Aut(M) with fa=b. Then fgfa= f~'b = a, so
f~1gf e Aut(M), C H.

TheorenR3las stated admits some generalizations and variants.

Theorem 24 ([LO)) If M |= PAis countable and recursively saturated, | <engM,
then | isstrong in M iff there exists

g€ Aut(M) withvbe M gb=biff be I.

Further generalizations of Theor@8l(and Theorerfi5] are due to KossaKi[7]. In
order to state these results we need a definition Mgt PAand f € Aut(M). For
b e M, the set

(inf{f"b:neZ}, suff"b:beZ)),

is called thef-interval (around). Observe that iff € Aut() is such tha{M, f)
is recursively saturated then there are infinitely mdaptervals.

Theorem 25 (7)) If Nisstrong in a countable and recursively saturated M =
Th(N) then there exists f e Aut(M) such that % is the union of N and one f-
interval.

This result admits further generalization.

Theorem 26 ([12]) Let M = PA be countable and recursively saturated. Let
| <endM and let g € Aut(l). Assumethat | isstrongin M. Suppose also that g, gt
send coded subsets of | onto coded subsets. Then g extendsto f € Aut(M') such that
M\ | isan f-interval.
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Let me tell about more recent work on this topic. A very substantial result is due to
Kaye [0]. He describes all closed normal subgroups of (Auf.
A cut | of M is calledinvariant iff every g € Aut(M) fixes | setwise. It is easy
to check that ifM is countable and recursively saturated thésinvariant iff at least
one of

| =supby:neN}

or
| =inf{b,:neN}

for some (not necessarily coded) sequelngcef definable elements. Moreover it is
easy to check that il = Aut(M) ), the pointwise stabilizer off, thenH is normal
in Aut(M) iff | is invariant. Also obviously each pointwise stabilizer is closed.

Theorem 27 (Kaye [@)) If H isa closed normal subgroup of Aut(M), where M
is a countable recursively saturated model of PAthen H = Aut(M);, for somein-
variant | CgngM.

Corollary 28  Under theassumption of TheoremZ7] M = True Arithmetic, Th(N),
iff Aut(M') has only two closed normal subgroups (the trivial ones).

The idea of Kaye’s proof of Theorelilis as follows. Given a normal subgroip
of Aut(M), we define

lix((H) = suplae M : Vx < avh € H h(x) = x}

and then a lot of work is needed to show that this cut has the desired property. Corol-
lary28Follows at once from the remark that a model of true arithmetic has only trivial
invariant cuts, contrary to models with nonstandard definable elements.

Another major result which follows is due to Lasdad}

Theorem 29 ([24)) If Nisstrong in a countable recursively saturated model M
of PAthen Aut(M) has the small index property.

Corollary 30 If M, A\ are countable recursively saturated modelsof PAand N is
strong in one of them but not in the second then Aut() and Aut(4\) are not isomor -
phic as abstract groups.

This corollary was a solution of an outstanding open problem. It shows also that
models given by Corollafg2lhave no isomorphic automorphism groups (as abstract
groups).

The heart of the matter in the proof of Lascar’s result is as follows. At first there
is no reason for AutM) to be a compact group. Nevertheless itis a topological group
with a good property, namely it is a Baire space (this remark is just a reformulation of
the ‘back and forth’ method of constructing automorphisms). Sayfthaut(M)
is generic iff the set of its conjugates is comeager in Aif). Lascar proves that if
N is strong inM then generic automorphisms do exist. As a matter of fact he works
with generic tuples of automorphisms, indeed, @ut)" is also a Baire space for each
natural numben. Then he refers to Hodges et & [
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By the way, it is easy to check that under our usual assumptici @most all
automorphisms move elements which are arbitrarily low alddvé/ore precisely,
{g e Aut(M) : 3b > N VX < b gx = x} is of the first category in Aut\).

The next paper we shall speak about is Kossak, Kotlarski, ScHir@rljet me
say something about its content.

Call a subgrouH of G strongly maximal iff for all f,g € G\ H there exist
o, B e Hsothatf =aogtoBor f =aogop. (InotherwordsH U { f} generates
G in one step forf ¢ H. In group theoretic terminology, the double coset index of
Hin Gis 3).

It was noticed in[L0] that under our usual assumption 8, Aut(M) has open
strongly maximal subgroups. I we show that AutM') has basic strongly max-
imal subgroups, basic maximal but not strongly maximal subgroups. Moreover we
show that ifl is an elementary cut dl which is of the forml, = sugb, : n € N},
whereb € M is quickly increasing (i.e., for everyn and every Skolem terry.),
t(bn) < bny1), then the setwise stabilizer bis strongly maximal. Similarly for cuts
of the form1® = inf{b;, : n e N} with quickly decreasind. Moreover we study an-
other class of open subgroups of AM), namelygap stabilizers, that is groups of
the form AU{M )(gapa)}- We show that such subgroups may be maximal and may be
not maximal. (It is not known if subgroups of this form may be strongly maximal; it
seems possible to construct one which is maximal but not strongly maximal). Finally
we show that ifN is strong inM then every opeid C Aut(M) extends to a maxi-
mal one. (To be more precise, we proved it under an additional assumptiah(that
satisfiesTrue Arithmetic, Lascar eliminated this assumption). Another resullig] [
which should be mentioned here isgifs an unbounded and 2-indiscernible type then
g is Gaifman-minimal (this was known before for unbounded 4-indiscernible types).

The notion of a strongly maximal subgroup of AM ) has demonstrated its im-
portance in a papelP[] by Kaye and me, where we use it to identify (by topological-
group theoretic means) basic subgroups among maximal open ones, in the case
when M is countable recursively saturated and satisfieg Arithmetic. The es-
sential reason lies in the fact that a strongly maximal subgroup of#utgives an
additional structure on the family of its conjugates, the ordering in the order type
of (Q, <). Moreover (and this is the heart of the matter) this linear ordering turns
out to be isomorphic with some subfamily of all elementary cut§f This sub-
family is rich enough so that its properties are almost the same as of the family of
all elementary cuts oM. Granted this we were able to identify gaps stabilizers and
then use the Kaye’s Closed Normal Subgroup Theorem (i.e., Thétkimove) and
some “covering a gap” idea to identify subgroups of the form,Af), with tp(a)
2-indiscernible. These ideas worked for models ofNh but the trick of a sub-
grouppreceded by G (invented by Kossak and Schmerl in the next paper | shall tell a
few words about) allows one to do the same for any (countable recursively saturated)
model of PA.

Recently it was shown that #/ = True Arithmetic and is countable recursively
saturated then the lattice of subgroups of @) is rather strange. Indeed, [ we
give examples of open nonmaximal subgroups of(Adi) which extend to a maximal
one uniquely.

The mostimportant paper in this direction is due to Kossak and ScHidreh-
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titled “The automorphism group of an arithmetically saturated model of Peano arith-
metic.” They found a way to encode the standard systeff efnder the assumption
that? is a countable and recursively saturated model of PA in whighstrong and
obtained the following theorem.

Theorem 31  If M, A\ are countable recursively saturated models of PA in which
N is strong and have isomor phic automor phism groups and satisfy the same comple-
tion of PA, then M ~ 4.

To be more specific, they encode the standard systeif by Aut(‘W) as a topolog-
ical group and then apply the Lascar’s result, Thedz&in

As pointed out above, Piekart and | constructed nontrivial open subgroups of
Aut(M) which extend to a maximal one uniquely. In her Ph.D. thesis Piekart
strengthens this considerably. M = Th(N) and Aut, (M) is basic open maximal
subgroups ofs = Aut(M) then she shows a tré&=" of open subroups whose only
maximal extension i&,. She also shows the same result for nonbasic open subgroups
of G, which are of the fornG,», or Gy,).

Kossak and Bambe@ show that for a countable PA, AUY/) is not divisible.

It follows that Aut(M) is not elementary equivalent with A@, <), this strengthens
TheorenfZ1] Also, Bamber shows that all cyclic subgroups of &uf) are closed.

In the new papefl[5] by Kossak and me we give some more information about
extendability of automorphism to greater models. Thus we show that elementarity is
essential in Theorefm9] That is we show that every (not necessarily recursively sat-
urated) modefM of PA has end extensior which are recursively saturated mod-
els of PA and each automorphism @f extends taX. Moreover, givem € N, X
may be chosen to bEq-elementary. Another result diL§] gives a sufficient con-
dition on the extensiom <.ot X which ensures that every automorphismJdf,
sending coded subsets to coded ones, exterts o be more exact, at first there is
no problem in defining coded sets in the case of cofinal extensions. That is if we are
given M <ot K, every subset off of the forman M, a e K, iscalledcoded. Say
that the extensiofil <.t K has theautomor phism extension property iff for every
g € Aut(M), such thatg, g~* send coded sets to coded ong®xtends tak. The
natural question is: what additional assumptions on the extension are needed in order
to ensure the automorphism extension property?

Definition 32  An extensionM <o R has thecovering property iff for every
y € M there exists a sequen¢E, : n € N) which is coded in®, isincreasing with
respect to inclusion and

1. Ene Mforallne N
2. XeM: MEx<yl={xeR:IneNR =xe Ep}.
3. for every see € R andn e N, the intersectiore N Ep is in M.
Itis convenient to think of the sequengg,), the sequenceovering (< y) in such a
way that every standamj E, € 4, and for nonstandargl Ej add no new elements
of M belowy. The last condition may be thought of as some sort of comprehension,

also for sets iR \ M. From a more technical point of view the assumption that
the extensiorfV <.t R has the covering property plays the role of the additional
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assumption{ does not| codeM in ®) in Theorem[L5 To be more exact it is an
analogue of N codesM from below in® .

Theorem 33  Let the extension M <ot R have the covering property. Assume
that M isrecursively saturated and R is countable. Then this extension has the au-
tomor phisms extension property.

In particular, it follows that every countable recursively saturated mdfief PA has
acountable cofinal extensidf{ such that everg e Aut(M) such thaig, g—* send
coded subsets to coded ones, extendk tdndeed, stronger:

Lemma34 If M <ot K are countable models then there exists a countable
R >cof K such that the extension M < R_has the covering property.

LemmaB4lis proved more or less by means of the procedure which allows one to
extend a given model to a saturated one, but an auxiliary notion efrtirey covering
property is used.

The final result of[[5] was mentioned previously, that is the additional assump-
tion thatN does not|, coded\ in M in the extension theorem (i.e., Theorf& is
essential.

In the last few months the problem of describing the action of(&} in-
side M (0) was attacked. Let us say a few words about it. d et (0) be undefin-
able. Consider two cuts associated wath

I =supue M :uis definable andi < a}

and
I =inf{ue M : uis definable anda}.

The set difference of these, i.€, = 1]\ I is called thanterstice arounda. This
notion was isolated already ifi{l], the name “interstice” was introduced by Bamber.
Granted this, one introduces the notion ofiatersticial gap, i.e., a gap inside an in-
terstice. This notion has many properties of the usual gaps, prod¥dsdtrong in
the model considered. IL{] we gave an erroneous “proof” of the appropriate ver-
sion of the moving gaps lemma. Recently Bamber gave a sufficient condition on an
interstice for the moving gaps lemma to hold and | constructed interstices for which
this lemma fails. (Both results requikéto be strong infM.) But it is too early to
give more about the action of AU¥) inside M (0). What is expected is to obtain a
linear ordering, given by means of Ad), which would allow one to recover the
ordering of gaps of\f (both: ordinary gaps abov@f (0) and intersticial ones). But
trying to extend the material d2]] does not seem to work. The main difficulty in the
case of countable recursively saturated models of PA is that in this case subbroups
of Aut(M) with J(H) invariant exist, as shown by Piekart and g&][

| would like to stress that in almost every result the countability assumption is
essential. Indeed, Kossak and Schn{&T] tonstructedy;-like recursively saturated
rigid models of PA.

Let me pose some open problems on automorphisms of countable recursively
saturated models of PA. Some of them are almost directly stated in the text.

1. Several results depend on the assumption tha strong in the model con-
sidered. Indeed, it seems that the notion of a countable recursively saturated



516 HENRYK KOTLARSKI

model in whichN is strong is a much better notion to work with than without
this last part of the assumption. Is this assumption needed in the Lascar’s re-
sult, i.e., Theore@9P The same question for the Kossak-Schmerl encoding of
SSY(M), theorenf31] Also: does every open subgroup of AM) extend to
amaximal one? As pointed out in our commentdlif][ the answer is positive

if N is strong in/. | also don’t know any nonopen subgroup of Afif) with

no maximal extension.

2. More or less nothing is known about the connections ofifh@nd AutM).

The only exception is Corollaiggl But how to distinguish ¥ false complete
extensions of PA by automorphisms groups?

3. Kaye described all closed normal subgroups in his theorem (TheB@m
above). Many not closed normal subgroups are known. Thusisifan in-
variant cut inM thenG .., = {g € Aut() : 3b > | g] < b =id} is normal.
Another is the subgroufRSA(M)), the subgroup generated hye Aut(M) :

(M, g) is recursively saturated in the expanded langyiagee these all nor-
mal subgroups? IERSA(M)) = Gy ?

4. | believe that one can pose several problems connected with Piekart's work
mentioned above. Atfirst for which other classes of structures the phenomenon
of the existence of nontrivial open subgroups with unique extension to a max-
imal subgroup occurs? In the case of countable recursively saturated models
of PA does every open maximal subgrougifhave such subgroups? This is
not known even in the case 6ff = Th(N). Presumably at least in the case
of a basic maximal subgrou@, the ordering of rationals is embeddable in
{H < G; : G, is the unique extension d}.
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