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Automorphisms of Countable Recursively
Saturated Models of PA: a Survey

HENRYK KOTLARSKI

Abstract Wegive a survey of automorphisms of countable recursively satu-
rated models of Peano Arithmetic.

Let me begin with the pre-history of the subject. The question whether PA has a
model with a nontrivial automorphism (i.e., such that its elements cannot be “indi-
vidualized”) was due to Hasenjäger. It was solved positively by Ehrenfeucht and
Mostowski [3]. Their result and the idea of indiscernibility is nowadays so well
known that Hodges [5] writes “today model theorists use it at least once a week,”
so let me omit the statement of the Ehrenfeucht-Mostowski Theorem.

Another result I would like to put to the pre-history of the subject is

Theorem 1 (The Kueker-Reyes Theorem [23]) Let M be a countable homoge-
neous model and X ⊆ M . Assume that for every finite sequence ā of elements of M
there exist b1 ∈ X and b2 �∈ X so that (M ; ā, b1) � (M ; ā, b2). Then X has contin-
uum many automorphic images, i.e., {Y ⊆ M : ∃g ∈ Aut(M ) Y = g ∗ X} is of power
2ℵ0.

In the early seventies Ressayre [27] and independently Barwise and Schlipf [2] intro-
duced the notion of recursive saturation. Barwise and Schlipf used it to show that
some weak system ofSecond Order Arithmetic (namely�1

1-comprehension+�1
1-

choice scheme) is in fact a conservative extension of PA.
So let me state the definition.

Definition 2 A modelM is recursively saturated iff for every recursive sequence
ϕ0(v0, . . . , vn−1, vn), . . . , ϕm(v0, . . . , vn−1, vn), . . . and every sequenceb0, . . . ,

bn−1 of elements ofM , if for everyk

M |= ∃x
∧∧

m≤k

ϕm(b0, . . . , bn−1, x)

then there existsa ∈ M so that for everym

M |= ϕm(b0, . . . , bn−1, a).
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Thus, this is the usual notion of saturation (to be more specific ofω-saturation be-
cause only finitely many parameters are allowed) but restricted torecursive types.
I shall assume some familiarity with recursively saturated models (see Smoryński’s
survey [30] or Kaye’s book [7]). Let me state only one nontrivial result.

Theorem 3 (The Barwise-Ressayre Theorem)Let M be a countable and recur-
sively saturated structure for the language L. Let a0, . . . , am−1 be elements of M
and let T be a recursively enumerable theory in the language of the form L ∪
{a0, . . . , am−1} ∪ {X0, . . . , Xr−1}, where X0, . . . , Xr−1 are new relation symbols. As-
sume that T ∪ Th(M ){a0,...,am−1} is consistent. Then there exist A0, . . . , Ar−1, which
are interpretations of X0, . . . , Xr−1 respectively, so that (M , a0, . . . , am−1, A0, . . . ,

Ar−1) |= T. Moreover, A0, . . . , Ar−1 may be chosen in such a way that the above-
mentioned structure is recursively saturated.

The property of countable recursively saturated models stated in the first part of this
result is known asresplendence. The property stated in the moreover clause is known
aschronical resplendence.

Schlipf [28] worked out applications of the notion of recursive saturation and
resplendence in Model Theory eliminating the use of saturated models (whose ex-
istence needs some form of Generalized Continuum Hypothesis) or special models
(whose existence is provable inZFC set theory, but they are of quite large cardinal-
ity). This was possible because of

Theorem 4 (Barwise and Schlipf [2]) Every structure M has an elementary ex-
tension of the same cardinality which is recursively saturated.

Schlipf (in the same paper [28]) also showed

Theorem 5 Every countable recursively saturated structure M has 2ℵ0 automor-
phisms.

Here and below Aut(M ) denotes the group of all automorphisms of the structureM .
Schlipf derived the above result from the Kueker-Reyes Theorem and the Barwise-
Ressayre Theorem.

All the results up to now, including the existence theorem for recursively satu-
rated models were true for models for any theory. After the celebrated work on mod-
els of PA, done in mid-seventies, mainly by Kirby and Paris, it was soon noticed that
countable recursively saturated models for this theory arise very naturally. Roughly
speaking each construction of a model for PA either gives directly a recursively sat-
urated model (for example the Arithmetized Completeness Theorem) or an inessen-
tial variant of the construction yields a recursively saturated model (e.g., the indica-
tor construction). Thus countable recursively saturated models of PA are natural ob-
jects to study, and so are their automorphism groups. The obvious problems here are:
(i) how does Aut(M ) act onM , and (ii) what are the properties of Aut(M ) (either as
an abstract group or as a topological group). I shall survey below all known results
following the order of appearance of papers. This will show the reader the evolution
of ideas.

Before stating the results we would like to point out that automorphisms groups
of nonrecursively saturated models behave in a different manner. Thus Gaifman [4]
proved that every group of the form Aut(X,<), where(X,<) is a linear ordering,
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is isomorphic with Aut(M ) for someM |= PA. In particular, for some modelM of
PA, Aut(M ) is isomorphic with the group of order preserving permutations of ratio-
nals. We shall see below (Theorem21) that suchM cannot be countable recursively
saturated.

At about 1980 Smorýnski and I worked on automorphisms of countable recur-
sively saturated models of PA. The first result I would like to mention is a condition
which allows one to construct an automorphism ofM which fixes (pointwise) the set
{x ∈ M : x < a}, aset of nonstandard finite cardinality.

Lemma 6 (Kotlarski [19], Smorýnski [31], Vencovska [unpublished]) Let M be a
countable recursively saturated model of PA. Let a, b, c, d ∈ M be such that

1. M |= a < b, 2a < b, 22a
< b, . . .

2. For every formula ϕ M |= ∀x < b[ϕ(x, c) ⇔ ϕ(x, d)].

Then there exists g ∈ Aut(M ) so that gc = d and ∀x < a gx = x.

Smorýnski’s application was

Theorem 7 ([31]) Let M be a countable recursively saturated model for PA. Let I
be an initial segment of M which is closed under exponentiation. Then there exists
g ∈ Aut(M ) so that g�I = id and ∀b > I ∃c < b gc �= c.

It is convenient to denote byIfix(g) the set{x ∈ M : ∀y < x g(y) = y}. Thus,
Smorýnski’s result gives an exact condition for a cutI to be Ifix(g) for someg ∈
Aut(M ).

My paper was published only in 1984. In order to state the results, let us define
a subsetX ⊆ M , whereM |= PA to beclosed iff for every b ∈ M \ X there exists
g ∈ Aut(M ) with gb �= b andg�X = id. Thus, this is the usual notion of a closed
subset in the sense of the Galois theory.

Theorem 8 ([19]) If X is an initial segment of a countable recursively saturated
M |= PA and X is not closed then there exists b ∈ M so that X = M [b], where

M [b] = {a ∈ M : for every Skolem termt(v) M |= t(a) < b}.

(Treat this notion as undefined if some c > b is definable).

In order to see what this result means, observe at first that ifX ⊆ M is closed thenX
is the universe of an elementary submodel ofM . Moreover, put, forb ∈ M

M (b) = {a ∈ M : there exists a Skolem termt(v) M |= a < t(b)}.

Then it is easy to see thatM (b) is the smallest elementary cut ofM containinga.
Also, M [a] is the greatest elementary cut ofM which does not containa. That is,
there is no elementary cut ofM between them. This justifies the name “gap” for their
difference, i.e., we put

gap(a) = M (a) \ M [a]

and call this set thegap arounda. It is also easy to check that ifM is a countable
recursively saturated model of PA then

1. {M (b) : b ∈ M } is ordered by inclusion in the order type 1+rationals.
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2. The set of all elementary cuts ofM is ordered in the order type of the Cantor
set.

Thus,M has 2ℵ0 elementary cuts, and all but countably many of themare closed
because there are only countably many cuts of the formM [b].

The natural question whether cuts of the formM [b] are closed is settled in the
following way: both may happen.

Theorem 9 ([19]) There exists a recursive type q(·) such that for every M |= PA
and b realizing q in M , M [b] is not closed.

Theorem 10 ([19]) There exists a recursive type p(·) such that for every recur-
sively saturated M |= PA and every b realizing p in M , M [b] is closed.

Note 11 Theorem 9 may be proved using Gaifman’s minimal types and hence a re-
cursively saturated M has infinitely many essentially different nonclosed elementary
cuts. It was recently verified (Piekart [26]) that under the same assumption M has
also infinitely many essentially different closed elementary cuts.

One more result should be mentioned in this place. Namely forb ∈ M , b >

M (0) we defined above
gap(b) = M (b) \ M [b]

thegap aroundb. As pointed out above, the name is justified by the fact that sets of
this form correspond to gaps in the Cantor set{N : N ≺ M is an initial segment}.
The result I have in mind is the following (I knew it at least in 1985, but it is published
for the first time in§3 of Kaye, Kossak, Kotlarski [10].)

Theorem 12 (The Moving Gaps Lemma) Let M be a countable recursively satu-
rated model of PA. Let a, b, c ∈ M be such that M (a) < M (b) < M (c) and let
g ∈ Aut(M ) be such that ga �= a. Then there exist u,w ∈ M with M (b) < M (u) <

M (w) < M (c) and either gu > w or gw < u.

This result has a clear topological meaning. It is as follows. Ifga �= a then
{N ≺endM : g ∗ N = N ∧ a < N } is nowhere dense in the Cantor set mentioned
above. In particular every nontrivial automorphism must move some gap, i.e., there
existsb ∈ M so that gap(b) �= g ∗ gap(b). Also: every nontrivialg ∈ Aut(M ) must
move (setwise) some elementary cut ofM . In many respects, for a countable recur-
sively saturatedM , Aut(M ) acts onM like Aut(Q,<) acts on the ordering(Q,<)

of rationals, the moving gaps lemma shows a drastic difference.
The next paper I would like to mention is Schmerl [29]. The result is as follows.

Theorem 13 ([29]) Let M be a countable and recursively saturated model of PA.
Then M is generated by a set of order indiscernibles. In fact, if (X,<) is any given
countable linear order with no greatest element then M is generated by a set of order
indiscernibles of order type of (X,<).

Weobtain the following as an immediate corollary.

Corollary 14 If M is a countable and recursively saturated model of PA then the
group Aut(Q,<) is embeddable in Aut(M ).
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Schmerl’s proof of Theorem13 heavily depends on the combinatorial theorem due
to Abramson-Harrington [1] (earlier this result was obtained by Nešetŕıl and R̈odl).
The more familiar constructions, also the ones involving minimal types (cf. [4]) do
not yield a recursively saturated model.

In order to state the next result we need a definition (Kirby [11]). If M |= PA
and I⊂endM we say thatN ↓ codes I in M iff there exists a functionf ∈ M such
that I = {x ∈ M : ∀n ∈ N x < f (n)}.
Theorem 15 (Kossak, Kotlarski [14]) Let M be a countable recursively saturated
model for PA and let J ≺end M . Assume N does not ↓ code J in M . Then for g ∈
Aut(J), g is extendable to some ĝ ∈ Aut(M ) iff for every X ⊆ J if X = J ∩ b for
some b ∈ M then g ∗ X, g−1 ∗ X are also both of the form J ∩ b for some b ∈ M
(i.e., g, g−1 send subsets of J coded in M onto sets that are still coded in M ). Here
by J ∩ b we denote the intersection of J with the set (coded by) b.

Note 16 Recently Kossak [15] showed that the special assumption M does not ↓
code J in M is necessary. But of course only countably many J≺endM are ↓ coded
in M by N (because there are only countably many possibilities for the coding func-
tion).

For many years it was not known whether Aut(M ) depended onM at all
(providedM is a countable recursively saturated model of PA). Kaye [8] attacked
this problem, the problem of recovering at least some information aboutM from
Aut(M ). His result is the following theorem.

Theorem 17 (Kaye [8]) Let M , N be countable recursively saturated models for
the same complete extension of PA. Then M , N are isomorphic iff there exists an
isomorphism j : Aut(M ) → Aut(N ) such that for every f, g ∈ Aut(M ), (M , f, g)

is recursively saturated iff (N , j f, jg) is recursively saturated.

This was the first result in this direction, nowadays a much stronger result (due to
Kossak and Schmerl) is known, we shall speak about it later.

Another result of [8] which is interesting is as follows.

Theorem 18 (Kaye [8]) If M is a countable and recursively saturated structure
then Fω, the free group with ℵ0 generators, is embeddable in Aut(M ) as a dense
subset.

The topology for Aut(M ) is defined like in other algebraic considerations. A subba-
sis is{Ub

a : a, b ∈ M }, whereUb
a = {g ∈ Aut(M ) : ga = b}. In the case of models of

PA this family is in fact a basis (because of the pairing function in PA).
Theorem 18 is an extension of a result of Macpherson [25].
The next paper I would like to mention in this survey is due to Kossak and

Schmerl [17]. They proved the following theorem.

Theorem 19 Let M |= PA be countable and recursively saturated. Then there ex-
ists a countable recursively saturated N �end M such that id is the only element of
Aut(M ) which extends to some element of Aut(N ).

The proof of Theorem19 is based on the notion of aminimal satisfaction class, i.e.,
such satisfaction classS that(M , S) is pointwise definable.
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The next paper I would like to mention here is Kaye, Kossak, Kotlarski [10],
where several results are proved. The first is the moving gaps lemma, i.e., Theorem12
above.

As an immediate corollary we get the following theorem.

Theorem 20 If M is a countable recursively saturated model of PA then Aut(M )

is embeddable into Aut(Q,<) as a dense subset.

The topology for Aut(Q,<) is defined exactly as for Aut(M ) as above. The idea
of the proof of Theorem20 is as follows. Pick a minimal typeq(·) realized inM
(see [4] for more in this direction) and letqM = {b ∈ M : b realizesq}. It is easy to
check thatqM is ordered in the order type of(Q,<). Then forg ∈ Aut(M ) we put
ĝ = g�qM . Again it is easy to check that̂g ∈ Aut(qM ,<) and the functiong �→ ĝ
is a group homomorphism. It follows from the moving gaps lemma that it is one-to-
one. Finally, minimality ofq ensures that the image is dense, because by [4] every
minimal type is indiscernible.

Thus, Theorem20and Corollary14suggest that Aut(M ) and Aut(Q,<) being
mutually embeddable should be isomorphic. This is not so:

Theorem 21 (Lascar, [10]) If M |= PA is countable and recursively saturated then
Aut(M ) is not isomorphic to Aut(Q,<).

The property distinguishing these groups is:

for every openH < Aut(Q,<), {K < Aut(Q,<) : H < K} is finite.

Then Aut(M ) fails to have this property. In order to eliminate topology one uses
the result due to Truss [32]: Aut(Q,<) has thesmall index property, (i.e., for every
H < Aut(Q,<), H is open iff the index [Aut(Q,<) : H] is countable). A small
trick allows one to use the small index property of Aut(Q,<) here, this property of
Aut(M ) is not needed in this place.

The first result showing that Aut(M ), as atopological group, depends onM ,
is due to Kaye. In order to state it we need a definition (due to Kirby [11]). A cut
J of M is strong in M iff for every function f ∈ M with J ⊆ Dom( f ) there exists
u ∈ M \ J such that∀a ∈ J f (a) > J ⇒ f (a) > u. It isalso known from [11] that
there exist (countable recursively saturated) models in whichN is strong and models
in which it is not strong.

Theorem 22 (Kaye, [10]) Let M be a countable recursively saturated model of
PA. Then N is strong in M iff there exists g ∈ Aut(M ) and an open subgroup H
of Aut(M ) such that

∀ f ∈ Aut(M ) f −1 ◦ g ◦ f �∈ H.

This result shows that Aut(M ) as a topological group depends onM . Later we shall
see that the topology can be eliminated in this place.

Kaye derived Theorem22 from a result which connects the strength ofN in
M with the existence ofg ∈ Aut(M ) with few fixpoints. This connection was ob-
tained, in three different forms, by Kaye in Oxford, Kossak and me in Warsaw and by
Schmerl in Storrs. Rather than stating this result in the most general form (we would
need some definitions to do this), I shall state several related results.
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Theorem 23 ([10]) Let M |= PA be countable and recursively saturated. Then the
following are equivalent:

1. N is strong in M
2. there exists g ∈ Aut(M ) which moves all undefinable elements of M
3. there exists g ∈ Aut(M ) and a type q which is realized in M and g moves all

elements realizing q

4. for some a ∈ M there exists g ∈ Aut(M ) with ga = a and g moves all elements
undefinable from a

5. for all a ∈ M there exists g ∈ Aut(M ) with ga = a and g moves all elements
undefinable from a.

Let me derive Theorem22 from Theorem23. Assume thatN is strong inM . Pick
a ∈ M , a undefinable. By Theorem23, point 2, pickg ∈ Aut(M ) which moves all
undefinable elements ofM . Let also H = Aut(M )a = { f ∈ Aut(M ) : f a = a}. I
claim thatg, H have the desired property. Indeed, letf ∈ Aut(M ) be given. Putb =
f a. Thenb is undefinable (bacausea is) and hencegb �= b. Thus f −1gb �= f −1b = a,
so f −1g f �∈ H.

For the converse assume thatN is not strong inM . Pick g ∈ Aut(M ) and and
any openH ⊆ Aut(M ). Pick a with Aut(M )a ⊆ H (it is easy to see that every
open subgroupH of Aut(M ) must contain a subgroup of this form, abasic sub-
group). By Theorem23, point 3,g fixes someb with tp(b) =tp(a). By homogene-
ity of M , there existsf ∈ Aut(M ) with f a = b. Then f −1g f a = f −1b = a, so
f −1g f ∈ Aut(M )a ⊆ H.

Theorem23as stated admits some generalizations and variants.

Theorem 24 ([10]) If M |= PA is countable and recursively saturated, I≺endM ,
then I is strong in M iff there exists

g ∈ Aut(M ) with ∀b ∈ M gb = b iff b ∈ I.

Further generalizations of Theorem23(and Theorem15) are due to Kossak [12]. In
order to state these results we need a definition. LetM |= PA and f ∈ Aut(M ). For
b ∈ M , the set

(inf{ f nb : n ∈ Z}, sup{ f nb : b ∈ Z}),
is called thef -interval (aroundb). Observe that iff ∈ Aut(M ) is such that(M , f )
is recursively saturated then there are infinitely manyf -intervals.

Theorem 25 ([12]) If N is strong in a countable and recursively saturated M |=
Th(N) then there exists f ∈ Aut(M ) such that M is the union of N and one f -
interval.

This result admits further generalization.

Theorem 26 ([12]) Let M |= PA be countable and recursively saturated. Let
I≺endM and let g ∈ Aut(I). Assume that I is strong in M . Suppose also that g, g−1

send coded subsets of I onto coded subsets. Then g extends to f ∈ Aut(M ) such that
M \ I is an f -interval.
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Let me tell about more recent work on this topic. A very substantial result is due to
Kaye [9]. He describes all closed normal subgroups of Aut(M ).

A cut I of M is calledinvariant iff every g ∈ Aut(M ) fixes I setwise. It is easy
to check that ifM is countable and recursively saturated thenI is invariant iff at least
one of

I = sup{bn : n ∈ N}
or

I = inf{bn : n ∈ N}
for some (not necessarily coded) sequencebn of definable elements. Moreover it is
easy to check that ifH = Aut(M )(I), the pointwise stabilizer ofI, thenH is normal
in Aut(M ) iff I is invariant. Also obviously each pointwise stabilizer is closed.

Theorem 27 (Kaye [9]) If H is a closed normal subgroup of Aut(M ), where M
is a countable recursively saturated model of PA then H = Aut(M )(I) for some in-
variant I⊆endM .

Corollary 28 Under the assumption of Theorem 27, M |= True Arithmetic, Th(N),
iff Aut(M ) has only two closed normal subgroups (the trivial ones).

The idea of Kaye’s proof of Theorem27 is as follows. Given a normal subgroupH
of Aut(M ), we define

Ifix(H) = sup{a ∈ M : ∀x < a∀h ∈ H h(x) = x}

and then a lot of work is needed to show that this cut has the desired property. Corol-
lary28follows at once from the remark that a model of true arithmetic has only trivial
invariant cuts, contrary to models with nonstandard definable elements.

Another major result which follows is due to Lascar [24].

Theorem 29 ([24]) If N is strong in a countable recursively saturated model M
of PA then Aut(M ) has the small index property.

Corollary 30 If M , N are countable recursively saturated models of PA and N is
strong in one of them but not in the second then Aut(M ) and Aut(N ) are not isomor-
phic as abstract groups.

This corollary was a solution of an outstanding open problem. It shows also that
models given by Corollary22have no isomorphic automorphism groups (as abstract
groups).

The heart of the matter in the proof of Lascar’s result is as follows. At first there
is no reason for Aut(M ) to be a compact group. Nevertheless it is a topological group
with a good property, namely it is a Baire space (this remark is just a reformulation of
the ‘back and forth’ method of constructing automorphisms). Say thatf ∈ Aut(M )

is generic iff the set of its conjugates is comeager in Aut(M ). Lascar proves that if
N is strong inM then generic automorphisms do exist. As a matter of fact he works
with generic tuples of automorphisms, indeed, Aut(M )n is also a Baire space for each
natural numbern. Then he refers to Hodges et al. [6].
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By the way, it is easy to check that under our usual assumption onM almost all
automorphisms move elements which are arbitrarily low aboveN. More precisely,
{g ∈ Aut(M ) : ∃b > N ∀x < b gx = x} is of the first category in Aut(M ).

The next paper we shall speak about is Kossak, Kotlarski, Schmerl [16]. Let me
say something about its content.

Call a subgroupH of G strongly maximal iff for all f, g ∈ G \ H there exist
α, β ∈ H so that f = α ◦ g−1 ◦ β or f = α ◦ g ◦ β. (In other words,H ∪ { f } generates
G in one step forf �∈ H. In group theoretic terminology, the double coset index of
H in G is 3).

It was noticed in [10] that under our usual assumption onM , Aut(M ) has open
strongly maximal subgroups. In [16] weshow that Aut(M ) has basic strongly max-
imal subgroups, basic maximal but not strongly maximal subgroups. Moreover we
show that ifI is an elementary cut ofM which is of the formIb = sup{bn : n ∈ N},
whereb ∈ M is quickly increasing (i.e., for everyn and every Skolem termt(·),
t(bn) < bn+1), then the setwise stabilizer ofI is strongly maximal. Similarly for cuts
of the form Ib = inf{bn : n ∈ N} with quickly decreasingb. Moreover we study an-
other class of open subgroups of Aut(M ), namelygap stabilizers, that is groups of
the form Aut(M ){gap(a)}. Weshow that such subgroups may be maximal and may be
not maximal. (It is not known if subgroups of this form may be strongly maximal; it
seems possible to construct one which is maximal but not strongly maximal). Finally
we show that ifN is strong inM then every openH ⊂ Aut(M ) extends to a maxi-
mal one. (To be more precise, we proved it under an additional assumption thatM
satisfiesTrue Arithmetic, Lascar eliminated this assumption). Another result of [16]
which should be mentioned here is: ifq is an unbounded and 2-indiscernible type then
q is Gaifman-minimal (this was known before for unbounded 4-indiscernible types).

The notion of a strongly maximal subgroup of Aut(M ) has demonstrated its im-
portance in a paper [20] by Kaye and me, where we use it to identify (by topological-
group theoretic means) basic subgroups among maximal open ones, in the case
whenM is countable recursively saturated and satisfiesTrue Arithmetic. The es-
sential reason lies in the fact that a strongly maximal subgroup of Aut(M ) gives an
additional structure on the family of its conjugates, the ordering in the order type
of (Q,<). Moreover (and this is the heart of the matter) this linear ordering turns
out to be isomorphic with some subfamily of all elementary cuts ofM . This sub-
family is rich enough so that its properties are almost the same as of the family of
all elementary cuts ofM . Granted this we were able to identify gaps stabilizers and
then use the Kaye’s Closed Normal Subgroup Theorem (i.e., Theorem27above) and
some “covering a gap” idea to identify subgroups of the form Auta(M ), with tp(a)

2-indiscernible. These ideas worked for models of Th(N), but the trick of a sub-
grouppreceded by G (invented by Kossak and Schmerl in the next paper I shall tell a
few words about) allows one to do the same for any (countable recursively saturated)
model of PA.

Recently it was shown that ifM |= True Arithmetic and is countable recursively
saturated then the lattice of subgroups of Aut(M ) is rather strange. Indeed, in [21] we
give examples of open nonmaximal subgroups of Aut(M ) which extend to a maximal
one uniquely.

The most important paper in this direction is due to Kossak and Schmerl [18], en-
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titled “The automorphism group of an arithmetically saturated model of Peano arith-
metic.” They found a way to encode the standard system ofM under the assumption
thatM is a countable and recursively saturated model of PA in whichN is strong and
obtained the following theorem.

Theorem 31 If M , N are countable recursively saturated models of PA in which
N is strong and have isomorphic automorphism groups and satisfy the same comple-
tion of PA, then M � N .

To be more specific, they encode the standard system ofM by Aut(M ) as a topolog-
ical group and then apply the Lascar’s result, Theorem29.

As pointed out above, Piekart and I constructed nontrivial open subgroups of
Aut(M ) which extend to a maximal one uniquely. In her Ph.D. thesis Piekart
strengthens this considerably. IfM |= Th(N) and Auta(M ) is basic open maximal
subgroups ofG = Aut(M ) then she shows a treeN<N of open subroups whose only
maximal extension isGa. She also shows the same result for nonbasic open subgroups
of G, which are of the formG{Ib} or G{Ib}.

Kossak and Bamber [13] show that for a countable PA, Aut(M ) is not divisible.
It follows that Aut(M ) is not elementary equivalent with Aut(Q,<), this strengthens
Theorem21. Also, Bamber shows that all cyclic subgroups of Aut(M ) are closed.

In the new paper [15] by Kossak and me we give some more information about
extendability of automorphism to greater models. Thus we show that elementarity is
essential in Theorem19. That is we show that every (not necessarily recursively sat-
urated) modelM of PA has end extensionsK which are recursively saturated mod-
els of PA and each automorphism ofM extends toK . Moreover, givenn ∈ N, K
may be chosen to be�n-elementary. Another result of [15] gives a sufficient con-
dition on the extensionM ≺cof K which ensures that every automorphism ofM ,
sending coded subsets to coded ones, extends toK . To bemore exact, at first there is
no problem in defining coded sets in the case of cofinal extensions. That is if we are
givenM ≺cof K , every subset ofM of the forma ∩ M , a ∈ K , iscalledcoded. Say
that the extensionM ≺cof K has theautomorphism extension property iff for every
g ∈ Aut(M ), such thatg, g−1 send coded sets to coded ones,g extends toK . The
natural question is: what additional assumptions on the extension are needed in order
to ensure the automorphism extension property?

Definition 32 An extensionM ≺cof R has thecovering property iff for every
γ ∈ M there exists a sequence〈En : n ∈ N〉 which is coded inR , is increasing with
respect to inclusion and

1. En ∈ M for all n ∈ N

2. {x ∈ M : M |= x < γ} = {x ∈ R : ∃n ∈ N R |= x ∈ En}.
3. for every sete ∈ R andn ∈ N, the intersectione ∩ En is in M .

It is convenient to think of the sequence〈En〉, the sequencecovering (< γ) in such a
way that every standardn, En ⊆ M , and for nonstandardj, E j add no new elements
of M belowγ. The last condition may be thought of as some sort of comprehension,
also for sets inR \ M . From a more technical point of view the assumption that
the extensionM ≺cof R has the covering property plays the role of the additional
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assumption (N does not↓ codeM in R ) in Theorem15. To be more exact it is an
analogue of “N codesM from below inR ”.

Theorem 33 Let the extension M ≺cof R have the covering property. Assume
that M is recursively saturated and R is countable. Then this extension has the au-
tomorphisms extension property.

In particular, it follows that every countable recursively saturated modelM of PA has
a countable cofinal extensionK such that everyg ∈ Aut(M ) such thatg, g−1 send
coded subsets to coded ones, extends toK . Indeed, stronger:

Lemma 34 If M ≺cof K are countable models then there exists a countable
R �cof K such that the extension M ≺ R has the covering property.

Lemma34 is proved more or less by means of the procedure which allows one to
extend a given model to a saturated one, but an auxiliary notion of thestrong covering
property is used.

The final result of [15] was mentioned previously, that is the additional assump-
tion thatN does not↓ codeN in M in the extension theorem (i.e., Theorem15) is
essential.

In the last few months the problem of describing the action of Aut(M ) in-
sideM (0) was attacked. Let us say a few words about it. Leta ∈ M (0) be undefin-
able. Consider two cuts associated witha:

I−
a = sup{u ∈ M : u is definable andu < a}

and
I+
a = inf{u ∈ M : u is definable andua}.

The set difference of these, i.e.,�a = I+
a \ I−

a is called theinterstice arounda. This
notion was isolated already in [10], the name “interstice” was introduced by Bamber.
Granted this, one introduces the notion of anintersticial gap, i.e., a gap inside an in-
terstice. This notion has many properties of the usual gaps, providedN is strong in
the model considered. In [10] we gave an erroneous “proof” of the appropriate ver-
sion of the moving gaps lemma. Recently Bamber gave a sufficient condition on an
interstice for the moving gaps lemma to hold and I constructed interstices for which
this lemma fails. (Both results requireN to be strong inM .) But it is too early to
give more about the action of Aut(M ) insideM (0). What is expected is to obtain a
linear ordering, given by means of Aut(M ), which would allow one to recover the
ordering of gaps ofM (both: ordinary gaps aboveM (0) and intersticial ones). But
trying to extend the material of [20] does not seem to work. The main difficulty in the
case of countable recursively saturated models of PA is that in this case subgroupsH
of Aut(M ) with J(H) invariant exist, as shown by Piekart and me [22].

I would like to stress that in almost every result the countability assumption is
essential. Indeed, Kossak and Schmerl [17] constructedω1-like recursively saturated
rigid models of PA.

Let me pose some open problems on automorphisms of countable recursively
saturated models of PA. Some of them are almost directly stated in the text.

1. Several results depend on the assumption thatN is strong in the model con-
sidered. Indeed, it seems that the notion of a countable recursively saturated
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model in whichN is strong is a much better notion to work with than without
this last part of the assumption. Is this assumption needed in the Lascar’s re-
sult, i.e., Theorem29? The same question for the Kossak-Schmerl encoding of
SSy(M ), theorem31. Also: does every open subgroup of Aut(M ) extend to
amaximal one? As pointed out in our comments to [16], the answer is positive
if N is strong inM . I also don’t know any nonopen subgroup of Aut(M ) with
no maximal extension.

2. More or less nothing is known about the connections of Th(M ) and Aut(M ).
The only exception is Corollary28. But how to distinguish 2ℵ0 false complete
extensions of PA by automorphisms groups?

3. Kaye described all closed normal subgroups in his theorem (Theorem27
above). Many not closed normal subgroups are known. Thus, ifI is an in-
variant cut inM thenG(>I) = {g ∈ Aut(M ) : ∃b > I g� < b = id} is normal.
Another is the subgroup〈RSA(M )〉, the subgroup generated by{g ∈ Aut(M ) :
(M , g) is recursively saturated in the expanded language}. Are these all nor-
mal subgroups? Is〈RSA(M )〉 = G(>N)?

4. I believe that one can pose several problems connected with Piekart’s work
mentioned above. At first for which other classes of structures the phenomenon
of the existence of nontrivial open subgroups with unique extension to a max-
imal subgroup occurs? In the case of countable recursively saturated models
of PA does every open maximal subgroup ofM have such subgroups? This is
not known even in the case ofM |= Th(N). Presumably at least in the case
of a basic maximal subgroupGa the ordering of rationals is embeddable in
{H < Ga : Ga is the unique extension ofH}.
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