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Refining Temporal Reference
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Abstract This paper expands on the theory of event structures put forward in
previous work by further investigating the subtle connections between time and
events. Specifically, in the first part we generalize the notion of an event struc-
ture to that of a refinement structure, where various degrees of temporal gran-
ularity are accommodated. In the second part we investigate how these struc-
tures can account for the context-dependence of temporal structures in natural
language semantics.

1 Introduction Reasoning and talking about time is to a great extent reasoning and
talking about what actually happens or might happen at some time or another. This
is perhaps not crucial if our concern is with abstract temporal reasoners or planners
intended for specific applications, but it arguably matters for the prospects of knowl-
edge representation and natural language semantics. The variety of the world is the
variety of the things that happen, and we cannot deal with it without taking events at
face value (just as we cannot deal with physical bodies or masses by confining our-
selves to their spatial coordinates). This is the stance we took in [11], where we argued
that the notion of an event structure can be given an autonomous characterization ger-
mane to both common sense and natural language. In [12] and [13] we also showed
that the formal connection between the way events are perceived to be ordered and the
underlying temporal dimension is essentially that of a construction of a linear order-
ing from the basic formal ontological properties of a domain of events—specifically,
mereological and topological properties. The purpose of this paper is to expand on
this by further investigating the subtle connections between time and events. After
a brief review, in the first part we shall generalize the notion of an event structure to
that of a refinement structure, where various degrees of temporal granularity are ac-
commodated. In the second part we shall then investigate how these structures can
account for the context-dependence of temporal structures in natural language seman-
tics.
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2 Refining event structures

2.1 Preliminaries The basic notion of an event structure is presented in detail
in [13]. The underlying mereotopological machinery is developed within a first-order
language with identity and descriptions. To allow for the possibility of improper de-
scriptive terms, we use a free logic supplemented with Lambert’s axiom [8]:

(1) ∀y(y = ιxϕx ↔ (ϕy ∧ ∀x(ϕx → x = y)).

(This is not crucial; alternative logical systems—e.g., based on Russell’s theory of
descriptions—may also be adequate for most purposes.)

The primitive mereological and topological relations are “part of” and “bound-
ary of,” symbolized by ‘P’ and ‘B’ respectively (cf. Varzi [17]). Additional derived
notions can be defined as usual:

(2) x = y =def P(x, y) ∧ P(y, x) identity
(3) O(x, y) =def ∃z(P(z, x) ∧ P(z, y)) overlap
(4) X(x, y) =def O(x, y) ∧ ¬P(x, y) crossing
(5) PP(x, y) =def P(x, y) ∧ ¬P(y, x) proper part
(6) BP(x, y) =def P(x, y) ∧ B(x, y) boundary part
(7) σxϕx =def ιx∀y(O(y, x) ↔ ∃z(ϕz ∧ O(z, y))) sum
(8) πxϕx =def σx∀z(ϕz → P(x, z)) product
(9) x + y =def σz(P(z, x) ∨ P(z, y)) join
(10) x × y =def σz(P(z, x) ∧ P(z, y)) meet
(11) x ∼ y =def σz(P(z, x) ∧ ¬O(z, y)) difference
(12) ∼ x =def σz(¬O(z, x)) complement
(13) c(x) =def x + σz(B(z, x)) closure
(14) C(x, y) =def O(c(x), y) ∨ O(c(y), x) connection
(15) Cn(x) =def ∀y∀z(x = y + z → C(y, z)) self-connectedness.

As specific axioms we assume at least those of classical extensional mereology
(see Simons [15] for an overview) supplemented with the analogues of the basic topo-
logical axioms for closure systems (cf. Smith [16]):

(16) P(x, y) ↔ ∀z(O(z, x) → O(z, y))

(17) ∃xϕx → ∃x(x = σxϕx)

(18) c(c(x)) = c(x)

(19) c(x + y) = c(x) + c(y).

This yields a minimal theory which proves fit for some basic patterns of mereo-
topological reasoning. Further principles (concerning, e.g., the dependent nature of
boundaries) can be added as required.

2.2 Event structures An event structure is an ordered pair 〈E, δ〉, where E is a
mereotopologically self-connected domain:

(20) ∀z(O(z, x) ∨ O(z, y)) → C(x, y),

and δ picks out a maximal class of “divisors” closed under the basic operations of
join, meet, and difference (within specific limits):

(21) δ(x) → ¬Cn(∼ x)
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(22) δ(x) ∧ δ(y) → (δ(x + y) ↔ C(x, y))

(23) δ(x) ∧ δ(y) → (δ(x × y) ↔ O(x, y))

(24) δ(x) ∧ δ(y) → (δ(x − y) ↔ X(x, y)).

Intuitively, the δs are somewhat distinguished items that separate their complement
into two disconnected parts. Taking E as a set of events, the idea is to think of these
divisors as comprising all that happens during certain “periods,” counting the events
on one side as past events, and those on the other side as future events. (The closure
conditions (22)–(24) are easily motivated: if every (bounded) event must be included
in some divisor, then any two connected divisors must make up a (thicker) divisor;
and if divisors are to divide the entire domain into two parts, past and future, then they
must not themselves consist of disconnected divisors. Moreover, divisors must have
a uniform orientation, hence the common part of any two overlapping divisors and
the difference between any two crossing divisors must themselves be divisors.)

We regard these as minimal conditions. Further constraints on E and/or δ can of
course be added to select specific structures.

2.3 Oriented structures Event structures can be used to provide a characterization
of the intuitive notion of an event (or a family of events) separating past from future
events. This is so because the divisors of any given structure form a closure system in
which every (bounded) event can be associated with the smallest divisor containing
it:

(25) d(x) =def πz(δ(z) ∧ P(x, z)).

Event structures say nothing, however, about whether a given event actually lies in
the past or in the future of another event (divisor). That is, event structures are not
temporally oriented.

Oriented structures can be obtained as follows. Define:

(26) d�(x) =def x + σz∃y(P(y, x) ∧ z = d(y))

(27) F(z1, x, z2) =def ¬O(z1 + z2,d(x)) ∧ ¬C(d�(z1),d�(z2))

(28) S(z1, x, z2) =def F(z1, x, z2) ∧ z1 + z2 = ∼ d(x).

(Intuitively, d� extends d to unbounded events; F is a relation of two events, z1 and
z2, flanking (i.e., lying on two opposite sides of) a third one, x; and S is the relation
of one event, x, separating its complement into two parts, z1 and z2.) Then a triple
〈E, δ, e〉 is an oriented event structure if and only if 〈E, δ〉 is an event structure and
e is a distinguished element of E such that

(29) ∃x∃y(S(e, x, y)).

That is, an oriented structure is obtained by singling out an “anchor” element e rel-
ative to which every other event can be positioned on the assumption that e covers
one of the two sides (intuitively, either the past or the future) of some event x. The
positioning is obtained via the following:

(30) f (x) =def ιz∃y(S(z, x, y)∧ (O(x, e) → P(z, e))∧ (¬O(x, e) → P(e, z)))

(31) f ′(x) =def σz(P(x, f (z))).

This effectively amounts to defining f and f ′ as a pair of Galois connections so that
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(32) S( f (x), x, f ′(x))

(32′) S( f ′(x), x, f (x))

always hold. We then just stipulate that e represents the past. That is, we treat f as a
function of temporal orientation associating each event in the domain with the totality
of events that precede it; and correspondingly, we treat f ′ as a function associating
each event with the events that follow it. This is a conventional choice (the alternative
stipulation would do as well), but we can show that it is coherent throughout. For
instance, the following are all consequences of (29) (given (21)–(24)):

(33) f (x) = f (d(x))

(33′) f ′(x) = f ′(d(x))

(34) P(x, y) → P( f (y), f (x))

(34′) P(x, y) → P( f ′(y), f ′(x))

(35) P(x, f (y)) → P(y, f ′(x))

(35′) P(x, f ′(y)) → P(y, f (x))

(36) P(x, f (y)) → P( f (x), f (y)))

(36′) P(x, f ′(y)) → P( f ′(x), f ′(y))).

In fact, it can be shown that if 〈E, δ, e〉 is an oriented event structure with orien-
tation functions f and f ′, the temporal dimension can be fully retrieved. For instance,
define temporal precedence and overlap:

(37) TP(x, y) =def P(x, f (y)))

(38) TO(x, y) =def O(d�(x),d�(y)).

Then we can prove the mereological counterparts of Kamp’s [6] axioms for strict lin-
ear orders (see Pianesi and Varzi [13] for details):

(39) TO(x, x)

(40) TO(x, y) → TO(y, x)

(41) TP(x, y) → ¬TO(x, y)

(42) TP(x, y) → ¬TP(y, x)

(43) TP(x, y) ∧ TP(y, z) → TP(x, z)

(44) TP(x, y) ∧ TO(y, z) ∧ TP(z, t) → TP(x, t)

(45) TP(x, y) ∨ TP(y, x) ∨ TO(x, y).

2.4 Refinement structures The kind of temporal structure that emerges from ori-
ented event structures strictly depends on the choice of the relevant divisor condition
δ. Thus, for instance, dense orders can be derived by imposing suitable conditions on
δ, much as is the case of discrete orders. We now consider more complex structures
involving not just one dividing condition δ, but entire collections of such conditions.
This will provide a suitable framework to account for shifting temporal perspectives.

A refinement event structure is a triple 〈E, {δi : i ∈ I}, e〉 such that (i) for each
i ∈ I, 〈E, δi, e〉 is an oriented event structure, and (ii) the family of divisors {δi : i ∈ I}
is closed under meet, i.e., for all x, y ∈ E and all i, j ∈ I there exists some k ∈ I
satisfying the following:

(46) δi(x) ∧ δ j(y) → δk(x × y).
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(This has the effect of securing coherence among the various constituent event struc-
tures. Equivalently, we could define a refinement structure as a class {S i : i ∈ I} of
oriented event structures S i = 〈E, δi, e〉 closed under meet.) Note that we implicitly
require that every oriented structure involved in a refinement have the same anchor e.
This has a natural motivation, considering that oriented structures whose anchor ele-
ments are related by a parthood relation induce the same ordering. That is, if 〈E, δ, e1〉
and 〈E, δ, e2〉 are two oriented event structures, and f1, f ′

1, f2, and f ′
2 their respective

orientation functions, we have:

(47) P(e1, e2) ∨ P(e2, e1) → f1 = f2 ∧ f ′
1 = f ′

2.

Thus there are only two ways of orienting an event structure 〈E, δ〉, and these can be
obtained by picking out any pair of oriented structures whose anchor elements do not
overlap. It is then easy to verify that such structures would reverse the order, i.e.,

(48) f1 = f ′
2 ∧ f ′

1 = f2.

On the other hand, it is clear from (47) that the above-mentioned implicit condition
could be weakened to the requirement that oriented event structures may enter into a
refinement provided that of any two of them, the anchor of one is part of the anchor
of the other. That is, we could consider structures 〈E, {δi : i ∈ I}, {ei : i ∈ I}〉 with
the property that, for all j ∈ I,

(49) P(ei, e j) ∨ P(e j, ei).

However, since this generality yields no significant gain, in the following we shall
confine ourselves to refinements in which the anchor element is kept fixed.

If 〈E, {δi : i ∈ I}, e〉 is such a refinement structure, we can then define a refine-
ment relation � among its constitutive divisors as follows:

(50) δi � δ j =def ∀x(δi(x) → ∃y(δ j(y) ∧ P(y, x))).

Thus, intuitively, δ j is a refinement of δi iff the former draws at least the same tem-
poral distinctions as the latter (and perhaps more). It is immediately verified that this
relation is reflexive, transitive, and asymmetric. Furthermore, � is monotonic with
respect to the ordering conditions fi, f ′

i (induced in the obvious way):

(51) δi � δ j → ∀x∀y(P(x, fi(y)) → P(x, f j(y))

(52) δi � δ j → ∀x∀y(P(x, f ′
i (y)) → P(x, f ′

j(y)).

This means that � behaves as a homomorphism with respect to f and f ′ and, ulti-
mately, with respect to the ordering relations. (Note that this depends crucially on the
above requirement on anchors). Thus, whenever an event x precedes another event y
in a given oriented structure, the same obtains in every event structure whose divisor
condition is a refinement of the given one:

(53) TPi(x, y) ∧ δi � δ j → TP j(x, y)

(where TPi and TP j are the relations of temporal precedence induced by δi and δ j,
respectively).
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3 Refining temporal reference

3.1 Density Refinement structures seem particularly suited to account for the ef-
fect of context on the choice of temporal structures. Landman [9] observes that if
language exhibits the possibility of indefinitely refining temporal relations among
events—as seems to be the case with natural language—the underlying model of time
must be dense. Thus, for instance, we can imagine a process of gradual refinement:

(54) John and Mary met last year. More exactly, they met during summer
vacation. To be precise, it was the 15th of August. If fact, they met
while having brunch. John was just having his first sip of coffee.. .

Even if there is a point beyond which refinement is no longer practically feasible, it
seems that this is not enough to posit discreteness as linguistically relevant.

In the present framework, density can be obtained by adding the mereotopolog-
ical counterpart of the usual axiom for dense linear orders on closed (or, equivalently,
open) intervals:

(55) TP(c(x),c(y)) → ∃z(TP(c(x),c(z)) ∧ TP(c(z),c(y))).

More generally, in the context of a refinement structure 〈E, {δi : i ∈ I}, e〉 this corre-
sponds to assuming the following to hold for relevant i ∈ I:

(56) P(c(x), fi(c(y))) → ∃z(P(c(x), fi(c(z))) ∧ P(c(z), fi(c(y)))).

However this does not fully capture the idea behind (54). The interesting question is
what kind of divisors are presupposed by the underlying unlimited refining process.
Clearly they must be infinite in number (which in turn presupposes that the domain E
must have infinite cardinality). But, more importantly, they cannot include a minimal
element (with respect to the ordering �). This amounts to the following requirement:

(57) For every i ∈ I there exists j ∈ I such that δi � δ j but not δ j � δi.

This entails that divisors must themselves be infinitely divisible, i.e., in the terminol-
ogy to be developed in the next subsection, there can be no absolute punctual events.

From a cognitive perspective, the kind of event domain required by (55)–(57)
may seem somewhat too rich: does our common sense notion of an event support the
idea of a really dense course of events? (The issue does not arise within merely tem-
poral models, since we are more confident about the idea that the time line is infinite,
without end points, and dense.) It seems that natural language gives us the possibility
of refining temporal relations without any limitation. But capturing the properties of
natural language and describing the common-sense world are two distinct matters and
should be kept apart. If so, this would be an argument in favor of the view that natural
language is an autonomous cognitive system—i.e., in the case at hand, that the inter-
pretive properties of natural language cannot be derived directly from the structure of
the common-sense world. A different perspective would be to assimilate the discrep-
ancy between language and cognitive ontology to the difference between properties-
in-intension and properties-in-extension, as Habel [3] seems to suggest. Thus, the
possibility of indefinitely refining temporal relations would not (contra Landman [9])
require an underlying infinite, dense ontology; rather, it would be a property of lan-
guage as a process. Representations can be broken up and made finer.
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We shall leave the issue open. But we shall observe that the two theses could
be reconciled if the density-in-intension property is what marks a difference (among
others) between language and the other cognitive systems.

3.2 Punctuality Just as natural language appears to allow us to indefinitely refine
temporal relations as illustrated in (54), it also permits us to discretize time at will:

(58) That’s how they met: at a certain point, John asked the waiter to invite
her at his table; the next moment she was sitting in front of him.

This is another fundamental manifestation of the inherent context-dependency of time
granularity: what counts as a moment in one context may be structurally analyzed in
another, and vice versa. Plain event structures do not allow one to account for this
variability. For although they capture the intuition that the segmentation of time is not
absolute (it depends on the divisor condition δ), they supply no means for making this
explicit (within every oriented structure, the divisor condition δ is fixed). Refinement
structures provide a natural way to overcome this limitation: the variety of possible
choices is reflected in the variety of available δs.

Intuitively, punctual events are instantaneous, i.e., do not extend over any time
interval: they are located in time but do not take up time. These include for instance
boundary events traditionally classified as “culminations” or “achievements.” Within
the present setting, this does not amount to a requirement of mereological atomicity:
what counts as instantaneous, as opposed to extended in time, depends entirely on the
relevant δ. For divisors not only provide the basis for temporal orientation but, in a
sense, also for temporal measurement. Punctuality is a relative notion.

This is not to deny that punctuality rests on some sort of minimality: punctual
events cannot accommodate more structured ones. However, contrary to a rather
standard practice, we need not in this regard consider the distinction between instants
and intervals—or more generally any distinction based on such absolute notions as
size or duration—as the relevant parameters. We also need not impose any specific
axioms for characterizing punctuality. Rather, the distinguishing properties of punc-
tual events and instant algebras can be derived from more basic aspects of event struc-
tures.

To see this, define the notion of a minimal divisor relative to an oriented event
structure 〈E, δ, e〉:

(59) Mδ(x) =def δ(x) ∧ ∀y(P(y, x) → ¬δ(y)).

Thus, a divisor x is minimal if and only if it does not contain other divisors (relative
to the same δ). As a consequence, every event that is part of such an x has x as its
divisor:

(60) Mδ(x) ∧ P(y, x) → d(y) = x.

This is a welcome consequence, since (60) entails that “temporal” differences are ne-
glected inside a minimal divisor. In fact, we can show that any events that are parts of
such a divisor are simultaneous, i.e., are temporally overlapped by the same events:

(61) Mδ(x) ∧ P(y, x) → ∀z(TO(z, x) ↔ TO(z, y)).

More generally, we have:
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(62) Mδ(x) ∧ TO(y, x) ∧ TO(z, x) → TO(y, z)

(63) Mδ(x) ∧ P(w, x) ∧ TO(y,w) ∧ TO(z,w) → TO(y, z).

Thus, if two events temporally overlap a minimal divisor (or a part thereof), then they
temporally overlap each other. Vice versa, we have that divisors that can be tempo-
rally overlapped only by temporally overlapping events are minimal:

(64) δ(x) ∧ ∀y∀z(TO(y, x) ∧ TO(z, x) → TO(y, z)) → Mδ(x).

Putting (62) and (64) together, the fundamental properties characterizing punctual
events according to Kamp [6] can be shown to hold of minimal—and only minimal—
divisors. We can then propose the following definition for punctual events:

(65) PE(x) =def Mδ(d(x)).

Thus, punctual events are not merely—and not necessarily—atomic events, i.e.,
events with no proper parts (although of course every atomic event is punctual, re-
gardless of δ). Rather, they are events whose internal structure is irrelevant for the
purpose of temporal distinctions.

Punctuality is thus relativized to the particular event structure at hand—hence,
ultimately, to the particular divisor condition δ. By changing δ, events previously
treated as punctual may become nonpunctual, in that their internal temporal struc-
ture is made available, and vice versa. This notion of “change,” as we said, is purely
metalinguistic if we focus on plain structures. However, refinement structures are en-
dowed with families of divisor conditions and may therefore accommodate this vari-
ability directly, by drawing connections between the available δs. (There is a clear
modal flavor to this, which is reminiscent of the way Kripke structures can be used to
account for intensional notions such as necessity and possibility.) This can be made
more precise as follows.

3.3 Putting everything into semantics First of all, here is how some key semantic
notions can be recovered within the basic framework. Let E = 〈E, δ, e〉 be an ordered
event structure. For every K ⊆ E we can introduce the following restricted relations:

(66) 
E,K= {〈x, y〉 ∈ K × K : P(x, y)}
(67) <E,K= {〈x, y〉 ∈ K × K : TP(x, y)}
(68) oE,K = {〈x, y〉 ∈ K × K : TO(x, y)}.

Now we can define a temporal structure induced by E to be any tuple TE = 〈K,
E,K ,
<E,K ,oE,K〉 with K ⊆ E. In particular, TE qualifies as the period structure induced
by E if K = {x ∈ E : δ(x)}, and it qualifies as the instant structure if K = {x ∈ E :
Mδ(x)}. Since <E,K behaves as a relation of temporal precedence in view of (39)–
(45), these two notions correspond to the standard notions of period and instant struc-
tures (divisors and minimal divisors acting as counterparts of intervals and instants,
respectively). Standard temporal (instant or interval) semantics for a tensed language
L can then be obtained by defining a model for L to be any structure M = 〈TE , h〉
where TE = 〈K,
E,K ,<E,K ,oE,K〉 is a temporal structure induced by some oriented
event structure E = 〈E, δ, e〉 and h is an interpretation function determining a truth-
value assignment for every atomic sentence/formula of L relative to arbitrary ele-
ments of K.
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To illustrate, if L is some language supplied with the tense operators ‘P’ (“it has
been the case that”) and ‘F’ (“it will be the case that”), we obtain a classical Priorean
semantics (as in [14]) for L by requiring the satisfaction relation |= to meet the fol-
lowing conditions for all instant models M and all relevant “instants” t (we write ‘>’
for the inverse of ‘<’, omitting subscripts):

(69) M |=t Pϕ if and only if M |=t′ ϕ for some t′ < t

(70) M |=t Fϕ if and only if M |=t′ ϕ for some t′ > t.

(The variety of resulting logics would depend on the properties of <, hence ultimately
on the specific mereotopology of E and δ.) The semantics of other tense operators can
then be defined as usual. For instance, the following define Kamp’s [5] operators ‘S’
(“since”) and ‘U’ (“until”):

(71) M |=t Sϕψ if and only if M |=t′ ϕ and M |=t′′ ψ for some t′ < t and
every t′′ > t′ such that t > t′′

(72) M |=t Uϕψ if and only if M |=t′ ϕ and M |=t′′ ψ for some t′ > t and
every t′′ < t′ such that t < t′′.

Likewise, we can obtain a classical interval semantics as in Humberstone [4] by re-
ferring to interval models instead. The conditions for ‘P’, ‘F’, etc. remain the same,
and we can in addition specify the semantics for the downward and upward “holds”
operators ‘Hd’ and ‘Hu’ (again, we write ‘�’ for the inverse of ‘
’, omitting sub-
scripts):

(73) M |=t Hdϕ if and only if M |=t′ ϕ for every t′ 
 t

(74) M |=t Huϕ if and only if M |=t′ ϕ for every t′ � t.

As a further example, Dowty’s [2] operator ‘B’ (“comes to be the case”) can be char-
acterized by the following condition:

(75) M |=t Bϕ if and only if (i) M |=t1 ¬ϕ for some t1ot for which there
exists no t′ 
 t such that t′ < t1, and (ii) M |=t2 ϕ for some t2ot for
which there exists no t′ 
 t such that t′ > t2.

Of course we can also extend these semantics by relativizing the satisfaction re-
lation to all sorts of events (not just divisors), so as to read M |=x ϕ simply as “sen-
tence ϕ holds in model M throughout event x.” This means using temporal structures
TE = 〈K,
E,K ,<E,K ,oE,K〉 where K is a proper superset of the sets {x ∈ E : δ(x)}
and {x ∈ E : Mδ(x)}. This may be useful, for instance, to account for a logic of change
in the spirit of Kamp [7]. Moreover, it is understood that if L is, say, a first order
language, then the event domain K will also serve as a domain of quantification for
event-based semantics in the spirit of Davidson [1]. For instance, on Parsons’s tensed
formulation in [10], a sentence ϕ such as “John met Mary in the dining room” would
have the following truth condition:

(76) M |=t ϕ if and only if there exists some x < t such that x is an event of
John’s meeting Mary and x takes place in the dining room.

(The full-blown picture would of course have to consider many-sorted models in
which the domain includes other entities as well.) These developments are obvious,
and we shall not consider specific applications.
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Rather, let us now consider how the picture can be fruitfully extended by con-
struing models out of refinement event structures. If R = 〈E, {δi : i ∈ I}, e〉 is such
a structure, we can define a corresponding refinement temporal structure to be a fam-
ily TR = {TEi : i ∈ I} of temporal structures TEi = 〈Ki,
Ei,Ki ,<Ei,Ki ,OEi,Ki〉, one
for each i ∈ I. (We do not require that these be all of the same sort, for instance,
that they be all interval structures. On the contrary, as we saw above, the point of in-
troducing refinement is precisely to be able to switch naturally from one (kind of)
temporal structure to another.) Note that since e is fixed, the temporal orderings
will be coherent throughout, i.e., the following will hold for all xi, yi ∈ Ki and all
x j, y j ∈ K j (i, j ∈ I):

(77) TP(xi, x j) ∧ TP(y j, yi) → (x j <E j,K j y j → xi <Ei,Ki yi).

A refinement model will then be a pair M = 〈TR , h〉 where h is a family of interpre-
tation functions {hi : i ∈ I} each of which determines a truth-value assignment for
every atomic sentence/formula of the language relative to arbitrary elements of the
corresponding domain Ki.

With respect to such structures, the customary semantic conditions for tensed
languages present no significant difficulty, and we can proceed as before. However,
the relation of satisfaction will now have to be relativized with respect to divisors as
well, i.e., with respect to arbitrary elements of arbitrary domains Ki, the latter being
determined by the corresponding divisors of the underlying refinement event struc-
ture. For instance, (69)–(70) will have to be formulated along the following lines:

(78) For all i ∈ I and all t ∈ Ki : M |=t,i Pϕ if and only if M |=t′,i ϕ for
some t′ ∈ Ki such that t′ < t

(79) For all i ∈ I and all t ∈ Ki : M |=t,i Fϕ if and only if M |=t′,i ϕ for
some t′ ∈ Ki such that t′ > t.

These conditions will not be affected by the possibility of varying the second con-
textual feature (the index i). In addition, however, we can now specify the semantics
of operators which do depend on the variable granularity of the divisors. Consider
for instance the operators ‘M
’, ‘N
’, ‘M’, and ‘N’ defined by the following clauses
(where ‘<’ denotes the union of the relevant <Ei,Ki relations, and ‘>’ the correspond-
ing inverse relation):

(80) For all i ∈ I and all t ∈ Ki : M |=t,i M
ϕ if and only if M |=t′,i′ ϕ for
some i′ ∈ I and some t′ ∈ Ki′ such that t′ 
 t

(81) For all i ∈ I and all t ∈ Ki : M |=t,i N
ϕ if and only if M |=t′,i′ ϕ for
every i′ ∈ I and every t′ ∈ Ki′ such that t′ 
 t

(82) For all i ∈ I and all t ∈ Ki : M |=t,i Mϕ if and only if M |=t′,i′ ϕ for
some i′ ∈ I and some t′ ∈ Ki′ such that δi � δi′ and t′ 
 t

(83) For all i ∈ I and all t ∈ Ki : M |=t,i Nϕ if and only if M |=t′,i′ ϕ for
every i′ ∈ I and every t′ ∈ Ki′ such that δi � δi′ and t′ 
 t.

These are only a few among a large variety of possible operators that can be
distinguished (just permute or change the quantifiers ‘some’ and ‘all’ or the mereo-
temporal relations 
 and < to get a first extra stock), but they serve the purpose of
illustration. Consider for instance the operator ‘M
’ (80), and suppose for simplicity
that M = 〈TR , h〉 is based on a family TR of instant structures. Then we can think
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of this operator as specifying that the argument sentence ϕ is true at a certain instant
t with granularity i (i.e., true throughout an event treated as punctual under the i-th
way of drawing divisors, δi) if and only if there is some way of changing temporal
granularity (relative to the range of possibilities admitted by the underlying refine-
ment structure R = 〈E, {δi : i ∈ I}, e〉) so as to make ϕ true at some sub-instant of t.
What this means is that ‘M
’ behaves essentially as a “precisification” operator: if
you count time in moon cycles, you might not be able to make certain relevant dis-
tinctions (you might not be able to establish the truth of (58), “John asked the waiter
to invite Mary at his table; the next moment she was sitting in front of him”); but if
you count time in minutes, then things may change. In other words, the relevant sen-
tence, ϕ, may be false not because things went differently (e.g., because Mary refused
to accept the invitation), but because the relevant temporal granularity is too coarse
for ϕ to be recognized as true. If you can get down to a sufficiently refined temporal
structure, this may become apparent and ϕ may be recognized as true. Thus, we can
think of ‘M
’ as an operator allowing one to double check the possibility for a sen-
tence to come out true under suitable temporal refinements. (Within certain obvious
limits, this would correspond to the English “more precisely.”) Likewise, ‘N
’ is es-
sentially a “no matter how” operator: no matter how you change granularity (within
the limits set by the underlying refinement structure), if ϕ is true, it remains true, and
if it is false, you can find some sub-instant where it is false.

The operators defined by (82) and (83) are similar, but somewhat more illustra-
tive of the intensional flavor of refinement processes. In the foregoing example we
have implicitly assumed that changing granularity is a very regular process: you may
count time in moon cycles, weeks, days, or minutes; but once you choose one grain,
you apply it throughout (until you change grain). That is, if δi is your moon-cycle
divisor, it divides the whole of history into moon-cycles: it does not vary from one
“epoch” to another. This is intuitive, but there is nothing of course in our notion of
a(n instant-based) refinement model that guarantees it. And perhaps there are good
reasons to consider models where this is not the case after all. If so, then the opera-
tors ‘M
’ and ‘N
’ are not quite the appropriate counterparts of the intuitive opera-
tions discussed above, and reference to ‘M’ and ‘N’ becomes necessary. Unlike the
former, the semantics of these latter operators makes explicit reference to the sort of
granularity to be considered in the refinement process. In other words, these opera-
tors do not force you to consider every possible alternative granularity, but only those
alternatives that correspond to an actual refinement of the initial δi.

The semantic mechanism operating here is reminiscent of an idea familiar from
modal logics: modal operators do not range over all possible worlds, but only over
those worlds that are “accessible” from the given one. If the analogy is acceptable,
then the richness of the basic framework need hardly be emphasized. The variety of
interesting accessibility relations among refinements is very large indeed, and appears
to be a rewarding subject for further exploration.
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