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Free Algebras Corresponding to
Multiplicative Classical Linear Logic

and Some of Its Extensions

ANDREJA PRIJATELJ

Abstract In this paper, constructions of free algebras corresponding to mul-
tiplicative classical linear logic, its affine variant, and their extensions withn-
contraction (n ≥ 2) are given. As an application, the cardinality problem of
some one-variable linear fragments withn-contraction is solved.

1 Introduction The topic of substructural logics, i.e., logics with restricted struc-
tural rules, already has a long tradition (witness relevance logic, BCK-logic, Lambek
calculus). However, with the birth of Girard’s linear logic in [3], it has regained the
attention of researchers with various motivations and different traditions. An exten-
sive survey covering the subject of substructural logics can be found in Došen and
Schr̈oder-Heister [2].

The present paper continues our investigation of intuitionistic and classical
Gentzen systems with bounded contraction. In particular,n-contraction (n ≥ 2) is a
version of the contraction rule, where(n + 1) occurrences of a formula may be con-
tracted ton occurrences. Our motivation for exploring these systems has its roots in
the observation that substitutingn-contraction for full contraction in the systems con-
sidered already results in the splitting of logical operations familiar from linear logic.
However, most of the systems withn-contraction do not enjoy the cut-elimination
property. Thus, standard proof-theoretic techniques of investigating metaproperties
of these systems are not available. In spite of that, the desire to acquire better in-
sights into the effects of bounded contraction led to a number of different papers on
this topic. To start with, in [7] we showed that the linear models for(n + 1)-valued
Łukasiewicz logics are suitable models ofn-contraction. We also presented a new
complete axiomatization for these logics, essentially by means ofn-contraction. Fur-
ther, Hori, Ono, and Schellinx [4] extensively studied syntactic and semantical prop-
erties of extensions of the intuitionistic linear logic with knotted structural rules, re-
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sulting in cut-elimination theorems, decidability, and undecidabily results as well as
finite model property theorems. Briefly, knotted structural rules permitn copies of a
formula to be contracted tok copies, whenn > k, and to be weakened tok copies,
whenn < k (with n, k ≥ 1). Knotted structural rules can be seen as a generalization
of those discussed earlier. And finally, in [6] we introduced connectification opera-
tors for intuitionistic and classical linear algebras corresponding to linear logic and
to some of its extensions withn-contraction. As a useful application of these opera-
tors we established the disjunction property for both intuitionistic and classical affine
linear logics withn-contraction.

The present paper had its origin in the problem of describing the structure and
determining the cardinality of one-variable fragments of some extensions of linear
logic with n-contraction and weakening. First, we point out that for the intuitionistic
case this task is easy. It is well known that the one-variable fragment of intuitionis-
tic propositional logic (in our notationIPLa

1) is infinite, due to the Rieger-Nishimura
lattice being the Lindenbaum algebra of the one-variable fragment in question (see
Troelstra and van Dalen [10]). Consider now the systemIPLa

n (n ≥ 2) of affine in-
tuitionistic linear logic withn-contraction (see Appendix 1). We extend the Rieger-
Nishimura lattice with� and�, interpreted as meet and relative pseudocomplemen-
tation respectively. Clearly, under this interpretation multiplicative connectives col-
lapse with the respective additive ones. Therefore, the structure obtained is not the
Lindenbaum algebra of the one-variable fragment ofIPLa

n but just an infiniteIPLa
n-

algebra (see [6]) corresponding to the system under consideration. Nonetheless, since
the canonical valuation of one-variableIPLa

n-formulas with values in this infinite al-
gebra is surjective, we may conclude that the one-variable fragment ofIPLa

n is infi-
nite.

Far more interesting and involved is the problem of the structure and cardinality
of one-variable fragments of some classical linear logic extensions withn-contraction
(n ≥ 2). The Lindenbaum algebra of the one-variable fragment of ordinary classical
propositional logic is a lattice of exactly four elements. However, in this paper we
show that the Lindenbaum algebras of the one-variable fragments of purely multi-
plicative (i.e., tensor, par) classical linear logic extended withn-contraction and its
affine version are infinite.

Here we make a brief digression to mention some of the recent papers investi-
gating similar questions. It is interesting to note that each of them is supplemented
by a computer program designed for a specific generation of models. De Jongh, Hen-
driks, and Renardel de Lavalette [5] examined the structure of finite diagrams of in-
tuitionistic propositional logic fragments. The diagram of a fragment is nothing but
the set of equivalence classes of its formulas partially ordered by the derivability rela-
tion. And finally, Slaney [8] showed that natural systems close to relevance logic, but
weaker, have infinitely many nonequivalent Ackermann constants. The nondistribu-
tive version of relevance logic considered by Slaney is in fact equivalent to proposi-
tional classical linear logic extended with full contraction.

In the study of the one-variable fragments of classical logics withn-contraction,
we encounter the following obstacles. First, the systems withn-contraction consid-
ered here do not enjoy cut-elimination (for a counterexample, see Section 2). Thus,
the usual proof-theoretic methods to examine provable equivalence of formulas in
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these systems are not available. The other approach to this problem is a model-
theoretic one. As far as we know, there are only two classes of models suitable to
mimic the effects ofn-contraction in the logical systems. These are the models for
(n + 1)-valued Łukasiewicz logics (see Appendix 4) and the algebraic models given
in Section 2. For our purposes, Łukasiewicz models are useless, since they do not
distinguish sufficiently many formulas. On the other hand, there is a difficulty with
the algebraic models as well, namely, how to determine nonequivalent expressions in
apartially ordered algebraic structure. In what follows, we shall give a partial answer
to this, sufficient to solve the cardinality problem discussed earlier. Briefly, we con-
struct a free algebra on one generator corresponding to the one-variable fragment of
affine multiplicative classical linear logic with 2-contraction. Further, we elaborate
some lemmas and propositions in order to show the existence of two infinite chains
in the free algebra introduced. The free algebra on one generator is isomorphic to the
Lindenbaum algebra of the one-variable fragment considered, yielding that this frag-
ment is infinite. As an immediate consequence, we see also that one-variable frag-
ments of multiplicative classical linear logic withn-contraction (for anyn ≥ 2) and
its affine version are infinite.

Moreover, we wish to emphasize that our construction of the free algebra is of
interest in its own right. It will be adapted to respective free algebras on one gener-
ator corresponding to multiplicative classical linear logic (a new result in this field),
as well as to its affine variant, and their extensions withn-contraction. Also, it will
become evident later that any of these constructions can be generalized to the corre-
sponding free algebra on an arbitrary set of generators.

At the end of Section 4, we shall indicate why our present strategy for solving the
cardinality problem of one-variable fragments is not directly applicable to the systems
extended with constants, negation, and additive connectives. We shall also give some
suggestions for further research.

Weuse Troelstra’s [9] notation for the operators of linear logic.

2 The system〈�,+〉-CPLa
2 and monoidalCPLa

2-algebras A multiplicative sys-
tem of affine classical linear logic with 2-contraction,〈�,+〉-CPLa

2, is given by the
following axioms and rules. Throughout the sequel,�,�1, �2, �, �1, �2 denote fi-
nite multisets of formulas.

Axioms

A ⇒ A

Logical rules

L�
�, A, B ⇒ �

�, A � B ⇒ �

R�
�1 ⇒ A,�1 �2 ⇒ B,�2

�1, �2 ⇒ A � B,�1,�2

L+
�1, A ⇒ �1 �2, B ⇒ �2

�1, �2, A + B ⇒ �1,�2

R+
� ⇒ A, B,�

� ⇒ A + B,�
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Structural rules

LW
� ⇒ �

�, A ⇒ �

RW
� ⇒ �

� ⇒ A,�

LC2
�, A, A, A ⇒ �

�, A, A ⇒ �

RC2
� ⇒ A, A, A,�

� ⇒ A, A,�

Cut
�1 ⇒ A,�1 �2, A ⇒ �2

�1, �2 ⇒ �1,�2

Note that for any formulasA, B, andC, the sequent(B + C) � A ⇒ (B � A) + C is
derivable in〈�,+〉-CPLa

2, however,�� (B � A) + C ⇒ (B + C) � A. The latter is due
to the fact that the sequent(B ∧ A) ∨ C ⇒ (B ∨ C) ∧ A is not derivable in{∧,∨}-
classical propositional logic of which〈�,+〉-CPLa

2 is just a fragment. However, the
fragment considered differs from classical propositional logic since〈�,+〉-CPLa

2 ��
A ⇒ A � A. To see this, choose forA a propositional variablep. As acounter-model
of the given sequent we may take the Łukasiewicz 3-valued modelM3([[ . ]] ) (see
Appendix 4), with [[p]] = 1

2.
Next, we shall give a counterexample for cut-elimination in the system〈�,+〉-

CPLa
2. Let p be a propositional variable in the language of〈�,+〉-CPLa

2. Then,

〈�,+〉-CPLa
2 � p, p + p ⇒ (p + p)3,

where(p + p)3 stands for(p + p) � (p + p) � (p + p). The derivation of the given
sequent can be obtained as follows.

Applying R� to two axiom instancesp + p ⇒ p + p yields(p + p)(2) ⇒ (p +
p)2. Another application of R� to the latter sequent andp + p ⇒ p + p yields(p +
p)(3) ⇒ (p + p)3, and so, withLC2, applied next, gives(p + p)(2) ⇒ (p + p)3. On
the other hand, RW applied top ⇒ p yields p ⇒ p(2) and, with R+ next,p ⇒ p + p.
Cutting the latter sequent with(p + p)(2) ⇒ (p + p)3 results inp, p + p ⇒ (p +
p)3, with A(k) ≡ A, A, . . . , A, i.e.,k copies of formulaA in the derivation above.

However, it is easy to check that the sequentp, p + p ⇒ (p + p)3 has no cut-
free derivation in the system considered. Moreover, note that this is also a counterex-
ample for cut-elimination in the one-variable fragment of〈�,+〉-CPLa

2.
Wenow introduce monoidalCPLa

2-algebras corresponding to this system.

Definition 2.1 X = 〈X, �,+,≤〉 is a monoidalCPLa
2-algebra, if:

1. 〈X, �〉 and〈X,+〉 are commutative monoids (also referred to as semigroups);
2. ≤ is a partial order onX, satisfying the following clauses for allx, y, z ∈ X:

(a) x � y ≤ x andx ≤ x + y, corresponding to weakening;

(b) x � x ≤ x � x � x andx + x + x ≤ x + x, corresponding to 2-contraction;

(c) (y + z) � x ≤ (y � x) + z, i.e., sub-commutativity of� and+;

(d) if x ≤ y, thenx � z ≤ y � z andx + z ≤ y + z, i.e., monotonicity of� and
+ with respect to≤.
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This formulation of a monoidalCPLa
2-algebra will turn out to be particularly suitable

for our purpose, which is to construct the corresponding free algebra on one generator.
Note that (2c) of Definition2.1covers precisely the derivability of the sequent(B +
C) � A ⇒ (B � A) + C in 〈�,+〉-CPLa

2. Next, consider an extension of a monoidal
CPLa

2-algebra with 0 and 1 as the respective units for+ and�, with involution ∼
and the clausesx � ∼ x = 0, x + ∼ x = 1. We shall show later that in this algebraic
structure sub-commutativity of monoidal operations is just equivalent to adjointness
(witness Appendix 3).

Further, a monoidalCPLa
2-model,M, is apair〈X, [[ . ]] 〉, whereX is a monoidal

CPLa
2-algebra and [[. ]] is a valuation defined in a usual way (see Appendix 3). For va-

lidity of a 〈�,+〉-CPLa
2-sequent� ⇒ � (see Appendix 3) in a given monoidalCPLa

2-
modelM, weuse the standard notation:|=M � ⇒ �.

Soundness and completeness hold for the system and models under the follow-
ing consideration.

Proposition 2.2 Given a 〈�,+〉-CPLa
2- sequent � ⇒ �,

if 〈�,+〉-CPLa
2 � � ⇒ �, then |=M � ⇒ �,

for every monoidal CPLa
2-model M.

Proof: By induction on the length of a derivation of� ⇒ �.

To show soundness ofCut the use of sub-commutativity of� and+, i.e., (2c)
of the definition of a monoidalCPLa

2-algebra, is essential. The rest of the proof is
straightforward. �

Proposition 2.3 There exists a monoidal CPLa
2-model ML, such that

if |=ML � ⇒ �, then 〈�,+〉-CPLa
2 � � ⇒ �,

for any 〈�,+〉-CPLa
2-sequent � ⇒ �.

Proof: Clearly,ML = 〈L, [[ . ]] 〉, whereL = 〈F/≡, �′,+′,≤′〉 is the Lindenbaum
algebra of the system〈�,+〉-CPLa

2. The Lindenbaum algebra considered is obtained
by the standard definition for linear logic systems. The partial order≤′ in F/ ≡
is given by: for any formulas A and B, [ A]≡ ≤′ [ B]≡ iff 〈�,+〉-CPLa

2 � A ⇒ B.
Clearly, then A ≡ B iff [ A]≡ ≤′ [ B]≡ and [ B]≡ ≤′ [ A]≡. It is now easy to check
thatL is indeed a monoidalCPLa

2-algebra. The rest of the proof is standard (see [9]).
�

3 A construction of the free monoidalCPLa
2-algebra on one generator A double

commutative monoid is a triple〈S, �,+〉, whereS is a nonempty set,� and+ are
binary associative and commutative operations inS.

We shall now give an explicit construction of the free double commutative
monoid P (γ) = 〈P, �,+〉 generated by{γ}. First, we shall define for anyd =
0,1,2, . . . the setsP�

d , (i.e., �-+-polynomials of depthd, with a principal operation
�, whend ≥ 1), and their dualsP+

d , inductively on the depth of a�-+-polynomial.

1. The only polynomial of depth 0 is the generatorγ, so we put
P�

0 = P+
0 = {γ}.
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2. Ford ≥ 1:

(a) Let P�
d be the set of all formal products

(p1) � · · · � (pk), (k ≥ 2),

such that

p j ∈ P+
d j

( j = 1, . . . , k) and
k

max
j=1

d j = d − 1.

(b) Let P+
d be the set of all formal sums

(p1) + · · · + (pk), (k ≥ 2),

such that

p j ∈ P�
d j

( j = 1, . . . , k) and
k

max
j=1

d j = d − 1.

The operations� and+ between�-+-polynomials are defined in the ob-
vious way.

Wenow define an equivalence relation,� , in P�
d and inP+

d inductively by:

1. γ � γ;
2. for d ≥ 1:

(p1) � · · · � (pk) � (p′
1) � · · · � (p′

s) iff k = s and for some permutationθ of
{1, . . . , k}, p j � p′

θ( j) ( j = 1, . . . , k). And analogously,(p1) + · · · + (pk) �
(p′

1)+· · ·+ (p′
s) iff k = s and for some permutationθ of {1, . . . , k}, p j � p′

θ( j)
( j = 1, . . . , k).

Moreover, since

p � p′ implies p � q � p′ � q and p + q � p′ + q,

for all �-+-polynomialsq, clearly� is a congruence relation on the algebra of�-+-
polynomials.

Put nowP0 = P�
0/ � = P+

0 / � andPd = (P�
d / �)

⋃
(P+

d / �), for anyd ≥ 1,
and take

P =
∞⋃

d=0

Pd .

Finally, we defineP (γ) = 〈P, �,+〉, with � and+ being induced from� and+ on
�-+-polynomials.

Since� is a congruence relation on the algebra of�-+-polynomials, the oper-
ations� and+ are, indeed, well-defined on�-equivalence classes. Moreover, note
that� and+ are associative and commutative operations inP. It is now easy to see,
using standard arguments (Birkhoff [1]), thatP (γ) is indeed a free double commuta-
tive monoid on one generatorγ. Next, observe the following important property of
P (γ).
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Fact 3.1 By the construction of P (γ), it follows that every x ∈ Pd (d ≥ 1) has a
unique decomposition up to a permutation of factors or summands, in the following
sense:

(i) if x ∈ P�
d / � (for some d = 1,2, . . .), then

x = x1 � · · · � xk, (k ≥ 2), with x j ∈
d−1⋃

i=0

(P+
i /�)( j = 1, . . . , k).

(ii) if x ∈ P+
d / � (for some d = 1,2, . . .), then

x = x1 + · · · + xk, (k ≥ 2), with x j ∈
d−1⋃

i=0

(P�
i /�) ( j = 1, . . . , k).

Our intention in what follows is to construct the free monoidalCPLa
2-algebra on one

generator fromP (γ). The construction is carried out in four steps.

I. A binary relation≤0 is introduced inP, by clauses (a)–(d) being satisfied for
all x, y, z ∈ P:

(a) x ≤0 x;

(b) x � y ≤0 x andx ≤0 x + y;

(c) x � x ≤0 x � x � x andx + x + x ≤0 x + x;

(d) (y + z) � x ≤0 (y � x) + z.

II. We construct the monotonic closure of≤0 , as follows.
A sequence of binary relations{≤n}∞n=0 in P is defined inductively by:
for everyn ≥ 1, let ≤n be the extension of≤n−1 , determined by:
for all x, y, z ∈ P, if x ≤n−1 y, thenx � z ≤n y � z andx + z ≤n y + z.
Wedefine

≤∞ =
∞⋃

n=0

(≤n),

i.e., givenx, y ∈ P, x ≤∞ y iff x ≤n y, for somen ≥ 0.
III. Let ≤ be the transitive closure of≤∞ in P, i.e., givenx, y ∈ P, x ≤ y iff there

exists a finite chainx ≤∞ x1 ≤∞ · · ·≤∞ xk ≤∞ y in P.

With the following two lemmas we shall justify monotonicity of� and+ with
respect to≤ in P and show that≤ is a preorder onP.

Lemma 3.2 The operations � and + are monotone with respect to ≤∞ in P.

Proof: Assumex ≤∞ y for somex, y ∈ P. By definition, there isn ≥ 0, such that
x ≤n y. Take anyz ∈ P. Then,x � z ≤n+1 y � z andx + z ≤n+1 y + z. Hence,x �

z ≤∞ y � z andx + z ≤∞ y + z. �

Lemma 3.3 The relation ≤ is a preorder on P. Moreover, the operations � and +
are monotone with respect to ≤ in P.

Proof: Indeed,≤ is reflexive and transitive, due to I(a) and (III) above.
To show monotonicity, assumex ≤ y for somex, y ∈ P. Hence there is a fi-

nite chain inP, x ≤∞ x1 ≤∞ · · ·≤∞ xk ≤∞ y. Thenfor any z ∈ P, x � z ≤∞ x1 �

z ≤∞ · · ·≤∞ xk � z ≤∞ y � z andx + z ≤∞ x1 + z ≤∞ · · ·≤∞ xk + z ≤∞ y + z are
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again finite chains inP due to Lemma3.2. Therefore,x � z ≤ y � z andx + z ≤ y + z.
�

In the sequel, we shall generate two infinite chains in the preordered algebraic struc-
ture 〈P, �,+,≤〉 constructed so far. In order to show that these two infinite chains
exist also in the free monoidalCPLa

2-algebra, we continue with two crucial lemmas.

Lemma 3.4 ∀n ≥ 0, ∀z ∈ P: γ ≤n z if and only if z = γ or z = γ + z′ for some
z′ ∈ P.

Proof: Note that∀n ≥ 0 and∀z ∈ P, γ ≤n z iff γ ≤0 z. Moreover, following the
definition of≤0 we getγ ≤0 z iff z = γ or z = γ + z′ for somez′ ∈ P. �

Lemma 3.5 ∀n ≥ 0, ∀y, z ∈ P: if γ + y ≤n z, then z = γ + z′ for some z′ ∈ P and
y ≤n z′ or γ ≤n z′.

Proof: By induction onn.

1. (n = 0):
Assumeγ + y ≤0 z, for somey, z ∈ P. The following three cases are to be
considered.
If I(a) occurs, thenz = γ + y, and hencez′ = y, yielding y ≤0 z′.
If I(b) occurs, thenz = γ + y + u, for someu ∈ P. Hence,z′ = y + u and thus,
indeed,y ≤0z′.
If I(c) occurs, then two subcases occur.
(1) y = γ + γ andz = γ + γ, resulting inz′ = γ. By Lemma3.4, γ ≤0 z′.
(2) y = γ + γ + u + u + u andz = γ + γ + u + u, for someu ∈ P. Therefore,
z′ = γ + u + u, and by Lemma3.4we are done.

2. (n ≥ 1):
Assume Lemma3.5to hold fork = 0,1, . . . , (n − 1). Assume further that for
somey, z ∈ P, γ + y ≤n z andγ + y �≤n−1 z. This means that there area, b, c ∈
P, satisfying

(M) a ≤n−1 b,

and hence,a + c ≤n b + c, such thatγ + y = a + c, andz = b + c. Now, due
to Fact3.1, the following possibilities are to be distinguished.

(a) a = γ, hence z = b + y. Then, by (M) above,γ ≤n−1 b. Using
Lemma3.4we getb = γ or b = γ + b′, for someb′ ∈ P. Thus,z = γ + y
or z = γ + b′ + y, yielding z′ = y or z′ = b′ + y. And hence,y ≤n z′.

(b) c = γ. Then y = a andz′ = b. Using (M) we gety ≤n z′.
(c) a = γ + u (for someu ∈ P), resulting iny = u + c. Now by (M) γ +

u ≤n−1 b, therefore we can use induction hypothesis and getb = γ + b′

with the options

(O) u ≤n−1 b′ or γ ≤n−1 b′.

Sincez = b + c = γ + b′ + c, we get z′ = b′ + c. We finally have to
consider each option in(O).

If u ≤n−1 b′, theny = u + c ≤n b′ + c = z′, and we are done.
If γ ≤n−1 b′, then b′ = γ or b′ = γ + b′′ (for someb′′ ∈ P) due to
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Lemma3.4. Hence,z′ = γ + c or z′ = γ + b′′ + c, resulting inγ ≤n z′

by Lemma3.4.

(d) c = γ + u (for someu ∈ P), yielding y = a + u. Hence,z = γ + u + b
and soz′ = u + b. Due to(M), we gety = a + u ≤n b + u = z′, andwe
are done. �

Proposition 3.6 ∀y, z ∈ P:

1. if γ + y ≤ z, then z = γ + z′ for some z′ ∈ P and y ≤ z′ or γ ≤ z′.
2. γ ≤ z if and only if z = γ or z = γ + z′ for some z′ ∈ P.

Proof: Following the definitions of≤ and≤∞ the proof goes by induction on the
length of the chain using essentially Lemmas3.4and3.5. �
By duality the following proposition can be established.

Proposition 3.7 ∀y, z ∈ P:

1. if z ≤ γ � y, then z = γ � z′ for some z′ ∈ P and z′ ≤ y or z′ ≤ γ.
2. z ≤ γ if and only if z = γ or z = γ � z′ for some z′ ∈ P.

Consider now the sequences{xn}∞n=0 and{yn}∞n=0 of elements ofP, given inductively
by:

x0 = γ + γ , y0 = γ � (γ + γ) , xn+1 = yn + γ , yn+1 = xn+1 � γ.

Due to I(b) of the definition of≤0 and monotonicity of� and+ with respect to≤ (see
Lemma3.3), it is easy to see that:

xn+1 ≤ xn andyn+1 ≤ yn for all n ∈ N.

In order to show later that none of these two chains collapses in the free monoidal
CPLa

2-algebra, we need one more lemma.

Lemma 3.8 Let {xn}∞n=0 and {yn}∞n=0 be as above. Then, xn �≤ xn+1 and yn �≤ yn+1,
for any n ∈ N.

Proof: By induction onn.

1. (n = 0:) we want to prove
(i) γ + γ �≤ (γ � (γ + γ)) + γ

(ii) γ � (γ + γ) �≤ ((γ � (γ + γ)) + γ) � γ.
Assume first thatγ + γ ≤ (γ � (γ + γ)) + γ. By Proposition3.6.1, we get
γ ≤ γ � (γ + γ). This contradicts Proposition3.6.2, and we are done.
Assume next thatγ � (γ + γ) ≤ ((γ � (γ + γ)) + γ) � γ. Proposition3.7.1
yields the following options:

γ + γ ≤ (γ � (γ + γ)) + γ,

contradicting (i) above, or
γ + γ ≤ γ,

violating Proposition3.7.2.
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2. (n ≥ 1:)
(i) Assumexn ≤ xn+1, i.e., yn−1 + γ ≤ yn + γ. By Proposition3.6.1, we get
yn−1 ≤ yn, contradicting the induction hypothesis, orγ ≤ yn = xn � γ, violating
proposition3.6.2.
(ii) Finally, assumeyn ≤ yn+1, i.e., xn � γ ≤ xn+1 � γ. By Proposition3.7.1
we getxn ≤ xn+1, contradicting the first part of the lemma already proved, or
yn−1 + γ = xn ≤ γ, which contradicts Proposition3.7.2. �

IV. Next, we define a congruence relation≡ on 〈P, �,+,≤〉 by:

for anyx, y ∈ P, x ≡ y iff x ≤ y andy ≤ x.

Clearly, due to Lemma3.3, ≡ is a congruence relation on the structure consid-
ered. We now define

F (γ) = 〈P/≡, �′,+′,≤′〉,

with �′ ,+′ , and≤′ being induced fromP.

Since≡ is a congruence relation,�′ and+′ are well-defined inF (γ). Moreover,
≤′ is a partial order onF (γ). Taking into account also the given constructions ofP
and≤ on P, it isnow easy to see thatF (γ) is a monoidalCPLa

2-algebra. Moreover,
F (γ) is the freeCPLa

2-algebra on one generatorγ (see [1]). To verify the latter, we
have to show that for every monoidalCPLa

2-algebraX and for everyx ∈ X, there
exists a unique morphismf : F (γ) → X, such thatf ([γ]) = x. Define, for anyq ∈ P,
f ([q]) = q(x), whereq(x) is the evaluation of the polynomialq at x in X. To see,
first, that f is well-defined (i.e., independent of representatives) we have to show that
for anyq′, q ∈ P, if q′ ≡ q, thenq′(x) = q(x) in X. In fact, it is enough to prove that
for all n ∈ N and∀q, q′ ∈ P, if q′ ≤n q, thenq′(x) ≤ q(x) in X. A diligent reader is
now invited to work out the proof following the definition of≤n by induction onn.
From the above, it follows thatf preserves the partial order. Hence, indeed,f is a
morphism between the two algebras considered, since it also satisfies the following:
for anyq, q′ ∈ P, f ([q ◦ q′]) = (q ◦ q′)(x) = q(x) ◦ q′(x) = f ([q]) ◦ f ([q′]), with
◦ ∈ {�,+}. Also, f ([γ]) = x, by definition. And finally, the uniqueness off follows
directly from f being a morphism andf ([γ]) = x. Thus,F (γ) is the free monoidal
CPLa

2-algebra on one generatorγ and isomorphic to the Lindenbaum algebra of the
one-variable fragment of〈�,+〉-CPLa

2.
Weemphasize, however, that our construction ofF (γ) has a much wider scope,

establishing also the free algebras (on one generator) corresponding to the multiplica-
tive fragment of classical linear logic (i.e., tensor, par fragment without constants and
modalities), in our notation〈�,+〉-CPL, its affine version,〈�,+〉-CPLa, and their ex-
tensions withn-contraction (n ≥ 2): 〈�,+〉-CPLn and〈�,+〉-CPLa

n respectively. To
be specific, we state the following fact.

Fact 3.9 A construction of the free algebra, on one generator γ, corresponding
to 〈�,+〉- CPL, 〈�,+〉-CPLa, 〈�,+〉-CPLn, and 〈�,+〉-CPLa

n, (n ≥ 2), can be ob-
tained from the given construction of F (γ) respectively by:

1. omitting I(b),(c);
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2. omiting I(c);
3. omitting I(b) and replacing I(c) by I(c′):

xn ≤0 xn+1 and (n + 1)x ≤0 nx,

where xn and nx denote n copies of x in the product and in the sum respectively;
4. replacing I(c) with I(c′), as above.

Besides, note that the construction ofF (γ) and its variants, in the fact above, can
easily be generalized to the corresponding free algebras generated by an arbitrary set
of generators.

4 One-variable fragments of multiplicative classical linear logic withn-contrac-
tion are infinite Weare now ready to prove the existence of the two infinite chains
in F (γ), with its application to the one-variable fragment of〈�,+〉-CPLa

2.

Theorem 4.1

1. F (γ) is infinite.
2. There are infinitely many provably nonequivalent formulas built from one

propositional variable in the system 〈�,+〉-CPLa
2.

Proof:

1. Let {xn}∞n=0 and{yn}∞n=0 be the sequences of elements ofP, as given above.
Then, clearly,

[xn+1]≡ ≤′ [xn]≡ and [yn+1]≡ ≤′ [yn]≡, for all n ∈ N.

Now by Lemma3.8we may conclude thatxn+1 �≡ xn andyn+1 �≡ yn, thus prov-
ing the existence of two strictly decreasing infinite chains inF (γ).

2. Let p be a single propositional variable in the language of〈�,+〉-CPLa
2. Take

now the monoidalCPLa
2-modelM = 〈F (γ), [[ . ]] 〉 and put [[p]] = γ. Since

M is the Lindenbaum model of the fragment considered, we are done by (1) of
the present theorem. �

Figure 1 below illustrates a part ofF (γ) with the first two elements of each of the two
strictly decreasing infinite chains:x0 = 2γ, x1 = γ + (γ � 2γ), y0 = γ � 2γ andy1 =
γ � (γ + (γ � 2γ)). Moreover, for any�-+-polynomial p of γ, 2p and p2 stand for
p + p andp � p respectively. From now on, we will use these abbreviations whenever
convenient.

Explicit constructions of the two infinite sequences{Fn}∞n=0 and {Gn}∞n=0 of
〈�,+〉-CPLa

2 provably nonequivalent formulas of one-variable can be obtained by
analogy with the sequences{xn}∞n=0 and{yn}∞n=0 given above. To be specific:

F0 = p + p , G0 = p � (p + p) , Fn+1 = Gn + p, , Gn+1 = Fn+1 � p,

wherep is the single propositional variable in the language of〈�,+〉-CPLa
2.

Finally, observe that the respective sets of derivable sequents (i.e., theorems) in
CPLa

2, CPLa
n, CPLn, (n ≥ 2), CPLa, andCPL are in the following relation:

Th(CPLa
2) ⊇ Th(CPLa

n) ⊇ Th(CPLn) ⊇ Th(CPL),
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γ � 2γ

γ

γ + γ2

2γ

γ � (γ + γ2)

γ + (γ � 2γ)

γ � (2γ2)

γ + (γ � (γ + γ2))

γ � (γ + (γ � 2γ))

γ + (2γ)2

γ � (2γ)2

2(γ2)

γ2 + (γ � 2γ)

γ + 2(γ2)

(2γ)2

2γ � (γ + γ2)

Figure 1: A part ofF (γ).
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and also,Th(CPLa
2) ⊇ Th(CPLa).

Clearly this fact remains valid for purely multiplicative fragments of the systems con-
sidered. Thus, the two infinite sequences of formulas{Fn}∞n=0 and{Gn}∞n=0 are also
provably nonequivalent in the multiplicative fragment of any of the systemsCPLa

n,
CPLn, (n ≥ 2), CPLa, andCPL.

Wecan now sum up the results obtained in this section in the following.

Corollary 4.2 There are infinitely many provably nonequivalent formulas built
from one propositional variable in any of the systems: 〈�,+〉- CPLa

n, 〈�,+〉-CPLn

(n ≥ 2), 〈�,+〉-CPLa, and 〈�,+〉- CPL.

We emphasize, however, that the corollary above presents a nontrivial result only
with respect to the systems withn-contraction. The systemsCPLa andCPL, aswell
as their respective multiplicative fragments, all enjoy cut-elimination (as opposed to
the systems withn-contraction). Therefore, for these systems the statement of Corol-
lary 4.2can be obtained very easily by purely syntactic reasoning.

A natural question arising at this point is whether the results obtained so far can
be extended to the systems which include also constants, negation, and additive con-
nectives. We shall now briefly comment on this problem.

Consider first the systemCPLa
2 (see Appendix 2) in the absence of additive con-

nectives. We claim that a monoidalCPLa
2-algebra, extended with 0, 1 and∼, satis-

fying the folowing clauses for anyx ∈ X,

I(a) x � 1 = x andx + 0 = x;
I(b) ∼∼ x = x;
I(c) x � ∼ x = 0 andx + ∼ x = 1,

is a partially ordered structure satisfying all clauses of the definition of aCPLa
2-

algebra with exception of (2) (see Appendix 3). We refer to this algebraic struc-
ture,X = 〈X,∼, �,+,≤,0,1〉, as〈∼, �,+〉-CPLa

2-algebra. To verify our claim, it
remains to be shown only that clause (5) of the definition of aCPLa

2-algebra (i.e.,
adjointness) is derivable in a〈∼, �,+〉-CPLa

2-algebra. We proceed as follows.

1. Assumex � y ≤ z, for somex, y, z ∈ X. Then, x = x � 1 = x � (y + ∼ y) ≤
(x � y) + ∼ y ≤ z + ∼ y = ∼ y + z, due to I(a), I(c), commutativity of�, 2(c),
assumption (1), 2(d), commutativity of+, and transitivity of≤ respectively.

2. Assumex ≤ ∼ y + z, for somex, y, z ∈ X. Then,x � y ≤ (∼ y + z) � y ≤
(∼ y � y) + z = 0+ z = z, due to assumption (2), 2(d), 2(c), commutativity of
�, I(c), commutativity of+, I(a), and transitivity of≤ respectively.

In fact adjointness is equivalent to sub-commutativity of� and+ in the algebra con-
sidered. Givenx, y ∈ X, y � x ≤ y � x by reflexivity of≤. Due to adjointness, we get
y ≤ ∼ x + (y � x). Thus, for anyz ∈ X, y + z ≤ ∼ x + ((y � x) + z), due to 2(d) and
associativity of+. Using adjointness, once again, gives(y + z) � x ≤ (y � x)+ z, and
we are done.

Due to the presence of involution in〈∼, �,+〉- CPLa
2-algebras a form of de Mor-

gan duality can be expressed in them.

Lemma 4.3 In any 〈∼, �,+〉-CPLa
2-algebra X = 〈X,∼, �,+,≤,0,1〉 the follow-

ing pairs of operators are dual to each other: (∼,∼), (�,+), and (0,1).
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Proof: Clearly∼ is dual to itself by I(b).
Next, we want to show, using anti-symmetry of≤, that

∼(x � y) = (∼ x) + (∼ y).

(1) ∼(x � y) ≤ (∼ x) + (∼ y) iff 1 ≤ ∼∼(x � y) + (∼ x) + (∼ y) = ((x � y) +
(∼ x)) + ∼ y, due to commutativity of�, I(a), adjointness, I(b), and associativity
of +. Indeed,((x � y) + ∼ x) + ∼ y ≥ ((x + ∼ x) � y) + ∼ y = (1 � y) + ∼ y =
y + ∼ y = 1, by 2(c), I(c), commutativity of�, I(a), and I(c).
(2) (∼ x) + (∼ y) ≤ ∼(x � y) can be proved analogously, and so we are done. The
duality of 0 and 1 is now a trivial matter. �
One can extend the given construction of the free monoidal algebraF (γ) with the re-
spective clauses for 0, 1, and involution. Eventually, one should construct a free lat-
tice generated by the extended free structure. However, in this case, different lemmas
and propositions to prove the existence of the two infinite chains in these extended
free structures are needed. Therefore, our present strategy is not directly applicable
to any of the extended systems discussed above. Retaining a positive attitude in spite
of that, one should search for a suitable conservativity theorem. However, due to the
non-eliminability of cut in the underlying syntactic systems, we still lack the proof-
theoretic techniques to achieve that. Thus, it seems more promising to find a faithful
embedding of the free monoidalCPLa

2-algebra in the free algebra corresponding to
the systemCPLa

2. However, this still remains to be achieved.
Weconclude this paper with the conjecture that the one-variable fragment of the

systemCPLa
2 (and consequently, of any weaker system in the sense of Corollary4.2)

is infinite.

Appendix 1: Systems of affine intuitionistic linear logic withn-contraction For
anyn ≥ 2, an intuitionistic system of affine propositional linear logic withn-contrac-
tion, IPLa

n, is given by the following axioms and rules. Throughout the below,�

denotes the empty multiset,� denotes either an occurrence of anIPLa
n-formula or

the empty multiset, and�,�1, �2 stand for finite multisets ofIPLa
n-formulas.

Axioms

A ⇒ A
0 ⇒ �

� ⇒ 1

Logical rules

L�
�, A, B ⇒ �

�, A � B ⇒ �

R�
�1 ⇒ A �2 ⇒ B

�1, �2 ⇒ A � B

L� �1 ⇒ A �2, B ⇒ �

�1, �2, A � B ⇒ �

R� �, A ⇒ B
� ⇒ A � B
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L� �, Ai ⇒ �

�, A1 � A2 ⇒ �
(i = 1,2)

R� � ⇒ A � ⇒ B
� ⇒ A � B

L� �, A ⇒ � �, B ⇒ �

�, A � B ⇒ �

R� � ⇒ Ai

� ⇒ A1 � A2
(i = 1,2)

Structural rules

LW
� ⇒ �

�, A ⇒ �

RW
� ⇒ �

� ⇒ A

LCn
�, A(n+1) ⇒ �

�, A(n) ⇒ �

whereA(k) ≡ A, A, . . . , A, i.e.,k copies of formulaA.

Cut
�1 ⇒ A �2, A ⇒ �

�1, �2 ⇒ �

Remark: A noninvolutive negation can be defined by∼ A = A � 0.

Appendix 2: Systems of affine classical linear logic withn-contraction For any
n ≥ 2, a classical system of affine propositional linear logic withn-contraction,CPLa

n,
is given by the following axioms and rules. Throughout the sequel,� denotes the
empty multiset and�,�1, �2, �, �1, �2 stand for finite multisets ofCPLa

n-formulas.

Axioms

A ⇒ A
0 ⇒ �

� ⇒ 1

Logical rules

L∼ � ⇒ A,�

�,∼A ⇒ �

R∼ �, A ⇒ �

� ⇒ ∼A,�

L�
�, A, B ⇒ �

�, A � B ⇒ �

R�
�1 ⇒ A,�1 �2 ⇒ B,�2

�1, �2 ⇒ A � B,�1,�2

L+
�1, A ⇒ �1 �2, B ⇒ �2

�1, �2, A + B ⇒ �1,�2

R+
� ⇒ A, B,�

� ⇒ A + B,�
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L� �, Ai ⇒ �

�, A1 � A2 ⇒ �
(i = 1,2)

R� � ⇒ A,� � ⇒ B,�

� ⇒ A � B,�

L� �, A ⇒ � �, B ⇒ �

�, A � B ⇒ �

R� � ⇒ Ai,�

� ⇒ A1 � A2,�
(i = 1,2)

Structural rules

LW
� ⇒ �

�, A ⇒ �

RW
� ⇒ �

� ⇒ A,�

LCn
�, A(n+1) ⇒ �

�, A(n) ⇒ �

RCn
� ⇒ A(n+1),�

� ⇒ A(n),�

whereA(k) ≡ A, A, . . . , A, i.e.,k copies of formula A.

Cut
�1 ⇒ A,�1 �2, A ⇒ �2

�1, �2 ⇒ �1,�2

Remark: A linear implication can be defined byA � B = ∼ A + B.

Appendix 3: Algebraic models forCPLa
n

Definition X = 〈X,∼, �,+,�,�,0,1〉 is aCPLa
n-algebra, if:

1. 〈X, �,1〉 and〈X,+,0〉 are commutative monoids with units 1 and 0 respec-
tively;

2. 〈X,�,�,0,1〉 is a lattice with bottom 0 and top 1;
3. ∼ is involution, i.e.,∼∼ x = x for all x ∈ X;
4. � and+ are monotone with respect to the lattice order≤, i.e., for allx, y, z ∈ X,

if x ≤ y, thenx � z ≤ y � z andx + z ≤ y + z;
5. for all x, y, z ∈ X, x � y ≤ z if and only if x ≤ ∼ y + z, i.e., adjointness;
6. for all x ∈ X, xn ≤ xn+1 and(n + 1)x ≤ nx, wherexk = x � · · · � x andkx =

x + · · · + x with k copies ofx respectively.

Remark: Note that, aCPLa
n-algebra is just a classical linear algebra (provided� is

taken as primitive while�, ∼ and+ are defined in a usual way, see [9]), satisfying
in addition:

• ⊥ = 0 and� = 1 (corresponding to weakening);
• clause (6) (corresponding ton-contraction).

Definition M = 〈X, [[ . ]] 〉 is aCPLa
n-model, if:

1. X is aCPLa
n-algebra;

2. [[ . ]] is a valuation satisfying:
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(a) [[P]] ∈ X, for every propositional variableP;

(b) [[0]] = 0, [[1]] = 1;

[[ . ]] is extended toCPLa
n-formulas inductively by:

[[ ∼ A]] = ∼ [[ A]] and [[A • B]] = [[ A]] • [[ B]] , with • ∈ {�,+,�,�};
Moreover, aCPLa

n-sequentA1, . . . , Ak ⇒ B1, . . . , Bm is valid in M if and only if
[[ A1]] � · · · � [[ Ak]] ≤ [[ B1]] + · · · + [[ Bm]].

Appendix 4: Models forn-valued Łukasiewicz logics

Definition For anyn ≥ 2, a model forn-valued Łukasiewicz logic,Mn([[ . ]] ), con-
sists of:

1. a valuation [[. ]] assigns to each propositional variablep an element of the set
Sn = { k

n−1 | k = 0,1, . . . , n − 1};
2. [[ . ]] is extended to arbitrary formulas (in the language{∼,�,�, �,+,�}) in-

ductively by:

(a) [[∼ A]] = 1− [[ A]];

(b) [[ A � B]] = min{[[ A]] , [[ B]]};
(c) [[ A � B]] = max{[[ A]] , [[ B]]};
(d) [[ A � B]] = max{[[ A]] + [[ B]] − 1,0};
(e) [[A + B]] = min{[[ A]] + [[ B]] ,1};
(f) [[ A � B]] = min{1− [[ A]] + [[ B]] ,1}.

3. [[ . ]] is extended to arbitrary sequentA1, . . . , Am ⇒ B1, . . . , B j by:

[[ A1, . . . , Am ⇒ B1, . . . , B j]] = [[ ∼ A1 + · · · + ∼ Am + B1 + · · · + B j]] .

A given sequent� ⇒ � is valid inMn([[ . ]] ) if and only if [[� ⇒ �]] = 1. Moreover,
a sequent� ⇒ � is n-valid if and only if [[� ⇒ �]] = 1 for every valuation [[. ]].
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