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Higman’s Embedding Theorem in a
General Setting and Its Application to
Existentially Closed Algebras

OLEG V. BELEGRADEK

Abstract For aquas variety of algebras K, the Higman Theorem is said to
be true if every recursively presented K-algebra is embeddable into a finitely
presented K -algebra; the Generalized Higman Theorem is said to be trueif any
K-algebrawhich isrecursively presented over itsfinitely generated subalgebra
is embeddable into a K-algebra which is finitely presented over this subalge-
bra. We suggest certain general conditions on K under which (1) the Higman
Theorem impliesthe Generalized Higman Theorem; (2) afinitely generated K -
algebra A is embeddable into every existentially closed K -algebra containing
a finitely generated K-algebra B if and only if the word problem for A is Q-
reducibleto theword problem for B. The quasi varieties of groups, torsion-free
groups, and semigroups satisfy these conditions.

1 Neumann [[L3] showed that every existentially closed group contains a copy of
every group with solvable word problem. Macintyre proved the converse: ev-
ery finitely generated group with unsolvable word problem can be omitted in some
existentially closed group. In fact, he proved a more general fact: if H; and H, are
finitely generated groups such that the word problem for Hy isnot Turing reducibleto
the word problem for H,, then H; can be omitted in some existentially closed group
containing H,. Theresult is a special case of an omitting quantifier-free types theo-
rem. It isnatural to ask under what conditions the presence of H, in an existentially
closed group impliesthe presenceof Hi. Theanswerisasfollows. Hiisembeddable
into every existentially closed group containing H, if and only if the word problem
for Hy is Q-reducible to the word problem for H,. (The precise definition of the Q-
reducibility will be given below; for the present, note that this reducibility is stronger
than the Turing one.) The result was proved by the author for recursively presented
H; and H, [[J and independently by Ziegler [16] in the general case. (The author
borrowed the term ‘Q-reducibility’ from Rogers ([[14], Exercise 9-55) where it was
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considered for recursively enumerable sets; Rogers attributed the notion to Tennen-
baum. Ziegler called this reducibility the x-reducibility.)

We show that the only if part of the theorem above can be proved in aquite gen-
era situation. However, in the if part the group theoretic specificity is more essen-
tial. A crucial point in the proof is ause of Higman's Embedding Theorem [[8] which
claimsthat any recursively presented group can be embedded into afinitely presented
group. Thistheorem sufficesto prove the result for recursively presented H; and Ho,
but for arbitrary Hy and H, one needs a relativized version of the theorem. Such a
generalization of Higman's Embedding Theorem was proved by Ziegler in [16] and
C. E Miller 111 (unpublished manuscript).

The aim of the present paper isto extend the results above to amore general sit-
uation. It does not seem hopelessto search for ageneralization of the results because
anal ogues of Higman’s Embedding Theorem hold for many natural algebraic classes.
Namely, it holds for semigroups (cf. Murskit [L2]), inverse semigroups (cf. Belyaev
[7)), associative agebras (cf. Belyaev [6]), and Lie algebras (cf. Kukin [I0]). Hig-
man’s Embedding Theorem also holds for the class of torsion-free groups because
this class is closed under operations of free product with amalgamation and HNN-
extension which are used to construct afinitely presented group containing a given
recursively presented group. However, apriori it does not suffice to have an analogue
of Higman's Embedding Theorem for aclassto prove the result on finitely generated
subalgebras of existentially closed algebrasintheclass. We give some additional con-
ditions on a class which suffice to prove the result as well as a relativized version
of Higman's Embedding Theorem for the class. The classes of groups, torsion-free
groups, and semigroups satisfy these conditions.

2 Preliminaries LetU,V C w. Theset U issaid to be enumeration reducibleto V
(insymbols, U <. V) if thereisan effective procedure which, for agiven enumeration
of V, produces an enumeration of U. A formal definitionisasfollows (cf. [14], §9.7):
U <e Vif and only if there is a recursively enumerable set W of pairs of the form
(z, Z),whereze w and Zisafinitesubset of w suchthat ze U if andonly if (z, Z) €
W forsome Z C V.

For example, let 3 and ¢ be sets of first order L-sentences and © the set of all
L-sentences iy such that X U @ - . If X isrecursively enumerable then 6 <q .
Indeed, an L-sentence ¢ isin © if and only if thereisafinite ¥ C & such that ~
AV¥ — . Let W be the set of pairs (v, ¥) such that ¢ is an L-sentence, ¥ isa
finite set of L-sentences, and ¥ = A ¥ — . As T isrecursively enumerable, W is
recursively enumerable too.

Let L be arecursive functional signature. For a sequence a in an L-algebra A,
we denote by (a) A, or simply by (&), the subalgebra of A generated by 4. The set
of all atomic or negated atomic L (a)-formulaswhich holdin (A, a) issaid to be the
diagramof ain A and is denoted by diag(8). The set of all atomic L(&)-formulas
which hold in (A, @) is said to be the positive diagram of ain A and is denoted by
diagjg(é). Notethat for any tuplesa; and &, in Awith (a;) = (&), thesetsdiag, (a;)
and diag(8y), as well as diagh (&) and diag} (&), are recursively equivalent. An
L-algebra A is said to be recursively presented if there is a generating sequence ain
A such that di agjg(a) isrecursively enumerable. An L-algebra A has solvable word
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problemif there is a generating sequence ain A such that diagf (a) isrecursive.

Let T be a universal Horn theory and K the quasi variety axiomatized by T.
(Notethat usually aquasi variety isdefined to bethe class of models of aset of univer-
sal strict Horn sentences; we use the term in a bit more general, rather than standard,
sense)) Let A bean algebrain K, & agenerating sequencein A, and R C diagj(é).
We say that A is defined in K by the generators a and the relations R (or A has a
presentation (&; R) inK) if TU Rt diag}(d); insymbols, A= (&; Rk, or simply
A = (& R). Asiswell known (see, e.g., Hodges [[]), for every sequence of con-
stants € and every set of atomic L(€)-sentences R which hasamodel inK thereisa
(uniquely determined, up to isomorphism over €) L-algebra C which has a presenta-
tion (€; R) inK. If T and Rarerecursively enumerable, diag; (C) isrecursively enu-
merabletoo, so C isrecursively presented. Moreover, if R <¢ T thendi agg (€) <eT

Anagebra Aissaid to befinitely presented inK if A= (&; R) for sometupled
and finite R. Suppose that A isfinitely presented in K and b is an effective sequence
in A. Then diag;(f)) <e T. Inparticular, if T isrecursively enumerable then an ef-
fectively generated subalgebra (in particular, a finitely generated subalgebra) of an
algebrawhich isfinitely presented in K isrecursively presented.

For arecursively enumerable T, we say that the Higman Embedding Theorem
holdsfor K if every recursively presented algebrain K can be effectively embedded
into an algebrawhich isfinitely presented in K.

Let Bbeanagebrain K. Clearly, T = T Udiag(B) and T; = T U diag*(B)
are universal Horn L(B)-theories. Denote by K g and K the quasi varieties axiom-
atized by Tg and T, respectively. Let b list all the elements of B. Let R be a set of
atomic L (ab)-sentences which is consistent with Tg and hence with TEJ{. Then the
presentation (&; R) defines L(b)-algebras (A, b) and (AT, b) in Kg and K3, respec-
tively. Actually they do not differ: Tg U R ¢ if and only if Tg URFE v for any
atomic L (8b)-sentence . Indeed, if T3 U RU {—y} hasamodel M then N x M is
amodel of Tg U RU {—} for any model N of Tz U R.

We say that an algebra A is finitely presented over its subalgebra B in K if
(A, b) isfinitely presented in K or, equivalently, in Kg. Supposethat T is recur-
sively enumerable and B is an algebrain K generated by a tuple b. Suppose that
A isfinitely presented over B in K, and (&; R) is afinite presentation of (A, b) in
K+ Then d|agA(ab) <e dlagA(b) Moreover, for any effective sequence d in A,
dlagA(d) < dlagA(b) The algebra A is said to be recursively presented over B in
K if (A, b) has a presentation (& Ryin KE with R <e dlagA(b) or, equivaently,
thereisagenerating sequenced in A such that dlagA(d) <e dlagA(b) (Note that we
needed B to befinitely generated in this definition because otherwise it would depend
on the choice of generating sequencein B.)

We say that the Generalized Higman Theorem holds for K if, for every finitely
generated algebra B in K, every algebrawhich is recursively presented over B in K
can be effectively embedded into an algebrawhich isfinitely presented over Bin K.

3 Classesof algebraswith internal mappings Let K beaclassof L-algebras. For
apositiveinteger n, we say that K hastheInternal n-ary Mapping Property (theIMP,,,
for short) if there existsan L-term t,, (X, Z) where X isan n-tuple of variables such that
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for every algebra A in K and every mapping o : A" — A, therearean algebraC in
K containing A and atuple Cin C such that «(8) = tﬁ(é, C), forevery a e A". We
say that K hasthe effective IMPif it hasthe IMP, for every n, and the corresponding
term t,, can be found effectively in n.

We say that K has the Internal Homomor phism Property (the IHP, for short) if,
for every positiveinteger n, there exist an L-term h, (X, Z) and afinite set of atomic L-
formulas Sy (X, ¥, 2) whereX = (X4, ..., Xp) and ¥y = (Y1, ..., Yn) suchthat for every
dgebra Ain K and n-tuplesa = (ay, ..., an), b = (b, ..., by) in Athefollowing
are equivalent.

1. Thereisahomomorphism from (&) into A sending ato b.

2. ThereareanalgebraCinK containing Aand atuple¢in C suchthat S,(&, b, €)
holdsin C and h$(a;, €) = by, for all i.

Fact 3.1 (Belegradek [2J)  The classes of groups and torsion-free groups have the
IHP. One can take the term [x", v] as hn(X, ) and the sets of all [x, yj] = e as
S\ (X, ¥, 2), where z = (u, v).

Fact 3.2 (Belyaev [5])  Theclass of semigroups hasthe IHP. One can take the term
uxv as hn (X, Z) and the sets of all

uxiwXj = Yjuxj,
XiXjv = XwXjv,
XiXjwXg = XwXjwXy

as $,(X, Y, 2), wherez= (u, v, w).

Fact 3.3 (Trofimov [[15], Belegradek [[[]) The classes of groups and torsion-free
groups have the IMP;. One can take the term [xY, w, v] as t1(X, Z), where Z =
(u, v, w).

Fact 3.4 ([) Theclassof semigroups hasthe effective IMP. One can take theterm
UXqwXo, ..., Xp_1wXnv asty(X, Z), wherez= (u, v, w).

Theorem 35 (cf. [3]) Let K bea quasi variety of L-algebras which has the JEP.
If K hasthe IMP; then K has the effective IMP.

Proof: If K isthetrivia quas variety take x; astn(X, Z). Suppose that K is hon-
trivial. We explicitly construct t, by induction on n. For n = 1 there is nothing to do.
First we construct the term t,.

Notethat the IMP; impliesthe existence of atermwhichisnot equivalentinK to
aone-place term. (Indeed, there are 2* one-place mappings from an infinite algebra
of power u toitself but using one-place terms one can define at most < |L| + Xg such
mappings.) Let p(yi, ..., Yx) be such aterm with the minimal possible k; clearly
k > 2. We show that one can take the term

t1(P(Y1s -+ Yk—2, t1(Xq, 0), t1(X2, 0)), w)

aStz(Xl, X2, 2), where z = (yl, vy Yk—2, U, v, u_)).
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Let A beanagebrain K and p : A> - A. We must find an algebra C in K
containing A and atuple € in C such that p(a1, ay) = tg(al, a, C), fora,ap € A.
If |A] = 1, thereis nothing to prove. Suppose that | A| > 1. We can assume A to be
infinite because A isembedded into A“. Suppose | A| = i > Rg. Consider an algebra
F in K fredly generated by {b4, ..., b5, dy, €, : @ < u}. Dueto the freeness of
the generators, if pF(by, ..., bk 2, dy, €5) = pF(by, ..., b2, d,, &) then (e, B) =
(y,8). So the mapping (x,y) — pF(by,..., b2, X, y) isinjectiveon {d, : « <
u} x{ey: a < u}. AsK hasthe JEP, thereisan algebra B in K containing both A
and F. Consider hijectionsé: A— {d,: e <u}ando: A— {e,: o < u}. There
arean algebraD 2 Bin K and tuplest and Sin D such that £(a) = tlD(a, r) and
o(@) =tP(a §),forae A Sothemapping 7 : A2 — A,

(X, y) = p°P by, ..., bk o, tP(x, F), 1P (y, 9))

isinjective. Thereforethereisamappingv: A — Asuchthat p = vo . Thereexist
an algebra C in K containing D and atuple g in D such that v(a) = t‘f(a, q), for
ac A. So,forag, a € A,

p(ag, ) =ty (pC(by, . .., bx_o, 7 (a1, 1), t5 (a2, 9)), §) = t5(ay, @, ©),
whereC = (by, ..., bk, T, S, Q).

Now suppose that t, has been constructed, n > 2. We show that one can take
the term t,(Xq, ..., Xn_1, t2(Xn, Xny1, U), 0) @Sty 1. Let A bean algebrain K and

o A — A, Asabove, we can assume A to beinfinite. Consider a bijection g :
A2 - A. Thenthereisamapping y : A" — A such that

a(alv cee aﬂ+1) - V(al, ceey an719 ,B(am afH»l))v

for aj,...,an1 € A There exist an algebra C © Ain K and tuples b and d in
C such that B(ay, &) = t$(as, @, €) and y(ay, ..., an) = tS(a, ..., an, €), for
ai,...,an€ A Thenforas,...,an 1 € A,

Cl(a]_, ey an+1) = tg(al’ ey an_1, tg(an’ ant+1, 6)’ d_) = tg_i-]_(ala o5 Angl, C)s
where ¢ = (b, d), and we are done. O

Corollary 3.6  Theclassesof groups, torsion-free groups, and semigroups havethe
effective IMP.

It isinstructive to write down the term t, for these classes. Here one takes the term
y1Y2 as p. Inthe case of groupsor torsion-free groupst; is[x", w, v]; so the construc-
tion gives

(Xt wi, va][X2, wa, v2])'™S, wa, v3l;

it is now clear that
[[Xil, wy, Ul][ng, wo, V2], w3, v3]

asofitstobets(Xq, X2, Z) whereZ = (uq, Us, v1, v2, w1, wa, wa). Inthecase of semi-
groups the construction leads to the same term as in Fact B4]
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Remark 3.7 It is known (cf. [[3]) that the following classes do not possess the
IMPy: associative rings, commutative rings, commutative semigroups, an arbitrary
nonidentity subclass of the class of locally solvable groups.

Proposition 3.8 Let K be arecursively axiomatizable quasi variety which has the
IMP;. Let A bean algebrain K generated by a sequence &. Then A can be effec-
tively embedded into a finitely generated algebra B in K such that, for sometuple b
generating B, diag () = diag} (b).

Proof: Suppose |A] > 1 (otherwise there is nothing to prove). Leta = (g : i <
w). Consider the algebra C defined in K by the presentation (ac; diagX(a)), where
C=(¢: i< w). Clearly, C 2> A. Since |A| > 1, in C dl ¢; are distinct. Consider
mappings « and 8 from C to C such that «(¢;) = &, B(c;) = ¢4 for al i. Applying
the IMP; twice, wefind an algebra D in K and tuplesd and &in D such that a(c) =
tP(c, d), B(c) =tP(c, &) forc e C, andin particular, & = tP(c;, d), ¢ip1 = tP(ci, €)
for all i. So the presentation

(acde; diagj (8) U {a = t1(ci, d), Ciy1=1t1(Ci,8): i <))

definesin K an algebra B in which A is naturally embedded. The algebra B is gen-
erated by the tuple b = (cg, d, €); clearly, diag;(a) =¢ diagg(b). (]

4 An embedding into a relatively finitely presented algebra

Theorem 4.1 Let K be a recursively axiomatizable quasi variety of L-algebras.
Suppose that K has the JEP, the IM Py, the IHP, and the Higman Theorem holds for
K. Then the Generalized Higman Theorem also holds for K.

Proof: Let A bean algebrain K generated by a sequence a. Suppose A is recur-
sively presented in the generators a over atuplebin A. Since diag} (8) <ediag} (b),
there exists arecursively enumerable set ® of pairsof theform (e, E), where ¢ isan
atomic L (8)-sentence and E isafinite set of atomic L (b)-sentences such that

¢ € diag} (8) <= (¢, E) € ©, for some E C diag} (b).

Letd = (¢, E)y whereecisp=qgand Eis{s, =Try,...,S = rg} for some L(4)-
terms p, g and L(b)-termss;, r;. If k > 0, denote by ¢, and ¥, the atomic L (ab¢,)-
sentencesty(sy, ..., Sk, Cp) = pandty(ry, ..., rk, Co) = q, respectively. Herety isthe
term which definesin K k-ary mappings; the tuples of new constants ¢, are chosen
to be pairwise digoint. If E = o, put g9 = ¥y = ¢.

Letfbeatupleof L(&)-termssuchthat b = tA(a). Consider an algebra B which
isdefined in K by the generators

a, b, {C: 0e 0B}
and the relations

diag} (b) U (b =tA@} U {gs, ¥o : 6 € B}.
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We show that diag} (8) = diagy; (8), that is, Aisnaturally embedded into B over the
tuple b.

Indeed, supposethat ¢ € diagX(é), eisp=q. Thenthereisf € ® suchthat 6 =
(¢, E) for some E C diag} (b). If E = @ then ¢y = ¥y = ¢ and hence ¢ € diagy; (8).
If Eis{Si=rq1,..., =TIk} thene € diagg(a) because E U {gy, ¥y} holdsin B.
Thus diag); (a) < diagf ().

Suppose 6 = (g, E) € ©. If E holdsin A then ¢ holdsin A. In other words,
for the corresponding terms, s =rf}, ..., si* = r implies p” = g*. Then thereis
amapping o : AK — Asuchthat a(sf, ..., s) = pranda(rf,...,rf) =q* By
choice of the term t, thereis an algebra My © Ain K and a value for Cy in it such
that ¢y, ¥y hold in My. Iterating the construction, we find an algebraM 2 Ain K
and values for Cy in it such that ¢y, ¥y holdin M, for all 6 € ®. Asthereisanatura
homomorphism from B to M, diagf; (8) < diag (8). Thusdiagf(a) = diag} (a).

ThealgebraBisdefinedinK by aset of relationswhich hasaform diagy; (b) U P
wherethe set P isrecursively enumerable. Asin the proof of Proposition we can
effectively embed B into afinitely generated algebra with the same property. There-
fore to complete the proof it sufficesto prove the following.

Lemmad4.2 Suppose an algebra C is defined in K by a presentation (C; QU P),
where C is a tuple and P is recursively enumerable. Then there is a presentation
(cd; QU R), where d is a tuple and R is finite, such that C is naturally embedded
into the algebra D which is defined in K by this presentation.

Proof: SincetheHigman Theoremholdsfor K, thealgebra (C; P) can beembedded
intoanalgebra F = (v; V) withfinitev and V. Let atupleof L(v)-terms p expressthe
image of € under thisembedding. AsK hasthe JEP, thealgebras C and F arenaturally
embedded into C x F, the free products of them in K. Let hy(X, 2) and $,(X, , Z) be
the term and the set of atomic formulas from the definition of the IHP where nisthe
lengthof €. Let S= S,(p, €, 2)and H = {h,(pi,2) =c¢;: i=1,...,n}. Sincethere
is a homomorphism from (p") onto (€) which sends pF to €, there exist an algebra
M D C=x FinK andavauefor zinit such that Sand H holdin M. So C % F is
naturally embedded into

D = (6Z QUPUV U SU H)k.

We show that TUV U SU H + P. Indeed, let y(C) € P. Consider an arbitrary model
N of TUV U SUH. Since ¥ (p) holdsin F, wehave TU V F y(p); therefore v (p)
holdsin N. Due to the relations SU H, there is a homomorphism from (pN) onto
(cNy which sends pN to ¢N. Therefore (V) holdsin N. Thus

D = (¢iz QUV U SU H),

and we can take 5z asd and V U SU H as R. The Lemmais proved and the proof of
Theorem[4.1lis compl eted. O

Corollary 4.3 For thevarietiesof groups and semigroups and for the quasi variety
of torsion-free groups, the Generalized Higman Theorem holds.
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5 Existentially closed algebras and the Q-reducibility Let A, B C w. We say that
Ais Q-reducibleto B (insymbols, A <q B) if A < Bandthereis ¥ C ? such that
F <e Bandfor every x € w,

xe A={y: (X, y) e F} CB.

Note that for arecursively enumerable B, we have A <q Bif and only if Aisrecur-
sively enumerable and thereis arecursive function f such that for every x € w,

Xe A Wiy C B.

Itiseasy to seethat A <o Bimplies A <t B; the conversefails even for recursively
enumerable A and B ([[14], Exercise 9-55).

The following result shows how the Q-reducibility naturally arisesin logic. Let
T be atheory of asignature L. A diagramtype of T is defined to be a set p(x) of
atomic or negated atomic L-formulasin variables from a sequence X such that

1. TU p(X) isconsistent;
2. for every atomic L-formula ¢(X), either ¢(X) € p(X) or —=p(X) € p(X).

We denote by p* the set of all atomic formulasin p.

Theorem 5.1 Let T be a recursively enumerable universal Horn theory of a sig-
nature L. Let q(X) and p(y) be diagram types of T. Suppose that for some recur-
sive sequences of L-termstand §, T U q(S) isconsistent and T U q(5) + p(t). Then

Proof: Supposethetermsin the sequencest and Sareinvariablesd. Since T U g(5)
isconsistent, g(S) holdsin M = (G; gt ($)). Hence p(f) holdsin M too. Then for any
atomic L-formula y(y),

Yvep = MEyi) < Tugq )+ yd.

Therefore p* <e ™. Let F betheset of al pairs (v (Y), 6(X)) of atomic L-formulas
suchthat TU Q" (S) - v () — 6(5). Clearly, F <e g™. We show that for any atomic
L-formula v (y),

vep < {0: (Y0 e Fcq.

Assume ¢ € pT; then M = v (@). Let (v,0) € 7. Then M = v (f) — 6(5) and
hence M = 6(5). As M = q(5), we have € g*. Now assume that v ¢ p™; then
-y € pandso TUQq(S) - =y (t). Hencethetheory T U q(S) U {v(t)} isinconsistent.
Then thereis an atomic L-formulad(x) ¢ g suchthat T U g™ (5) U {=0(5), ¥ (1)} is
inconsistent, that is, TU g* () - v(f) — 0(5). (Indeed, if for every 6(X) ¢ q* there
wereamodel Mg of TU g™ (8) U {—0(5), ¥ (1)}, the Cartesian product of all My would
be amodel of T U q(S) U {y()}.) Sothereisd(X) ¢ g™ such that (v, 6) € F. The
theorem is proved. O

We recall that an algebra A in aclass of algebras K is said to be existentially closed
inK if anexistential formulaover Aholdsin Aif and only if it holdsin some algebra
in K containing A.
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Theorem 5.2 Let K be a recursively axiomatizable quasi variety of L-algebras.
Suppose that K has the JEP, the IM Py, the IHP, and the Higman Theorem holds for
K. Thenfor finitely generated algebras A; and A, in K, thefollowing are equivalent:

1. theword problemin A; is Q-reducible to the word problemin Ay;
2. A; isembeddable into every existentially closed algebra in K containing Ao.

Proof: (2) = (1): Let p1(Xy) and p2(X») be the diagram types of some generat-
ing tuplesin A; and Ay, respectively. Suppose that condition (1) does not hold, that
is, p; £q p;. To construct an existentially closed algebrain K containing A, but
omitting Ay, it suffices to have the following fact (see [[L1]).

Fact 5.3 Let the signature L’ come from L by adding countably many new con-
stants. Let P be a finite set of atomic or negated atomic L’(€)-sentences such that
T U PU py(€) isconsistent. Then for every tuplet of L' (C)-terms, TU P U p,(€) ¥
p1(D).

Fact[5.3]s an application of Theorem[5.]to the universal Horn theory T U P; so (2)
= (1) has been proved. Consider the following conditions (3) and (3*).

3. Thereareanalgebra F 2 A; whichisfinitely presented inK and distinct u, v €
F such that for every homomorphism y from F to an algebra in K, if y(u)
y(v) then y isinjective on A;.

3" Thereisanalgebra F O A, A, suchthat F isfinitely presented over A, in K
and every homomorphism from F to an algebra in K which isinjective on A,
isinjective on A; too.

We prove that each of conditions (1) and (2) isequivalent to (3) inthecase | Ay| = 1,
andto (3") inthe case | A;| > 1. It remainsto prove that, in the case | Ay| = 1, (1)
= (3) = (2) and, inthecase |Ay] > 1, (1) = (3") = (2).

Consider the case | Ay| = 1. For short, denote A; by A. In this case (1) means
exactly that A has solvable word problem. First prove (1) = (3). Let atuple a gen-
erate A. Let u, v be new symbols. For any L(a)-termssand r with s*  r” consider
the relations t1 (s, Zg¢ ) = u and t1(r, Z¢) = v, where t; is the term from the defini-
tion of the Internal Mapping Property. Let Sbe the set of all these relations. List the
members of al tuples z s in asequence z. Put

B = (auvz, diagi(a)U S).

Clearly, A is naturally embedded into B. Since A has solvable word problem, the
set diag); (8) U Sisrecursive. Therefore B can be embedded into afinitely presented
algebra F in K. It can easily be seen that F satisfies condition (3).

Now we prove (3) = (2). Suppose that the algebra F from (3) has afinite pre-
sentation (X; R) inK. Letu=rF, v = s* wherer and s are L(X)-terms. Let E be
an existentially closed algebrain K. Due to the JER, E is naturally embedded into
E x F. Thereforethereis€in E such that Randr # shold in (E, €). Thereisaho-
momorphism y : F — E sending X to & Since y(u) = r&(é) # sF(é) = y(v), the
homomorphism y isinjectiveon A. So E embeds A.

Now consider the case | Ay| > 1. First prove (1) = (3"). Let tuples a; and &,
generate A; and A,, respectively. Since diagjgl(al) <o diagjgz(az), thereisaset F
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of pairs of the form (v, 8) where v is an atomic L(8;)-sentence and 6 is an atomic
L(ay)-sentence such that F <e di agjgz (&), and for every atomic L (4,)-sentence v,

y e diagy (&) <= {0 (¥, 0) € F) C diagy (3).

Let t = (v, 0) where v is an atomic L(a;)-sentence of the form p = qand 6 isan
atomic L(a,)-sentence of theform s = r. Denote by Sthe set of relations

{tu(p. ) =s, t1(q, Z) =r: 7€ F}.

Clearly, S<e¢ diagj(z(az). List the members of all tuples z; in a sequence z. Since K
satisfiesthe JER, A; and A, are naturally embedded into Ay x A,. Put

B= (23,2 diagy (ay) Udiagy, (8;) U S).

For every (y, 0) € F, if ¢ holdsin A; then 6 holdsin A,. Therefore Ay x A ishat-
urally embedded into B. Clearly,

diagj (a1) Udiagp (82) U S <e diagy, (&2).

By Theorem[4.1] the Generalized Higman Theorem holdsfor K ; thereforethere exists
an algebra F 2 D in K which isfinitely presented over A;.

We show that F satisfies (3*). Let y be a homomorphism of F which is not
injectiveon A;. Then thereisan atomic L(a)-sentence ¢ of theform p = q which
is not in diagj (a1) but y(pF) = y(q"). Then thereis an atomic L(&,)-sentence 6
of theform s=r whichisnotin diagzz(ég) but (v, 0) € F. Duetotherelations S,
y(sF) = y(rF). So y isnot injective on A,.

It remains to prove (37) = (2). Let E be an existentially closed algebrain K
which embeds A and let &5 realize in E the diagram type of &, in Ay. Suppose that
F satisfies (31). Then F hasapresentation in K of the form

(82% diag, (d2) U R(32. %)),

where X and R are finite. Dueto the JEP, E is naturally embedded into E * F._Since
K satisfies the IHP, there exist an algebraN 2 Ex F in K and tuplesCand d in N
such that

Sh(8, 8, C) U S(85, 8y, d) U {hn(&p, ©) = &, hn(85, d) = &y}

holdsin N where n isthe length of the tuple a;. Since E isexistentialy closed, there
areX, &, ¢, and d’ in E such that

R(&, X) U $i(&), 8,¢) U $i(85, &, d) U {hn(&, ¢) = &, hn(&,d) = &)}

holdsin E. Dueto $,(83, &, d') and hn (&3, d') = &, thereisahomomorphism from
() to (&) sending & to &,. Therefore diagjgz(é’z) U R(&@,, X) holdsin E, and so
there isahomomorphism o : F — E sending axx to &,X'. Dueto $,(a,, a5, ¢') and
hn (&, ') = &3, thereisahomomorphism from (&;) to (a5) sending &, to a3. There-
fore « isinjective on A, and henceon A;. So A; isembedded into E. O
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Corollary 5.4 Let K be the variety of groups or the variety of semigroups or the
guasi variety of torsion-free groups. Then for finitely generated algebras A; and A,
in K, the following are equivalent.

1. Theword problemin A; is Q-reducible to the word problemin Ay.
2. A; isembeddable into every existentially closed algebra in K containing Ao.

6 Remarks After submitting the paper, | constructed an examplewhich showsthat,
although the variety of associative rings satisfies the Higman Theorem as the vari-
eties of groups and semigroups do, the situation for associative rings is surprisingly
different: there is afinitely generated associative ring which can be omitted in some
existentially closed associative ring but still has solvable word problem. That exam-
ple illustrates well the role of the assumptions of Theorem[5.2] On the other hand,
| proved that, for the variety of associative algebras over any field finitely generated
over its prime subfield, the Generalized Higman Theorem and the analogue of The-
orem[5.2]do hold. The latter results are not specia cases of Theorems[Z.T]and[5.2]
However, it turned out to be possible to isolate certain properties of quasi varieties
which, in the first place, hold for the variety of algebras over any field finitely gen-
erated over its prime subfield as well as for the varieties of groups and semigroups
and, in the second place, guarantee that the Generalized Higman Theorem and the
analogue of TheoremBE2hold. All of these results are presented in Belegradek [4].
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