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Logic in Russell’s Principles of Mathematics

GREGORY LANDINI

Abstract Unaware of Frege’s 1879Begriffsschrift, Russell’s 1903The
Principles of Mathematics set out a calculus for logic whose foundation was
the doctrine that any such calculus must adopt only one style of variables—
entity (individual) variables. The idea was that logic is a universal and all-
encompassing science, applying alike to whatever there is—propositions, uni-
versals, classes, concrete particulars. Unfortunately, Russell’s early calculus
has appeared archaic if not completely obscure. This paper is an attempt to re-
cover the formal system, showing its philosophical background and its semantic
completeness with respect to the tautologies of a modern sentential calculus.

1 Introduction It is commonplace today to speak as though there are different
“logics,” for (after all) there are different deductive calculi. On this conception, “a
logic” is just a formal deductive system and the study of logic is the study of unin-
terpreted calculi, their semantic completeness, consistency, decidability, and so on.
This makes logic a branch of mathematics. Russell’s conception of logic was quite
different. Logic is not to be identified with any formal uninterpreted calculus and the
science of logic must not be thought to be the theory of formal systems. According to
Principles, logic is asynthetic a priori science that applies to every entity whatsoever.
It is completely general and all-encompassing, and its subject matter is the structural
forms of propositions grounding the relation of implication ([10], p. 457).

Russell (as Frege before him) spoke of himself as offering not merely acalcu-
lus ratiocinator in the manner of Boole, but acharacteristica lingua universalis as
Leibniz had conceived of it.1 In an important paper, van Heijenoort [15] interpreted
Frege (and Russell) to be advocating a “syntactic approach” to logic according to
which logic is a universal language with content in its own right, and logical truth
and validity are to be construed in terms of deductive closure under the axioms. He
contrasted this conception with the “semantic” approach of Tarski (originating in the
algebraic tradition of Boole, Peirce, Schröder and L̈oweheim). Here logic is the study
of uninterpreted deductive calculi—calculi which can express a content (e.g., math-
ematics) only when an interpretation over an appropriate domain (e.g., numbers) is
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provided. On the semantic view, logical truth and validity are construed in terms of
invariant truth throughout all admissible interpretations. Van Heijenoort goes on to
maintain that the Frege/Russell tradition excludes a distinction between the logical
system and the metasystem required to justify and study the system. Accordingly, he
went so far as to say that the Frege/Russell tradition actually obstructs metasystemic
research ([16], p. 116).

In van Heijenoort’s view, Frege and Russell’s conception of logic excludes
the very intelligibility of now rather commonplace distinctions between syntax and
semantics, object-language and meta-language, schemata and axioms, axioms and
transformation rules, and so on. His view has been influential. In a recent book, Hyl-
ton agrees:

If logic is to be unconditionally and unrestrictedly true in the sense that Rus-
sell requires it to be, then it must be universally applicable. This, in turn, im-
plies that statements about logic must themselves fall within the scope of logic,
so the notion of a meta- theoretical perspective falls away. If this were not so,
if logic were thought of as set up within a more inclusive meta-language, then
... it would appear that logic is not absolutely and unconditionally true. Logic,
on this modern picture, is not unrestricted, for it is set up in a more inclusive
language which must fall outside of its scope. ([5], p. 203)

On the “logic as language” conception, logic must “contain its own meta-theory” in
away that makes such distinctions beyond the pale for Russell.

Now van Heijenoort is correct that for Russell, logical truth is not invariant truth
in every admissible interpretation. Indeed, some of the formulas Russell counted as
expressing logical truths are not invariantly true in every interpretation of the nonlog-
ical words. For instance,

If x andy are any entities andp is any proposition containingx then there
is a proposition exactly likep but containingy whereverp containsx.

There is also,
x ⊃ y .⊃x,y. x ⊃ x,

which says thatx’s implying y implies, for all x and y, x’s implying x. These are
logical truths about propositions. Logic, in Russell’s early view, is a synthetic a priori
science of the structures of propositions. Logical truth is closure under the axioms,
as van Heijenoort says; and indeed, any true fully closed formula of Russell’s system
will count as a logical truth. But van Heijenoort goes too far. None of this means
that Russell’s conception of logic requires that a system for logic includes its own
meta-theory.

Frege made clear in his review of Peano that hisbegriffsschrift is both a lingua
characteristica and acalculus ratiocinator, while Boolean algebra amounts at most
to the latter (Frege [4], p. 7). The superiority Frege found in his begriffsschrift is not
that it is itself alanguage with content as opposed to an uninterpreted syntax with
rules for the manipulation of the symbols. The notion ofcontent Frege speaks of as
being part of his begriffsschrift and absent from Boole’s is not one of semantic content
given via descriptive constants of the language (predicate constants). The notion of
content Frege has in mind is that of syntactic structure. The superiority of Frege’s
begriffsschrift lies in its comprehension principle for functions—that is, in its ability



556 GREGORY LANDINI

to decompose complex sententialcontents (logical structures) in different ways—so
that now one function and now another is singled out. Consider for instance,

Some object is left of George.

The logical content here is represented by the syntactic structure,

�x� f xa

of Frege’s begriffsschrift. The content (structure) that this syntax represents (on its
intended interpretation) permits decomposition in various ways. One way is

f (a)

where we have ‘a’ assigned to George and ‘f ’ assigned to the following truth-
function,

f x =
{

the True, if some object is left ofx
the False, otherwise.

Another way is to present this as themutual saturation of two functions,

�β�Mβ =
{

the True, if some objectβ is such that. . . , β, . . .

the False, otherwise.

hz =
{

the True, ifz is left of George
the False, otherwise.

It is the availability of such decompositions that makes it possible to find logical struc-
ture incontents such as ‘There are twelve apostles’, and go on to uncover complex
structure in such contents as ‘12> 6’, contents that Kant’s Transcendental Aesthetic
had presumed to be simple. It is precisely the ability to express such structures that,
in Frege’s view, reveals that no nonlogical and uniquely mathematical intuitions of
number are needed to capture the derivations of arithmetic. The same is true of Rus-
sell, although he did not devise afunction calculus as Frege had.

It is important, then, to realize that Frege and Russell viewed logic as neither a
formal uninterpreted calculus nor as a language “containing its own meta-theory.” No
mathematical realist would confuse the science of arithmetic with an axiom system
of formal number theory. And similarly, one must not confuse the science of logic
with the formal system—thelingua characterista universalis—which is proffered to
capture it. In Russell’s conception, logic is the science of the structure of proposi-
tions, in precisely that way the mathematical realist takes arithmetic to be the science
of number. Seeing this, we realize that nothing in Russell’s (or Frege’s) conception
of logic precludes the adoption of commonplace modern distinctions between theory
and meta-theory. These distinctions are untendentious; they do not distinguish the
modern mathematical conception of logic from the Frege/Russell conception.

But, it might be objected, if Russell and (Frege) viewed alingua characteristica
as a calculus in the modern sense, won’t logic fail to be all-encompassing. If logic is
universal and all-encompassing, so the argument goes, then it applies to all forms of
reasoning, and accordingly meta-linguistic proofs and notions cannot have any spe-
cial status. The whole meta-theoretical perspective collapses for else there would be
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an essentially richer and more inclusive realm of reasoning (reasoning in the meta-
language) which would have to fall outside the scope of logic.

The argument is wanting. To be sure, Russell’s conception takeslogic to be
all-encompassing, for any reasoning, in virtue of being proper reasoning,uses logic.
Logic encompasses all proper patterns of reasoning (and shows why others are im-
proper). If a given formal calculus for logicfully captures logic—so that every rela-
tion isexpressible and every function isrepresentable in the ideography of an applied
form of that calculus—then all proper reasoning patterns can be expressed within it.
But suppose it is discovered2 that for any given calculus for logic, there will be pat-
terns of reasoning (and notions pertaining to the relationship between the expressions
of that calculus and their referents) that must lie outside the calculus. What of it? If it
happens that some properties such as ‘designates-in-s’ and ‘true-in-s’ cannot be ex-
pressed in the language of a proposed calculuss for logic,3 the discovery in no way
impugns the claim that logic is all-encompassing.

But again, one might object that if we have a calculus in the modern sense then
the variables of such a calculus (as with any calculus in the modern sense) can be in-
terpreted over restricted domains. Moreover, it will be possible to alter the interpreta-
tion of the logical particles themselves. So be it! Russell was well aware that once a
science is represented by an axiomatized calculus there can be many interpretations.
He quite clearly observes that arithmetic can be taken to be about allprogressions,
for all satisfy the Peano/Dedekind Postulates under different interpretations of ‘zero’,
‘number’, and ‘successor’ ([10], p. 430). Russell did not try to avoid this by claim-
ing that no formal calculus for arithmetic is possible.4 His response was that a logical
(conceptual) analysis of the notion of ‘natural number’ reveals the Frege/Russell car-
dinals. In the same way, a conceptual analysis of the notion of ‘continuity’ and ‘limit’
had (in the hands of Weierstrass, Dedekind, et al.) yielded that it is order (relation)
not magnitude (quantity) that is basic. That there may be unintended interpretations
of any formal system intended to represent the structures revealed by the analysis of
‘number’, is simply irrelevant.

What then of Russell’s famous doctrine of the unrestricted variable? InPrinci-
ples, Russell held that logic applies to whatever has ontological status, irrespective of
the sort of entity (concrete particular, universal, proposition, etc.) that it is. Russell
maintains that unrestricted variables are required in any calculus for logic because any
restricted variable would simply be in the antecedent clause of a conditional whose
variables are unrestricted, or if themselves restricted, would in turn require a new an-
tecedent clause delimiting the restriction. Eventually, one arrives at an unrestricted
variable.5 Does this not show that Russell is trying to banish the very idea of an un-
intended interpretation by viewing logic as coming with a ready-made semantics?

Hylton [5] reads Russell this way. He argues that Russell’s very argument
for unrestricted variables precludes a distinction between object-language and meta-
language. It assumes from the onset that “...the statement which establishes the uni-
verse of discourse is on the same level as the assertion which is made once the dis-
course is established. Thus the former can be taken as antecedent and the latter as
consequent of a single conditional statement” ([5], p. 202).

This is a mistake. To be sure, any modern quantificational calculus will employ
meta-linguistic statements such as the schema ofuniversal instantiation, and here we
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find restrictions. One puts

(µ)Aµ ⊃ A[t | µ],wheret is free forµ in the wff A.

In the schema, ‘A’ i s ameta-linguistic letter restricted to well-formed formulas of
the object language and ‘t’ a schematic letter restricted to terms of that language.
But these are not at all the sort of restrictions that Russell finds objectionable. Put
succinctly, the doctrine of the unrestricted variable simply demands that the object-
language of any calculus for logic should embrace one style of variables—viz.,en-
tity or individual variables.6 Russell’s point is that even if there are distinct sorts of
entities—universals, particulars, propositions—a calculus for logic should not adopt
many sorted variables such aspropositional variables,predicate variables, orpartic-
ular variables. Ifp is supposed to be a special propositional variable, then Russell
argues, “p implies, for all p andq, q’s implying p” really just means “x’s andy’s be-
ing propositions implies, for allx andy, x’s implying y’s implying x.” Again, if ‘ R’ is
supposed to be a special relation variable, then Russell argues, “For allR, Rab” just
means “x’s being a relation implies, for allx, a’s andb’s belonging tox” ([ 10], p. 87).

There are, to be sure, certain difficulties in Russell’s approach. As he real-
izes, he will need to enlist such primitives as “x is a concept (property or relation)”
([10], p. 86). Moreover he will need an infinite stock ofn-place relations so that, for
example, for any proposition ‘R(a, b)’ there is another proposition ‘R ∗ (a, b, R)’
which is logically equivalent to it. Russell acknowledges this in his discussion of the
Bradley regress, finding the infinity undeniable but wholly innocuous so long as the
predicational nature of concepts is accepted ([10], p. 100). Accordingly, Russell im-
plicitly accepts

x1, . . . , xn exemplify y

as a primitive logical notion. But in any case, nothing in Russell’s adoption of one
style of variable shows that he did not (and could not) view his system as acalculus
in a modern sense.

The above arguments dismissed, what of Russell’s own rejection of meta-
linguistic proofs? InPrinciples, herejects Hilbert-style independence proofs.7 Why?
Does this not show that the very concept of going outside to the meta-language was
absurd to Russell? No. Russell, as Frege before him, rejected Hilbert-style indepen-
dence proofs on grounds that since such proofs must rob the primitive symbols of
their intended interpretations, the proofs cannot be germane when those primitives
have their intended interpretations. Independence is a syntactic matter concerning
derivability, and derivability within a calculus for logic must not be confused with
implication. It is important that the former track the latter. After all, one can adopt
rules for a formal calculus that do not track logic at all. Nonetheless, results con-
cerning derivability can be useful, and Frege and Russell were simply overzealous in
their concern that changing the meaning of the logical particles of a purported formal
calculus for logic severs the connection between the calculus and logic itself.

Russell also, and infamously, rejected the use of inductive proofs to get results
about his calculus. With rules and schemata of his sentential calculus confined to
quantifier-free well-formed formulas, Russell wanted to show in *9 of the 1910Prin-
cipia Mathematica, that by adding a few inference rules and axiom schemata the re-
sulting system was as strong as *10 (a system which allowed the sentential schemata
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to apply to all well-formed formulas). He explicitly rules out using mathematical in-
duction ([18], p. 130). This is easily explained, however. One cannot, without beg-
ging questions against logicism, suppose that the notions required for the articulation
of a calculus for logic are distinctly mathematical notions. All the same, it would be
equally question-begging in favor of logicism to employ what have been traditionally
thought to be distinctly mathematical notions, like mathematical induction, in setting
out a calculus for logic. Logicism must demonstrate that one can deduce mathemat-
ical induction from within a system whose basis is grounded upon intuitions of pure
logic alone.

The fact is that Russell was explicitly concerned with questions of completeness
and independence ([10], p. 15). Though infamously sloppy about use and mention,
we shall see that he did have a sense of what we call the difference between meta-
language and object- language, and endeavored to set forth axioms and inference rules
of a formal calculus (in the modern sense) for logic.

2 Russell’s propositional calculus The phrasepropositional calculus is com-
monly used to refer to a sentential calculus. Russell’s use is nonstandard, for it refers
to a system which is analogous to a higher-order calculi—that is, a system which per-
mits bindable predicate variables in subject as well as predicate positions. At first
blush, this seems surprising, for we have seen that Russell embraces only individual
variables. But extended by the logical constant, say, ‘C ’ for the property of being
concept (property or relation), and the constants�Pn�, n ∈ N, for the n-adic rela-
tions of exemplification, the presence of only individual variables poses no untoward
limitations. To transcribe “Every human is mortal,” Russell can put

p2(x, Humanity) ⊃x P2(x, Mortality),

which, read literally, says “x’s exemplifying Humanity implies, for allx, x’s exempli-
fying Mortality.” Similarly, Russell can transcribe “Every entity has every property”
with,

C(x) .⊃x,y. P2(y, x)

which reads, “x’s being a concept implies, for allx andy, y’s exemplifyingx.” So we
can see that the system has an expressive capacity beyond that of a sentential logic.

Indeed, Russell intended yet more. He wanted a theory of classes as well. For
this purpose he took Peano’s ‘∈’ ( for membership) and ‘�’ ( for ‘such that’) as primi-
tive signs so that�x ∈ z � Az� is a well-formed formula which reads “x is a member
of the class of allz such that. . . , z, . . ..” He adopts some primitive principles for
classes ([10], p. 20) as well, and in virtue of the theory of classes, he hopes to define
the identity sign, and thus writes:

Identity which occurs here may be defined as follows:x equalsy if y belongs
to every class to whichx belongs, in other wordsx is aµ implies y is aµ for
all values ofµ. (ibid.)

Of course, this requires a comprehension principle for classes (or concepts). Russell
had none to offer. He had discovered the paradoxes surrounding the unbridled as-
sumption that every open well-formed formula comprehends an attribute and a class.
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Russell intended the theory of extension as a part of his calculus for logic. But in
Principles his ideas on the paradoxes were in a state of flux.

In what follows, our purpose is to show completeness with respect to analogs of
sentential tautologies. For this, we need only a fragment of Russell’s system. All the
same, it is worth remembering the richness of the sort of system that Russell calls his
Calculus of Propositions.

Russell’s system originates from a fateful encounter with Peano at a congress
in Paris in 1900. It was, as Russell later recalled inMy Mental Development, “the
most important year of my intellectual life.” Russell was struck by the techniques
and logical apparatus demonstrated at the congress. He found the precision afforded
by Peano’s notation of inestimable value, and was very much influenced by the phi-
losophy of mathematics espoused by Peano and his school. Peano introduced the ex-
pression, ‘p ⊃ q’, writing,

On pourrait indiquer la relationp ⊃ q par la signeqCp qu’on lira “q est
conśequencep.” ([ 7], p. 26)

Peano reads the symbol as “q is a consequence ofp,” and p is called the “hypothe-
sis.” Unfortunately, he was in the habit of using context to determine the meaning of
some of his signs. For instance, he used ‘=’ to express a number of distinct relations;
sometimes it expressed identity, other times equivalence, and still other times it was
used in stipulative definitions. In the case of ‘p ⊃ q’, he read it as “de lap deduit
la q,” a reading which he viewed as warranting detachment when the “hypothesis” is
true.

Peano introduced an expression for universal quantification (formal implication)
as well. He had some innovations similar to Frege’s begriffsschrift, distinguishing
free and bound variables and introducing a notation of quantification which made the
expression of scope possible:

Soient p et q des propositions contenant des lettres variablesx . . . z. Noûs
ècrirons

p .⊃x...z. q

pour indiquer la proposition “dep on d́eduit, quels que sointx . . . z, la q.”
(Peano [7], p. iii)

The quantifier is here subscripted to the conditional sign and thus the name ‘formal
implication’—as if we have some new form of implication.

Following Peano,Principles adopts the sign ‘⊃’ as aprimitive dyadic predicate
constant which stands for the relation ofmaterial implication. Similarly, ‘⊃µ1,...,µn ’
is adopted for formal implication.8 Let us use ‘α’, ‘ β’, and ‘δ’ as meta-linguistic let-
ters for terms, and ‘A’, ‘ B’, and ‘C’ asmeta-linguistic letters for well-formed formu-
las. The well-formed formula�α ⊃ β�, is readα impliesβ, and the positions ofα
andβ here are subject positions. Thus, ‘⊃’ stands for a relation. The relata can be
any two entities, propositions or otherwise. Propositions are mind independent enti-
ties in Russell’s view, and some are true and others false. Thus there is a proposition
‘ x ⊃ y’ no matter what entitiesx and y are; it may not, however, be a true proposition.

To make the syntax of Russell’s dyadic predicate ‘⊃’ salient, it is useful to in-
troduce nominalizing braces ‘{’ and ‘}’. By using the braces, a well-formed formula
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A is made into a term�{A}�. Thus,

x ⊃ {y ⊃ z}

would be a formula. Russell did not employ such braces inPrinciples. Instead, he
took subject position to be sufficient to mark the nominalizing transformation. Rus-
sell’s approach is convenient. Braces can be dropped for subject position, and dots
and brackets can be used for punctuation. Thus, one can write

x .⊃. y ⊃ z .

Weshall follow this. But readers should be wary not to confuse ‘⊃’ with the modern
conditional sign ‘→’ which is flanked by well-formed formulas not terms. Unfortu-
nately, the confusion is easy to fall into. Russell often uses the letters ‘p’, ‘ q’, ‘ r’,
‘ s’, ‘ t’, and these appear as if they are special letters for propositions. They are not.9

They are just variants of ‘x’, ‘ y’, ‘ z’, and so forth, which are (now commonly used
as) individual variables. InPrinciples, Russell uses the words ‘term’, ‘unit’, ‘one’,
‘entity’, and ‘logical subject’ synonymously with the word ‘individual’. The funda-
mental doctrine of the work is that whatever is, (be it a proposition or otherwise) is an
individual. Logic treats all entities alike as values of its wholly unrestricted variables.
Thus, there are no special primitive propositional variables in the work. To remind
the reader, I shall replace Russell’s letters with individual variables ‘x’, ‘ y’, ‘ z’, and
so on.

Now Russell decides that only propositions stand in true inferential relation-
ships. No proposition ‘x ⊃ y’ can be true unless bothx and y are propositions. Ac-
cordingly, Russell notes that he need not introduce a primitive constant ‘x is a propo-
sition’. Rather he need only put

x is a proposition=d f x ⊃ x. ([10], p. 15)

Russell never sets out his calculus for logic formally and aspects of it are scattered
throughoutPrinciples. The first ten fundamental principles are as follows:

Pp1 x ⊃ y .⊃x,y. x ⊃ y
Pp2 x ⊃ y .⊃x,y. x ⊃ x
Pp3 x ⊃ y .⊃x,y. y ⊃ y
Pp4 A true hypothesis in an implication may be

dropped, and the consequent asserted.
Simplification Pp5 x ⊃ x :⊃x,y: y ⊃ y .⊃. (xy .⊃. x)

Syllogism Pp6 x ⊃ y :⊃x,y,z: y ⊃ z .⊃. x ⊃ z
Composition Pp7 x ⊃ y :⊃x,y,z: x ⊃ z .⊃. (x .⊃. yz)
Importation Pp8 y ⊃ y :⊃x,y,z: z ⊃ z .⊃. (x .⊃. y ⊃ z :⊃: xy .⊃. z)
Exportation Pp9 x ⊃ x :⊃x,y,z: y ⊃ y .⊃. (xy .⊃. z :⊃: x .⊃. y ⊃ z)

Reduction Pp10 x ⊃ x :⊃x,y: y ⊃ y .⊃. (x ⊃ y .⊃. x :⊃: x)([10], p. 6)

(The expression ‘xy’ i s used for conjunction.)
Special attention must be paid to Russell’s Pp4. Unlike the other principles, it is

an inference rule similar to the modern Modus Ponens. Strictly speaking Peano had
no formal calculus for logic, since he had no explicit inference rules. Frege informed
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him of this failing on several occasions to no avail. Reading ‘⊃’ as “implies” in one
context and “therefore” in another, Peano likely thought that detachment need not
be explicitly stated as a rule. Russell, on the contrary, made a significant attempt at
providing the missing rules.

Russell was aware of the special status of Pp4 among his “principles.” Concern-
ing the principle, he wrote,

This is a principle incapable of formal symbolic statement, and illustrating the
essential limitations of formalism—a point to which I shall return at a later
stage. ([10], p. 16)

The “essential limitation of formalism,” as Russell put it, is precisely Russell’s way of
saying that an inferencerule is meta- linguistic and not itself an axiom among others.
Russell speaks at length to the point in his discussion of Carroll’s paradox “What the
Tortoise said to Achilles” ([10], p. 35). He says that we need the notion oftherefore
which is quite distinct from the notion ofimplies. The notion oftherefore renders an
inference license warranting detachment; the notion ofimplies does not.

The principle Pp4 is important in another way as well. In stating his axioms,
Russell does not index his sign ‘⊃’ as we have above. For example, he states Pp1 as
follows:

If p impliesq, then p impliesq; in other words, whateverp andq may be, ‘p
impliesq’ i s aproposition. ([10], p. 16)

But Russell is just following the mathematical convenience (commonplace as well in
Peano’s notation) of omitting indices. In a footnote he makes this clear.

Note that the implications denoted byif and then, in these axioms, are formal
while those denoted byimplies are material. (ibid.)

So Russell’s axioms are formal implications. Accordingly, he needs a quantification
theory for his calculus to work. For this reason, Russell allows Pp4 to have an appli-
cation to general formulas:

Another form in which the principle is constantly employed is the substitution
of a constant, satisfying a hypothesis, in the consequent of a formal implication.
If ϕx impliesθx, for all values ofx, and if a is a constant satisfyingϕx, wecan
assertθa, dropping the true hypothesisϕa. ([10], p. 35)

To accommodate both forms, Pp4 can be written as follows. From

α ⊃µ0,...,µn β andα[t1 | µ1, . . . , tn|µn],

infer
β[t1 | µ1, . . . , tn|µn],

where
ti is free forµi in α andβ,0 ≤ i ≤ n.

Welet α[t|µ] be t when the termα is the variableµ. The expression�α ⊃µ0,...,µn β�
is for any implication, formal (whenn �= 0) or material (wheren = 0).

Now in addition to the two forms of Pp4, Russell has the rule of universal gen-
eralization. It is stated informally:
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So long as any term in our proposition can be turned into a variable, our propo-
sition can be generalized; and so long as this is possible, it is the business of
mathematics to do it. ([10], p. 7)

The precise formulation of this rule is important. It would not do to characterize it as:

If α ⊃ β is a thesis, so isα ⊃µ β,

whereµ is an entity variable free inα orβ (or equal toα orβ). Such a formulation, to-
gether with Pp4, would not suffice to generate quantification theory. Moreover, such a
form would make universal generalization under the hypothesis of a conditional proof
illegitimate. Russell’s statement of the “other form” of Pp4 suggests that he allows
conditional proofs. Verification of this comes if we look at Peano.

Consider Peano’s 1889The Principles of Arithmetic. Asusual, Peano omits in-
dices on his sign ‘⊃’, writing,

P4 a, b, c ∈ N .⊃: . a = b.b = c :⊃. a = c ([8], p. 94)

instead of

P4 a, b, c ∈ N .⊃a,b,c: . a = b.b = c :⊃. a = c.

But examine the following “proof.”

Theorem 13 a, b, c ∈ N .a = b.b = c.c = d :⊃: a = d

Hyp.P4 :⊃: a, c, d ∈ N .a = c.c = d.P4 :⊃: Thes

The idea of the proof seems to be to assume the antecedent of the theorem to be shown.
On the basis of the assumption, Peano’s axiom P4 can be applied by means of Rus-
sell’s rule Pp4. This yields,

a, c, d ∈ N & a = c & c = d.

Calling again upon P4 and using Russell’s Pp4, one arrives ata = d. By an implicit
rule of conditional proof then, Peano has

Hyp ⊃ a = d.

The final result is obtained by universal generalization. If this is correct, Peano (albeit
tacitly) employs an inference rule legitimating deduction from a hypothesis. Since
Peano’s calculus was Russell’s paradigm and it is clear that Russell intendedPrinci-
ples to amend and correct Peano’s proof techniques, it seems likely that he allowed
derivations under a hypothesis. When it came to the question of quantification rules,
Peano did express the following concern:

The indices to the sign⊃ satisfy laws which have not yet been sufficiently stud-
ied. This theory, already abstruse in itself, becomes even more so unless the
rules are accompanied by examples...([7], § 18)

In a letter to Peano, Frege noted that he had already given the proper rules in his 1879
Begriffschrift and, being that they are few in number and clear, knew of no reason they
should be said to be abstruse (Frege [4], p. 11). But in allowing conditional proof,
Peano and Russell faced issues that Frege did not; they must formulate the rule of uni-
versal generalization in a way that demarcates when generalization under the scope
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of a hypothesis is legitimate. This may well explain why Peano found the articula-
tion of rules for quantification “abstruse.” Unfortunately, formulations of Universal
Generalization and Conditional Proof are hard to exact from Russell’s writings of the
period. In “The theory of implication” of 1905/6, Russell states,

*.7.11 What is true of any is true of all.

Alternatively, he puts,

If ϕy is true however y is chosen, then(x).ϕx is true. ([11], p. 195)

This, of course, is misleading.10 Consider

1. (x)(Ax ⊃ Bx) Hyp
2. (x)Ax Hyp
3. Ax ⊃ Bx 1, UI
4. Ax 2, UI
5. Bx 4, 3, MP
6. (x)Bx 5, UG
7. 2⊃ 6
8. 1⊃ 7

Here line 5 may not be true at all. Russell seems to be aware of this. Perhaps, then
Russell’s point was that a well-formed formula of the formϕ (e.g., our line 5) can
be said to be “true” in the sense that it would be arrived at in a similar demonstra-
tion no matter what variable is chosen instead of y. In what follows, I shall adopt the
following on Russell’s behalf.

(Universal Generalization) Fromα ⊃vo,...,vn β infer α ⊃µ,vo,...,vn β,

whereµ is an individual variable which is free inα ⊃vo,...,vn β, and which does not
occur free in any hypotheses within whose scopeα ⊃µ,vo,...,vn β occurs.

3 Russell’s definitions Russell put forth definitions of tilde, conjunction, and dis-
junction signs inPrinciples. There is a good discussion of the definitions in Byrd [1].
The following diverges somewhat from Byrd’s renditions, however. What Byrd takes
as errors I take as slips or infelicities of expression. Russell begins with the conjunc-
tion sign (i.e., juxtaposition) as follows:

If p impliesp, then ifq impliesq, thenpq (the logical product ofp andq) means
that if p implies thatq impliesr, thenr is true. ([10], p. 17)

Unfortunately, there is a slip. Russell read “r” as if i t stood only for propositions.
Russell corrects this in an adjoining sentence of clarification, writing:

In other words, ifp andq are propositions, then their joint assertion is equiva-
lent to saying that every proposition is true which is such that the first implies
that the second implies it. (ibid.)

Accordingly Russell has:

x ⊃ x :⊃xy: y ⊃ y .⊃. [xy is equivalent toz ⊃ z .⊃z. (x .⊃. y ⊃ z :⊃: z)]

We are still faced with difficulties. First, the definition is conditional; and second,
what is the import of “means that” (or “is equivalent to” as Russell uses it above)?
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Likely, the answer is simply that Russell felt his readers would find a conjunction
sign between entity variables to be absurd. How, for example, can one assert ‘Frege
and Russell’? And obscure as it seems, would one be able to infer Frege from the con-
junction? Russell’s Simplification avoids this problem by restriction to propositions.
There is no derived inference rule: Fromxy, infer x. A variable cannot occur isolated
on a line of a demonstration. All the same, Russell may have felt he needed to assure
readers that his conjunctiondoes parallel the normal truth-conditions of ‘and’. In his
effort to assure readers, Russell adopted the conditional definition.

If this is right then we can be content to drop Russell’s conditional definitions and
his locution “is equivalent to”. It would not suffice, however, to adopt the definition
schema

AB =d f µ ⊃ µ .⊃µ. (A .⊃. B ⊃ µ :⊃: µ),

whereA andB are any well-formed formulas of the language. This defines conjunc-
tion where nominalized well-formed formulas (for material or formal implications)
are concerned. Russell’s axioms (e.g., Simplification) would not comport with defi-
nition, for they allow the expression of the conjunction sign (juxtaposition) with in-
dividual variables (Byrd [1], p. 351). Our solution is to adopt the definition schema

αβ =d f µ ⊃ µ .⊃µ. (α .⊃. β ⊃ µ :⊃: µ),

for any termsα, β.
Russell next defines disjunction. He introduces no special sign, but we shall

adopt ‘∨’ on his behalf. He writes,

‘ p or q’ i s equivalent to ‘ “p impliesq” i mpliesq’. ([ 10], p. 17)

At first blush, Russell seems to have offered a definition which is not conditional.
His statement of clarification, however, suggests that he again slipped by reading ‘p’
and ‘q’ as if they stood for nominalized well-formed formulas (for propositions). He
writes,

It is easy to persuade ourselves of this equivalence since a false proposition im-
plies every other. (ibid.)

Weshall avoid the conditional definition putting

α ∨ β =d f α ⊃ β .⊃. β .

The same point applies to the definition of the negation sign. Russell introduces no
sign, but writes

...weproceed to the definition of negation; not-p is equivalent to the assertion
that p implies all propositions; i.e., that ‘r impliesr’ i mplies ‘p impliesr’ what-
everr may be. ([10] p. 18)

Appearances to the contrary, Russell once again intends a conditional definition. We
see this because the definition is accompanied by a footnote which reads,

The principle that false propositions imply all propositions solves Lewis Car-
roll’s logical paradox inMind, N.S. No. 11 (1894). (ibid.)
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So again there is a slip, here with regard to the use of ‘p’. Russell wants:

x ⊃ x .⊃x. [ not-x is equivalent toz ⊃ z .⊃z. x ⊃ z]

Evidently, Russell wanted his readers to be sure to understand that his definition will
yield the usual,

x implies not notx

wherex is a proposition, even though it is not a thesis otherwise. All the same, we
are dropping the conditional definitions, and so (adopting ‘¬’ on Russell’s behalf) we
have

¬α =d f µ ⊃ µ .⊃µ. α ⊃ µ

as our definition schema. No biconditional sign is introduced or defined, and we must
be wary not to confuse this matter with the locution ‘is equivalent to’ in Russell’s
statements of definition. Curiously, in discussing the equivalence of relations, Rus-
sell does suggest an awareness of Peano’s approach—that is, of introducing a bicondi-
tional sign with the definiens the conjunction of two conditionals ([10], p. 24). Peano
used ‘=’ toexpress a number of distinct relations, while Pieri used ‘≡’ for definitions,
reserving ‘=’ for identity. Perhaps, Russell had not settled on a sign.

The existential quantifier remains. In a letter to Frege of May 24, 1903 we find
Russell adopting the notation of�(µ)Aµ� and defining Peano’s notation which in-
dexes the conditional sign. This provides a means of avoiding having to put�– Ax ⊃x

Ax� when �(x)Ax� is wanted. Russell also puts

(∃x).ϕx =d f –{(x).–ϕx}. (McGuinness [6], p. 159)

There are some hints of this inPrinciples. Peano had put

∃a =d f –(a = /\).

His symbol ‘∃’ i snot a variable binding operator. It flanks a class term ‘a’ andis used
to say that the classa is not empty. Now inPrinciples, Russell explains that a classa
exists whenit (i.e., when the class-concept of whicha is the would-be extension) is
nonempty (i.e., is exemplified). Haplessly, Russell uses ‘ana’ for the class-concept
and, running together the class concept expression with the class term (an error he
chides Peano with), finds himself writing:

A class is said to exist when it has at least one term.A formal definition of this
is: a is an existent class when and only when any proposition is true provided
“ x is ana” always implies it whatever value we may give tox. ([10], p. 21)

Where ‘x̂(x is ana)’ is a class term, what Russell intends is

∃x̂(x is ana) =d f –(x)–(x is ana).

It was not long before this would become

∃!α =d f (∃x)(x ∈ α)

which was put inPrincipia as *24.03 [17]. So the passage11 fromPrinciples certainly
foreshadows Russell’s later definition of the existential quantifier.
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No rule for definitions is adopted explicitly. But Russell was well aware that
since definitions are but notational conveniences, definiens and definiendum may re-
place one another in any context. He could easily read of this from most any volume
of Peano’sFormulaire.

4 Completeness of the propositional calculus with respect to propositional analogs
of sentential tautologies Let us characterize the terms and well-formed formulas
of the fragment of the system ofPrinciples we shall call ‘(P)’. The variables are to
be ‘x’, ‘ y’, ‘ z’, ‘ u’, ‘ v’ , ‘ w’, and all primes so that there is an infinite stock. Primitive
signs are: brackets, ‘(’ and ‘)’; braces, ‘{’ and ‘}’; the sign ‘⊃’; and the formal impli-
cation sign ‘⊃µ1,...,µn

’ where eachµi is an individual variable, 1≤ i ≤ n. The terms
and well-formed formulas are characterized together. The well-formed formulas are
thus: (1) whereα, β are terms, andµi,1≤ i ≤ n are individual variables,�α ⊃ β� and
�α .⊃µ1,...,µn . β� are well-formed formulas; and (2) there are no other well-formed
formulas. The terms are: (1) all individual variables are terms; (2) whereA is a well-
formed formula,�{A}� is a term; and (3) there are no other terms.

The axioms and transformation rules are reiterated below for convenience:

Pp1 x ⊃ y .⊃x,y. x ⊃ y
Pp2 x ⊃ y .⊃x,y. x ⊃ x
Pp3 x ⊃ y .⊃x,y. y ⊃ y
Pp4 Fromα ⊃µ0,...,µn β andα[t0 | µ0, . . . , tn | µn],

infer β[t0 | µ0, . . . , tn | µn], whereti is free for
µi in α andβ,0 ≤ i ≤ n.

Simplification Pp5 x ⊃ x :⊃x,y: y ⊃ y .⊃. (xy .⊃. x)

Syllogism Pp6 x ⊃ y :⊃x,y,z: y ⊃ z .⊃. x ⊃ z
Composition Pp7 x ⊃ y :⊃x,y,z: x ⊃ z .⊃. (x .⊃. yz)
Importation Pp8 y ⊃ y :⊃x,y,z: z ⊃ z .⊃. (x .⊃. y ⊃ z :⊃: xy .⊃. z)
Exportation Pp9 x ⊃ x :⊃x,y,z: y ⊃ y .⊃. (xy .⊃. z :⊃: x .⊃. y ⊃ z)

Reduction Pp10 x ⊃ x :⊃x,y: y ⊃ y .⊃. (x ⊃ y .⊃. x :⊃: x)

(UG) Rule of Universal Generalization

From α ⊃v0,...,vn β, infer α ⊃µ,v0,...,vn β, whereµ is an individual variable
which is free inα ⊃v0,...,vn β, and which does not occur free in any hypotheses
within whose scopeα ⊃µ,v0,...,vn β occurs.

(CP) Rule of Conditional Proof

i. A Hyp

m. B
m + 1. A ⊃ B i-m, CP

¬α =d f µ ⊃ µ .⊃µ. α ⊃ µ

αβ =d f µ ⊃ µ . :⊃µ: .α ⊃ β .⊃. µ :⊃: µ

α ∨ β =d f α ⊃ β .⊃. β

For reasons that will become clear later on, we add
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f =d f µ ⊃ µ .⊃µ. µ

α&β =d f α .⊃. β ⊃ f :⊃: f
−α =d f α ⊃ f

Call this system ‘(P)’.
The presence of the rule of conditional proof assures the adequacy of Russell’s

quantification theory. From Pp1 and inference rule (CP) we can arrive at the following
theorem for universal instantiation.

Theorem Schema(a)

� α ⊃µ1,...,µn β .⊃. α[t1 | µ1, . . . , tn | µn] ⊃ β[t1 | µ1, . . . , tn | µn],
whereti is free forµi in α andβ,1 ≤ i ≤ n.

1. α ⊃µ1,...,µn β Hyp
2. α[t1 | µ1, . . . , tn | µn] Hyp
3. β[t1 | µ1, . . . , tn | µn] 1, 2, Pp4
4. α[t1 | µ1, . . . , tn | µn] ⊃ β[t1 | µ1, . . . , tn | µn] 2,3,CP
5. α ⊃µ1,...,µn β .⊃. α[t1 | µ1, . . . , tn | µn] ⊃

β[t1 | µ1, . . . , tn | µn] 1–4, CP

This validates a derived rule, DR(UI), for Universal Instantiation. We also have a
version of Theorem Schema(a) for single instantiations.

Theorem Schema(a◦)

� α ⊃µ1,µ2,...,µn β .⊃. α[t | µ1] ⊃µ2,...,µn β[t | µ1],
wheret is free forµ1 in α andβ.

1. α ⊃µ1,µ2,...,µn β Hyp
2. α[t | µ1, µ2 | µ2, . . . , µn | µn] ⊃

β[t | µ1, µ2 | µ2, . . . , µn | µn] DR(UI)
3. α[t | µ1] ⊃ β[t | µ1] 2
4. α[t | µ1] ⊃µ2,...,µn β[t | µ1] 3,UG
5. α ⊃µ1,...,µn β .⊃. α[t | µ1] ⊃µ2,...,µn β[t | µ1] 1–4, CP

We shall call both by the name “DR(UI)” in what follows. Next we have a schema
for the quantifier.

Theorem Schema(b)

� A .⊃µ,v0,...,vn .β ⊃σ0,...,σm δ :⊃: A .⊃v0,...,vn .β ⊃µ,σ0,...,σm δ,

whereµ is not free inA.

1. A .⊃µ,v0,...,vn .β ⊃σ0,...,σm δ Hyp
2. A .⊃.β ⊃σ0,...,σm δ 1,DR(UI)
3. A Hyp
4. β ⊃σ0,...,σm δ 2, 3, Pp4
5. β ⊃µ,σ0,...,σm δ 4,UG
6. A .⊃. β ⊃µ,σ0,...,σm δ 2–6, CP
7. A .⊃v0,...,vn .β ⊃σ0,...,σm δ 6,UG
8. A .⊃µ,v0,...,vn .β ⊃σ0,...,σm δ :⊃: A .⊃v0,...,vn .

β ⊃µ,σ0,...,σm δ 1–7, CP
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This validates a derived rule based on the schema. We now have all that is needed
for quantification theory. From Pp1 we know that every material implication implies
itself. But we can now also prove that formal implication implies itself.

Theorem Schema(c)

� α ⊃µ1,µ2,...,µn β .⊃.α ⊃µ1,µ2,...,µn β

1. α ⊃µ1,µ2,...,µn β .⊃.α ⊃µ2,...,µn β Theo(a◦)
2. α ⊃µ1,µ2,...,µn β .⊃µ1 .α ⊃µ2,...,µn β 1, UG
3. α ⊃µ1,µ2,...,µn β .⊃.α ⊃µ1,µ2,...,µn β 2, Theo(b), Pp4

Now from Simplification(Pp5), and DR(UI) one can arrive at

� (x ⊃ y)(z ⊃ w) .⊃x,y,z,w. x ⊃ y

1. (x ⊃ y .⊃. x ⊃ y) . :⊃: . (z ⊃ w .⊃. z ⊃ w) :⊃:
(x ⊃ y)(z ⊃ w) .⊃. x ⊃ y simp, DR(UI)

2. x ⊃ y .⊃. x ⊃ y Pp1, DR(UI)
3. (z ⊃ w .⊃. z ⊃ w) :⊃: (x ⊃ y)(z ⊃ w) .⊃. x ⊃ y 1, 2, Pp4
4. z ⊃ w .⊃. z ⊃ w Pp1, DR(UI)
5. (x ⊃ y)(z ⊃ w) .⊃. x ⊃ y 3, 4, Pp4
6. (x ⊃ y)(z ⊃ w) .⊃x,y,z,w. x ⊃ y 5, UG

So any two well-formed formulas, each the form of a material implication, will be
such that their conjunction obeys Simplification. This also holds for any two formal
implications.

� (α ⊃µ1,...,µn β)(δ ⊃v1,...,vm τ) .⊃. α ⊃µ1,...,µn β

1. (α ⊃µ1,...,µn β .⊃. α ⊃µ1,...,µn β) . :⊃: .
(δ ⊃v1,...,vm τ .⊃. δ ⊃v1,...,vm τ) :⊃:

(α ⊃µ1,...,µn β)(δ ⊃v1,...,vm τ) .⊃. α ⊃µ1,...,µn β simp, DR(UI)
2. α ⊃µ1,...,µn β .⊃. α ⊃µ1,...,µn β Theo(c)
3. (δ ⊃v1,...,vm τ .⊃. δ ⊃v1 ...,vm τ) :⊃:

(α ⊃µ1,...,µn β)(δ ⊃v1,...,vm τ) .⊃. α ⊃µ1,...,µn β 1, 2, Pp4
4. δ ⊃v1,...,vm τ .⊃. δ ⊃v1,...,vm τ Theo(c)
5. (α ⊃µ1,...,µn β)(δ ⊃v1,...,vm τ) .⊃. α ⊃µ1,...,µn β 3, 4, Pp4
6. (α ⊃µ1,...,µn β)(δ ⊃v1,...,vm τ) .⊃x,y,z,w.α ⊃µ1,...,µn β 5, UG

It should be clear that similar propositional theses for Russell’s other principles are
forthcoming as theorem schemata.

In order to avoid having to write out the long clauses of the propositional the-
ses, let us introduceschematic letters ‘ p’, ‘ q’, ‘ r’ which are to refer to well-formed
formulas expressing formal or material implications. (These schematic letters must
not be confused with Russell’s ‘p’, ‘ q’, ‘ r’, etc. Russell’s letters are just individual
variables and, accordingly, we replaced them with ‘x’, ‘ y’ , ‘ z’, etc.) We can now put
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id∗ � p ⊃ p
simp∗ � pq .⊃. p
syll∗ � p ⊃ q :⊃: q ⊃ r .⊃. p ⊃ r
imp∗ � p .⊃. q ⊃ r :⊃: pq .⊃. r
exp∗ � pq .⊃. r :⊃: p .⊃. q ⊃ r
comp∗ � p ⊃ q :⊃: p ⊃ r .⊃. (p .⊃. qr)
reduc∗ � p ⊃ q .⊃. p :⊃: p.

The availability of schemata id*, simp*, syll*, imp*, exp*, comp*, and reduc*, vali-
dates derived propositional rules. For instance, we have:

DR(syll*) From p ⊃ q andq ⊃ r, infer p ⊃ r .

DR(imp*) From p .⊃. q ⊃ r, infer pq .⊃. r .

DR(exp*) Frompq .⊃. r, infer p .⊃. qr .

DR(comp*) Fromp ⊃ q and p ⊃ r , infer p .⊃. qr .

The justifications are obvious.
Now for each tautology of sentential logic, there are different analogs in the sys-

tem of Principles. Consider, for example, the tautology,

(1) A .→. B → A .

(The symbol ‘→’ here is a statement connective and ‘A’ and‘ B’ are schematic letters
for well-formed formulas.) Russell’s system has,

(1a) p .⊃. q ⊃ p .

Call this the “propositional analog” of the sentential tautology. Russell’s system also
has what are “nonpropositional analogs” of sentential tautologies, however. For our
example above there is,

(1b) x ⊃ x :⊃x,y: y ⊃ y .⊃. (x .⊃. y ⊃ x).

Now every instance of (1a) is provable from (1b). But it turns out that the derivation
of nonpropositional analogs commonly involves the use of the propositional analogs.
So it is important to arrive at propositional analogs first.

With the propositional analogs *id, *simp, *syll, *imp, *exp, *comp, and *re-
duc at hand, we can show the semantic completeness ofPrinciples with respect to
the tautologies of modern sentential logic. In what follows we shall arrive at propo-
sitional analogs of the following schemata.

A .→. B → A
A .→. B → C :→: A → B .→. A → C
∼∼ A → A

Any sentential calculus which takes these axiom schemata, has ‘F’ as aprimitive
well-formed formula (for a necessarily false formula), Modus Ponens as its inference
rule, and the definitions

∼ A =d f A → F,

A & B =d f A .→ . B → F :→: F
A ∨ B =d f A → B .→ B
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is known to be semantically complete.12 Call this sentential calculus ‘(F)’. Our task
then, is to prove propositional analogs of the sentential schemata of (F). To demon-
strate semantic completeness with respect to tautologies let us begin with the follow-
ing theorem schemata. Many will validate derived rules, and we shall frequently ex-
ploit such derived rules for convenience.

Theorem*1 � p .⊃. q ⊃ p

1. pq .⊃. p simp*
2. pq .⊃. p :⊃: p .⊃. q ⊃ p exp*
3. p .⊃. q ⊃ p 1, 2, Pp4

Theorem*2 � p ⊃ pp

1. p ⊃ p id*
2. p ⊃ p :⊃: p ⊃ p .⊃. p ⊃ pp comp*
3. p ⊃ p :⊃: p ⊃ pp 1, 2, Pp4
4. p ⊃ pp 1, 3, Pp4

Theorem*3 � (p ⊃ q)p :⊃: q

1. p ⊃ q .⊃. p ⊃ q id*
2. (p ⊃ q)p :⊃: q 1, DR(imp*)

Theorem*4 � pq .⊃. q

1. q ⊃ q :⊃: p .⊃. q ⊃ q Theo*1
2. p .⊃. q ⊃ q 1, id*, Pp4

3. pq .⊃. q 2, DR(imp*)

Theorem*5 � p .⊃. q ⊃ r :⊃: p ⊃ q .⊃. p ⊃ r

1. (p .⊃. q ⊃ r)((p ⊃ q)p) :⊃: p .⊃. q ⊃ r 1, simp*
2. (p .⊃. q ⊃ r)((p ⊃ q)p) :⊃: (p ⊃ q)p Theo*4
3. (p ⊃ q)p .⊃. p Theo*4
4. (p .⊃. q ⊃ r)((p ⊃ q)p) .⊃. p 2, 3, DR(syll*)
5. (p .⊃. q ⊃ r)((p ⊃ q)p) .⊃. (p .⊃. q ⊃ r)p 1, 4, DR(comp*)
6. (p .⊃. q ⊃ r)p .⊃. q ⊃ r Theo*3
7. (p .⊃. q ⊃ r)((p ⊃ q)p) .⊃. q ⊃ r 5, 6, DR(syll*)
8. (p ⊃ q)p .⊃. q Theo*3
9. (p .⊃. q ⊃ r)((p ⊃ q)p) ⊃ q 2, 8, DR(syll*)

10. (p .⊃. q ⊃ r)((p ⊃ q)p) .⊃. (q ⊃ r)q 7, 9, DR(comp*)
11. (q ⊃ r)q .⊃. r Theo*3
12. (p .⊃. q ⊃ r)((p ⊃ q)p) .⊃. r 10, 11, DR(syll*)
13. p .⊃. q ⊃ r :⊃: (p ⊃ q)p .⊃. r 12, DR(exp*)
14. (p ⊃ q)p .⊃. r :⊃: p ⊃ q .⊃. p ⊃ r exp*
15. p .⊃. q ⊃ r :⊃: p ⊃ q .⊃. p ⊃ r 13, 14, DR(syll*)
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Theorem*6 � pq .⊃. qp

1. pq .⊃. p simp*
2. pq .⊃. q Theo*4
3. pq .⊃. qp 1, 2, DR(comp*)

Theorem*7 (comm*) � p .⊃. q ⊃ r :⊃: q .⊃. p ⊃ r

1. p .⊃. q ⊃ r :⊃: pq .⊃. r imp*
2. qp ⊃ pq .⊃. (pq .⊃. r :⊃: qp .⊃. r) syll*
3. qp ⊃ pq Theo*6
4. pq ⊃ r .⊃. qp ⊃ r 2, 3, Pp4
5. p .⊃. q ⊃ r :⊃: qp ⊃ r 1, 4, DR(syll*)
6. qp ⊃ r :⊃: q .⊃. p ⊃ r exp*
7. p .⊃. q ⊃ r :⊃: q .⊃. p ⊃ r 5, 6, DR(syll*)

Theorem*8 � z ⊃ z :⊃z: z .⊃. q ⊃ z

1. z ⊃ z :⊃: q ⊃ q .⊃. (zq .⊃. z) simp, DR(UI)
2. q ⊃ q :⊃: z ⊃ z .⊃. (zq .⊃. z) 1, DR(comm*)
3. z ⊃ z .⊃. (zq .⊃. z) 2, id*, Pp4

4. z ⊃ z :⊃: q ⊃ q .⊃. (zq .⊃. z :⊃: z .⊃. q ⊃ z) exp, DR(UI)
5. q ⊃ q :⊃: z ⊃ z .⊃. (zq .⊃. z) :⊃: z .⊃. q ⊃ z) 4, DR(comm*)
6. z ⊃ z .⊃. (zq .⊃. z :⊃: z .⊃. q ⊃ z) 5, id*, Pp4

7. zq .⊃. z :⊃: (z ⊃ z :⊃: z .⊃. q ⊃ z) 6, DR(comm*)
8. z ⊃ z .⊃. (z ⊃ z :⊃: z .⊃. q ⊃ z) 3, 7, DR(syll*)
9. (z ⊃ z)(z ⊃ z) :⊃: z .⊃. q ⊃ z 8, DR(imp*)

10. z ⊃ z .⊃. (z ⊃ z)(z ⊃ z) Theo*2
11. z ⊃ z :⊃: z .⊃. q ⊃ z 9, 10, DR(syll*)
12. z ⊃ z :⊃z: z .⊃. q ⊃ z 11, UG

This is a partly nonpropositional analog of Theo*1.

Theorem*9 � f ⊃ q

1. x ⊃ x .⊃x. x :⊃: q ⊃ q .⊃. q Theo(a)
2. q ⊃ q .⊃. (x ⊃ x .⊃x. x :⊃: q) 1, DR(comm*)
3. q ⊃ q id*
4. x ⊃ x .⊃x. x :⊃: q 2, 3, Pp4
5. f ⊃ q 4, d f ( f )

Theorem*10 � −− p ⊃ p

1. p ⊃ f .⊃. p :⊃: p reduc*
2. p ⊃ f .⊃. f :⊃: f ⊃ p .⊃. (p ⊃ f .⊃. p) syll*
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3. f ⊃ p :⊃: (p ⊃ f .⊃. f ) .⊃. (p ⊃ f .⊃. p) 2, DR(comm*)
4. p ⊃ f .⊃. f :⊃: p ⊃ f .⊃. p 3, Theo*9, Pp4

5. p ⊃ f .⊃. f :⊃: p 1, 4, DR(syll*)
6. −− p ⊃ p 5, d f (–)

It might at first be thought that the presence of Theo*1, Theo*5, and Theo*10 are
enough to show semantic completeness, but this is not so. We need to prove the equiv-
alence of Russell’s negation with ours and the equivalence of Russell’s conjunction
with ours.

Theorem*11 � ¬p ⊃ –p

1. z ⊃ z .⊃z. p ⊃ z :⊃: f ⊃ f .⊃. p ⊃ f Theo(a)
2. f ⊃ f .⊃. (z ⊃ z .⊃z. p ⊃ z :⊃: p ⊃ f ) 1, DR(comm*)
3. f ⊃ f id*
4. z ⊃ z .⊃z. p ⊃ z :⊃: p ⊃ f 2, 3, Pp4
5. ¬p ⊃ –p 4, d f (¬), d f (–)

Theorem*12 � p :⊃: z ⊃ z .⊃. z . :⊃z: . z ⊃ z .⊃. p ⊃ z
wherez is not free inp.

1. z ⊃ z .⊃. z ⊃ z :⊃: z ⊃ z .⊃.
[(p :⊃: z ⊃ z .⊃. z) ⊃ (p(z ⊃ z) ⊃ z)] imp, DR(UI)

Abbreviate, putting ‘m’ for ‘ z ⊃ z’
2. m ⊃ m :⊃: m .⊃. [(p .⊃. m ⊃ z) ⊃ (pm ⊃ z)] 1, d f (m)

3. m ⊃ m id*
4. m ⊃ [(p .⊃. m ⊃ z) ⊃ (pm ⊃ z)] 2, 3, Pp4

5. m(p .⊃. m ⊃ z) .⊃. pm ⊃ z 4, imp*
6. mp ⊃ pm Theo*6
7. 6 :⊃: pm ⊃ z .⊃. mp ⊃ z syll*
8. pm ⊃ z .⊃. mp ⊃ z 6, 7, Pp4
9. m(p .⊃. m ⊃ z) .⊃. mp ⊃ z 5, 8, DR(syll*)

10. m ⊃ m :⊃: p ⊃ p .⊃. [mp ⊃ z :⊃: m .⊃. p ⊃ z) exp, DR(UI)
11. mp ⊃ z :⊃: m .⊃. p ⊃ z 10, id*, Pp4

12. m(p .⊃. m ⊃ z) :⊃: m .⊃. p ⊃ z 9, 11, DR(syll*)
13. m ⊃ [m(p .⊃. m ⊃ z) .⊃. p ⊃ z] 12, DR(comm*)
14. [m(p .⊃. m ⊃ z) .⊃. p ⊃ z] ⊃

[m :⊃: (p .⊃. m ⊃ z) .⊃. p ⊃ z] exp*
15. m ⊃ [m :⊃: (p .⊃. m ⊃ z) .⊃. p ⊃ z] 13, 14, DR(syll*)
16. mm :⊃: (p .⊃. m ⊃ z) .⊃. p ⊃ z 15, DR(imp*)
17. m ⊃ mm Theo*2
18. m :⊃: (p .⊃. m ⊃ z) .⊃. p ⊃ z 16,17, DR(syll*)
19. p .⊃. m ⊃ z :⊃: m .⊃. p ⊃ z 18, DR(comm*)
20. p :⊃: z ⊃ z .⊃. z . :⊃: . z ⊃ z .⊃. p ⊃ z 19,d f (m)

21. p :⊃: z ⊃ z .⊃. z . :⊃z: . z ⊃ z .⊃. p ⊃ z 20, UG
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Theorem*13 � –p ⊃ ¬p

1. p ⊃ f :⊃: ( f :⊃: z ⊃ z .⊃. z) .⊃.
(p :⊃: z ⊃ z .⊃. z) syll*

2. ( f :⊃: z ⊃ z .⊃. z) :⊃: p ⊃ f .⊃.
(p :⊃: z ⊃ z .⊃. z) 1, DR(comm*)

3. f :⊃: z ⊃ z .⊃. z Theo(a), d f ( f )
4. p ⊃ f .⊃. (p :⊃: z ⊃ z .⊃. z) 2, 3, Pp4
5. p :⊃: z ⊃ z .⊃. z . :⊃: . z ⊃ z .⊃. p ⊃ z Theo*12, DR(UI)
6. p ⊃ f :⊃: z ⊃ z .⊃. p ⊃ z 4, 5, DR(syll*)
7. p ⊃ f :⊃z: z ⊃ z .⊃. p ⊃ z 6, UG
8. p ⊃ f :⊃: z ⊃ z .⊃z. p ⊃ z 7, Theo(b), Pp4

9. –p ⊃ ¬p 8, d f (–), d f (¬)

Theorem*14 � z ⊃ z .⊃z. f ⊃ z

1. f :⊃: z ⊃ z .⊃. z Theo(a), d f ( f )
2. 1 :⊃: z ⊃ z .⊃. f ⊃ z Theo*12, DR(UI)
3. z ⊃ z .⊃. f ⊃ z 1, 2, Pp4
4. z ⊃ z .⊃z . f ⊃ z 3, UG

Theorem*15 � z ⊃ q :⊃z: –z ⊃ q .⊃. q, wherez is not free inq.

1. z ⊃ q :⊃: –q ⊃ –z syll*, d f (–)

2. –q ⊃ –z :⊃: –z ⊃ q .⊃. –q ⊃ q syll*
3. z ⊃ q :⊃: –z ⊃ q .⊃. –q ⊃ q 1, 2, DR(syll*)
4. –q ⊃ q .⊃. q reduc*,d f ( f )
5. –z ⊃ q .⊃. –q ⊃ q :⊃: (–q ⊃ q .⊃. q) ⊃

(–z ⊃ q .⊃. q) syll*
6. –q ⊃ q .⊃. q :⊃: (–z ⊃ q .⊃. –q ⊃ q) ⊃

(–z ⊃ q .⊃. q) 5, DR(comm*)
7. –z ⊃ q .⊃. –q ⊃ q :⊃: –z ⊃ q .⊃. q 4, 6, Pp4
8. zq :⊃: –z ⊃ q .⊃. q 3, 7, DR(syll*)
9. z ⊃ q :⊃z –z ⊃ q .⊃. q 8, UG

Theorem16 � xy .⊃x,y. x & y

1. (z ⊃ z . :⊃z: . x .⊃. y ⊃ z :⊃: z) ⊃
( f ⊃ f . :⊃: . x .⊃. y ⊃ f :⊃: f ) Theo(a)

2. f ⊃ f :⊃: xy .⊃. x & y 1, d f (comm*),d f (xy), d f (& )

3. xy .⊃. x & y 2, id*, Pp4

4. xy .⊃x,y x & y 3, UG

Theorem*17 � pq .⊃. p & q

Immediate from Theo16, by DR(UI).
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Theorem*18 � p & q .⊃. pq

1. q ⊃ z :⊃: z ⊃ f .⊃. q ⊃ f syll*
2. z ⊃ f :⊃: q ⊃ z .⊃. q ⊃ f 1, DR(comm*)
3. (p .⊃. q ⊃ z) .⊃. (q ⊃ z .⊃. q ⊃ f ) ⊃

(p .⊃. q ⊃ f ) syll*
4. (q ⊃ z .⊃. q ⊃ f ) .⊃. (p .⊃. q ⊃ z) ⊃

(p .⊃. q ⊃ f ) 3, DR(comm*)
5. z ⊃ f .⊃. (p .⊃. q ⊃ z) ⊃ (p .⊃. q ⊃ f ) 2, 4, DR(syll*)
6. (p .⊃. q ⊃ z) ⊃ (p .⊃. q ⊃ f ) :⊃:

(p .⊃. q ⊃ f :⊃: z) ⊃ (p .⊃. q ⊃ z :⊃: z) syll*
7. z ⊃ f .⊃. (p .⊃. q ⊃ f :⊃: z) ⊃

(p .⊃. q ⊃ z :⊃: z) 5, 6, DR(syll*)
8. (p .⊃. q ⊃ f :⊃: z) :⊃:

z ⊃ f .⊃. (p .⊃. q ⊃ z :⊃: z) 7, DR(comm*)
9. (p .⊃. q ⊃ f :⊃: f ) :⊃:

f ⊃ z .⊃. (p .⊃. q ⊃ f :⊃: z) syll*
10. (p .⊃. q ⊃ f :⊃: f )( f ⊂ z) ⊃ (p .⊃. q ⊃ f :⊃: z) 9, imp*
11. (p & q)( f ⊃ z) :⊃: z ⊃ f .⊃.

(p .⊃. q ⊃ z :⊃: z) 8, 10, DR(syll*),d f (& )

12. ( f ⊃ z)(p & q) .⊃. (p & q)( f ⊃ z) Theo*6
13. ( f ⊃ z)(p & q) :⊃: z ⊃ f .⊃.

(p .⊃. q ⊃ z :⊃: z) 11, 12, DR(syll*)
14. f ⊃ z .⊃.

[ p & q :⊃: z ⊃ f .⊃. (p .⊃. q ⊃ z :⊃: z)] 13, DR(exp*)
15. [p & q :⊃: z ⊃ f .⊃. (p .⊃. q ⊃ z :⊃: z)] :⊃:

z ⊃ f .⊃. [ p & q ⊃ (p .⊃. q ⊃ z :⊃: z)] comm*
16. f ⊃ z :⊃: z ⊃ f .⊃.

[ p & q .⊃. (p .⊃. q ⊃ z :⊃: z)] 14, 15, DR(syll*)
17. z ⊃ z .⊃. f ⊃ z Theo*14, DR(UI)
18. z ⊃ z :⊃: z ⊃ f .⊃.

[ p & q .⊃. (p .⊃. q ⊃ z :⊃: z)] 16, 17, DR(syll*)

Now let us call ‘p .⊃. q ⊃ z’ by the name ‘w’ f or convenience.

19. z ⊃ z :⊃: z ⊃ f .⊃. [ p & q .⊃. w ⊃ z] 18,d f (w)

20. z ⊃ z :⊃: z .⊃. w ⊃ z Theo*8, DR(UI)
21. w ⊃ z :⊃: p & q .⊃. w ⊃ z Theo*1
22. z .⊃. w ⊃ z :⊃: 21 .⊃.

(z :⊃: p & q .⊃. w ⊃ z) syll*
23. 21 :⊃: (z .⊃. w ⊃ z) ⊃

(z :⊃: p & q .⊃. w ⊃ z) 22, DR(comm*)
24. z .⊃. w ⊃ z :⊃: (z :⊃: p & q .⊃. w ⊃ z) 21, 23, Pp4
25. z ⊃ z .⊃. (z :⊃: p & q .⊃. w ⊃ z) 20, 24, DR(syll*)
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Finally, abbreviate, putting ‘s’ for ‘ p & q .⊃. w ⊃ z.’

26. z ⊃ z :⊃: z ⊃ f .⊃. s 19,d f (s)
27. z ⊃ z :⊃: z ⊃ s 25,d f (s)
28. z ⊃ z :⊃: (z ⊃ s)(z ⊃ f .⊃. s) 26, 27, DR(comp*)
29. (z ⊃ s)(z ⊃ f .⊃. s) :⊃:

z ⊃ s .⊃. (z ⊃ f .⊃. s) exp*
30. z ⊃ s .⊃. (z ⊃ f .⊃. s) :⊃: s Theo15, DR(UI), d f (–)

31. z ⊃ z .⊃. s 28, 29, 30, DR(syll*)
32. z ⊃ z .⊃. (p & q .⊃. w ⊃ z) 31,d f (s)
33. z ⊃ z .⊃. [ p & q :⊃: (p .⊃. q ⊃ z :⊃: z)] 32,d f (w)

34. p & q .⊃. [z ⊃ z .⊃. (p .⊃. q ⊃ z :⊃: z)] 33, DR(comm*)
35. p & q .⊃z. [z ⊃ z .⊃. (p .⊃. q ⊃ z :⊃: z)] 34, UG
36. p & q .⊃. [z ⊃ z .⊃z. (p .⊃. q ⊃ z :⊃: z)] 35, Theo*(b), Pp4

37. p & q .⊃. pq 36,d f (pq)

Our theorems show that the system ofPrinciples is complete with respect to analogs
of sentential tautologies.

5 Independence and reduction In Principles Russell wondered whether Reduc-
tion was independent ([10], p. 17). In discussion of this paper with me, Byrd sug-
gested a proof that Reduction is independent as follows.

Consider the subsystem (P*) of (P) which consists of the propositional axiom
schemata id*, syll*, simp*, imp*, exp*, and comp* together with Pp4. With Russell’s
definition of tilde and the conjunction sign, the schemata id*, simp*, syll*, imp*,
exp*, comp* are intuitionistically valid, but reduc* is not. On the basis of Byrd’s
argument then, we can show that Reduction is independent. We have lately seen that
reduc* is not an intuitionistic semantic consequence of the others. Now the subsys-
tem (P*−), which is just (P*) with reduc* removed, isintuitionistically sound (in the
sense that any thesis of the system is a propositional analog of a sentential tautology
which is intuitionistically valid). So reduc*, being a propositional analog of a senten-
tial tautology that is not intuitionistically valid, is not a thesis of the subsystem (P*−).
Consider then the subsystem (P−) which is just (P) with axiom Reduction removed.
Every thesis of (P−) that is a propositional analog of a sentential tautology is a thesis
of the subsystem (P*−). It follows that reduc* is not a theorem schema of (P−). We
now have our result. For if Reduction were a thesis of (P−), then reduc* would be a
theorem schema of (P−) for it is immediate from Reduction. Accordingly, Reduction
is not a thesis of (P−). Reduction is independent in (P).

Curiously, a rather innocuous looking change in the system ofPrinciples (P) al-
ters the independence result for reduc*. If we replace Russell’s ‘xy’ with our ‘x & y’
in Russell’s axioms simp, imp, exp, and comp, then reduc* is provable after all. Call
the system with the change “Principles+” (P+). We now prove:13

neg* �p+ – –p ⊃ p

1. (p .⊃. p ⊃ f ) & p .⊃. p ⊃ f Theo*3
2. (p .⊃. p ⊃ f ) & p .⊃. p Theo*4
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3. (p ⊃ f ) & p .⊃. f Theo*3
4. (p .⊃. p ⊃ f ) & p .⊃. (p ⊃ f ) & p 1, 2, DR(comp*)
5. (p .⊃. p ⊃ f ) & p .⊃. f 3, 4, DR(syll*)
6. p .⊃. p ⊃ f :⊃: p ⊃ f 5, DR(exp*)
7. (p .⊃. p ⊃ f :⊃: p ⊃ f ) :⊃:

(p ⊃ f .⊃. f ) ⊃ (p .⊃. p ⊃ f :⊃: f ) syll*
8. p ⊃ f .⊃. f . :⊃: . p .⊃. p ⊃ f :⊃: f 6, 7, Pp4
9. – –p .⊃. p & p 7, df(–), df(&)

10. p & p .⊃. p simp*
11. – –p ⊃ p 8, 9, DR(syll*)

It follows that (P+) is semantically complete. So reduc*+ is provable in (P+).
If we can prove Reduction in (P+) then, since we have the equivalences of Rus-

sell’s negation and ours, Russell’s conjunction and ours, the systems are deductively
equivalent—that is, every thesis of (P) is a thesis of (P+), and conversely. In the next
section, we shall find that in (P) and (P+) we can transform any propositional ana-
log of a sentential tautology into a nonpropositional analog. So we shall arrive at the
non-independence Reduction in (P+).

In his 1905 manuscript “On Fundamentals,” Russell seems aware that a change
in his definition of the conjunction sign achieves the non-independence of reduc* (and
Reduction) ([13], p. 413). In considering the matter of the independence of Russell’s
principles, it is worth noting that Vuillemin [17] observes that id* is provable from
syll*, simp*, exp*, reduc*. The proof is obvious:

1. p(¬p ⊃ p) ⊃ p simp*
2. p :⊃: ¬p ⊃ p .⊃. p 1, DR(exp*)
3. ¬p ⊃ p .⊃. p :⊃: p reduc*
4. p ⊃ p 2, 3, DR(syll*)

One must not, however, think that Pp1 (and so id*) are not independent. Taking a
rule of uniform replacement, Vuillemin proceeds as if the principles were axioms of
a modern sentential calculus. This forgets that Russell’s Pp1 is required to derive
propositional analogs in the first place. The principle Pp1 is indispensable to the orig-
inal system ofPrinciples (andPrinciples+) and *id is its immediate consequence.
Vuillemin also cites Guillaume’s proof of comp* from id*, syll*, imp*, exp* and re-
duc*. Guillaume’s proof does not suffer from the same flaw as Vuillemin’s proof of
*id. One can proceed without Composition to id*, syll*, imp*, exp*, and reduc*, and
then produce Guillaume’s proof of comp*. Since our next section shows that one can
arrive at nonpropositional analogs from the propositional, it follows that Composition
is not independent in (P).

6 Completeness with respect to nonpropositional analogs of sentential tautologies
How can we know thatPrinciples is semantically complete with respect to nonpropo-
sitional analogs of sentential tautologies? We can know this by showing that it is
possible to transform any propositional analog into a nonpropositional one. The fol-
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lowing can be proved by meta-linguistic induction on the number of connectives in a
well-formed formula.14

Theorem schema(d)

� If �Av� is any context ofv built up solely from⊃, thenµ ⊃ µ :⊃µ:
A[{µ ∨ µ} | v] . ≡ . A[µ | v], with µ free forv in A.

Here I put:α ≡ β =d f (α ⊃ β)(β ⊃ α). For the base case,�Av� must be one among:

(a) v ⊃ v

(b) v ⊃ x
(c) x ⊃ v

In situation (a) we have to show

Theorem19 � µ ⊃ µ .⊃µ.(µ ∨ µ .⊃. µ ∨ µ :≡: µ ⊃ µ).

1. µ ⊃ µ :⊃: (µ ∨ µ .⊃. µ ∨ µ) .⊃. µ ⊃ µ Theo*1
2. (µ ⊃ µ)(µ ⊃ µ) :⊃: µ ⊃ µ .⊃. µ ⊃ µ log
3. µ ⊃ µ :⊃: µ ⊃ µ .⊃. (µ ⊃ µ .⊃. µ ⊃ µ) 2, DR(exp*), Pp4
4. µ ⊃ µ :⊃: (µ ∨ µ .⊃. µ ∨ µ :⊃: µ ∨ µ ⊃

(µ ⊃ µ :⊃: µ ∨ µ .⊃. µ ∨ µ) 1, 3, DR(comp*)
5. µ ⊃ µ .⊃. (µ ∨ µ .⊃. µ ∨ µ :≡: µ ∨ µ) 4, d f (≡)

6. µ ⊃ µ .⊃µ.(µ ∨ µ .⊃. µ ∨ µ :≡: µ ∨ µ) 5, UG

For situations (b) and (c) we shall need:

Theorem20 � µ ⊃ µ :⊃µ: µ .⊃. µ ∨ µ

1. µ ⊃ µ .⊃. (µ :⊃: µ ⊃ µ .⊃. µ) Theo*8, DR(UI)
2. µ ⊃ µ :⊃: µ .⊃. µ ∨ µ 1, d f (v)

3. µ ⊃ µ :⊃µ: µ .⊃. µ ∨ µ 2, UG

Theorem21 � µ ⊃ µ :⊃µ: µ ∨ µ .⊃. µ

1. µ ⊃ µ .⊃. µ :⊃: µ ⊃ µ .⊃. µ id*
2. µ ∨ µ :⊃: µ ⊃ µ .⊃. µ 1, d f (v)

3. µ ⊃ µ :⊃: µ ∨ µ .⊃. µ 2, Theo*12, DR(UI), Pp4

4. µ ⊃ µ :⊃µ: µ ∨ µ .⊃. µ 3, UG

Wenow have situation (b):

Theorem22 � µ ⊃ µ .⊃µ,x.(µ ∨ µ .⊃. x :≡: µ ⊃ x)

1. µ ⊃ µ :⊃: µ .⊃. µ ∨ µ Theo20, DR(UI)
2. µ .⊃. µ ∨ µ :⊃: (µ ∨ µ .⊃. x) .⊃. µ ⊃ x syll*
3. µ ⊃ µ .⊃. (µ ∨ µ .⊃. x :⊃: µ ⊃ x) 1, 2, DR(syll*)
4. µ ⊃ µ :⊃: µ ∨ µ .⊃. µ Theo21, DR(UI)
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5. (µ ∨ µ .⊃. µ) :⊃: µ ⊃ x .⊃. (µ ∨ µ .⊃. x) syll*
6. µ ⊃ µ :⊃: µ ⊃ x .⊃. (µ ∨ µ .⊃. x) 4, 5, DR(syll*)
7. µ ⊃ µ .⊃. (µ ∨ µ .⊃. x :⊃: µ ⊃ x)

(µ ⊃ x :⊃: µ ∨ µ .⊃. x) 3, 6, DR(comp*)
8. µ ⊃ µ .⊃. (µ ∨ µ .⊃. x :≡: µ ⊃ x) 7, d f (≡)

9. µ ⊃ µ .⊃µ,x.(µ ∨ µ .⊃. x :≡: µ ⊃ x)

Situation (c) is akin to situation (b) and left for the reader. This completes the base.
For the inductive step, assume that

µ ⊃ µ .⊃µ.A[µ ∨ µ | v] :≡: A[µ | v],

for all �Av� with fewer thann connectives. We want to show it holds for�Av� with
n connectives. Now�Av� is �Bv ⊃ Cv�, where �Bv� and �Cv� have fewer thann
connectives. Accordingly, by the inductive hypothesis, we have:

µ ⊃ µ :⊃µ: B[µ ∨ µ | v] .≡. B[µ | v],

µ ⊃ µ :⊃µ: C[µ ∨ µ | v] .≡. C[µ | v].

From these the reader can easily see that it is straightforward to demonstrate that we
have

µ ⊃ µ :⊃µ: A[µ ∨ µ | v] :≡: A[µ | v],

for �Av� with n connectives.
The purpose of the above schema is to enable a transformation from any

quantifier-free propositional analog to a nonpropositional analog. To illustrate, let us
transform an instance of reduc* to arrive at Reduction.

� x ⊃ x :⊃x,y: y ⊃ y .⊃. [x ⊃ y .⊃. x :⊃: x]

0. (x ∨ x) ⊃ (y ∨ y) .⊃. (x ∨ x) :⊃: (x ∨ x) reduc*
1. x ⊃ x .⊃. [(x ∨ x) ⊃ (y ∨ y) .⊃. (x ∨ x) :⊃:

(x ∨ x)] ⊃ [x ⊃ (y ∨ y) .⊃. x :⊃: x] Theo(d), log
2. [(x ∨ x) ⊃ (y ∨ y) .⊃. (x ∨ x) :⊃: (x ∨ x)] :⊃:

x ⊃ x .⊃. [x ⊃ (y ∨ y) .⊃. x :⊃: x] 1, DR(comm*)
3. x ⊃ x .⊃. [x ⊃ (y ∨ y) .⊃. x :⊃: x] 0, 2, Pp4

4. y ⊃ y .⊃. {x ⊃ x .⊃. [x ⊃ (y ∨ y) .⊃. x :⊃: x]} ⊃
{x ⊃ x .⊃. [x ⊃ y .⊃. x :⊃: x]} Theo(d), log

5. {x ⊃ x .⊃. [x ⊃ (y ∨ y) .⊃. x :⊃: x]} :⊃:
y ⊃ y .⊃. {x ⊃ x .⊃. [x ⊃ y .⊃. x :⊃: x]} 4, DR(comm*)

6. y ⊃ y .⊃. {x ⊃ x .⊃. [x ⊃ y .⊃. x :⊃: x]} 3, 5, Pp4
7. x ⊃ x :⊃: y ⊃ y .⊃. [x ⊃ y .⊃. x :⊃: x] 6, DR(comm*)
8. x ⊃ x :⊃x,y: y ⊃ y .⊃. [x ⊃ y .⊃. x :⊃: x] 7, UG

It should be clear that we can always transform in this way. The above schema vali-
dates the following schema for (P):
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Theorem Schema(e)
� B [{z ⊃ w} | v] .⊃z,w. C [{z ⊃ w} | v] :⊃: µ ⊃ µ .⊃µ. B [µ | v] ⊃
C [µ | v], where �B [{z ⊃ w} | v] ⊃ C [{z ⊃ w} | v]� is a propositional
analog of a sentential tautology.

(To state this meta-theorem, we have to use a conditional form because quantifiers
always index a conditional sign. We intend that there might be cases wherev does
not occur inB and/orv does not occur inC.) This schema shows the semantic com-
pleteness of (P) with respect to nonpropositional analogs of the sentential tautologies.

7 Odds and ends With the semantic completeness of (P) with respect to analogs of
sentential tautologies, it follows that our system (P+) is deductively equivalent with
(P). We have lately seen that in (P) we can transform any propositional analog of a
sentential tautology into a nonpropositional analog. The transformation holds in (P+)
as well. Accordingly, the above demonstration of Reduction from reduc* in (P) holds
as well in (P+). The equivalence of our conjunction with Russell’s and our tilde with
Russell’s holds in (P+). Accordingly, (P) and (P+) are deductively equivalent.

We know as well that (P+) and therefore (P), are consistent. For this we need
only apply a version of the common consistency proof for the predicate calculus.
Eliminate all definitions, except for that of “f”, change all occurrences of “f ” to “ F”,
then delete all quantifier indices, change all individual variables to sentential letters,
and change all occurrences of “⊃” to “ →”. Every axiom of (P+) is now a tautology.
Russell’s Pp4 becomes the transformation rule Modus Ponens, which preserves tau-
tologyhood, and Russell’s Rule (CP) preserves it as well. So any inconsistency in
(P+) would show up in the sentential calculus (F) above. Since (F) is known to be
consistent, so is (P+). Since (P) is deductively equivalent with (P+), we know that
(P) is consistent.

What follows are some odds and ends. We have some interesting theses of the
system P that are not analogs (propositional or nonpropositional) of sentential tau-
tologies.

Theorem24 � y ⊃ y :⊃x,y. x ⊃ f .⊃. x ⊃ y

1. y ⊃ y .⊃. f ⊃ y Theo*14, DR(UI)
2. x ⊃ f :⊃: f ⊃ y .⊃. x ⊃ y syll, DR(UI)
3. f ⊃ y :⊃: x ⊃ f .⊃. x ⊃ y 2, DR(comm*)
4. y ⊃ y :⊃: x ⊃ f .⊃. x ⊃ y 1, 3, DR(syll*)
5. y ⊃ y :⊃x,y: x ⊃ f .⊃. x ⊃ y 4, UG

The next theorem shows that the proposition ‘– –x’ does not implyx whenx is not
a proposition.

Theorem25 � –(x ⊃ x) .⊃x. –(– –x .⊃. x)

1. – –x ⊃ x :⊃: x ⊃ x Pp2, UI
2. x ⊃ x .⊃. f . :⊃: . – –x ⊃ x .⊃. f 1, syll*, Pp4

3. x ⊃ x .⊃. f :⊃x: – –x ⊃ x .⊃. f 2, UG
4. –(x ⊃ x) .⊃x.–(– –x ⊃ x) 3, d f (–)
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With Russell’s definition of the disjunction sign, we get:

Theorem26 � –(y ⊃ y) :⊃x,y: –(x ∨ y)

1. x ⊃ y .⊃. y :⊃: y ⊃ y Pp2, DR(UI)
2. y ⊃ y .⊃. f . :⊃: . x ⊃ y .⊃. y :⊃: f 1, syll*, Pp4

3. y ⊃ y .⊃. f :⊃: x ∨ y .⊃. f 2, d f (∨)

4. y ⊃ y .⊃. f :⊃y: x ∨ y .⊃. f 3, UG
5. y ⊃ y .⊃. f :⊃x,y: x ∨ y .⊃. f 4, UG
6. –(y ⊃ y) :⊃x,y: –(x ∨ y) 5, d f (–)

That is,y’s being a proposition implies, for allx andy, x ∨ y.

Theorem27 � y ⊃ y . :⊃x,y: . –(x ⊃ x) .⊃. x ∨ y 15

1. x ⊃ y .⊃. x ⊃ x Pp2, DR(UI)
2. x ⊃ x .⊃. f :⊃: x ⊃ y .⊃. f 1, syll*, Pp4

3. (x ⊃ y .⊃. f ) .⊃. ( f ⊃ y) ⊃ (x ⊃ y .⊃. y) 2, syll*
4. (x ⊃ x .⊃. f ) .⊃. ( f ⊃ y) ⊃ (x ⊃ y .⊃. y) 2, 3, DR(syll*)
5. ( f ⊃ y) .⊃. (x ⊃ x .⊃. f ) ⊃ (x ⊃ y .⊃. y) 4, DR(comm*)
6. y ⊃ y .⊃. f ⊃ y Theo*14, DR(UI)
7. y ⊃ y .⊃. (x ⊃ x .⊃. f ) ⊃ (x ⊃ y .⊃. y) 5, 6, DR(syll*)
8. y ⊃ y .⊃. –(x ⊃ x) ⊃ x ∨ y 7, d f (–), d f (∨)

9. y ⊃ y .⊃x,y.–(x ⊃ x) ⊃ x ∨ y 8, UG

This says thaty’s being a proposition andx’s not being a proposition, implies for
all x andy, x ∨ y. There is a similar result concerning conjunction:

Theorem28 � –(x ⊃ x) :⊃x,y: x & y

1. x .⊃. y ⊃ f :⊃: x ⊃ x Pp2, DR(UI)
2. x ⊃ x .⊃. f . :⊃: . x .⊃. y ⊃ f :⊃: f 1, syll*, Pp4

3. x ⊃ x .⊃. f :⊃: x & y d f (& )

4. x ⊃ x .⊃. f :⊃y: x & y 3, UG
5. x ⊃ x .⊃. f :⊃x,y: x & y 4, UG
6. –(x ⊃ x) .⊃x,y . x & y 5, d f (–)

From the equivalence in (P) of Russell’s conjunction and our &, we see thatx’s
not being a proposition implies{xy}. On the other hand, we have:

Theorem29 � –(y ⊃ y) .⊃x,y . x & y :⊃: y ⊃y y

1. (y ⊃ y .⊃. f :⊃x,y x & y) ⊃ (y ⊃ y .⊃. f :⊃: f & y) Theo(a)
2. (y ⊃ y .⊃. f :⊃x,y x & y) ⊃

(y ⊃ y .⊃. f :⊃: [ f .⊃. y ⊃ f :⊃: f ]) 1, d f (& )

3. (y ⊃ y .⊃. f :⊃: [ f .⊃. y ⊃ f :⊃: f ]) ⊃
f .⊃. y ⊃ f :⊃: y ⊃ y log
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4. (y ⊃ y .⊃. f :⊃x,y x & y) .⊃.
( f .⊃. y ⊃ f :⊃: y ⊃ y) 2, 3, DR(syll*)

5. f .⊃. y ⊃ f :⊃:
[(y ⊃ y .⊃. f :⊃x,y x & y) .⊃. y ⊃ y] 4, DR(comm*)

6. f .⊃. y ⊃ f Theo*9
7. (y ⊃ y .⊃. f :⊃x,y x & y) .⊃. y ⊃ y 5, 6, Pp4
8. (y ⊃ y .⊃. f :⊃x,y x & y) .⊃y.y ⊃ y 7, UG
9. (y ⊃ y .⊃. f :⊃x,y x & y) .⊃. y ⊃y y 8, Theo(b), Pp4

10. –(y ⊃ y) .⊃x,y.x & y :⊃: y ⊃y y 9, d f (–)

Curiously, Byrd expected a theorem that{xy} is implied by y’s being a proposition
([1], p. 351). We can see from Theo29 that if Byrd were correct, it would follow that
every entity is a proposition. Now every thesis of the system is either a propositional
analog of a sentential tautology or is a conditional (material or formal) whose an-
tecedent is of the form

�µ ⊃ µ�.

Accordingly, there is no thesis of the system of the form

�µ ⊃µ µ�.

That is, it is not a theorem of (P) or (P+) that every entity is a proposition. This is
certainly as it should be. And it follows that there is no theorem of the system which
says thaty’s not being a proposition implies{xy}.

NOTES

1. See Frege [4], p. 371 and Russell [14], p. 62.

2. As we now know from the work of Tarski and Gödel this is indeed the case.

3. In fact, 1906 finds Russell embracing the fact that ‘designates-in-s’ cannot be a predicate
of s, and using this to reply to the Richard paradox. See [12], p. 209.

4. He did reject Peano’s conclusion that any progression has equal claim to being regarded
as the natural numbers. Logicism’s logical analyis of cardinal number reveals the real
natural numbers in Russell’s view.

5. See Russell [10], p. 7, and also Russell [12], p. 205.

6. Quine ([9], pp. 31, 257, 268) has precisely the same view and rejects predicate variables.
But surely no one would accuse Quine of rejecting the meta-language/object-langauge
distinction.

7. See [10], p. 15; and Whitehead and Russell [18], p. 115.

8. Actually, Principles did not adopt any notation here. The work offered an analysis of
the constituents of propositions, that are formal implications, by employing a theory of
denoting concepts. The details of this theory and its analysis of the constituents of propo-
sitions expressed by nominalized well-formed formulas containing single letters used as
variables need not detain us here.
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9. In reconstructing the calculus ofPrinciples, Church [3] has special propositional vari-
ables, and employs the statement connective ‘→’. Then, noticing the oddity of�p ⊃
q .= . r�, headds a special quadruple bar to express identity where propositions are con-
cerned. Once we see thatPrinciples has only individual variables and ‘⊃’, there is no
reason for the quadruple bar. We have ‘{x ⊃ y} = z’ as awell-formed formula.

10. We should not be misled by the occurrence of ‘truth’ in *7.11, as if this shows a confla-
tion of theory and meta-theory. The rule UG is meta-linguistic, and as such it would be
perfectly admissible to speak of well-formed formulas of a form as being true.

11. Byrd [1] calls attention to this passage as well.

12. See Church [2], p 72.

13. The theorem schemata used below refer to those proved above with Russell’s definition
of the conjunction sign. But so long as Russell’s axiom Simplification has been adjusted,
these proofs can easily be rewritten with our definition of ‘&’.

14. Since we have completeness, the following proofs avail themselves of some common-
place inferences of sentential logic, annotating with ‘log’.

15. This was pointed out in Byrd [1], p. 351.
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