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Simplified Lower Bounds
for Propositional Proofs

ALASDAIR URQUHART and XUDONG FU

Abstract This article presents a simplified proof of the result that bounded
depth propositional proofs of the pigeonhole principle are exponentialy large.
The proof uses the new techniquesfor proving switching lemmas devel oped by
Razborov and Beame. A similar result is also proved for some examples based
on graphs.

1 Introduction  Substantial progress has been made recently in proving lower
bounds on the complexity of propositional proofs. A decisive advance was made by
Ajtai [1J, who proved superpolynomial lower bounds on the size of bounded depth
Frege proofs of tautologies encoding the pigeonhole principle. In later work, Bellan-
toni, Pitassi, and Urquhart [4] simplified Ajtai’s proof, and subsequently Krajicek,
Pudlak, and Woods, and Pitassi, Beame, and Impagliazzo in [[3], [[L0], and [[1Z] inde-
pendently extended it to prove exponential lower bounds for the same set of tautolo-
gies.

All of the arguments establishing these lower bounds use a type of combinato-
rial argument known generically asaswitching lemma. Initssimplest form (seeFurst,
Saxe, and Sipser [[7], Yao [[I7], and Hastad [B]) this type of argument shows that if a
formulain conjunctive normal form is simplified by arandom partial assignment of
truth-values to its variables (a random restriction) then with high probability it can
be written in digunctive normal form, where the conjuncts are not too large. Thus a
random partial assignment of truth-valuesallowsusto switch efficiently between con-
junctive and digunctive normal form. In asimilar way, the switching lemmas used
in other cases show that the use of random restrictions allows a formula of bounded
depth to be represented by aformulain disjunctive normal form composed of small
terms.

Proofs of the switching lemmas used in papers on the complexity of proofs
B[4 [10)[17] are significantly more complex than the proofs in Boolean complexity
theory on which they are modeled [[7] B][17]. In these lemmas, the variables are not
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independent (as they are in the simpler case), and this fact leads to rather complex
and delicate arguments involving conditional probability. However, recent work of
Razborov [[13] and Beame [[2] has led to drastic simplification of these proofs.

The main purpose of the present paper is to present a fully detailed version of
the resulting simplified proof of exponential lower bounds for bounded depth Frege
proofs of the pigeonhole tautologies. Its principal contribution is to show how the
rather complicated combinatorial and probabilistic arguments for the lower bounds
used in the earlier papers can be replaced by the much simpler counting tech-
niques of Razborov and Beame.

The proof techniques used for this proof can also be used to give exponential
lower boundsfor tautol ogies based on graphs. (Theoriginal ideafor these tautol ogies
is due to Tseitin [[15].) In alater section of the paper a proof of this lower bound is
sketched for afamily of tautol ogies based on compl ete graphs. The last section of the
paper gives afew open problems that appear to require new ideas going beyond the
techniques expounded here.

2 Fregesystems The proof systemswe consider are those familiar from textbook
presentations of logic, consisting of afinite number of axiom schemes and schematic
rules. We call such a system a Frege system. (Strictly speaking, thisis a misnomer,
since Frege's origina system [8] included a tacitly applied rule of substitution; the
use of schematic rules to avoid the rule of substitution is a device of von Neumann
[11.)

The language for propositional logic used here is based on binary disunction
v and negation —; a conjunction A A B istreated as an abbreviation for the formula
—(—=Av —=B). In addition, we include the propositional constants 0 and 1 standing
for “false” and “true” respectively. The set of propositional variableswill be specified
in the following section. If Aisaformulaand py, ..., pm a Sequence of variables
thenwewrite A[B1/p1, ..., Bm/ pm] for theformularesulting from A by substituting
Bi,..., Bnfor ps, ..., pm-

A Frege rule is defined to be a sequence of formulas written in the form
A1, ..., Ak Ag. Inthe caseinwhich the sequence Aq, ..., Ac isempty, theruleis
referredto asan axiomscheme. Theruleissoundif Aq, ..., Ax = Ag, thatis, if every
truth-value assignment satisfying Aq, ..., A¢ aso satisfies Ag. If Aq, ..., Ak F Ag
is a Frege rule, then Cy is inferred from Cq, ..., C¢ by this rule if there is a se-
guence of formulas B, ..., By and variables py, ..., pmsothat forali,0<i <Kk,
Ci = A[B1/p1, .-, Bm/Pml.

If ¥ isaset of Frege rules and A a formula, then a proof of A in F from
A, ..., Anisafinite sequence of formulas such that every formulain the sequence
isoneof A4, ..., Aqmorinferred from earlier formulasinthe sequenceby arulein F,
and the last formulais A. The formulasin the sequence are the lines in the proof.

If F isaset of Frege rules, then it is implicationally complete if whenever
A1, ..., Am = Agthenthereisaproof of Agin F from A4, ..., Am. A Frege system
is defined to be afinite set of sound Frege rules that isimplicationally complete.

Example2.1  Shoenfield’s system ([14], p. 21), in which the primitive connectives
are v and — follows:
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Excluded Middle: +—pvV p;
Expansionrules.  pkFqvVv p;
Contractionrulee  pv pk p;
Associativerule:  pv(QvrkE(pvQq) vr;
Cutrue: pvqg,—pVvrkEqvr.

If T" isaseguence of formulasthen the size of T isthe number of distinct subformulas

inT. In particular, we define the size of aFregerule Ay, ..., A+ Agto bethesize
of thesequence Aq, ..., Ak, Ag. For example, the size of the cut rule in Shoenfield's
systemis?.

A formulacan berepresented by itsformationtreein which theleavesarelabeled
with propositional variables or constants, and an interior node is labeled with v if it
isthe parent of two nodes, and with — if it isthe parent of only one. A branch in the
tree representing aformula, when traversed from the root to the leaf at the end of the
branch is labeled with ablock of operators of one kind (say —), followed by a block
of the other kind (say V), ..., ending with avariable or constant. The logical depth
of a branch is defined to be the number of blocks of operators labeling the branch.
The depth of aformulaisthe maximum logical depth of the branchesin its formation
tree.

Example2.2 Theformula(—pv ——1) v —=(—=qgV r) hasdepth 4.

The depth of a proof in a Frege system is the maximum depth of aline in the proof.
The lower bound proved in this paper is for proofs of bounded depth, in which all
formulas have depth bounded by a fixed constant.

3 Matchings and restrictions  In this section we introduce a language for the
propositional pigeonhole principle and a space of matchings that serve to define re-
strictions on the propositional variables in the language.

Let D, R be finite nonempty setswhere DN R=@,andlet S= DU R We
shall suppose that Sisordered, with al elements of D preceding elementsin R, and
refer to this ordering as ordering by size. (Later, adifferent ordering on asubset of S
plays an important role.) A matching between D and Ris aset of mutually digoint
unordered pairs {i, j}, wherei € D, j € R (that isto say, amatching in the complete
bipartitegraph D x R). A matching coversavertex i if {i, j} belongsto the matching
for somevertex j; amatching coversaset X if it coversall theverticesin X. If X C S,
then M (X) denotes the set of all matchings p such that p covers X, but no matching
properly contained in p covers X. If 7 isamatching then we denote by V (i) the set
of vertices covered by 7. A matching between D and R is perfect if it covers al of
theverticesin DU R.

The pigeonhole principle statesthat if [D| = n+ 1, | R| = nthen thereisno per-
fect matching between D and R. To formalize this as a tautology in propositional
logic we introduce propositional variables B fori € D, j € R. The language built
from these variables and the constants 0 and 1 using the connnectives v and — we
shall refertoas L(D, R); we aso refer to the language as L, in contextswhere D, R
are understood as the basic sets. Thetautology PH P(D, R) isthe disunction

\V PurPv \/ PaaR)p VvV A-PvV A\ -P

i#jeD i#jeR ieDkeR keRieD
keR keD
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We shall also refer to thisas PH P, when the underlying sets are understood.

Let D, Rbefixed, where |D| = n+ 1, |R| = n. The set of matchings between
D and R we shall denote by M,,. A matching = determines arestriction p,, of the
variables of L, by the following definition. For avariable Bj, if i or j iscovered by
mthen p.(Rj) = 1if {i, j} e m, p-(Rj) =0if {i, j} & m; otherwise p,(P;j) isunde-
fined. Since amatching uniquely determines and is determined by the corresponding
restriction, we shall identify a matching with the restriction it determines, and refer
to it according to context as a matching or arestriction. If p; and p, are two match-
ingsin My, and p1 U p, is also a matching, then we say that they are compatible.
If o1 and p, are compatible matchings, then their union will be written as p10,. If
p isamatching, then D[ p = D\ V(p), Rl p= R\ V(p) and S] p = S\ V(p). If
M is a set of matchings, and p a matching, then M| p isdefinedtobe {p'\ p: o’ €
M, p’ compatible with p}.

If Aisaformulaof L, and p € M,,, thenwedenoteby A[ p theformularesulting
from A by substituting for the variables in A the constants representing their value
under p. That isto say, if Bjissetto 1 or 0 by p, then we substitute 1 or O for Bj,
otherwise thevariableisunchanged. If T"isaset of formulasand p € M thenT'[ pis
{Alp: AeT}. Theformula AJ p can be simplified by eliminating the constants by
therules—=0=1,-1=0, OVA) =A (AVO) =A 1vA =1 (Av]=1If
aformula A can be simplified to aformula B using these rules, then we write A= B.

The language L, contains only binary disjunction. However, in the proofs that
follow it is convenient to introduce an auxiliary language that uses unbounded con-
junctions and digjunctions. We shall distinguish the order of the termsin such con-
junctions and disjunctions.

Let A be an unbounded conjunction each of whose conjuncts is a variable of
L, or aconstant. We shall say that A isamatching termif the set of pairs {i, j} for
Pij avariable in A forms amatching. The size of a matching term is the cardinality
|7r] of the matching r corresponding to it; the set of vertices V (A) associated with a
matching term A isthe set of vertices mentioned inthe variablesin A, that is, the set
V(). If wisamatching, then we shall write Ax for the matching term that describes
it, the conjunction containing the set of variables Fj; for {i, j} € 7 as conjuncts.

An unbounded disjunction of matching terms we shall call a matching digunc-
tion; it isamatching disjunction over Sif all the vertices mentioned initarein S. If
all of the matching termsin amatching disjunction have size bounded by r, thenitis
an r-disunction.

Let A beadigunction in the language Ly, and A;, i € |, those subformulas of
A that are not digunctions, but every subformula of A properly containing themisa
disiunction. Then the merged formof A is the unbounded disunction \/;_, Ai.

4 Matchingtrees In the present section, we introduce decision treesin which the
branches represent matchings. We assumethat the space of matchingsisthe set M, of
matchings between D and R, where |D| =n+ 1, |R| =n, S= DU R. Theleaves of
all trees are assumed to be ordered | eft to right. The nodes lying immediately below
anodein atree areitschildren. Thedepth of atree T, | T|, is the maximum length of
abranchinT.
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Definition 4.1 A matching tree over Sisatree T satisfying the following condi-
tions.

1. Thenodesof T other than the leaves are |abeled with verticesin S.

2. If anodein T islabeled with avertex i € S, then the edges leading out of the
node arelabeled with distinct pairsof theform{i, j} where j € Rifi e D, j € D
ifi e R

3. No node or edge labdl is repeated on abranch of T.

4. If pisanode of T then the edge labels on the path from the root of T to p
determine a matching r(p) between D and R.

We shall usethe notation Br (T) for the set of matchings determined by the branches
of T, that is, {m(l) : | aleaf in T}. If M is aset of matchings, then T is said to be
completefor M if for any node pin T labeled withavertex i € S, the set of matchings
{m(q) : gachild of p} consists of al matchingsin M of theform =(p) U {{i, j}}. If
the space of matchings is M;,, we shall use the abbreviation “complete’ instead of
“complete for My,".

Definition 4.2 Let X be aset of nodesin S. The full matching tree T for X over
Sis constructed as follows. If pisanodein T such that 7(p) does not cover X,
then p islabeled with the first nodei in X not covered by x(p), and the set {7 (q) :
g achild of p} consists of al matchingsin Sof theform = (p) U {{i, j}}, for j € S

If T isthe full matching tree for X over S, then Br(T) = M(X). Every full match-
ing tree for a subset of Sis complete, but not every complete matching treeis afull
matching tree for some subset of S.

Lemma4.3 Let T beacomplete matching tree over thespace S= DU R, |D| =
n+ 1, IRl = n, and p a matching in My, such that |p| 4+ |T| < n. Then thereisa
7€ Br(T) suchthat 7 U p € M.

Proof: We show that by successively choosing nodesin T starting at the root we
can find abranch in T so that the required = labels the chosen path. Let us suppose
that the nodes have been chosen as far asanode p that is not aleaf. By assumption,
oUm(p) € Mp; since|p|+|T| <n, |[pUm(p)| < n. Leti bethevertex in Slabeling
node p; there exists at least one matching extending p U (p) that coversi. Since T
iscomplete, at least one edge below p islabeled with a pair that extends p U (p) to
amatching in M. Then we can extend the path by choosing the node at the end of
this edge. O

If the leaves of amatching tree T are each labeled with O or 1, then it is a matching
decision tree. We definefori =0, 1,

Bri(T) ={z(l) : | isaleaf of T labeled i}.

If T isamatching decision tree, then T¢ is the matching decision tree that results by
changing the leaf labelsof T from 0to 1 and 1 to O, while Disj(T) isthe unbounded
digunction \/{Am : 7 € Br1(T)}.

Lemmad.4 If T is a matching decision tree, and p extends a matching = (l) €
Br(T), then Disj(T)[ p = 0 or 1 according to whether | islabeled O or 1.
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Proof: If | islabeled 1, then since p extends (1), theterm Ax(l) isset to 1 by p,
so that Disj(T)[p = 1. If | islabeled O, then we need to establish that for any leaf
I”labeled 1, A (") p = 0. Let p be the node at which the branches ending in | and
I” diverge. If i isthe vertex in Slabeling p, then (1) and 7 (I") must disagree on the
vertex matched withi. Thus Az (") [ p = 0, showing that Disj(T)[ p = 0. O

Definition 45 Let F = Cy Vv --- v Cy be a matching digunction over S. The
canonical matching decision tree for F over S, Trees(F), is defined inductively as
follows.

1. If F =0then Trees(F) isasingle node labeled O; if F = 1 then Trees(F) is
asingle node labeled 1;

2. If F#£0, F #£ 1, let C bethefirst matching term in F such that C = 0. Then
Trees(F) is constructed as follows.

(@) Construct the full matching tree for V(C) over S.

(b) Replace each leaf | of the full matching tree for V(C) by the canonical
matching decision tree Trees;,(y (F[ 7 (1)).

In acanonical matching decisiontree, certain nodesare singled out as boundary nodes
and are specified by induction as follows: the boundary nodes of Trees(F) are the
root of Trees(F) together with all theboundary nodesinthetrees Treeg; ) (F[ (1))
that form subtrees of Trees(F) by clause 2b of the previous definition.

Example46 LetD ={1,2,3,4,5, R=1{6,7,8,9}, S=DUR, let F bethe
matching disunction (Py7 A Psg) vV (Pig A Py7) v (Psg A Pag) vV (Pig A Psg), and p
the mapping {1+~ 6}. Figure 1 showsthe canonical tree Trees;, (F [ p). Thefilled-in
nodes in the diagram represent boundary nodes in the canonical tree.

2

{2,8} {29}

7
(3/ (Nﬂ ?/
5 ®;
0 0 0

{59 {59

1 1

7
0

Figure 1: A canonical tree

If Fisamatching digunction, and T a matching decision tree, then we say that T
represents F if for every (1) € Br(T), Fln(l) = 1iflislabeled 1, and F[ 7 (l) =
0if | islabeled 0. By construction, the canonical matching decision tree Trees(F)
represents F.

Definition 4.7 Let T beacomplete matching decisiontreeand p arestriction. Then
thetree TT p that results from T by applying the restriction p is defined inductively
asfollows.
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1. If T consistsof asinglenode, then T| pisT.
2. If T consists of more than one node, and theroot of T islabeled with the vertex
i, then

(@) if for some j, {i, j} € p, then T| p isthe decision tree T'| p, where T' is
the subtree attached to the root by the edge labeled with {i, j};

(b) ifi € V(p),then T| p hasasitsroot avertex labeled i, and asimmediate
subtrees all subtrees of the form T'| p, where T’ is attached to the root
of T by an edgelabeled {i, k}, where k ¢ V (p)—the same pair labels the
edge attaching T'[ p to theroot of TT p.

In the following sections, restrictions are constructed by a process of successive ex-
tension. Thefollowing lemma guarantees that these extensions preserve certain rela-
tions.

Lemma4.8 Let T beamatching decision tree and p arestriction.

1. Disj(T)| p= Disj(T| p).

2. If T iscomplete for M, then T| p is complete for My [ p.

3 (TP =T p.

4. Iflisaleaf in T| p, then thereisaleaf I’ in T bearing the same labdl as| so
that w(I") € (1) U p.

5. If T represents a matching disunction F, then T| p represents F| p.

Proof: Thefirst four parts of the lemmaare proved by induction on the depth of the
tree T. Thefifth part follows from the fourth. O

5 Evaluations In this section, we introduce the basic concept of a k-evaluation:
a k-evaluation can be considered as a kind of nonstandard truth-definition for a set
of formulas. The notion of k-evaluation is due to Krajicek, Pudlak, and Woods [[10].
The definition of k-eval uation used here differsfrom that of [[10]; in that paper amore
general definition is used in which formulas are assigned sets of restrictions rather
than complete decision trees.

Definition 5.1 Let I" be aset of formulas of L, closed under subformulas, where
S=DUR/|D|=n+1|R =n. Letk > 0. A k-evaluation T is an assignment of
complete matching decision trees T(A) to formulas A € L, so that

1. T(A) hasdepth < k;
2. T(1) isthetree with asingle node labeled 1, and T(0) isthetreewith asingle
node labeled O;
3. T(PRj) isthefull matching tree for {i, j} over S, with aleaf | labeled 1 if m(l)
contains {i, j}, otherwise 0;
4. T(-A) =TAS
5. if Aisadigunction, and \/;., A isthemerged form of Athen T (A) represents
Viei Disj(T(A)).
If T isak-evaluation for a set of formulas I, then the set of matchings Br (T (A))
can be considered as a space of truth-value assignments for A; thusif T(A) hasall
itsleaves labeled 1, we can think of A asakind of “tautology” relative to this space.



530 ALASDAIR URQUHART and XUDONG FU

However, in contrast to the classical notion of tautology, this notion is not preserved
under classically sound inferences (thisfact is the key to the lower bound argument).

Example52 LetD=1{1,2,3}and R=1{4,5},andletT" = {Pysy Vv Pi5, =Pi5 Vv
=Py, Pisa v =Py}, Then thereisa2-evaluation for I' so that the first two formulas
inT" have 1 on al their leaves, but the third formula does not, although it isalogical
consequence of the first two.

The following lemma shows that examples like this do not exist if the depth of a k-
evaluation is small enough relative to the size of the inference rules of the proof sys-
tem.

Lemmab.3 Let ¥ bea Frege system in which the size of the rules is bounded by
f,and P a proof in 7 inthelanguage L(D, R), where S=DUR, |[R|=n. If Tis
a k-evaluation for all the formulasin P and k < n/f, then for any line Ain P,

Vr(mr € Br(T(A)) = Disj(T(A)[r=1),
that is, T(A) hasall of its leaves labeled 1.

Proof: Thelemmaisproved by induction on the number of linesinthe proof P. Let

A1(B1/P1,-- -5 Bm/Pm), ..., Ac(B1/P1, - - - Bm/Pm)
AO(B]./ pl’ LRI Bm/ pm)

be an instance of a rule of ¥, and assume that the lemma holds for al of the
premises of the inference. Let T" be the set of formulas A(B1/ps, ..., Bn/Pm),
where A(p1, ..., Pm) is a subformula of some A;. By assumption, |I'| < f; let
M={mU---Umje My:m e Br(T(G))}, wherel" = {C4, ..., Cj}. By Lemma
if 7; € Br(T(G)), then thereisax € M, so that 7; C 7. Let us abbreviate
Disj(T(A)) asD(A). Thenforme Mand A, Be T,

1. D(A)[7r=00r D(A)|7 = 1;

2. D(O)[r=0and D(1)| 7 = 1;

3. if~AcTthen D(—A)[r=1«= D(A) |7 =0;

4. if (Av B) eT'then D(AV B)[r =1« D(A)[7r=1or D(B)[7=1.

These equivalences follow from the definition of a k-evaluation and from Lemmas
[4.3land [4.4]

For any = € M, define an assignment V,, of truth-values to the formulasin '
by setting V,(C;) = 1if D(C) |7 = 1, V,(C) = 0if D(C))| 7= = 0. The list of
equivalences above shows that V,, respects the rules of classical logic. By Lemma
[4.4] the premises of the inference are all assigned the value 1 by V,;; since the rule
of inference is sound, the conclusion of the inference is also assigned 1 by V.
Now let o € Br(T(Ao(B1/pP1,..., Bm/Pm))). Thereisanr € M extending o, so
Vz(Ao(B1/P1, ..., Bm/Pm)) = 1, equivalently, D(Ao(B1/Pp1, ..., Bm/pPm)) o =
1, concluding the proof of the lemma. O

The next lemma shows that, relative to a k-evaluation, k < n, the pigeonhole tautol-
ogy PHP, isa“contradiction.”
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Lemma54 LeDUR=S|D/=n+1|R =n PHR,=PHP(D,R).IfTis
a k-evaluation for a set of formulas containing PH Py, k < n — 1, then all the leaves
of T(PHP,) arelabeled 0.

Proof: Thereducedformof PH P, isthejoin of thefollowing sequence of formulas:

1. (PkA Pj), wherei # je D, ke R,
2. (Bq APy, wherei # j e R ke D;
3. Aker— Pk fori e D;
4. Niep — Pk forke R

By the definition of k-evaluation and Lemmal4.4] it is sufficient to prove for any for-
mula A in the above list that the leaves of T (A) are all labeled with 0.

For a formula of the first kind, this amounts to showing that the leaves of
T(=PRk Vv —Pjx) are al labeled 1. By Definition[5.1] T(=Py v —Pjk) represents
Disj(T(=Pik) v Disj(T(=Pjx)), that is, the matching digunction containing all
terms of the form (Piq A Py), g # k, r # i, and al terms of the form (Pjg A Py,
qg#k,r #j. Letl bealeaf of T(=Pyx Vv =Pjx). Since [z(l)| < n—1, thereisare-
striction extending (1) that sets one of thesetermsto 1. It followsthat 7z (1) must set
the digunction to 1, so that | bearsthe label 1. The proof for formulas of the second
kind proceeds similarly.

For formulas of the third kind, we are required to show that the tree T =
T(\V/er—Pk) has dl its leaves labeled 1. By Definition[5.1] T represents the
matching disunction \/{Px : k € R}. Let| bealeaf of T. Since |z(l)] < n—1,
thereisan extension = of (1) wherei € V (), sothat \/{Pk : k € R}[ 7= = 1, hence
V{Pk:ke R} n(l) =1, showingthat | must belabeled 1. For formulasof thefourth
kind, asymmetrical argument holds. O

If T isak-evaluation of aset of formulasT in L, and p € My, then T p is defined
to be the assignment of treesto formulasin I'[ p given by the definition: T (0) isthe
tree with a single node labeled O, while (T] p)(A[ p) = T(A)[ p if AJ p isnot the
constant 0. It follows from this definition that Disj((T] p) (A p)) = Disj(T(A)] p)
for any formula A.

Lemmab.5 Let T beak-evaluation of a set of formulasT in Ly. If p € My, then
T pisak-evaluation of I"T p.

Proof: By induction on the complexity of aformula A e I'. If Aisaconstant or a
propositional variable, then the lemmaisimmediate. If Aisanegated formula, then
the lemma follows by the third part of LemmalZ4.8]

Finally, let Abeadisunctionand \/;_, A themerged formof A. By assumption,
T(A) represents \/;, Disj(T(A))), so by Lemmalt8] T (A) [ p represents

\/ Disj(T(A) T p=\/ Disj(T(A)I p).

iel iel

Hence, by the remark following the definition of T| p, the matching decision tree
T(A)[ prepresents \/;, Disj((T| p) (Al p)), completing the proof. O
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6 Theswitchinglemma In thissection we prove the appropriate switching lemma
by mapping the “bad” restrictions (those that result in a matching tree of large depth)
intoasmall set. We begin by defining aset of sequencesused in defining the mapping.

Define Code(r, s) to be the set of all sequences 81, ..., Bk, Where for each i,
Bi € {1, *}"\ {x}" and there are exactly s occurrences of 1 in the sequence.

Lemma6.1 |Code(r,s)| < (2r)S.

Proof: Given (B4,..., Bk) € Code(r,s), define a map f from {1,...,s} to
{1,...,r} x{0,1} asfollows. f(1) = (1,0),andfori > 1, f(i) = (], b), wherethe
ith1in B4, ..., Bcoccursinthe jth placein someentry 8, and bisO or 1 depending
on whether the (i — 1)st 4 occursin g, or Bj_1.

Itiseasy to seethat asequence (81, . . . , Bk) € Code(r, s) isuniquely determined
by the map corresponding to it, so that this construction defines an injective mapping
from Code(r, s) intotheset of all maps f : {1,...,s} — {1,...,r} x {0, 1}. O

Foragivenn, [ID|=n+1, |R| =n, S= DU R, we define two sets of restrictions.
Forl <n,let
M} =1{p € Mn:|RIpl =1},

and for s > 0, F amatching disjunction over S,

Bad,,(F,s) = {p € M/, : |Treeg;,(F| p)| > s}.

Lemma6.2 LetF =C;Vv.--Vv Cybeanr-digunction over DU R = S, where
ID| = n+ 1, |R| = n. Then thereis a bijection from Bad'n(F, s) into

J M x Coder, j) x [2 +1]°.

s/2<j<s

Proof: Let p € Bad)(F, s); choose 7 to be the matching determined by the leftmost
path originating in the root of Trees;,(F [ p) that haslength s.

Starting from F and 7z, we define three sequences by induction that are used to
define the bijection G:

1. Dg,..., Dy, asubsequenceof Cq, ..., Cy;

2. o1,..., 0k asequenceof restrictions o C &, where D; = A §j, and po4, .. ., o
€ Mp;
3. m1,..., K, apartition of w, where each i, i < k, satisfies the conditions (a)

mi € M(V(oi)) and (b) the restriction pmy, ..., 7 labels a path in Treeg;,
(F[ p) ending in a boundary node.

Suppose that the sequences have been defined as far as mj_1, Di_1, 0i_1, that
Ty, ..., Ti—1adoy, ..., oj_1 satisfy thestated conditionsandthat 7y, . .., mj_1 # 7.
Since pmq, ..., m_1 labels a path ending in a boundary node, it follows that there
mustbeaterm Din F sothat D[ p7q, ..., mi_1 # 1, D] pmq, ..., mi_1 # 0, for oth-
erwise the path labeled by 7= would end at that node. Define D; to be the first such
termin F.
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Define o] to be the unique minimal matching so that
Di| p71, ..., T_10] =1,
and let 7; be the set of pairsin x that covers vertices in V(o7). In defining o two

cases arise.

Casel: my,...,m # . Defineo;i tobeo]. Inthiscase, both o; and 7 label pathsin
the full matching treefor V (oi) over Sjop1, ..., mi_1, showing that 7; € M(V (0i))
and that 774, ..., 7 labelsapathin Trees;, (F[ p) ending in aboundary node. Since
the boundary nodeis not aleaf of thetreeg, it followsthat 7; # o, SO

Dil pmr1,...,m; =0.

Case2: my,...,m =m sothatm; =my. Let pq, ..., p; bethepairsconstituting my,
listed in the order they appear onthe path. Each p; containsavertex v; that isthefirst
vertex in V(of) notin p; U--- U pj_1. Define g; to be the pair in V(o]) containing
vj, and let o; = {qy, ..., q}. Inthis second casg, it is not guaranteed that

Dkl o7y, ..., w10k = 1,

but only
Dk[ p7y, ..., w10k # 0.

We need to verify that po, ..., 0i € M,. By assumption, po1, ...,0i_1 € M. Let

usassumeinadditionthat poy, ..., o € My, sothattherearea, b, c € S, b £ cwhere
{a,b} € po1,...,0i_1,{a,c} € 0i. Since Di[p # 0, {a, b} & p, so that {a, b} € o
for some j < i. Since by assumption r; € M(V(0j)), and Dj[ prry, ..., mi_1 # 0,

it follows that {a, b} € 7. This contradicts the assumption that a € V (o), showing
that poy, ..., oi € Mp.
We note here afact used later in proving that G isabijection: for any i <k, the

set of pairs pry, ..., Ti_10i, ..., 0k iSin Mp. If the set isnot in M, then because
o7, ..., Tk, PO1, ..., 0k € Mp, theremust be p,gwherel < p<i—1<qg=<kso
that for somea, b, ¢, b # ¢, {a, b} € 7, and {a, ¢} € 4. However, if {a, b} € 7, then
a¢ Sl pry, ..., m_q, contradicting {a, ¢} € og.

Before defining the map G it is convenient to introduce a special ordering of
the 21 + 1 vertices unset by the restriction p. The new ordering is determined by the
original ordering of the vertices and the sequence of restrictions oy, ..., ox. Leto =
o1, ..., 0k Toavoid confusion between the original ordering and the new ordering,
we shall refer to the original order as ordering by size, and the new order as ordering
by index and we shall refer to the position of an element in the new ordering as its
index. Theindex ordering is defined as follows: order the 2| + 1 vertices unset by p
sothat theverticesset by o arelisted first accordingtotheorder V(o1) < - - - < V(oy),
then by size within each set V (o7); next, the remaining vertices unset by po arelisted
by size, intheindex positions2j + 1, ..., 2l + 1, where j = |o].

Themap G(p) = (G1(p), Ga(p), Gz(p)) isnow defined as follows.

1. Gi(p) = po.
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2. Fori=1,..., Kk let B bethe vector of length r so that:

Bi(J) = 1 if o setsthe jth variablein D;
=1 & otherwise.

Then Gy(p) is defined as the sequence (81, . . ., Bx)-
3. G3(p) € [2l + 1]° is defined as follows.

(8 List the elements of 7 according to the index ordering, where for each
pair in r the element with the lower index determines the position of the
pair.

(b) From the ordered list of the pairsin r, create anew list by recording for
each pair theindex of the element in the pair with the higher index. This
new listis Gz(p).

Let j = |p|. We need to show that G(p) € My} x Coder, j) x [2| + 1]°,
wheres/2 < j <s. Thefact that po € le’ was proved above. The definition of
oi ensures that G,(p) € Code(r, ), and Gz(p) € [2| + 1]° by definition. For i < K,
i € M(V(0i)), sothat |oi| < |7i| < 2|oi|, whilefor i =k, |oj| = |7i| holds by con-
struction. Thus ||/2 < |o| < |7|, thatis, s/2< | < s.

It remains to show that G is a bijection. We prove this by showing how to re-
construct the restriction p from G(p) by successively recovering the elements of the
three sequences used in defining G(p).

At the beginning of the reconstruction process, we are given only thetriple G(p)
and ther-digunction F. From G4 (p) we can find the set of vertices unset by po, and
hence the indices of these vertices.

Let us suppose that the reconstruction process has been carried out as far as
stage i — 1; at this stage we have found the terms Dq, ..., Dj_1, the restrictions
01,...,0i_1, T1,...,mj_1 and pmq, ..., w_10i, ..., ok Inaddition, we have found
theindices of all the verticesin V(o) U--- UV (oj_1).

We now describe stage i of the reconstruction process. If Cj isatermin F that
occurs earlier in F than Dj, then

Cilpmy, ..., mi—1=0,
hence
Cilpmy, ..., mwi—10i,...,00=0.
On the other hand, if i < k then
Dil prra, ..., wi—10i = 1,
while

Dil pr1, ..., mk_10x £ 0.

Thusin either case,
Dil pma, ..., w_10i,...,0k %0,

so that D; can be found as the first termin F not set to O by therestriction pmq, . . .,
mi_1 gi,...,0k. Having found Dj, we can consult the entry g; in the sequence
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Go(p) = (B1, ..., Bx) tofind the variables in D; that are set by o7, and hence find
o; itself. We can now find the indices of the verticesin V (o) by extending thelist of
indices aready compiled for o4, ..., 0j_1. It remains to reconstruct s; using Gz(p).
Every pair in r; must contain at least one vertex in V (oj), hence for every such pair
we can find the vertex in the pair with lower index. The other vertex in the pair (with
the higher index) must either bein V (7) or in the set of vertices unset by po. In ei-
ther case, we can find the other vertex in the pair by consulting appropriate entriesin
G3(p)—these entries follow immediately after the entries corresponding to pairsin
1, ..., Ti—1. Thuswe can reconstruct r;. Lastly, by replacing o; by 7;, we can find
therestriction pm1, ..., T_17i0i11, - . - , Ok

Finaly, havingfoundall of o4, . .., ok, wecanfind p by removing all of the pairs
inoy, ..., ok from poy, ..., ok Thiscompletesthe proof that G isabijection. O

Example 6.3 To illustrate the definitions in the above proof, we continue Exam-
ple.6] Given D, R, S, F, p asin that example, and setting s = 3, we have: 7 =
{{2,8},{3,7},{5,9}}, D1 = (P A P7), 01 = {{2,7}}, 11 = {{2,8}, {3, 7}}, D2 =
(Pis A Psg), o2 = {{5,9}}, m2 = {{5,9}}. Hence, Gi(p) = {{1,6},{2, 7}, {5, 9},
Go(p) = (1 %, 1 %), G3(p) = (g, e, d), wheretheindex orderingis(2, 7,5, 9, 3, 4, 8),
with the corresponding indices a, b, ¢, d, e, f, g.

In the next lemma we use the notation a™ for the falling factorial power a(a —
1),....,(a—m+1).
Lemma 6.4 (The switchinglemma) Let F beanr-digunctionover DUR, |D| =
n+1,|R =n. Letl >10,andset p=1I/n. Ifr < | and p*n® < 1/10 then

|Bad} (F, 2s)|

< (11p*nn)s.
M}

Proof: By Lemmal6.2] it is sufficient to bound the ratio

Us<j<2sMh ) x Coder, j) x [2| + 1]

M| @

We begin by estimating the ratio |M} /] /|M!|. A restriction in M|, is determined by
the following process. pick | elementsin R, then for each of the n — | remaining ver-
ticesin Rin turn choose the element of D with which it is matched. Thus

My = (T)(nﬂ)”'

nt(n+ 1=
= — 7 2
Using (2) and the recursion equation a™™" = a™ (a — m)?, we estimate
MY s (ng
ML (= int(n4 1ot
a+1)in

(=Drn=1+pl
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I+l
(n—1+ )

1A +1)\
: ( (=1 ) ' ®
Hence, using () and the estimate of |Code(r, j)| from Lemmal6.Tlwe can bound the
ratio (1) from above by the sum

i :

s<j=2s \ N

j
= @+1* ) (M> . (4

s<j<2s (n—"D

To bound this last sum, we begin by estimating

21(1 4+ Dyr - 212(1+ 1)
(n-1H =  (n=1
13 21+1/1)
n (1-p
p'n® 2.2

S R

| 0.9999
< 0.0221, (5)

using theinequalitiesr <1, p*n® < 1/10and| > 10. Hencethesumin (@) isbounded
by the sum of ageometric serieswith ratio < 0.0221, sothat it islessthan 1.03 times
its largest term. This provides us with the estimate

|Bad,(F, 2s)| o (2|(| + 1)r)S
—_ 1.03(2I +1 —_—
M| @+
221+ D2 +Dr\°
= 1.03( CI) . (6)
To put thisinequality in more usable form, we bound the ratio in the RHS,
221 + )21 (1 + Dyr _ 8+ 1)8Ir
(n—1) - (n—=1)
- Ir 8(1+1/1)®
—on 1-p
10.65 14r
< R ()
Thislast inequality together with (6) yields the bound
|
[Badh(F. 291 _ 1 03(10.65p%rr)®
Mg
< 11p*nn)s, (8)

completing the proof of the lemma. O
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7 Lower boundsfor pigeonholeformulas Inthissection, we provealemmashow-
ing that if aset of bounded depth formulas of Ly, is subjected to arandom restriction,
then, provided the set is not too large, the set of restricted formulas has associated
decision trees of small depth. From this result the lower bound on the size of propo-
sitional proofsfollows by earlier lemmas.

Lemma7.l Letdbeaninteger,0<e < 1/5,0< 8 < e%andI aset of formulasof
Ly, of depth < d, closed under subformulas. If |T'| < 2”5, g= rned] and nissufficiently
large, then there exists p € M so that there is a 2n’-evaluation of I'| p.

Proof: Theproof isby inductionond. For d = O, theonly formulasin " are propo-
sitional variables and constants. For any such formula A, | Trees(A)| < 2, so that we
canset p=9g.

Assume that the Lemma holds for d. Let I" be a set of formulas of depth d +
1, closed under subformulas, |T'| < 2”5, where 0 < § < €91, Let A be the set of
formulasin " of depth < d. Since 0 < § < €91 < €9, by the induction hypothesis,
thereisp e MJ, q= [nEdL for which thereis a2n’-evaluation T of A | p.

Let AbeadisunctioninT of depth d+ 1, and \/;., Ai its merged form. Let
q be (n<“*1. In Lemmal64] set D — D|p, R—> R[p,n — N7 =q, | —>
me™ = q,r — |2n°], s —> nd. For n sufficiently large, pTn<'13 < n=<*/5 <
1/10, where p=1/n, and [2n’| < rnfd“} since § < €9t1. Thus the conditions for
Lemmal6.4]hold, so that the ratio

|Badd (\/;., Disj(T(A [ p)), 2n%)|
IMJ |

is bounded by (11n</5|2n% ). Since § < ¢%+1 < €9/5, for n sufficiently large,
11n~</512n% | < 1/2, so that the above ratio is bounded by 2" 1t followsthat there
isarestriction p’ € Mg so that for every digunction A € T of depth d + 1,

| Trees;,» (\/ Disj(T(Aif p))[ p))] < 2n°.
iel
Set p” = pp’; by construction, p” € Mﬁ/. We wish to show that there is a 2n’-
evaluation T” of T'[ p”. By Lemmales] T/ = TI o' isa2n’-evaluation of A] p”’; we
define T” by extending T’ to formulas of depth d + 1. For A a negated formula of
depthd + 1, set T"(A] p”) = (T'(A] p”))C. If Aisadigunction of depthd + 1, and
Vi A itsmerged form of A, then set

T"(Al p") = Treeg;,» (\/ Disj(T(Al p))] p'),
iel
where \/;., Ai isthe merged form of A. By definition, T”(A[ p”) represents \/,,
Disj(T(Ai ] p)] p'. By Lemmali.8lnd the definition of T”,

\/ Disj(T(AT o)) o' = \/ Disj(T"(A)),

iel iel
so that T”(A) represents \/;, Disj(T”(A)). This completes the proof that T” is a
2n’-evaluation of I'[ p”. O
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Theorem 7.2 Let ¥ be a Frege systemand d > 4. Then for sufficiently large n
every depth d proof in F of PH P, must have size at |east 2" for § < (1/5)9,

Proof: Let the rules of 7 have size bounded by f, 0 < § < (1/5)9, and let
A1, ..., A beaproof in F of depth d and size < o

Choose € so that € < 1/5, § < €9. By LemmalZ1] there exists p € M7, q =
[nEdL and a2n’-evaluation T of I'[ p, where I' is the set of subformulas in the proof
A, ..., A. Then Ayl p, ..., Al pisaproof in F inthelanguage L(DT p, R p).

Sinces < ¢ andnis sufficiently large, 2n® < nfd/f, so by Lemmal5.3] for ev-
ery step Ay in the proof, T(Ax[ p) has all its leaves labeled 1. On the other hand,
PHP,[ o= PHP(D]Jp, R] p), so by Lemmak.4]if PHP, werethe last line A; of
theproof, al theleavesof T(PH P, p) wouldbelabeled 0. It followsthat Ay, ..., A
ca6nn0t be aproof of PH P,,. Hence, any proof in F of PH P, must have size at |east
2", O

The lower bound originally proved by Ajtai [1] is superpolynomial rather than expo-
nential. The essentia difference between Ajtai’s original proof and the proof given
hereisasfollows. Theoriginal proof has essentially the same structure as the present
proof, but makes use of a more restricted class of complete decision trees. The class
of trees appropriate to the original proof is the class of al full matching trees over
asmall set (with an appropriate sense of “small”). With this more restricted class of
matching trees, it isnot possible to prove exponential lower bounds. (For aproof, see
the concluding section of [[4].)

8 Lower boundsfor graph formulas  The techniques used in the proof of themain
theorem above can be used for several other classes of formulas, for example, for
classes of formulas based on other matching principles. In the present section, we
illustrate this by sketching a proof of alower bound for the case of tautologies based
on agraphical construction; this class of tautologies wasfirst defined by Tseitin [15].

Let G be afinite undirected graph, in which the vertices are labeled with O or 1,
and the edges with distinct literals. Then aset of clauses Clauses(G) associated with
G isdefined as follows. For each vertex v € G, let Clauses(v) be the set of clauses
constituting the conjunctive normal form of themodulo 2 equation p;1 @ - - - ® px =C,
where py, ..., px aretheliteralslabeling the edges attached to v, and cisthelabel on
v. Then Clauses(G) isthe union of all the clause sets Clauses(v) for v avertex in
G. If the sum of the vertex labels of G isodd, then Clauses(G) isinconsistent. (This
follows from the fact that if we add the left-hand sides of all the modulo 2 equations
associated with the vertices of G, the sum is zero, because each literal appears twice
in the sum.)

The size of Clauses(v) is exponentia in the degree of v, so that if the graph
G is of large degree, the size of Clauses(G) can be exponentia in the size of G.
In the present section, we shall use sets of clauses associated with compl ete graphs.
Cook [E] proposed away to reduce the size of the associated sets of clauses by intro-
ducing extravariables. Let K, be the complete graph on n = 2m+ 1 vertices. Let the
vertex set X of K, be{0, 1, ..., n— 1} and each edge{i, j} belabeled with avariable
Pj. Weintroduce a set of extravariables {Q}, Q}, ..., Q| ,} for each vertexi e X

asfollows: welet Q= PRi11® Pij2and Qi =Q,_; ®PRi1j2(l<j<n-3
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where + ismodulo n addition. We define Cl (i) to be the set of clauses comprising the
conjunctive normal form of the set of above equations together with Q‘n_3 = 1which
expressesthefact that the label on vertex i is1. For any assignment of truth valuesto
R.it1: ..., Pipn_1satisfying Cl (i), Q| hasthesamevalueas P i1 ® - - @ Piyjr2-
Let Cl, betheunion of all thesetsCl (i) fori € X avertex in K. Sincenisodd, then
Cly iscontradictory. Finaly, let Graphy, be the tautology that results by negating all
the clausesin Cl, and then forming their disjunction; wewill use Graph,, intheform

\/ (=(QpV RtV =Ris2) vV =(QV =Ris1V Rit2)V
SEQhV Risa v Plis2) V(= Qh Vv mPlis1 vV = Ris2)V
n—3
V'V =(QjvQ_1Vv=PRitj2)v=(Qjv-Q| 1V PRiij2)V
ieX j=1

_'(_'Qlj Vv Qlj_l V Ritj+2) Vv _'(_'Qlj Vv _'Qlj_l vV =BRitj42) Vv \/ —Q_3

ieX
where \/ denotes repeated binary v. Graph, has size O(n?) and depth 4.

The restrictions used in the case of the graph clauses are determined by match-
ings, just asin the case of the pigeonhole formulas. The definitions of 83 above can
be taken over with essentially no change; the only alteration required is that the def-
initions are to be taken as referring to the graph K, rather than the complete bipar-
tite graph K(n+ 1, n). In particular, the concepts of matching terms and matching
disunction are defined just asin 83. The basic definitions and lemmas on matching
decision treesin 84 can a so be used here without alteration, except that the space of
mappings is based on K, rather than K(n+ 1, n).

The definition of k-evaluationin 85 can be used as given, with added eval uations
for the extension variables Q'J Welet T(Q‘j) be the full matching tree for {i}, with a
leaf | labeled 1if w(l)is{i,i +¢+ 2} for —1 < £ < j, otherwise | islabeled 0. The
proof of LemmaB.3lgoes through exactly as before. The Lemma corresponding to
LemmalE.4lcan be stated as follows.

Lemma8.1 Letn=2m+ 1. If T isak-evaluation for a set of formulas closed un-
der subformulas and containing Graph,, and k < m, then all the leaves of
T (Graphy) arelabeled 0.

Proof: Themerged form of Graphy, isadisjunction of the negations of theformulas
of following forms.

=

Qv Piis1V =Rt forie X

Qv —Plis1V Plisa forie X.

—QyV Pz V Pisa, forie X

—=Qy V=RtV —Ri forie X
—Qjv—-Q|_1V—PRitjr2, wherel< j<n-3 ieX
Qv Qij_lvﬁP,,iJer, wherel<j<n-—3,ie X

Qij \/ﬂQij_lv Pitjt2 Wherel<j<n-3 ieX
ﬁQij v Qijflv Plitji2, Wwherel<j<n-3,ie X
Qs forie X

© © N o gk~ wDd
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By the definition of k-evaluation and Lemmal4.4] it is sufficient to prove for any for-
mula A in the above list that the leaves of T(A) are all labeled with 1.

For aformulaof thefirst kind, by Definition5.1hnd the eval uationsfor the exten-
sion variables, T(Q, v Piit1V =P i42) represents Disj(T(Qp)) v Disj(T(P,i41))
Vv Disj(T(=PR i;2)). By definition, Disj(T(Qp)=PRi11V Rz, Disj(T(R ;1) =
Pi+1and Disj(T(Ri;2)) = P i1o. Hence

Disj(T(=Ri12)) = \/{(RkA Plis2) ik Lk ¢ {i, i + 2}
ThusT(Q‘0 V Rit1 VvV —B.it2) represents the matching disunction

P,J_,_]_\/ Pi,i-i—Z\/ Pi,i-i—lv \/{(Pik/\ I:ﬁ,iJFZ) : k?‘é I; Kk, | ¢ {i, I+ 2}}.

If | isaleaf of T(Q{) V Rit1V —R.it2), then |z(l)| < m, so there is arestriction
extending (1) that sets one of thesetermsto 1. It followsthat (1) must set the dis-
junctionto 1, so that | bearsthelabel 1. The proof for formulas of the kinds from the
second to the fourth proceeds similarly.

For a formula of the fifth kind, T(=Qj v =Qi_; vV =Riyjs2) represents
Disj(T(=Q})) v Disj(T (= Ij_]_)) Vv Disj(T(=Ri+j+2)). Since Disj(T(Q))) =
Pit1V -V Ritji2, Disj(T(=Q)) =Ritj+3V -+ V Rjn1. For similar rea
sons, Disj(T(=Q_;)) = Rijjs2 v -+ V Plitn1. Hence T(=Q v —Q|_; v
—P.i+j+2) represents the matching disunction

Poisir2V -V Pisnet V \/{PKA PLigs2) Tk # K T (i o+ +2)).

Since|z(1)| < mfor | aleaf of T(=Q, v —=Qj_; v —=Piyj2), thereisarestriction
extending (1) that sets one of thesetermsto 1. It followsthat 7 (1) must set the dis-
junction to 1, so that | bears the label 1. The cases from the sixth kind to the eighth
kind follow by exactly similar arguments.

For aformulaof the ninth kind, it istrue by the definition of theevaluation. [

Let M, be the set of all partial 1-to-1 maps from X to X where X isthe vertex set of
the complete graph Ky, for n = 2m+ 1. Let V(h) = dom(h) Urng(h) for h € M.
For | < mdefine

M}, = {p € Mn: V(p) = 2(m—1)}.

The lemmas corresponding to the first two lemmas of 86 above carry through to the
case of the graph formulas, with the single change that the lemma corresponding to
LemmalG.ZImust be rephrased to refer to the new space of matchings. We can then
state the switching lemma as follows.

Lemma82 LetF=C;Vv.--vCybeanr-digunctionover X. Thenthereisal-1
map from Bad,(F, s) into

=1 x Coder, j) x [2| + 1]°.

s/2<j<s
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Proof: The proof is similar to the proof of Lemmal6.2] We sketch the proof here.
Let p € Bad| (F, s) and let = be the map determined by the leftmost path originating
in the root of Treeg;,(F[ p) that has length s. We will construct the image of p by
defining apartition w1, o, ..., my Of .

Suppose that 71, 7, ..., i1 € 7 have already been defined and 74, 7o, .. .,
mi—1 # 7. Then by the definition of Treeg;,(F [ p) thereisaterm C € {Cy, Cy, ... .,
Cu} such that C| mym, ..., wi—1p % 0. Then welet C,, be the first such term. Let
Ki =V(C, [y, ..., mi_1p) andlet o; be the unique map that satisfies C,, [ w172,
..., Tj_1p. Let m; be the portion of 7 that touches K;. Then two cases arise.

Casel: |If mymo, ..., m # 7 then by the construction of Trees,;,(F[ p), m17o, .. .,
7t; touches al the vertices touched by oi. ThusC,, [ w172, ..., mip = 0.
Case2: Ifmimo,...,mi=m,i=Kk Thenlet py,..., p; bethepairsconstituting ry,

listed in the order they appear onthe path. Each p; containsavertex v; that isthefirst
vertex in V(of) notin p; U--- U pj_1. Define g; to be the pair in V(o]) containing
vj,andlet oj = {Qy, ..., Q).

For each o; we define a corresponding string 8; based on the fixed ordering of the
variables in term C,, by letting the jth component of g; be 1 if and only if the jth
variablein C,, isset by 0. Since C,, is not empty, thereisat least one 4 in ;. Thus
(B1, ..., Bx) € Code(r, j). Clearly poy, ..., o € M5~). We let the image of p be
(po1,...,0k (B1, ..., Bx), 8) wheres§ € [2¢ + 1]° encoding the rel ationship between
o; and 7rj. We number the 2j verticesin V(o) with 1, ..., 2j inthe order V(o1) <
V(op) < -+ < V(og) andtheverticesunset by powith2j+1,...,2¢+ 1. Thenwe
list the pairsin mj in the order of their smallest numbered elementsin V(oi). Thus
we use the vector § to store the numbers of the other vertices of the pairsin .

Now we show the map is 1-1 by recovering p from its image. We do this by
induction oni. Assumethat we have already recovered 1, 7o, ..., Tj_1, 01,02, ...,
oi_1. Thenweknow pmy, ..., mji_10i, ..., ox. We can recover v; asthe index of the
first term of F that isnot set to O, sincefor i < k, C,, [ primy, ..., mi—10i = 1, for
i =k, C,, [ pmm, ..., w10k # 0 and Cj[ pryma, ..., wi—10i = 0 for al j < .
Thisisalsotruewhen oi,1, ..., o isappended to the restriction. Once we obtain v;,
we recover o; by checking C,, and g;. Then by examining the entries of § associated
with each of the verticesin V(o;) we obtain ;. After obtaining al the o, we can
recover p. O

Lemma 8.3 (The matching switching lemma)  Let F be an r-digunction over X,
IX| =2m+1. Ifr <|I, p*n® < 1/10and | > 10, then

Bad.(F, 2

1Bady(F, 2)| = 2l < (21p*mr)s.
Ml

Proof: By Lemmal8.2] it is sufficient to bound the ratio

Us<j<2sMn ) x Coder, j) x [2| + 1]%
M| '

©)
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We begin by estimating the ratio [M\;~/]/|M!|. A restriction in M! is determined by
the following process. choose 2(m — |) elements from X, then choose a matching
that matchesthese 2(m — |) elements. Thus

M 2m+1) (2(m—1))!
i <2(m—|)>m
_ (2m+1)!
T m-D@+ni2m T (10)
Using (10) we estimate
||V|r|1_j|_ 2 +1)2 2 + 1)2 i
M _<m—l+j>1215(2<m—|>> (12)

Hence, using (11) and the estimate of |Coder, j)| from LemmalE_Lwe can bound the
ratio () from above by the sum

2\
Z <(2|i> i@l + 1%

s<j<2s 2(m—1)
s - H2(1+1/20)2r ]
= (4%21+1/2)? S;ZS(T
412et/1p\ !
4|2 1/1\s ( ) . 12
s(e)SSJXS:ZS p— (12)

Sincer <1, p*n® < 1/10and | > 10, for p =1/ mwe have

2.1/1 /10 3 4
el _ (491 ) ('—) < 4.421(ID ms) < 0.0421.
m— | 1-p m m

Hencethesumin ({12) isbounded by the sum of ageometric serieswithratio < 0.0421
so that it islessthan 1.05 timesits largest term. This provides us with the estimate

|Bad,(F, 2s)| < 1054121 <4|291/10r)s
|M§| m—|
(16.8e1/5 pAm3r )S
1-p
< (21p*m’n)s,
and completes the proof of the lemma. O

Lenma8.4 Letdbeaninteger,0 < e < 1/5, 0 <8 < € and I a set of formu-
las of L, of depth < d, closed under subformulas. If || < o' q= [m€d1 and mis
sufficiently large, then there exists p € My so that thereis a 2m’-evaluation of I'[ p.

Proof: Theproof of thelemmaissimilar to that of LemmalZ.1] thereisonly aslight
difference of the probability in the switching lemma. O
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Theorem 85 Let 7 be a Frege syssemand d > 4. Then for sufficiently large m
every depth d proof in F of Graph,, must have size at |east 2™ for § < (1/5)9,

Proof:  The proof follows the same argument as in the proof of Theorem[Z2] O

9 Open problems  The techniques used to prove lower bounds expounded in the
earlier sections of this paper are quite powerful, but there appear to be difficultiesin
extending them to more genera situations. In thisfinal section, afew open problems
are stated that seem to require extensions of the methods used here.

In Urquhart [{16], it is shown that there is a family {G,} of bipartite expander
graphs of bounded degree so that the sets of clauses Clauses(Gy,) require exponen-
tially long refutations in the resolution proof system. Let Taut(G,) be the corre-
sponding tautologies formed by negating all the clauses in Clauses(G,,) and then
forming their disjunction.

Problem 9.1 Do thetautologies Taut(Gy) require proofs of superpolynomial size
in a bounded depth Frege system?

The problem in adapting the current methods to the case of the tautologies based on
the graphs G, liesin the fact that the application of arestriction to agraph in general
simplifies the graph considerably. By contrast, in the case of the graphs Kp, 1., and
Kn, the application of arestriction results in a graph of the same type on a smaller
vertex set.

In [5], Chvatal and Szemerédi generalized the argument of to show that a
random set of clauses, provided it is not too large, is both unsatisfiable and requires
exponentially large resolution refutations. To be precise, Chvatal and Szemerédi de-
finetherandom family of mclausesof sizek over n variablesto beafamily of clauses
defined by picking m samples with replacement from the family of all clauses of size
kinnvariables. Their theorem isthen asfollows.

Theorem 9.1  For every choice of positive integers ¢ and k such that k > 3 and
c2X > 0.7, there is a positive number ¢ such that, with probability tendingto 1 asn
tends to infinity, the random family of cn clauses of size k over n variables is unsat-
isfiable and its resolution complexity is at least (1 + ¢)".

It seemslikely that progress with the first problem would also allow a generalization
similar to the preceding theorem.

Praoblem 9.2 Can the theorem of Chvatal and Szemerédi be generalized to
bounded depth Frege systems?
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