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Minimal Temporal Epistemic Logic

JOERI ENGELFRIET

Abstract In the study of nonmonotonic reasoning the main emphasis has
been on static (declarative) aspects. Only recently has there been interest in the
dynamic aspects of reasoning processes, particularly in artificial intelligence.
We study the dynamics of reasoning processes by using a temporal logic to spec-
ify them and to reason about their properties, just as is common in theoretical
computer science. This logic is composed of a base temporal epistemic logic
with a preference relation on models, and an associated nonmonotonic inference
relation, in the style of Shoham, to account for the nonmonotonicity. We present
an axiomatic proof system for the base logic and study decidability and com-
plexity for both the base logic and the nonmonotonic inference relation based
on it. Then we look at an interesting class of formulas, prove a representation
result for it, and provide a link with the rule of monotonicity.

1 Introduction In theoretical computer science, temporal logic has been widely
recognized as a valuable tool for specifying processes and reasoning about their prop-
erties. In the study of nonmonotonic reasoning the temporal view is not very com-
mon, partly because (nonmonotonic) logic is usually thought of as a purely static no-
tion. However, in nonmonotonic reasoning dynamic aspects of reasoning processes
can be interesting to study and often influence the static aspects, just as is common
in computer science, where we often have declarative semantics next to procedural
semantics of processes. There are also differences between the notion of process in
computer science and a reasoning process, for instance in the nature of a state: in a
computer it is composed of the values of the variables, whereas in a reasoning process
it consists of the facts which are believed (or derived) at that time.

A number of examples in which a temporal logic is used to specify reasoning
processes can be found in Engelfriet and Treur [6], where such specifications are in-
troduced for default logic (see Reiter [18]), classical inference systems, and meta-
level architectures. Also, in Engelfriet and Treur [7] it is shown that there exists a
large class of reasoning processes that can be specified in this temporal logic. There-
fore it seems justified to study this temporal logic formalism in more detail, which
will be done in the present paper.

In Section 2 we introduce the temporal logic which is the basis of the framework,
and in Section 3 an extra restriction is imposed upon this logic. Section 4 describes
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the notions of minimal models and minimal entailment which will be studied in the
rest of the paper. In Section 5 decidability of this notion is established, and Section 6
gives complexity results for both the base logic and minimal entailment. In Section 7
we look at a special class of formulas and prove a link with the rule of monotonicity.
Section 8 gives conclusions and suggestions for further research.

2 Temporal epistemic logic When designing a logic capable of describing the be-
havior of reasoning processes over time, two important decisions have to be made:
which temporal ontology is suited best for the purpose, and what is a state in a rea-
soning process? We view a reasoning process, performed by an agent for instance,
as a stepwise process: the agent starts out with some initial facts (possibly none) and
attempts to derive consequences by applying rules; a new state in which the agent has
more knowledge results. The agent will then try again to derive new facts resulting in
a next state, et cetera, possibly ad infinitum. This suggests a temporal ontology which
is discrete and has a starting point (the natural numbers seem most suited). In theoret-
ical computer science there has been much debate about whether time should be linear
or branching (towards the future) (see de Bakker, de Roever, and Rozenberg [3]). The
most important differences between these two approaches are that linear time logics
have in general a lower complexity but also less expressivity than the corresponding
branching time logics. Although some results in [6] on specifying proof systems in
temporal logic seem to suggest that sometimes the higher expressivity of branching
time logic is needed, we will confine ourselves here to using linear time.

As suggested above, the important thing about the state of a reasoning agent at
a particular moment is the knowledge he has derived. Kripke semantics can be used
to formalize such an information state. We will take propositional logic as the basic
language in which the agent can describe his knowledge. A modal operator K will be
used to denote the agent’s knowledge. In principle the agent may perform (positive
and negative) introspection, which suggests an S5 logic to describe knowledge.

Definition 2.1 (Epistemic language) Let P be a (finite or countably infinite) set of
propositional atoms. The language LS5 is the smallest set closed under:

1. if p ∈ P then p ∈ LS5;
2. if ϕ,ψ ∈ LS5 then Kϕ, ϕ ∧ ψ, ¬ϕ ∈ LS5.

Furthermore, we introduce the following abbreviations:

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ),
ϕ → ψ ≡ ¬ϕ ∨ ψ,
Mϕ ≡ ¬K¬ϕ,
� ≡ p ∨ ¬p,
⊥ ≡ ¬�.

If every atom occurring in a formula ϕ is in the scope of a K operator, we call ϕ sub-
jective.

An example of a subjective formula is ¬K p ∧ K(q → p), whereas K(p ∧ q) ∨ s is
not subjective. In the rest of this paper we will be especially interested in subjective
formulas since they describe (only) the knowledge and ignorance of the agent. As
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we want to talk about the knowledge of the agent changing over time, the epistemic
language will be temporalized below.

In the usual S5 semantics a model is a triple (W, R, π) where W is a set of
worlds, R is an equivalence relation on W , and π is a function that assigns a propo-
sitional valuation to each world in W . We may however (see e.g. Meyer and van der
Hoek [16]), in the case of one agent, restrict ourselves to normal S5-models, in which
the relation is universal (each world is accessible from every other world) and worlds
are identified with propositional valuations.

Definition 2.2 (S5 semantics) A propositional valuation of signature P is a func-
tion from P into {0, 1}, where 0 stands for false and 1 for true. The set of such valu-
ations will be denoted by Mod(P). A normal S5-model M is a nonempty set of val-
uations. The truth of an S5-formula ϕ in such a model, evaluated in a world m ∈ M,
denoted (M, m) |=S5 ϕ, is defined inductively:

(M, m) |=S5 p ⇐⇒ m(p) = 1, for p ∈ P (1)

(M, m) |=S5 ϕ ∧ ψ ⇐⇒ (M, m) |=S5 ϕ and (M, m) |=S5 ψ (2)

(M, m) |=S5 ¬ϕ ⇐⇒ it is not the case that (M, m) |=S5 ϕ (3)

(M, m) |=S5 Kϕ ⇐⇒ (M, m′) |=S5 ϕ for every m′ ∈ M. (4)

A pair (M, m) where M is a normal S5-model and m ∈ M (the current world) is called
an epistemic state, and the set of such pairs is denoted by ES(P), or simply ES.

It is easy to see that the truth of a subjective S5-formula in a model is independent of
the world in which it is evaluated, so if we restrict ourselves to subjective formulas,
the world m in which it is evaluated is often left out.

Remark 2.3 Note that an S5-formula is subjective if and only if it is equivalent to
a formula of the form Kϕ with ϕ ∈ LS5.

Axiomatizations for S5 are known from the literature (e.g. Halpern and Moses [13]).

Definition 2.4 (Axiom system for S5) The axiom system of S5 consists of:

1. All instances of propositional tautologies
2. K(ϕ → ψ) → (Kϕ → Kψ) (K)
3. Kϕ → ϕ (T)
4. Kϕ → KKϕ (Positive Introspection)
5. ¬Kϕ → K¬Kϕ (Negative Introspection)

and the following two rules:

1.
ϕ ϕ → ψ

ψ
(Modus Ponens)

2.
ϕ

Kϕ
(Necessitation)

If there is a proof for ϕ using this system, we will denote this by �S5 ϕ.
It is well known that this system is sound and complete with respect to the class

of normal S5-models.
In order to describe past and future we will introduce temporal operators P, H,

F, G, and �, standing for “sometimes in the past,” “always in the past,” “sometimes
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in the future,” “always in the future,” and “always” respectively. Note that we do not
want to talk about the agent’s knowledge of the future and past, but about the future
and past of the agent’s knowledge. Therefore temporal operators need never occur
within the scope of the epistemic K operator. This is reflected in the definition of the
temporal epistemic language.

Definition 2.5 (Temporal epistemic language) The language LTEL is the smallest
set closed under:

1. if ϕ ∈ LS5 then ϕ ∈ LTEL;
2. if α, β ∈ LTEL then α ∧ β,¬α, Pα, Fα ∈ LTEL.

Again the abbreviations for ∨, →, �, and ⊥ are introduced, as well as:

Gα ≡ ¬F¬α,
Hα ≡ ¬P¬α, and
�α ≡ Hα ∧ α ∧ Gα.

If in the first clause we restrict ourselves to subjective S5-formulas, we get the
set of subjective TEL-formulas.

In the rest of this paper we will be interested in subjective TEL-formulas since
they describe how the knowledge of the agent changes over time. Based on the set of
natural numbers (starting at zero) as flow of time and the notion of epistemic state as
formalization of a state, the following semantics is introduced for temporal epistemic
logic (TEL).

Definition 2.6 (Semantics of TEL) A TEL-model is a function M : N → ES. The
truth of a formula ϕ ∈ LTEL in M at time point t ∈ N, denoted (M , t) |= ϕ, is defined
inductively as follows:

(M , t) |= ϕ ⇐⇒ M (t) |=S5 ϕ, if ϕ ∈ LS5 (1)

(M , t) |= ϕ ∧ ψ ⇐⇒ (M , t) |= ϕ and (M , t) |= ψ (2)

(M , t) |= ¬ϕ ⇐⇒ it is not the case that (M , t) |= ϕ (3)

(M , t) |= Pϕ ⇐⇒ ∃s ∈ N such that s < t and (M , s) |= ϕ (4)

(M , t) |= Fϕ ⇐⇒ ∃s ∈ N such that t < s and (M , s) |= ϕ (5)

A formula ϕ is true in a model M , denoted M |= ϕ, if for all t ∈ N, (M , t) |= ϕ. If ϕ

is true in all models we write |= ϕ (ϕ is valid), and we write ψ |= ϕ (ϕ is a semantical
consequence of ψ) if for all models M and t ∈ N, (M , t) |= ψ implies (M , t) |= ϕ.
We will often write M t for M (t).

For future use we give the following definition. (Here Oi stands for a sequence of O
operators of length i, where O ∈ {P, H, F, G,�}. Furthermore O0α stands for α.)

Definition 2.7 For i ∈ N define ati := Pi� ∧ Hi+1⊥.

It is easy to see that (M , j) |= ati if and only if i = j.
We would like to find an axiom system for TEL. The idea is to use the axioms of

an S5-system together with axioms for tense logic over the natural numbers. Instead
of proving soundness and completeness for the resulting system from scratch, we will
use results from Finger and Gabbay [8] where a general method for temporalizing a
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given logic system is presented. In their notation, TEL would be T(S5). We cannot
directly apply their results since they use the temporal operators Since and Until, but
adaptation to our situation is easy. Our class of flows of time contains only the set of
natural numbers. First we will give an axiomatic system for propositional tense logic
over the natural numbers (from Goldblatt [10]), which is sound and complete with
respect to N.

Definition 2.8 (Tense logic over the natural numbers) The axiom system for tense
logic over N consists of:

1. All instances of propositional tautologies
2. G(ϕ → ψ) → (Gϕ → Gψ)

3. H(ϕ → ψ) → (Hϕ → Hψ)

4. ϕ → H Fϕ (CP)
5. ϕ → GPϕ (CF)
6. Hϕ → H Hϕ (4P)
7. Gϕ → GGϕ (4F)
8. F(�) (DF)
9. G(Gϕ → ϕ) → (FGϕ → Gϕ) (ZF)
10. H(Hϕ → ϕ) → Hϕ (WP)

and the following rules:

1.
ϕ ϕ → ψ

ψ
(Modus Ponens)

2.
ϕ

Gϕ

ϕ

Hϕ
(Necessitation)

Using the axiom systems for S5 and tense logic, Definition 2.6 of [8] allows us to give
an axiomatization for TEL.

Definition 2.9 (Axiomatization for TEL) The axiom system of TEL consists of:

1. The axioms 1–10 of Definition 2.8

2. The inference rules 1 and 2 of Definition 2.8

3. For every formula α ∈ LS5, if �S5 α then �TEL α (Preserve).

Using Theorem 2.2 of [8], soundness of S5 and soundness of the axiom system for
tense logic over N, we immediately have the following theorem.

Theorem 2.10 (Soundness of TEL) The axiom system TEL is sound.

Theorem 2.3 of [8] states that if the system to be temporalized is complete and the ax-
iomatization of the logic with Since and Until is complete over a class of linear flows
of time, then the “merged” axiomatization is complete for the temporalized logic. Our
class of flows of time (consisting only of the natural numbers) is a subclass of the lin-
ear flows of time. A slight adaptation of their proof yields the same result for tempo-
ralizing over the temporal operators used in TEL. Therefore we have the following.

Theorem 2.11 (Completeness of TEL) The axiom system TEL is complete.
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Again borrowing from [8], Theorem 3.1, and using the fact that both S5 ([16]) and
tense logic over the natural numbers (Sistla and Clarke [19]) are decidable, we have
the following theorem.

Theorem 2.12 (Decidability of TEL) The logic TEL is decidable.

In the next section we will impose an extra restriction on our models.

3 Conservativity We want to use subjective temporal formulas for describing the
behavior of a reasoning agent. The reasoning will be assumed to be conservative,
that is, the agent’s knowledge will increase as he is reasoning. Although the actual
implementation of the reasoning behavior may involve backtracking or the addition
of extra assumptions which may later be retracted, we are interested only in the in-
crease of knowledge over time: adding assumptions and later retracting them is as-
sumed to be done in one step. This presupposes a world which does not change. We
will restrict ourselves to conservative behavior here, though we agree that it may be
worthwhile to investigate nonconservative behavior as well.

In the following we are interested only in subjective formulas, so we delete the
world from the epistemic state. Thus in the following, we consider ES to be the set of
all normal S5-models, i.e., the powerset of Mod(P) without the empty set. We will
study consequence relations between formulas, and it will turn out that these notions
are independent of the propositional signature. Therefore the propositional signature
can and will be assumed to be finite.

Definition 3.1 (Conservative models)

1. We define the degree-of-information ordering ≤ on information states as fol-
lows:

for M1, M2 ∈ ES, M1 ≤ M2 ⇐⇒ M2 ⊆ M1

We write M1 < M2 if M1 ≤ M2 and M1 �= M2.
2. A TEL-model M is called conservative if for all s ∈ N:

M s ≤ M s+1

3. Validity and semantical consequence restricted to the class of conservative
models (TELC-models) will be denoted by |=c.

The definition of the degree-of-information ordering is based on the observation that
the more valuations one considers to be possible, the less knowledge (or information)
one has. Note that for any conservative model M , time point s ∈ N, and propositional
formula ϕ: if (M , s) |= Kϕ, then for t > s also (M , t) |= Kϕ. This means that when-
ever a propositional formula is known, it will remain known in the future.

The notions |= and |=c are not compact: the set {Pi(�)|i ∈ N} is not satisfiable,
whereas each finite subset is (for both notions).

Proposition 3.2 (Axiomatization) Let C = {�(Kα → G(Kα))|α a propositional
formula}. For each TEL-model M the following are equivalent:

1. M is conservative
2. M |= C
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3. (M , t) |= C for some t ∈ N.

Furthermore, the axiom system TELC, consisting of TEL plus the axioms of C, is
sound and complete with respect to the class of TELC-models.

Proof: Let M be conservative and let t ∈ N. Suppose (M , t) |= Kα and take s > t
arbitrary. Then for all m ∈ M t, m |= α. Take m ∈ M s, then since M is conservative
we have M s ⊆ M t, so m ∈ M t and m |= α. Therefore (M , s) |= Kα, and since
s was arbitrary we have (M , t) |= G(Kα), so (M , t) |= Kα → G(Kα). We have
(M , 0) |= �(Kα → G(Kα)).

Suppose on the other hand that (M , t) |= C for some t ∈ N, but M is not con-
servative. Then there exists s ∈ N and m ∈ M s+1 with m /∈ M s. Let ϕm be the con-
junction of the literals that are true in m (i.e., ϕm = ∧{p ∈ P|m |= p} ∧ ∧{¬p|p ∈
P, m �|= p}; this is a propositional formula since P was assumed finite in the remark
above Definition 3.1). Then since m /∈ M s and for all m′ �= m, m′ |= ¬ϕm, we have
(M , s) |= K(¬ϕm), but as m ∈ M s+1 and m �|= ¬ϕm, (M , s + 1) �|= K(¬ϕm), so
(M , s) �|= G(K(¬ϕm)). Thus (M , t) �|= �(K(¬ϕm) → G(K(¬ϕm))), a contradic-
tion.

The above shows that the axioms of C are sound. Now suppose |=c ϕ, then we
have for all TEL-models M : if M is conservative then M |= ϕ. Since there are only
a finite number of nonequivalent propositional formulas over P, C can be taken to
be finite, and therefore we can take the conjunction of its elements. So if (M , s) |=∧

C then M is conservative, so M |= ϕ, and therefore (M , s) |= ϕ. Thus we have∧
C |= ϕ, and using the deduction lemma for TEL (which can be easily verified),

|= ∧
C → ϕ, from which by the completeness of TEL it follows that �TEL

∧
C → ϕ.

Since TELC contains TEL and the axioms of C and has Modus Ponens as inference
rule, we conclude �TELC ϕ. �
We also have that TELC is decidable.

Proposition 3.3 (Decidability of TELC) The logic TELC is decidable.

Proof: Checking whether �TELC ϕ reduces to checking �TEL
∧

C → ϕ, where C
is the set of rules �(Kα → G(Kα)) for all nonequivalent propositional formulas α

in the proposition letters of ϕ. This is decidable by Theorem 2.12. �
Using TELC as our base logic we will now consider minimal conservative models
and minimal entailment.

4 Minimal models and minimal entailment To describe the behavior of a reason-
ing agent over time, we assume we have a finite number of subjective TEL-formulas
(or just a single one, the finite conjunction of these formulas). We are interested in the
consequences of this description. It is for instance possible to describe the behavior
of an agent performing default reasoning by translating a default rule (α : β)/γ into
the TEL-rule Kα ∧ G(¬K¬β) → G(Kγ), as described in Engelfriet and Treur [5].
This description forces conclusions to be added in certain circumstances. However,
we want the knowledge of the agent to be minimal: only those facts should be known
which are prescribed by the description to be known, and no other facts. So we make
the explicit assumption that “all the agent knows” is what is dictated by the descrip-
tion. Apart from the temporal aspect, this is similar in spirit to the theory of epistemic
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states of Halpern and Moses [12], introduced to formalize the notion of “knowing
only ϕ.” For a broader discussion of minimalization of models, see for instance van
Benthem [21].

We will formalize this minimality by introducing a preference relation over
TELC-models which favors models with as little propositional knowledge as possi-
ble. Formulas are assumed to be subjective.

Definition 4.1 (Minimal models and entailment)

1. We extend the degree of information ordering to TELC-models M , N :

M ≤ N ⇐⇒ for all s ∈ N : M s ≤ N s.

We write M < N if M ≤ N and M �= N .
2. A TELC-model M is a minimal conservative model of ϕ, denoted M |=min ϕ,

if M |= ϕ and for all conservative models N , if N |= ϕ and N ≤ M then
N = M .

3. For TEL-formulas ϕ,ψ, we say ϕ is a minimal conservative consequence of ψ

or ψ minimally entails ϕ, denoted ψ |=c
min ϕ, if for all minimal conservative

models M of ψ, M |= ϕ holds.

For a subjective formula ϕ (which describes the reasoning of an agent), its minimal
models represent the process of the agent’s reasoning in time. We can then use min-
imal consequence to infer properties of this reasoning process.

Note that the notion of minimal entailment strengthens the notion of conserva-
tive entailment in the sense that ϕ |=c ψ implies ϕ |=c

min ψ. An easy example, even
without temporal operators, shows that it is a proper extension: although K p �|=c

¬K q, we do have K p |=c
min ¬K q.

The minimal consequence relation defined here on TEL-formulas can be seen as
a temporalization of Ground S5 (or Minimal S5) as studied in for example Donini,
Nardi, and Rosati [4], which in turn is a generalization of the entailment relation
of [12] mentioned before. Semantically, Minimal S5 can be defined in a way sim-
ilar to minimal conservative consequence: a normal S5-model M is a minimal model
of an S5-formula α if M |=S5 Kα and for all S5-models N, if N |=S5 Kα and N ≤ M
(where ≤ is the degree-of-information ordering on S5-models of Definition 3.1), then
N = M. For S5-formulas α, β, we define α |=S5

min β if Kβ is true in all minimal models
of α. The following is easy to prove.

Proposition 4.2 Let α, β be S5-formulas, then:

α |=S5
min β ⇐⇒ Kα |=c

min Kβ.

So there is an almost trivial reduction of Minimal S5 to our minimal conservative
consequence. We will use this fact later on when we discuss complexity. If Kα has
only one minimal model, then α is called honest, and when we restrict the premises
to honest formulas, we get the entailment relation of [12].

Since we are working with a fixed propositional signature P, the above definition
of minimal entailment seems to depend on P, but this is not actually the case.

Proposition 4.3 The notion |=c
min is independent of the propositional signature.
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Proof: For a propositional signature P we write L P to denote the temporal epis-
temic language based on P and P-|=c

min to denote the associated notion of minimal
conservative consequence. It is sufficient to show that for two signatures P, Q with
P ⊆ Q we have that for all formulas ϕ,ψ in L P : ϕ P-|=c

min ψ if and only if ϕ Q-
|=c

min ψ.
Let P, Q be two propositional signatures with P ⊆ Q. For a propositional valu-

ation m of signature Q, m|P denotes the restriction of m to atoms of P. Consider the
following constructions:

• For a TEL-model M based on Q, we define its restriction to P, M |P by:

(M |P)s = {m|P : m ∈ M s}.
• For a TEL-model M based on P, we define its extension to Q, M |Q by:

(M |Q)s = {m ∈ Mod(Q) : m|P ∈ M s}.
By induction on ϕ ∈ L P it is easy to see that truth of ϕ at a point in time is preserved
under these constructions.

Now suppose that M is a conservative TEL-model based on Q and M |=min ϕ

(with the notion of |=min based on Q). Then M |P |=min ϕ (with the notion of |=min

based on P): for suppose N is a conservative TEL-model based on P with N < M |P

and N |= ϕ, then (!) N |Q < M and N |Q |= ϕ.
Conversely, suppose that M is a conservative TEL-model based on P and

M |=min ϕ. Then M |Q |=min ϕ: for suppose N is a conservative TEL-model based
on Q with N < M |Q and N |= ϕ, then (!) N |P < M and N |P |= ϕ.

It is now easy to see that ϕ P-|=c
min ψ if and only if ϕ Q-|=c

min ψ. �
As an example of the use of these notions, it has been shown in [5] that minimal entail-
ment can capture skeptical consequence in default logic (see [18]). A default theory
consists of a set of propositional formulas, called the axioms and denoted by W , and
a set D of defaults of the form (α : β)/γ, where α, β, and γ are propositional formu-
las. Such a default has the intended meaning: if you believe α and β is consistent
with your beliefs, then you should also believe γ. The theory of Reiter ([18]) then
prescribes how, using the default rules, you can extend W to a set of formulas, called
an extension.

Definition 4.4 (Reiter extension) Let 〈W, D〉 be a default theory. A set of propo-
sitional sentences E is a Reiter extension of 〈W, D〉 if and only if:

E =
∞⋃

i=0

Ei with

E0 = Cn(W ) and for i ≥ 0 :

Ei+1 = Cn(Ei ∪ {γ|(α : β)/γ ∈ D, α ∈ Ei and ¬β /∈ E}),
where Cn(A) denotes the set of all propositional consequences of A.

Note that in the definition, the sets Ei depend on E, making the definition noncon-
structive. In general for a default theory there may be multiple extensions. If a for-
mula ϕ is in all of these extensions, we call ϕ a skeptical consequence of the default
theory.
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Example 4.5 (Default logic) Let a finite default theory � = 〈W, D〉 be given and
let ψ = ∧{Kα ∧ G(¬K¬β) → G(Kγ)|(α : β)/γ ∈ D} ∧ ∧{Kα|α ∈ W}. Then ϕ

is a skeptical consequence of � if and only if ψ |=c
min F(Kϕ) (see [5]).

We are interested in the complexity of minimal entailment; we will first concentrate
on the decidability.

5 Decidability of minimal entailment The first question to be asked when inves-
tigating the complexity of a notion is whether it is decidable. The notion of minimal
entailment will turn out to be decidable, but in order to prove that we will first need
some lemmas.

Observation 5.1 A conservative TEL-model M consists of a sequence of normal
S5-models. These models consist of a finite number of propositional valuations, since
P is assumed to be finite. Furthermore the sequence is (not necessarily strictly) de-
creasing. Therefore there must exist a time point s ∈ N such that for all t > s : M t =
M s. If s0 is the smallest point for which this is true, we say that M stabilizes at s0.

Since all TELC-models stabilize, it is possible to store them in finite space.
The idea in the proof of decidability is that for each formula ψ there is a number

nψ such that a minimal model of ψ must stabilize before nψ. Then there is only a
finite number of models to be checked, and since they stabilize, it is always possible
to check whether a temporal formula holds in them. To obtain the upper bound nψ one
reasons that if there exists a long enough sequence of identical states in a model before
it stabilizes, then it is possible to insert an extra (identical) state into this sequence
without disturbing the truth of ψ. Since this enlarged model is smaller (with respect
to ≤) than the original, the original model could not have been a minimal model of ψ.
The length of such a sequence depends on the depth of nesting of temporal operators
in ψ. We will now formalize these ideas.

Definition 5.2 (Depth) The depth of nesting of temporal operators in a formula
ϕ, depth(ϕ), is defined inductively as follows:

• depth(ϕ) = 0, if ϕ ∈ LS5

• depth(α ∧ β) = max{depth(α), depth(β)}
• depth(¬α) = depth(α)

• depth(Pα) = depth(Fα) = depth(α) + 1

The first lemma states that in a sequence of identical states, formulas with small
enough depth cannot discriminate between states in the middle of the sequence. Lem-
mas 5.3, 5.4, and Fact 5.5 are also valid for nonsubjective formulas.

Lemma 5.3 If M is a TEL-model such that for some N ≥ 1, s ≥ N:

M s = M s+i = M s−i for all 1 ≤ i ≤ N,

then for all ϕ with depth(ϕ) < N and 1 ≤ j ≤ N − depth(ϕ):

(M , s − j) |= ϕ ⇔ (M , s) |= ϕ ⇔ (M , s + j) |= ϕ.
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Proof: By induction on ϕ, where the only interesting cases are the temporal opera-
tors (the abbreviation “i.h.” stands for induction hypothesis).

Fα: Let 1 ≤ j ≤ N − depth(Fα). The implications from right to left are trivial,
so we will prove only (M , s − j) |= Fα ⇒ (M , s + j) |= Fα. Suppose (M , s − j) |=
Fα. There exists n ∈ N, n > s − j with (M , n) |= α. If n > s + j then (M , s + j) |=
Fα, so suppose s − j < n ≤ s + j.

1. If n = s − k with 1 ≤ k < j then 1 ≤ k < j ≤ N − depth(Fα) < N − depth(α)

and by the i.h. we get (M , s) |= α.

2. If n = s then (M , s) |= α.

3. If n = s + k with 1 ≤ k ≤ j then 1 ≤ k ≤ j ≤ N − depth(Fα) < N − depth(α),
so by the i.h. (M , s) |= α.

So we have (M , s) |= α and 1 ≤ j + 1 ≤ N − (depth(Fα) − 1) = N − depth(α), so
by the i.h. we have (M , s + ( j + 1)) |= α, and so (M , s + j) |= Fα.

Pα: Analogous to Fα. �

We will often use this lemma with j = 1 and N = depth(ϕ) + 1. The following ex-
ample shows that we really need that many identical states.

��

����

�

6543210 M

−

K p

K p,K q

This picture represents the model in which nothing is known at time point 0, p is
known from time point 1 onwards, and q is known from time point 5. We have
(M , 3) �|= G(K q) but (M , 3 + 1) |= G(K q) (we need an extra K p state between
4 and 5); also (M , 2 − 1) |= H(¬K p) but (M , 2) �|= H(¬K p) (we need an extra
K p state between 0 and 1).

The next lemma shows that if we have a sequence of identical states, a middle
state can be duplicated or removed without changing the truth of formulas with suf-
ficiently small depth of operator-nesting.

Lemma 5.4 Let M be a model as in Lemma 5.3. Define f : N → N as follows:

f (n) =
{

n if n ≤ s
n − 1 if n > s.

and let N be a model satisfying N i = M f (i) for all i ∈ N. Then for all formulas ϕ

with depth(ϕ) ≤ N we have:

(N , i) |= ϕ ⇐⇒ (M , f (i)) |= ϕ for all i ∈ N.
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Proof: By induction on ϕ, where the only nontrivial cases are the operators (for
which we will take H and G).

Hϕ: Suppose (N , i) |= Hϕ. Take k < f (i). Then there exists t < i such that
f (t) = k and then (N , t) |= ϕ, so by the i.h. (M , k) |= ϕ. Thus (M , f (i)) |= Hϕ.

Suppose (M , f (i)) |= Hϕ.

• If i ≤ s, take k < i then f (k) < f (i), so (M , f (k)) |= ϕ and by the i.h.
(N , k) |= ϕ. We have (N , i) |= Hϕ.

• If i ≥ s + 1, take k < i;

– If k �= s then f (k) < f (i), so (M , f (k)) |= ϕ and by the i.h. (N , k) |= ϕ.

– If k = s then s − 1 < f (i), so (M , s − 1) |= ϕ. As depth(Hϕ) ≤ N we
have 1 ≤ 1 ≤ N − depth(ϕ), and by Lemma 5.3 we have (M , s) |= ϕ.
By the i.h. (N , s) |= ϕ, or (N , k) |= ϕ.

So we have (N , i) |= Hϕ.
Gϕ: Analogous. �

The following picture sketches the situation with N = 2.
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Another way of proving this lemma is to show that there exist bisimulations up to
N between these two models. The main use of the lemma lies in the possibility of
enlarging or reducing sequences of identical states in a model without disturbing truth
of formulas with sufficiently small depth of nesting.

Fact 5.5 For the models M , N of Lemma 5.4 the following holds: if M is conser-
vative then N is conservative and vice versa, N ≤ M , and if there exists t ≥ s + N
such that M t < M t+1 then N < M .

Proof: Take s ∈ N, then N s = M f (s). Since f (s) ≤ s and M is conservative we
have M f (s) ≤ M s so N s ≤ M s. If there exists t ≥ s + N such that M t < M t+1 then
N t+1 = M f (t+1) = M t < M t+1. �
This fact and the previous lemma allow us to conclude that for each formula there is
a time point such that the minimal models of the formula must stabilize before this
point. From now on we will again restrict ourselves to subjective formulas.
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Lemma 5.6 Suppose the propositional signature P consists of n atoms. If a con-
servative model M of signature P is a minimal model of a subjective formula ϕ then
it stabilizes on or before time point (2n − 1) · 2 · depth(ϕ).

Proof: First we will show that a minimal model M of ϕ cannot have more than 2 ·
depth(ϕ) successive identical states before it stabilizes. Suppose M |=min ϕ and it
has at least 2 · depth(ϕ) + 1 successive identical states before it stabilizes. So there
exists s ≥ depth(ϕ) such that M s = M s+i = M s−i for all 1 ≤ i ≤ depth(ϕ), and
t ≥ s + depth(ϕ) such that M t < M t+1. Now consider the model N as described
in Lemma 5.4. Since M |= ϕ we have N |= ϕ, and by Fact 5.5 we have N < M .
Therefore M cannot be a minimal model of ϕ.

As P has n atoms, there exist 2n different propositional models. Since a con-
servative model M consists of a decreasing sequence of (nonempty) sets of propo-
sitional models, there are at most 2n − 1 points s such that M s < M s+1. If M is
a minimal model of ϕ then there can be at most 2 · depth(ϕ) successive identical
states before it stabilizes, and therefore M must stabilize on or before time point
(2n − 1) · 2 · depth(ϕ). �

Lemma 5.7 For a conservative model M , s ∈ N and a formula ϕ it is decidable
whether (M , s) |= ϕ.

Proof: Suppose we have a conservative model M and s ∈ N. By Observation 5.1,
M stabilizes at some point s0. It is easily seen from Lemma 5.3 that for a formula
ϕ we have (M , t) |= ϕ ⇐⇒ (M , u) |= ϕ for all t, u ≥ s0 + depth(ϕ). Then use
induction on ϕ. �
Most importantly, it is decidable if a model is a minimal model of a subjective for-
mula.

Lemma 5.8 For a conservative model M and a subjective formula ϕ it is decidable
whether M |=min ϕ.

Proof: First, we need to check whether M |= ϕ, which is equivalent to checking
(M , 0) |= �ϕ, which is decidable by Lemma 5.7. Suppose P has n atoms. If M
stabilizes after time point (2n − 1) · 2 · depth(ϕ) it is not a minimal model of ϕ by
Lemma 5.6. So suppose M |= ϕ and M stabilizes on or before time point (2n − 1) ·
2 · depth(ϕ).

In order to check whether M |=min ϕ we have to see if there exists a conservative
model smaller than M which satisfies ϕ. Of course in general there are an infinite
number of conservative models smaller than M , but we will show that we have only
to consider models which stabilize not later than time point (2n − 1) · (4 · depth(ϕ) +
1). In other words, we will show that if there exists a conservative model smaller than
M satisfying ϕ, there also exists such a model which stabilizes on or before point
(2n − 1) · (4 · depth(ϕ) + 1). The converse of this statement is of course trivial.

Suppose we have a conservative model N with N < M and N |= ϕ, and let s
be the stabilizing point of N . If s ≤ (2n − 1) · (4 · depth(ϕ) + 1) then we are done,
so suppose not. Now consider the following procedure for constructing a model N ′:
if there exists a sequence of more than 2 · depth(ϕ) + 1 successive identical states
in N between time points (2

n − 1) · 2 · depth(ϕ) and s, then we delete points from
this sequence until it has length 2 · depth(ϕ) + 1. Lemma 5.4 ensures that we can do



246 JOERI ENGELFRIET

this without disturbing the truth of ϕ. It is also easy to see that the result is conser-
vative and still (strictly) smaller than M . Let N ′ be the model which results from
applying this procedure for every such sequence. Then N ′ |= ϕ and N ′

< M . Let
s′ be the stabilizing point of N ′. Then in N ′ there are at most 2n − 1 points t with
(2n − 1) · 2 · depth(ϕ) ≤ t < s and N ′

t < N ′
t+1. Between such points there are at most

2 · depth(ϕ) + 1 identical states and therefore s ≤ (2n − 1) · 2 · depth(ϕ) + (2n − 1) ·
(2 · depth(ϕ) + 1) = (2n − 1) · (4 · depth(ϕ) + 1).

It is easy to see that, given the finite signature, there are only a finite num-
ber of conservative models which stabilize not later than time point (2n − 1) · (4 ·
depth(ϕ) + 1). For each such model N we can check whether N < M (only the
first (2n − 1) · (4 · depth(ϕ)+ 1) time points have to be considered), and we can check
whether N |= ϕ (again decidable). If we find such a model then M �|=min ϕ, otherwise
M |=min ϕ. �
Now we are ready to prove decidability of minimal entailment.

Theorem 5.9 (Decidability of minimal entailment) For two subjective formulas
ϕ,ψ it is decidable whether ϕ |=c

min ψ.

Proof: We can take the signature P to consist of the atoms occurring in ϕ and ψ.
Suppose there are n such atoms. Then Lemma 5.6 states that we have only to consider
models which stabilize not later than time point (2n − 1) · 2 · depth(ϕ), and since the
signature is finite, there are only finitely many such models. For each such model
M it is decidable by Lemma 5.8 whether M |=min ϕ. Now we have only to check
for each of these (finitely many) minimal models M of ϕ whether M |= ψ, which is
decidable by Lemma 5.7. �
Of course the procedure given in the proof will be very inefficient.

Having established that both TELC and minimal entailment are decidable, in the
next section we will look at the complexity of these notions, and in particular whether
the minimalization process has a structural impact on complexity.

6 Complexity We will first give a brief overview of the relevant concepts of com-
plexity theory needed in the rest of this chapter. This is meant as a reminder for the
reader, not as an introduction to this field (see Johnson [14] for a good introduction).
Especially the Polynomial Hierarchy (PH) will concern us here. The Polynomial Hi-
erarchy is a hierarchy of classes of problems of increasing complexity. The two best
known complexity classes in PH are P and NP. The basic notion in defining complex-
ity classes is the Turing Machine (TM). The class P consists of all problems solvable
by a deterministic TM running in time polynomial in the length of the input. Prob-
lems solvable by a nondeterministic TM running in polynomial time form the class
NP. For any complexity class C, the class co-C consists of the problems whose com-
plement is in C. In order to define the other classes in PH, we need the notion of
an oracle TM, which is a TM that has access to an oracle for a particular decision
problem: all instances of that problem can be solved in one time step by consulting
the oracle. Formally, if C is a complexity class then the class NPC consists of those
problems solvable by a nondeterministic TM with access to an oracle for a problem
in C, running in time polynomial in the input size. Now set:

�P
0 = 	P

0 = P, and for k ≥ 0 :
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�P
k+1 = NP�P

k and 	P
k+1 = co-�P

k+1

Note that �P
1 = NP and 	P

1 = co-NP. For a problem p, if for any problem in class
C there is a polynomial transformation of that problem to p, then p is called C-hard.
If p is in C and is C-hard, it is called C-complete. If a C-hard problem can be (poly-
nomially) transformed to p, p is also C-hard.

In order to study its complexity we will first look at satisfiability of TELC. With-
out loss of generality we restrict ourselves to satisfiability of subjective formulas in
time point 0.

Definition 6.1 (TELC(0)-SAT) A subjective formula ϕ is in TELC(0)-SAT if there
exists a TELC-model M such that (M , 0) |= ϕ.

Remark 6.2 It is easy to see that TELC(0)-SAT is polynomially reducible (and vice
versa) to satisfiability (in any time point): ϕ is satisfiable if and only if ϕ ∨ Fϕ is in
TELC(0)-SAT, and ϕ is in TELC(0)-SAT if and only if �(at0 → ϕ) is satisfiable.

Definition 6.3 (Size of a TELC-model) For a TELC-model M we call its stabiliz-
ing point the size of M , denoted size(M ).

Definition 6.4 (Subformula) Let Subf(ϕ) denote the subformulas of ϕ, where max-
imal S5-subformulas of ϕ are not further decomposed, and let Subf S5(ϕ) denote the
set of subformulas of ϕ which are in LS5.

We give an example to clarify this definition: Subf(G(K p ∧ K q)) = {G(K p ∧
K q), K p ∧ K q} and Subf S5(G(K p ∧ K q)) = {K p ∧ K q,K p,K q, p, q}. So
Subf(ϕ) ∪ Subf S5(ϕ) is the set of all subformulas of ϕ.

First we will prove a small-model theorem for TELC. Let length(ϕ) denote the
length of the formula ϕ as a string.

Lemma 6.5 (Small model theorem) If a subjective formula ϕ is in TELC(0)-SAT
then there exists a TELC-model M such that (M , 0) |= ϕ, size(M )≤4 · (length(ϕ))2,
and for all i ∈ N the S5-model M i contains not more than 2 · length(ϕ) valuations.

Proof: Suppose for some TELC-model N we have (N , 0) |= ϕ and let sN be the
stabilizing point of N . Let L0 denote the propositional language based on P.

Now let A = {ψ,¬ψ|ψ ∈ L0, ψ ∈ Subf S5(ϕ)} and for i ∈ N:

B(i) = {Kψ|ψ ∈ A, N i |= Kψ} ∪ {¬Kψ|ψ ∈ A, N i �|= Kψ}.

Based on these sets we will define a TELC-model N ′.
For each ¬Kψ ∈ B(sN ) choose a valuation m ∈ Mod(P) such that m �|= ψ and

m |= α for each Kα ∈ B(sN ) (such a valuation exists since (N , sN ) �|= Kψ and
(N , sN ) |= Kα for each Kα ∈ B(sN )). Let M be the set of these valuations. We
have M |= B(sN ). If there are no formulas ¬Kψ ∈ B(sN ) then choose any valua-
tion m with m |= α for each Kα ∈ B(sN ) (which again exists). Set N ′

j = M for all
j ≥ sN . It easy to verify that N ′

j |= B( j) for all j ≥ sN .

Now using induction on sN > j ≥ 0, let B( j)\B( j +1) = {¬Kψ1, . . . ,¬Kψn}
(because N is conservative there will be no formulas Kψ in this set). For k = 1, . . . , n
choose a valuation mk with mk �|= ψk and m |= α for each Kα ∈ B( j) (again such
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valuations exist). Let N ′
j = N ′

j+1 ∪ {m1, . . . , mk}. It is again easy to verify that
N ′

j |= B( j).
The resulting model N ′ has the following properties:

1. N ′ is a TELC-model.
2. N ′

j |= B( j) for all j ∈ N.

3. The number of valuations of N ′
j is smaller than the number of elements in A(≤

2 · length(ϕ)).
4. (N ′

, 0) |= ϕ: Take ψ ∈ Subf(ϕ)∩ LS5 (which must be subjective). Then using
a normal form described in [16] it is easy to see that ψ is equivalent to a for-
mula ψ′ = δ1 ∨ · · · ∨ δm with for i = 1, . . . , m : δi = Kϕ1,i ∧ · · · ∧ Kϕk(i),i ∧
¬Kψ1,i ∧ · · · ∧ ¬Kψ�(i),i, with ϕ jk, ψ jk ∈ A. So using (2) we have:

N ′
i |= Kϕ jk ⇐⇒ N i |= Kϕ jk and

N ′
i |= ¬Kψ jk ⇐⇒ N i |= ¬Kψ jk,

so N ′
i |= ψ′ ⇐⇒ N i |= ψ′ and thus N ′

i |= ψ ⇐⇒ N i |= ψ. An easy induc-
tion gives: for all i ∈ N, for all ψ ∈ Subf(ϕ) : (N ′

, i) |= ψ ⇐⇒ (N , i) |= ψ

and therefore (N ′
, 0) |= ϕ.

5. The number of i for which N ′
i < N ′

i+1 is less than 2 · length(ϕ): real changes
occur at most once for each ¬Kψ with ψ ∈ A and A contains at most 2 ·
length(ϕ) elements.

Now construct the model M as follows: for each sequence of more than 2 ·depth(ϕ)+
1 identical states in N ′, before its stabilizing point, delete states from this sequence
until it has length 2 · depth(ϕ) + 1. Let M be the resulting model. Now Lemma 5.4
ensures that (M , 0) |= ϕ. Furthermore 2 · depth(ϕ) + 1 ≤ 2 · length(ϕ) so that
size(M ) ≤ (2 · length(ϕ))2. �
With this lemma we can show that TELC(0)-SAT is in NP, using methods similar to
those in, e.g., [19] and Ladner [15].

Theorem 6.6 TELC(0)-SAT is in NP.

Proof: For a subjective formula ϕ we present the following nondeterministic al-
gorithm to verify if ϕ is in TELC(0)-SAT. A nondeterministic Turing Machine (M)
guesses 4 · (length(ϕ))2 Kripke models M i with each not more than 2 · length(ϕ)

valuations, such that M i ⊇ M i+1. M will be this model, remaining constant af-
ter time point 4 · (length(ϕ))2. Then it verifies if (M , 0) |= ϕ as follows: for each
i ∈ {0, . . . , 4 · (length(ϕ))2 + length(ϕ)}, M maintains a set label(i) which is initial-
ized to the empty set and at the end will contain the subformulas of ϕ true at time point
i. Now for each ψ ∈ Subf(ϕ) we do the following (starting with the S5-subformulas,
and treating ψ only if all of its subformulas have already been treated): for each
i ∈ {0, . . . , 4 · (length(ϕ))2 + length(ϕ)} update label(i) as follows:

1. Add ψ ∈ LS5 to label(i) if and only if M i |= ψ (this can be checked in time
polynomial in the number of states in M i, using a labeling algorithm similar to
the one described here, see, e.g., [13]).

2. Add ¬ψ to label(i) if and only if ψ /∈ label(i).
3. Add α ∧ β to label(i) if and only if α ∈ label(i) and β ∈ label(i).
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4. Add Fα to label(i) if and only if α ∈ label( j) for some j > i (If i = 4 ·
(length(ϕ))2 + length(ϕ) then add Fα to label(i) if and only if α ∈ label(i)).

5. Add Pα to label(i) if and only if α ∈ label( j) for some j < i.

Now we have (M , 0) |= ϕ if and only if ϕ ∈ label(0) at the end of this procedure. It
is easy to verify that this algorithm works properly in time polynomial in length(ϕ).
Lemma 6.5 ensures that there is a guess for which M halts in an accepting state if and
only if ϕ is in TELC(0)-SAT. �
This gives us the following corollary.

Corollary 6.7 TELC satisfiablity is NP-complete.

Proof: The reduction given in Remark 6.2 ensures that TELC satisfiablity is in NP,
and clearly a propositional formula ϕ is satisfiable if and only if Mϕ is TELC satisfi-
able. As satisfiability of propositional formulas is NP-complete, TELC satisfiability
is also NP-complete. �
We would like to show that the minimalization of models makes the consequence rela-
tion more complex, and we can do this using the reduction of Minimal S5 to minimal
conservative consequence, as described in Proposition 4.2.

Proposition 6.8 Minimal conservative consequence is 	P
3 -hard.

Proof: The reduction of Proposition 4.2 is clearly polynomial, and Minimal S5 is
	P

3 -complete ([4]). �
So minimal consequence is harder than TELC-consequence (which is 	P

1 -complete,
or co-NP-complete), provided the polynomial hierarchy does not collapse (see [14]).

In [7] a sublanguage of the subjective part of LTEL is proposed as a specification
language for (conservative) reasoning processes, and it is shown that this language
is suited for this task. We will now look at the complexity of minimal entailment
restricted to this language. Let H0ϕ be an abbreviation for (at0 → ϕ).

Definition 6.9 The language L ′ is the smallest set such that:

1. If α ∈ L0 then Kα ∈ L ′.
2. If α, β, γ,ψ, and ϕ ∈ L0 then H0(Kα) ∧ H0(¬Kβ) ∧ Kγ ∧ G(¬K(¬ψ)) →

G(Kϕ) ∈ L ′.
3. If ϕ,ψ ∈ L ′ then ϕ ∧ ψ ∈ L ′.

For ϕ ∈ L ′ and ψ = F(Kα) with α ∈ L0 we define ϕ |=′ c
min

ψ if and only if ϕ |=c
min

ψ.

The basis of the language is formed by the formulas in “rule format” of item (2) of the
definition. It prescribes the inference of a conclusion (ϕ) if some conditions are met.
These conditions may refer to the facts which are (un)known at the start of the rea-
soning process (the part with the H0-operators), to facts currently known (γ), and it
may contain a “global consistency check” (ψ) in analogy with the translated rules for
default logic. If G(¬K(¬ψ)) is true at some point in time, then ¬ψ is never known
in the future, which means that ψ remains consistent with what the agent knows. The
formulas of item (1) just prescribe facts which should be known from the start (initial
knowledge). Conjunctions are allowed to make a single formula of rules and initial
facts. The formula F(Kα) expresses that α will be known sometime in the future
(and can be regarded as a conclusion of the reasoning process).
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Since we can reduce default logic to this fragment (see Example 4.5) and de-
fault logic is 	P

2 -complete (Gottlob [11], Stillman [20], see also Papadimitriou and
Sideri [17]), |=′ c

min is 	P
2 -hard. However, it is no harder than that.

Proposition 6.10 |=′ c
min is 	P

2 -complete.

Proof: We will describe a nondeterministic Turing Machine M with access to an
NP-oracle for determining whether not ϕ |=′ c

minψ (similar to the proofs in [20], [17]
or [11]). A minimal model of ϕ can have no identical states before it stabilizes. For
each conjunct H0(Kα)∧ H0(¬Kβ)∧ Kγ ∧ G(¬K(¬δ)) → G(K ε) in ϕ, M guesses
a time point i ≥ 1 but not more than n, where n is the number of these conjuncts plus
one, from which time onwards ε will be assumed to hold (or it guesses that ε will
never hold). Denote for i ∈ {0, . . . , n}, the set of formulas assumed to hold at i plus
the formulas α for which there is a conjunct Kα in ϕ, by A(i). Then M uses the NP-
oracle to perform the following:

1. Let f (ε) be the point from which ε is assumed to hold (and so f (ε) ∈ {1, . . . , n,

∞}). Now it checks for all i ∈ {1, . . . , n} if {K ε| f (ε) ≤ i} ∪ {¬K ε| f (ε) > i}
is S5-satisfiable (using the oracle; note that S5-satisfiability is in NP). If not, it
halts in a rejecting state (the guess does not induce a TELC-model).

2. For each conjunct H0(Kα) ∧ H0(¬Kβ) ∧ Kγ ∧ G(¬K(¬δ)) → G(K ε) and
for each time point i ∈ {0, . . . , n} it computes whether A(0) |= α, whether
A(0) �|= β, whether A(i) |= γ and whether for no i < j ≤ n, A( j) |= δ, using
the NP-oracle. If this is true for no time point then it checks whether ε is as-
sumed never to hold; otherwise it takes the first such point and checks whether
ε is assumed to hold from the next time point on. If these conditions are vi-
olated then M halts in a rejecting state (the guess does not induce a minimal
model of ϕ).

3. It checks if A(n) |= χ (when ψ = F(Kχ)). If this is the case then in this min-
imal model of ϕ,ψ holds, so M halts in a rejecting state (the guess does not
induce a minimal model of ϕ in which ψ fails). Otherwise it halts in an accept-
ing state (the guess induces a minimal model of ϕ in which ψ does not hold).

This nondeterministic algorithm is polynomial in ϕ (using an NP-oracle for propo-
sitional consequence and S5-satisfiability) so the converse of |=′ c

min is in �P
2 which

implies that |=′ c
min is in 	P

2 . Together with 	P
2 -hardness this gives the desired result.

�
Apart from default logic, skeptical consequence relations of many other well-known
nonmonotonic logics such as McDermott and Doyle’s nonmonotonic logic, autoepis-
temic logic, and nonmonotonic logic N are 	P

2 -complete ([19]), which means that we
can reduce these relations to minimal consequence (or even |=′ c

min), using a polyno-
mial reduction. Further research is needed to find these reductions.

We would also like to have an upper bound on the complexity of minimal conse-
quence. In order to get this, we need to sharpen some previous lemmas. Lemma 5.6
gave an upper bound on the size of minimal models of ϕ, but it is not polynomial in
the length of ϕ. We already know that the length of a sequence of identical states in a
minimal model is polynomially bounded, so we will try to find a polynomial bound
on the number of transitions between nonidentical states in a minimal model. The key
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is that in a minimal model of ϕ, after such a transition occurs, the agent will know (at
least) one of the subformulas of ϕ he did not know before. In fact, a minimal model
of ϕ is uniquely determined by the subformulas of ϕ which are true at any moment in
time. We will now make this formal.

Definition 6.11 For a subjective formula ϕ, define A(ϕ) = {ψ,¬ψ|ψ ∈ L0 ∩
Subf S5(ϕ)}. A TELC-model M of ϕ is based on ϕ (abbreviated bo(ϕ)) if there exist
sets A(i) for each i ∈ N with A(0) ⊆ A(1) ⊆ · · · ⊆ A(ϕ) and M i = Mod(A(i)) =
{m ∈ Mod(P)|m |= A(i)}.

Lemma 6.12 If M |=min ϕ then M is bo(ϕ) and size(M ) ≤ 4 · (length(ϕ))2.

Proof: Suppose M is not based on ϕ. Define A(i) = {α,¬α|α ∈ A(ϕ) and M i |=
Kα} and let N i = Mod(A(i)). Clearly A(0) ⊆ A(1) ⊆ · · · ⊆ A(ϕ), so N is a
TELC-model and N < M . Furthermore for all α ∈ L0 ∩ Subf S5(ϕ) we have M i |=
Kα ⇐⇒ N i |= Kα and M i |= Mα ⇐⇒ N i |= Mα, so using the same argument
as in the proof of Lemma 6.5 we have N |= ϕ. This contradicts the assumption that
M |=min ϕ, so M is based on ϕ. But then the number of changes in M (the points
i ∈ N where M i < M i+1) cannot be larger than the number of elements of A(ϕ)

and in between such updates there cannot be sequences of identical states longer than
2 · depth(ϕ) + 1 so size(M ) ≤ 4 · (length(ϕ))2. �
Notice that a model M based on ϕ can equivalently be described by giving for each
formula in A(ϕ) the time point at which it is known in M , or “infinity” if this is never
the case. We have a similar result for models which refute that M is a minimal model
of ϕ.

Lemma 6.13 If M |= ϕ but M �|=min ϕ, then there exists a TELC-model N such
that N < M , N |= ϕ, and N is based on ϕ with size(N ) ≤ size(M ) + 4 ·
(length(ϕ))2.

Proof: Suppose M |= ϕ but M �|=min ϕ then there is a TELC-model M ′ with M ′
<

M and M ′ |= ϕ. In the same way as in the proof of Lemma 6.12 we can make a
model M ′′ which is a model of ϕ based on ϕ and M ′′ ≤ M ′. Now from any se-
quence of identical states in M ′′ after size(M ) but before size(M ′′

) with length more
than 2 · depth(ϕ) + 1 we can delete states until it has length 2 · depth(ϕ) + 1. Let N
be the resulting model (this construction is the same as the one used in the proof of
Lemma 5.8). So we have N < M , N |= ϕ, and N is based on ϕ. Furthermore,
N has less than 2 · length(ϕ) updates, and sequences between size(M ) and size(N )

have length no greater than 2 · depth(ϕ) + 1, so size(N ) ≤ size(M ) + 2 · length(ϕ) ·
2 · length(ϕ) = size(M ) + 4 · (length(ϕ))2. �

Lemma 6.14 Deciding for a formula ϕ and a model M based on ϕ whether
M |=min ϕ is in 	P

2 .

Proof: We assume the model M encoded as described in the remark after Lem-
ma 6.12: there is a function f : A(ϕ) → N ∪ {∞} such that f (α) gives the time point
from which α is known. We will show that deciding whether M �|=min ϕ is in �P

2 by
describing a nondeterministic Turing Machine M with access to an NP-oracle. Let
size(M ) = max( f [A(ϕ)]\{∞}) (if f [A(ϕ)] = {∞}, then let size(M ) = 0). First
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we check whether size(M ) ≤ 4 · (length(ϕ))2; if not we halt in an accepting state.
Otherwise we use a labeling algorithm as described earlier to check if M |= ϕ. The
range of time points we have to check is from 0 to size(M ) + length(ϕ). The subfor-
mulas in Subf(ϕ) ∩ LS5 are treated as follows: for such a formula α and time point i
it is checked (using the NP-oracle) if {K ε| f (ε) ≤ i} ∪ {¬K ε| f (ε) > i} |=S5 α. If so,
α is added to label(i), otherwise not. If M �|= ϕ, M halts in an accepting state (cer-
tainly M �|=min ϕ). Otherwise M guesses a TELC-model N by guessing a function
g : A(ϕ) → N ∪ {∞} such that:

1. f (ε) ≤ g(ε);
2. either g(ε) ≤ size(M ) + 4 · (length(ϕ))2 or g(ε) = ∞;
3. for at least one ε ∈ A(ϕ) we have g(ε) > f (ε).

Then it checks for i ∈ {0, . . . , size(M ) + 4 · (length(ϕ))2} whether {K ε|g(ε) ≤ i} ∪
{¬K ε|g(ε) > i} is S5-consistent, using the oracle. If not, we halt in a rejecting state
(g does not describe a TELC-model). Otherwise we know that g induces a TELC-
model N with N < M (if such a guess is not possible then we halt in a rejecting state
because M |=min ϕ). Next we use the labeling algorithm to check whether N |= ϕ; if
not we halt in a rejecting state, otherwise in an accepting state: N is a smaller model
of ϕ. It is clear that the algorithm works in polynomial time (using the NP-oracle).
Lemma 6.13 ensures that there is a guess for which M halts in an accepting state if
and only if M �|=min ϕ. Thus deciding if M �|=min ϕ is in �P

2 , so the complement is
in 	P

2 . �

Theorem 6.15 Deciding whether ϕ |=c
min ψ is in 	P

3 .

Proof: We will show that deciding whether not ϕ |=c
min ψ is in �P

3 by giving a non-
deterministic Turing Machine M with access to a 	P

2 -oracle. First M guesses a TELC-
model M based on ϕ by guessing a function f : A(ϕ) → N ∪ {∞} such that for
all ε ∈ A(ϕ) either f (ε) ≤ 4 · (length(ϕ))2 or f (ε) = ∞. Then it checks for i ∈
{0, . . . , 4 · (length(ϕ))2} whether {K ε| f (ε) ≤ i} ∪ {¬K ε| f (ε) > i} is S5-consistent,
using the oracle. If not it halts in a rejecting state ( f does not induce a TELC-model).
Now it uses the 	P

2 -oracle to determine whether M |=min ϕ. If not it halts in a reject-
ing state. Otherwise it uses a labeling algorithm to check whether M |= ψ (as in the
proof of the previous lemma, using the 	P

2 -oracle for S5-consequence); if this is true
M halts in a rejecting state, otherwise in an accepting state. The algorithm works in
polynomial time, and Lemma 6.12 ensures there is a guess for which M halts in an
accepting state if and only if not ϕ |=c

min ψ. So as this is in �P
3 , the complement is in

	P
3 . �

Combining this with Proposition 6.8, we immediately get the following.

Corollary 6.16 Minimal conservative consequence is 	P
3 -complete.

7 Downward persistence The entailment relation we have defined is a nonmono-
tonic one, which means that one can have that α |=c

min γ but not α∧β |=c
min γ for some

formulas α, β, and γ (see Gabbay, Hogger and Robinson [9]). We are interested in the
class of formulas β which can be added to the premises without disturbing any of the
conclusions. It will turn out that this is the class of downward persistent formulas (see
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also [21]). In the rest of this section we will investigate the class of formulas which
are preserved under decreasing or increasing (with respect to ≤) the models. Since
our logic is essentially a temporalized version of S5, we will first look at S5-formulas
preserved under going to larger and smaller models.

Definition 7.1 (Preservation under supermodels)

1. An S5-formula ϕ is preserved under supermodels if for any two S5-models
M, N such that N ⊆ M, and m ∈ N: if (N, m) |=S5 ϕ then (M, m) |=S5 ϕ.

2. Define the class of S5-formulas DIAM by:

DIAM := p|¬p|DIAM ∧ DIAM|DIAM ∨ DIAM|M(DIAM)

We want to prove that formulas in this class are the only ones (up to equivalence)
which are preserved under supermodels.

Theorem 7.2 An S5-formula ϕ is preserved under supermodels if and only if it is
S5-equivalent to a formula in DIAM.

Proof: It is easy to see that a formula equivalent to one in DIAM is preserved un-
der supermodels. Now let ϕ be preserved under supermodels. Suppose Mod(P) =
{m1, . . . , mn}. For i = 1, . . . , n define A(i) = min{N ⊆ Mod(P)|(N, mi) |=S5 ϕ},
where for a set B of S5-models, minB = {N ∈ B| there is no M ∈ B such that M
is a proper subset of N}. Define for j = 1, . . . , n : α j := ∧{p|p ∈ P, m j |= p} ∧∧{¬p|p ∈ P, m j �|= p}, and for an S5-model M, ϕM = ∧{Mα j| j = 1, . . . , n and
m j ∈ M}. It is easy to see that for an S5-model N we have that M ⊆ N if and only if
(N, m) |=S5 ϕM for some or all m ∈ N. Now define for j = 1, . . . , n:

ψ j =



α j ∧
∨{ϕM|M ∈ A( j)} if there exists an S5-model N with

(N, m j) |=S5 ϕ,
⊥ otherwise.

Note that ⊥ is equivalent to M(p ∧ ¬p). Now let ψ = ∨{ψ j| j = 1, . . . , n}. Then ψ

is in DIAM. We will show that ψ is equivalent to ϕ.
Suppose (N, mi) |=S5 ϕ. Then there exists an M ∈ A(i) with M ⊆ N, so

(N, mi) |=S5 ϕM and (N, mi) |=S5 αi. Hence (N, mi) |=S5 ψi and (N, mi) |=S5 ψ.
Suppose that (N, mi) |=S5 ψ. Then there exists a j such that (N, mi) |=S5 ψ j,

but then i = j and there exists M ∈ A(i) such that (N, mi) |=S5 ϕM . Thus M ⊆ N and
(M, mi) |=S5 ϕ, but since ϕ is preserved under supermodels we have (N, mi) |=S5 ϕ.

�
We are also interested in formulas preserved under taking submodels.

Definition 7.3 (Preservation under submodels)

1. An S5-formula ϕ is preserved under submodels if for any two S5-models
M , N such that N ⊆ M , and m ∈ N : if (M , m) |=S5 ϕ then (N , m) |=S5 ϕ.

2. Define the class of S5-formulas BOX by:

BOX := p|¬p|BOX ∧ BOX|BOX ∨ BOX|K(BOX).



254 JOERI ENGELFRIET

Proposition 7.4 An S5-formula ϕ is preserved under submodels if and only if it is
equivalent to a formula in BOX.

Proof: Easy. �
Now we are ready to use these results to get a preservation result for TEL-formulas.
As we were interested in downward persistent formulas because of the link with the
rule of monotonicity for minimal consequence, the definition of downward persis-
tence should use the corresponding notion of satisfaction of a formula in a model
(M |= ϕ). Also the notion of equivalence between formulas should be based on this
notion.

Definition 7.5 (Upward and downward persistence)

1. A subjective TEL-formula ϕ is called

downward persistent (dp) if for all TELC-models M , N :

if M ≤ N and N |= ϕ then M |= ϕ;

upward persistent (up) if for all TELC-models M , N :

if M ≤ N and M |= ϕ then N |= ϕ.

2. Define DP := DIAM|DP ∧ DP|DP ∨ DP|F(DP)|G(DP)|P(DP)|H(DP)

UP := BOX|UP ∧ UP|UP ∨ UP|F(UP)|G(UP)|P(UP)|H(UP)

3. For two subjective TEL-formulas ϕ,ψ:

ϕ ∼ ψ ⇐⇒ for all TELC-models M : M |= ϕ ⇐⇒ M |= ψ.

We can link the notion of ∼ with the notion |=c: if we denote ϕ |=c ψ and ψ |=c ϕ by
ϕ ≡c ψ then: ϕ ∼ ψ ⇐⇒ �ϕ ≡c �ψ. This implies that ∼ is decidable.

Now we are ready to prove the following.

Theorem 7.6 A subjective TEL-formula ϕ is downward persistent if and only if it
is equivalent (in the sense of ∼) to a subjective formula in DP.

Proof: For a subjective (!) formula ϕ ∈ DP one can easily prove that for all TELC-
models M , N and i ∈ N: if M ≤ N and (N , i) |= ϕ then (M , i) |= ϕ. This implies
that a formula equivalent (in the sense of ∼) to one in DP is dp.

Suppose ϕ is a subjective dp formula. We will construct its equivalent in DP. If
there is no TELC-model M such that M |= ϕ then ϕ is equivalent to ⊥. Note that ⊥
is equivalent to M(p ∧ ¬p), which is a subjective formula in DP. Suppose we have a
propositional signature P with m atoms. For a set of TELC-models B define maxB =
{M ∈ B|there is no N ∈ B with M < N }. If there is a TELC-model M such that
M |= ϕ, then we define A = max{M |M |= ϕ}. Suppose M |= ϕ and M stabilizes
after time point (2m − 1) · (2 · depth(ϕ)+ 1). Then we can delete points in sequences
of more than (2 · depth(ϕ) + 1) identical states before the stabilizing point without
disturbing the truth of ϕ. If we do this for each such a sequence we end up with a
model of ϕ which is larger (with respect to ≤) than M and stabilizes not later than
(2m − 1) · (2 · depth(ϕ) + 1). Thus: A = max{M |M |= ϕ and M stabilizes not later
than (2m − 1) · (2 · depth(ϕ) + 1)}. As the set we take the maximal elements of is
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nonempty and finite and the relation < on TELC-models is transitive and irreflexive,
A is nonempty and finite. Note that the argument used here (for maximal models) is
similar to the one used for minimal models in the proof of Lemma 5.6: there the idea
was that a model which is too long can be enlarged (yielding a smaller model with
respect to ≤), whereas here the idea is that if a model is too long, it can be reduced
(yielding a bigger model with respect to ≤).

Suppose Mod(P) = {m1, . . . . , mn} (with of course n = 2m). Again define for
j = 1, . . . , n : α j := ∧{p|p ∈ P, m j |= p} ∧ ∧{¬p|p ∈ P, m j �|= p}. Now define
for i = 1, . . . , n and for a TELC-model M : n(i, M ) = sup{ j ∈ N|mi ∈ M j}, where
sup ∅ = −∞. Let

ψ(i, M ) =



�(at
n(i,M )

→ Mαi) if n(i, M ) ∈ N

�(Mαi) if n(i, M ) = ∞
� if n(i, M ) = −∞

(Note that � is equivalent to s f M(p ∨ ¬p).)
Furthermore, define ψM = ∧{ψ(i, M )|i = 1, . . . , n}. Now it can easily be

proven that N |= ψM ⇐⇒ N ≤ M : the formulas ψ(i, M ) make sure that the val-
uation mi is in N t at least until the last time point s for which mi is in M s. Finally,
define: ψ = ∨{ψM |M ∈ A}. Then ψ is in DP and ϕ ∼ ψ:

• Suppose M |= ϕ. Then there exists N ∈ A with M ≤ N (!), so M |= ψN
and M |= ψ.

• Suppose M |= ψ. Then there exists N ∈ A with M |= ψN , so M ≤ N ; and

as N ∈ A we have N |= ϕ, and ϕ was dp, so M |= ϕ. �

As in the case of S5-formulas we have the following.

Proposition 7.7 A subjective TEL-formula ϕ is upward persistent if and only if it
is equivalent (in the sense of ∼) to a subjective formula in UP.

Proof: If ϕ is up then ¬�ϕ is dp so by the previous theorem ¬�ϕ ∼ ψ for some
ψ ∈ DP. Then ϕ ∼ ¬�ψ and ¬�ψ is equivalent to some formula in UP. �
Furthermore, the property of downward persistence is decidable.

Proposition 7.8 For a subjective formula ϕ it is decidable whether ϕ is dp.

Proof: Suppose P contains n propositional atoms. We will prove that ϕ is dp if
and only if for all TELC-models M , N with size(M ) ≤ (2n − 1) · (2 · depth(ϕ) +
1), size(N ) ≤ 2 · (2n − 1) · (2 · depth(ϕ) + 1): if N ≤ M and M |= ϕ then N |= ϕ.
This implies the decidability of dp.

Suppose ϕ is not dp, then there exist TELC-models M , N with N < M , M |=
ϕ, and N �|= ϕ. Now we construct a TELC-model M ′ by deleting points from se-
quences of more than 2 · depth(ϕ) + 1 identical states before the stabilizing point
from M until each such sequence is exactly 2 · depth(ϕ) + 1 states long. Then
size(M ′

) ≤ (2n − 1) · (2 · depth(ϕ) + 1), N < M ′, and M ′ |= ϕ (by Lemma 5.4).
Now we construct a model N ′ using the following procedure. First we identify all
sequences of identical states in N after time point (2n − 1) · (2 · depth(ϕ) + 1) but
before the stabilizing point of N of length more than (2 · depth(ϕ)+ 1) points. From
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each such sequence we delete points until it has length (2 · depth(ϕ) + 1). Then
size(N ′

) ≤ 2 · (2n − 1) · (2 · depth(ϕ) + 1), N ′ �|= ϕ (Lemma 5.4), and it is easily
checked that N ′

< M ′. �
Similarly it is decidable whether a formula is up, and this gives us another way of ver-
ifying TELC theorems since �TELC ϕ ⇐⇒ M ti |= ϕ and ϕ is up, where M ti is the
totally ignorant model defined by M ti

s = Mod(P) for all s (note that for all TELC-
models N we have M ti ≤ N ; use soundness and completeness of TELC). Since
TELC-theoremhood is co-NP-complete, we have the following as an immediate con-
sequence.

Corollary 7.9 Upward persistence for subjective formulas is co-NP-hard.

For a valuation m ∈ Mod(P) we can define the TELC-model M m by (M m
)t = {m}

for all t. It is easy to see that such a model is maximal in the ordering ≤, and this
gives us another way of checking TELC theorems since �TELC ϕ ⇐⇒ ϕ is dp and
M m |= ϕ for all m ∈ Mod(P). Furthermore we have: ϕ up and dp ⇐⇒ �TELC ϕ or
ϕ ∼ ⊥, which gives us the following.

Corollary 7.10 Checking whether a subjective formula is downward and upward
persistent is co-NP-complete.

One of the reasons we were interested in formulas preserved under shrinking models
was the link to monotonicity, which we can now prove with the following proposition.

Proposition 7.11 If a subjective formula β is downward persistent then for all sub-
jective formulas α, γ: if α |=c

min γ then α ∧ β |=c
min γ.

Proof: Suppose β is downward persistent and that for two formulas α, γ we have
α |=c

min γ. Take a minimal model M of α ∧ β, then M |= α ∧ β, so M |= α. But M
is also minimal with respect to this property, for suppose N ≤ M and N |= α, then
since β is downward persistent, we also have N |= β, so N |= α ∧ β. But since M
was a minimal model of α ∧ β we must have N = M . So M is a minimal model of
α so M |= γ. We have proved that α ∧ β |=c

min γ. �
We have given a syntactical characterization of downward persistent formulas and the
link with monotonicity, but it is also possible to characterize the downward persistent
formulas using monotonicity (referring only to minimal entailment).

Proposition 7.12 A subjective formula ϕ is downward persistent if and only if
∀α, β : α |=c

min β ⇒ α ∧ ϕ |=c
min β.

Proof: The “only if” part is Proposition 7.11.
Suppose ϕ is not dp, then there exist TELC-models M , N such that N <

M , M |= ϕ, but N �|= ϕ. For a TELC-model L, define (using notation from the
proof of Theorem 7.6): m(i,L) = min{ j ∈ N|mi /∈ M j} where min ∅ = ∞ and

ψL = {�(atm(i,L)
→ K(¬αi))|i = 1, . . . , n, m(i,L) < ∞}.

It is easy to see that for a TELC-model K , K |= ψL if and only if K ≥ L. Now

take α = (ψN ∧ (�ϕ → ψM )) and β = ♦(¬ϕ). Any TELC-model L of α has to

satisfy L ≥ N , and N |= α (N |= �ϕ → ψM since (N , i) �|= �ϕ for all i ∈ N).
Therefore N |=min α, and it is the only minimal model of α. Since N |= ♦(¬ϕ) we

have α |=c
min β. Any TELC-model L of α ∧ ϕ has L |= �ϕ, so L |= ψM , which
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implies L ≥ M . Also M |= α ∧ ϕ (since N < M ), so M is the unique minimal
model of α ∧ ϕ. But M �|= β, and therefore we do not have α ∧ ϕ |=c

min β. �
So this proposition says that a formula is downward persistent if and only if you can
always be sure that adding this formula to your knowledge does not disturb any con-
sequences.

8 Conclusions and further research The logic TELC was proposed to describe the
behavior of a conservative reasoning agent. This logic was shown to be decidable,
and a sound and complete axiomatization was given. Based on this logic we defined
a notion of minimal entailment and studied the decidability and complexity. TELC

was found to be co-NP-complete and minimal consequence was shown to be 	P
3 -

complete. Furthermore, a syntactical characterization of formulas preserved under
going to smaller models was presented and a link with monotonicity was given.

The fact that the interaction between the epistemic part and the temporal part
of the logic is quite limited (only conservativity gives a link) is important for the re-
sults in this paper. No interaction axioms were required for TEL, and the soundness
and completeness results easily followed from [8]. The syntactical characterization of
Section 7 was obtained by first treating S5 and using this for TEL. Compositionality
makes things easier.

The translation of default logic into TEL is already known ([5]); further work is
needed to find the translations for other nonmonotonic logics such as autoepistemic
logic.

Although a decision procedure is sketched for minimal entailment, we would
also like to have an axiomatization. This might not be easy: it would immediately
yield an axiomatization for default logic, which has not been given before.

We have characterized the downward persistent formulas. We would like to find
a similar result for the class of formulas which have no minimal models (like F(K p)).
These are the formulas which are in a sense not “honest” since they do not describe
the reasoning behavior of an agent properly.

The use of S5 as the logic to describe the knowledge of the agent at any point in
time (allowing negative introspection) is not always realistic. If we use another modal
logic such as S4, many results in this paper would have to be re-examined; in partic-
ular the complexity might be higher. A number of constructions used in the proofs
will no longer work, and we might have to use methods like those in, for instance,
Andréka, van Benthem and Németi [2].

It would also be interesting to lift the restriction of conservativity. This plays an
important role in many of the proofs in this article but does not allow retraction, which
is needed for belief revision (see for instance Alchourrón, Gärdenfors and Makin-
son [1]). In the nonconservative case, we would also like to extend the language with
operators like Next, Since, and Until.

Finally, we would like to extend the framework to the case of many agents, also
allowing communication between agents and interaction with the outside world. It is
not straightforward how to extend the information ordering to this case. Some ideas
on how to do this are given in [12].
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