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Abstract  This paper is a contribution to the study of equality-free logic, that
is, first-order logic without equality. We mainly devote ourselves to the study of
algebraic characterizations of its relation of elementary equivalence by provid-
ing some Keisler-Shelah type ultrapower theorems and an EhrenfeuisdeFra
type theorem. We also give characterizations of elementary classes in equality-
free logic. As a by-product we characterize the sentences that are logically
equivalent to an equality-free one.

1 Introduction In first-order logic it is common to employ one symbol for the
equality relation. Equality is considered a logical notion, with a fixed meaning. This
was not the case when the first investigations in mathematical logic took place, but
this practice has been strongly supported by successful applications to mathematical
theories. Thus, the general study of first-order logic without equalisguality-free
logic, as we prefer to call it, has been neglected in favor of the more powerful version
with equality. Recently some interest in fragments of equality-free logic has arisen
in the frame of algebraic logic (see Blok and PigoE&lidnd Bloom [B]). We think
that a model-theoretic study of equality-free logic is worthwhile by itself and we hope
that, by means of contrast with the well-known results for first-order logic, this study
will contribute to the understanding of the role of equality in mathematical theories
and structures. As an easy example of this comparison consider the fact that every
satisfiable set of equality-free sentences has an infinite model.

Let L be a similarity type. The set of equality-free formulad.othat is, the set
of all first-order formulas of. not containing the equality symbol, is denotedlby.
Given two L-structures, 9B with 2l == 9B we mean tha®l andB satisfy exactly
the same sentenceslof. We devote this paper to the study of algebraic characteri-
zations of the relatioe=— and of elementary classes in the senskof

In Section 2 thd_eibniz congruence of a structurel(, Q(21), isintroduced. It is
the greatest congruence @n This notion was already considered a long time ago
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(see, for example, Monf€]) but its name and its present interest mainly come from
Blok and Pigozzilf]. The quotien®l* = 2(/Q (%) is called thereduction of 2. Fol-

lowing Blok and Pigozzilf] we say that two structuregl, 95 arerelatives and we

write 2 ~ %5 if they have isomorphic reductions. It turns out thais a weak notion

of isomorphism which is appropriate for equality-free logic. In ProposlHdiwe

give several conditions equivalent2~ 9 and in Theorerf2.8we prove that for

any structure8l, 9B, 2 =~ B is equivalent to the existence of elementary extensions
¢, © of A andB such that ~ ©. From this we obtain in Theoref9a first alge-

braic characterization of elementary classekin It is well-known (see) that an
equality-free sentence is preserved under strict homomorphic images and pre-images.
Here we prove the converse in Coroll&&yld a first-order sentence which is pre-
served under strict homomorphic images and pre-images is equivalent to an equality-
free sentence.

In Section 3 we generalize the Keisler-Shelah theorem on isomorphic ultrapow-
ers to the equality-free case (Theor@nBand3.3). What we obtainisth&l == B is
equivalent to the existence of an ultrafiltésuch thaflV ~ BY. Then we restrict our
attention to relational similarity types and we get stronger results (see ThEogém
and Corollary3.9). We use these theorems to obtain new algebraic characterizations
of elementary classes in equality-free logic (Theor@m$and3.1J. In Section 4
back and forth systems for equality-free logic are introduced. We obtain an analogue
of the Ehrenfeucht-Fias theorem (Propositidi.5] and we state without proofs the
basic facts about infinite back and forth.

Our notation and terminology is standard(2f);¢, is a family of structures and
U is an ultrafilter oved, [];., 2, is the direct product of the family arld;., /U
is the ultraproduct modult). We denote by?l' the direct power o and byAY
the ultrapower moduldJ. In Section 3 we consider some similar although different
constructions: theiltrafilter-product ]_[iuel 24 and theultrafilter-power Y 2. If L
is a similarity type,Lo is the set of quantifier-free formulas ofandL; is the set
of quantifier-free and equality-free formulas lof We write 2l =¢ B and? =; ‘B
to mean tha®l and®3 satisfy exactly the same sentenced gfandL respectively.

If 20 is anL-structure andB C A, we denote byL (B) the similarity type obtained
from L by adding a new constant symbol for each elemeri and by2(g the natural
expansion ofl to L(B) where every new constant denotes its corresponding element.

2 Relativeness and the Leibniz congruence  We begin by defining the notion of
strict homomorphism. This terminology comes from Czelakowgki [n [9] these
homomorphisms are called two-way homomorphisms. They should not be confused
with strong homomorphisms in the sense of Chang and Kelger [

Definition 2.1 If 20 and®®B arelL-structures, we say that a homomorphisnd —
B is gtrict if for every n-ary relation symboR € L and for everyay, ..., an € A,

(@, ...,an) € RYiff (h(ay),...,h@a)) € R®.

LemmaZ2.2 Let2 and S be L-structuresand h a homomorphism from £l onto 5.
Then the following are equivalent.
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(i) hisastrict homomorphism.
(i) (A Aaca=q (B, h(@))aca.
(ii)) (A, @)aca=" (B, h(a))aca.
Proof. Leftto the reader. O

In particular, if there is a strict homomorphism fr&inonto B, 2 and®B satisfy ex-
actly the same equality-free sentences.

Given a clas¥K of L-structures, we denote bysK the class of all strict homo-
morphic images of members &f and byH glK the class of all strict homomorphic
pre-images of members .

Definition 2.3 Let 2 be anL-structure andB C A, we define for any tupla& of
elements ofA the equality-free type of a over B in 2 by

tpy(@/B) ={p(X) € L™ (B) : Ag = ¢[a]},
and theequality-free atomic type of aover Bin 2 by

atpy(@/B) = {¢(X) € tpy(a/B) : ¢ is atomic}.

Definition 2.4  Given a structuré@l, we define the relatiorf2(2() on 2l by
Q) = {(a,b) € A?: atpy (a/A) = atpy(b/A)}.

This relation is a congruence gifand it is calledhe Leibniz congruence of 2. Infact
the Leibniz congruence & is the greatest congruence relationbii.e., it refines
every congruence &1). Since for anya, b € A,

atpy(a/A) = atpy(b/A) iff tpy(a/A) =tpy(b/A)

we have
a=b(modQ)) iff tpy(a/A) =tpy(b/A).

A structure igeduced if its Leibniz congruence is the identity. The quoti@mp (2()

is reduced and is calletie reduction of 2; it will be denoted by(*. Notice that for
any reduced structurdt, 2 = 20*. Moreover, it is easy to check that the canonical
homomorphism fron®( onto2* is strict.

Wenow introduce an equivalence relation between structures that plays for languages
without equality the same role thatisomorphisms play for languages with equality. To
our knowledge this relation was first defined by Blok and Pigozzi for the special case
of logical matrices inlf], using Condition (ii) of Propositio.6lbelow as the defining
condition; the word “relative” was introduced by them.

Definition 25 Let 2 and®B be L-structures. We say that a relati®hC A x Bis
arelativeness correspondence betweerRl and® if dom(R) = A, rg(R) = B and

(1) for any constant € L, c*Rc?®,
(2) foranyn-ary function symbolf € L, anya;,...,a, € Aandanyb,,...,by e
B such thatg; Rb; for eachi =1, ..., n,

f2(ay,...,a)RfZ(by, ..., by,
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(3) for anyn-ary relation symboP € L, anyay,...,a, € Aandanyb,...,by €
B such thatg; Rb; foreachi =1, ..., n,

(@, ...,an) € P iff (by, ..., by € PZ.

And we say that twd_-structureA and®B arerelatives, in symbols2( ~ 9B, if there
is a relativeness correspondence between them.

The relation of being either a strict homomaorphic image or a strict homomorphic
pre-image is not in general transitive. Its transitivization is precisely the relativeness
relation, as the next proposition states. The equivalences between (ii), (iii), (iv) and
(v) already appear ifg] for the special case of logical matrices.

Proposition 2.6  Let 2 and B be L-structures. Then the following are equivalent.
(i) A~ B.
(i) Therearen € w and L-structures €, ..., €, such that 2 = €y, B = ¢, and
for anyi < n, €i;1 € Hs(€) or €i1 € HX(€)).
(i) A, B € Hg() for some €.
(iv) A, B e Hg(¢) for some .
(V) A+ =B,
(vi) There are enumerationsof Aand B,a= (g :iel)andb=(b:iel)re
spectively, such that (21, 3@) =5 (B, b).
(vii) There are enumerationsof Aand B,a= (aj:iel)andb= (b :iel)re
spectively, such that (2, @) =~ (B, b).
Proof: Itis clear that (vi)< (vii). The directions (iii)= (i), (iv) = (ii) and (v) =
(iv) are also clear.

(vi) = (v) Suppose that there are enumerationé@ndB,a= (g :i € |) and
b= (b :i € |), respectively, such that

(2,3) =5 (B, ).
We defineh : 2* — 9B* as follows: for anyi € |
h([aila@y) = [bilaws) -

First of all we show that for any teritgy, ..., yn) of L and anyiy, ..., in, j € I,

[ a]] (@] i [, b,]] [bilow - @

Q) - Q(B) -

Assume that
Al A, . —[a
[t [a,, ..., aln]]Q(Q[) = [aJ]Q(Ql)

but
By . .
[t [bi,. ..,b.n]]m) # [bilocs) -
Then, there is some quantifier-free formuylég, xy, ..., Xm) € L™ (where the vari-
ablesz, xq, ..., xndon't occur int) and a sequenas, . . ., dy of elements oB such
that

B = (2%, ... Xm) [t%[bil, o bl d, . ..,dm] ,
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but
B b @z, X1, ..., Xm) [bj, da, ..., dm] .

Then, for any O< k < m, we choosejy € | such thaty = bj, in the enumeratiob
of B. Hence,

B = 0(Z X1, - .., %m) [t%[bil, ....b,].bj,. . ..,bjm],

but
B~ o(Z, X1, ..., Xm) [bj, bj,, ...,bjm].

Let ¢’ be obtained fronp by substituting the terrfor the variablez. We have

%|=(p/(y1,‘--7ynsxl’-"’xm)[bi1"--’binsbjl’---’bjm]-

Since B
(2,3) =¢ (B, b),
we have
Ql'=§0/(y1»---aanxl,---,Xm)[ail,---,ajn,ajl,...,ajm]
and
A o(Z, X1, ..., Xm) [aj,ajl, ...,ajm].
But then

A= @(Z, X1, - ., Xm) [tm[ail, ~ana,, ...,ajm],

which is absurd. Therefore, we conclude that

[t%[bil, e bin]]g(%) = [bi]ﬁ(%)'

We can prove the other direction df] analogously. By usindl) it is easy to see
thath is well-defined and it is an isomorphism.

(ii) = (v) It suffices to show that #( and®B areL-structuresanti: 2 — Bisa
strict homomorphism frordl ontoB then2l* = %%, Sinceh is ontoB, we have that
a=(a:aec A) andb = (h(a) : ac A) are enumerations (possibly with repetitions)
of AandB. And sinceh is a strict homomorphism, by Lemr2aZ] we obtain that

(,3) =5 (B, b).

Therefore, by the implication (vis (v), we conclude tha@l* = 9B*,
(vi) = (iii) Suppose that there are enumerati@s (a : i € 1) andb = (b; :
i € I') of AandB respectively such that

(,3) =5 (B, b).

LetV = {x; : i € |} be a set of variable¥] the algebra of terms of typk freely
generated by the sstandh the homomorphism frorfT” onto the algebraic reduct of
2 such that for any € |

h(xi) = a.
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We define anL-structuree in the following way. The algebraic reduct éfis 7 and
for anyn-ary relation symboR € L and anyty, ..., thn € 7

(tr, ..., tn) € REIff (h(ty), ..., h(tn)) € R*.
It is easy to see thdtis a strict homomorphism from onto®2l. And since
2,3 =, (B,h),
the functionfy : V — B such that for any € |
fo(xi) = bi,

can be extended to a strict homomorphiérfrom € ontoB. Therefore2l € Hg(<)
and®B € Hg(¢).

(i) = (vi) Let R be a relativeness correspondence betv@¢@md®B. An easy
induction shows that for any equality and quantifier-free fornguba, . . ., Xn) of L,
anyas,...,an € Aand anyby, ..., b, € Bsuchthatforeach 1 <i < n, aRb;,

A= glay, ..., an iff B = g[bi, ..., b

Therefore, if there are enumeratics= (3 ;i € 1) andb = (b; :i € ) of AandB
respectively such that for any= I, a; Rb;, we have(, a) =; (B, b). Clearly such
enumerations exist.

(V) = (i) Assume tha®l* = B* and leth : 2(* — 93* be an isomorphism. Define
the relationR € A x B by

aRb iff h([a]gm) = [blaws)

foranyae Aandanyb € B. Itis easy to check thaRis a relativeness correspondence
betweer(l and®B. ]

Lemma27 Let2 and B be L-structures and suppose that there are sequences of
elementsof Aand B,a= (g :iel)andb= (b :i € |), respectively, such that

(2A,a) =" (B, b).

Thenthereare2l’ > 2 and sequencest= (a; : j € J)andd = (bj:j e J)ofelements
of A’ and B, respectively, such that

&', T) =" (%8, d),

aC ¢, bc danddisanenumeration of B.

Proof: We expand the language introducing new constants classified in the follow-
ing three disjoint sets

Ca={ca:ac A—rg@)}, C,={c:iel}, Ce={cp:be B-rg(b)},

and we consider the elementary diagram(ah this expanded language, i.e., the set
of all sentences of typke U C; U Catruein(2, &, a)aca—rgm), and the equality-free
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elementary diagram @B in this expanded language, i.e., the set of all equality-free
sentences of type U C; U Cg true in(B,b,b), g5 LetT be the union of

these two diagrams. Sin¢®, a) =~ (B, b), I' is consistent. Let

¢
c=@x,c Jce CAUCEUC

be a model of". We may assume that® = & for all i € | and thatc = a for all
a e A—rg(@). Since€ is a model of the elementary diagramfve have tha®l <
A.Lettc=a U (cf:be B—rg(b))andd=bU (b:be B—rg(b)). Since¢ is a
model of the equality-free elementary diagranif
@', T) =" (B, d).
O

Theorem 2.8 Let 2 and 9B be L-structures. Then the following are equivalent.

(i) A=" 8.
(i) Thereare® > 2Aand® > B suchthat € ~ D.

Proof: (i) = (i) is clear. (i)= (ii) Suppose tha®l =~ B. Using Lemmd2.7lwe
can define by induction two eIemerE[ary chains of mod€il$) ne, and (Bn)ner, and
two chains of sequencé&a; )ne,, and(bp)ne, Such thally = A, By = B and for any
ne w:

a)a,=(a :i€ly andb, = (b : i € 1) are sequences of elementsAf and
By, respectively such that
(2n,@n) == (B, Bn)Z
and
b) An Crg(@n+1) andBp C rg(bnyq).
Let¢ = J A, ®=J Bn, c= |Ja,andd = |J b,. We haethat¢ > 2 and

New nNew _ New nNew
® > B. Moreover,C andd are enumerations & andD, respectively, and

(€, 0) =" (D,d).
By Propositiori2.6] we conclude that: ~ D. O

Theorem 2.9 Let K beaclass of L-structures. The following are equivalent.

(i) Kisaxiomatizable by a set of equality-free sentences.
(i) K isclosed under ultraproducts, Hs and Hgl and for any L-structure 2 the
following holds: if some ultrapower of 2l liesin K, then 2 € K.

Proof: (i) = (ii) is clear. (ii)= (i) Consider the equality-free theory &
Th™(K) = {o: o is a sentence df ™ and for any® € K, 5 = o}.

We will show that if 2l = Th™ (K) then2l € K. Suppose thafl = Th™ (K). Let
Th™ (20) be the equality-free theory &f:

Th™ () ={o:oisasentence di™ andl = o}.
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Since2l = Th™ (K), for anyo € Th™(2() there is8, € K such thatB, &= o. Let

| = Th™ () and consider for any € Th™ () the setd, = {8 | : 8 =0o}. Shce
J={J, : o € 1} has the finite intersection property it can be extended to an ultrafilter
Uoverl. Let®B =[] ., B,/U. Observe tha®l == B. SinceK is closed under
ultraproducts®s e K. By Theorenf2.8]there are® > 2 and® > 9B such thatt ~ .
Therefore, by Propositidd.6] ¢* = ©*. By the assumption we know thét is an
elementary class (ség][p. 322) and therefore, sinéd € K and® > B, we have

D € K. SinceK is closed undeHs, ©* € K. Consequenthg* € K and sinceX is
closed undeH gl, ¢ ¢ K. Since¢ > 2 we conclude thal € K. O

Corollary 210 Let T U{o} bea set of sentences of type L. Then

() T isaxiomatizable by a set of equality-free sentences iff T is preserved under
Hsg and H 71;

(i) o islogically equivalent to an equality-free sentence iff o is preserved under
HsandH 51.

Proof: (i) The implication from left to right is clear. In order to prove the other im-
plication note that since is a set of sentences, M6H) is closed under ultraproducts
and if some ultrapower & lies in Mod(T), 2l € Mod(T). Moreover, sincd is pre-
served undeH s andHgt, Mod(T) is closed undeH sandHg!. By TheorenZ9] T
can be axiomatized by a set of equality-free sentences.

(i) The implication from left to right is clear. We prove the other implication.
By (i) there is a set of equality-free sentendesuch that Modl") = Mod(o). By
compactness, there is afinlig C I" such thal"g = 0. Theno is logically equivalent
to /\ Io. O

3 Ultrapower-type characterizationsof =~  There is a well-known characteriza-
tion of elementary equivalence in terms of ultrapowers due to Keisler and Shelah ac-
cording to which two structure¥ and®3 are elementarily equivalent iff there is an
ultrafilter U over a set of powex 2/A1+BI+» sych thaR(V = BY. A similar charac-
terization holds for elementary equivalence for equality-free logic if instead of iso-
morphism of ultrapowers only relativeness of ultrapowers is postulated.

Theorem 3.1 If 2 and 9B are L-structures, the following are equivalent.

(i) 2A="1.
(i) AY ~ BY for some ultrafilter U over a set of power < 21AIFIBI+e,

Proof: Letx = 2/A+IBI+@ Then| A", |B|C < 2¢. We may assume thdt| < «. In
the proof of the analogous result for first-order languages with equality in SE&lhh [
(the interested reader may also congtl), it is shown under the hypothesis tiat=

% that there are enumeratio(g : i < 2¢) and(b; : i < 2¢) of “ Aand* B respectively
and an ultrafiltet overx such that for any first-order formulaxy, . . ., X,) and any
i1 <---<ip<?2,

i< AEga,(j),....a, (D} eV iff {j<c:BEgbi(j),....0 (D]} eU.
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The very same proof works for an equality-figander the sole hypothesis ti®at="
8. Inthe case of a language with equality the conclusion is

@Y, ([aiu)iz) = (BY, ((bi]u)i<2x)

and therefore(V = BY. Inthe case of an equality-free language we may conclude
that

@Y, ([@lw)iz) == (BY, ((bilu)i<z)
and by PropositioR.6khat2Y ~ BY. O

Notice that, by PropositidA.6] Theoreni31lcan be rephrased as follows.
A="9B iff AY)* = BY)*,

for some ultrafilteld over a set of powex 2/Al+IBI+o,

The composition of the ultrapower operation with the reduction operation is a
guotient of the direct product and we may consider it as a single operation. This quo-
tient operation is what actually plays the role in equality-free logic that the ultrapower
operation plays in the Keisler-Shelah theorem.

In equality-free logic the reduced product, the ultraproduct and the ultrapower
operators are not the most natural ones because there is no need to consider quotients
modulo the relation associated to the filter. We now introduce some operators that
play in equality-free logic the same role that ultraproducts and ultrapowers play in
logic with equality. They have been considered, for example, by Mgh&r{d Blok
and Pigozzif], but to our view their role in equality-free logic has not been stressed
enough.

Definition 3.2 Let | be a nonempty setl;)ic; afamily of L-structures antl an
ultrafilter overl. We ddine theultrafilter-product of the family (2;);c; moduloU,
that we denote by]:2, 2, as follows.

The domain of 2, 2 is [Tic, Ai.

For any constant e L, cllicr % = (c¢% @i e I).

For anyn-ary function symbolf € L and anyay, ..., an € [[ic| A,

I % @y, . an) = (F% @g(i), ..., an()) i € 1)

For anyn-ary relation symboR € L and anyay, ..., an € [[ic| A,

(@, a0) € RIE it fie 1@, ..., aq(0) € RY| eU.

Whenforany € I, 2; =2, we saythat]_[U 2 is theultrafilter-power of 2. Note that
the relation~y defined o[ [;., Ai by

a~ybiff {iel:ad)=Dh()eU

is a congruence relation ﬂiua 2; and the ultraprodudt[;., 2i/U is precisely the
quotient[ ], i /~y. Therefore[]:, 2 € Hg* ([T, 2i/VU) and so[]i, 2 and

[1ic, &i/U are relatives. This shows that ultraproducts are not necessary in equality-
free logic, and allows us to rephrase Theoteddand Theorer2.dlin the following

way.
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Theorem 3.3 If 2 and 9B are L-structures, the following are equivalent:

() 2A="B:
(i) TT” A~ JT" B for some ultrafilter U over a set of power < 2/AI+IBI+e,

Proof: By Theorenf3.1] O

Theorem 3.4 Let K beaclassof L-structures. Then the following are equivalent.

() K isaxiomatizable by a set of equality-free sentences;
(i) K isclosed under ultrafilter-products, Hs and Hgl and for any L-structure 2
the following holds: if some ultrafilter-power of 2 liesin K, then 2 € K.

Proof: By Theorenf2.9] O

We now state some easy facts about the new constructions. The next proposi-
tion is the version of Letheorem for equality-free logic and the ultrafilter-product
construction, and its proof is straightforward.

Proposition 3.5 Let | beanonempty set, (2;)ic; afamily of L-structuresand U an
ultrafilter over |. Then, for any ay, ..., an € [ [, A and any formula ¢(xy, ..., Xn)
elL™,

]_[iueI A= glag, ... an iff fiel:2 = olarl),....an0]) € U.

The notion of elementary substructure can be generalized to equality-free logic in a
natural way. If2 and®B arelL-structures, we say th@tis anL™~-substructure of 95,
written2l <~ B, if 24 € B and for any equality-free formula(xg, . .., x,) of L and
anyai,...,an € A,

AE=plag,...,an] iff BEelag,...,al].

It clearly holds that iU is an ultrafilter oved, the mappindh(a) = (a:i e l) is an
isomorphism of onto anL~-substructure of J" 2.

The next example shows that in Theoff@@we can not replace the relativeness
relation by isomorphism, that is, it shows that it is not true in general@hat 8
implies that there is an ultrafiltdy such thaff [” 2 = [T 8. Note that this is not
immediate since froni]” 2 = JT" 8 we can not infer tha@(V = BY.

Example3.6 LetL be any similarity type with one monadic relation symBobne
monadic function symbof (and possibly more function symbols but no more rela-
tion symbols). Le®l = ({0, 1}, P%, %, ...)and®B = ({0, 1}, P®, fZ,...) be two
L-structures withP? = PB = {0, 1}, f% = {(0, 0), (1, 1)} and f 2 = {(0, 1), (1, 0)}.
Clearly 2 = 98* and therefor&l =~ 9. But there is no ultrafiltet such that
[TV 2 = [1” B, becausd " A |= vxf (x) = xand[]” B b Vxf (x) = x.

Now we see that for relational similarity types and structures with at least two
elements we can indeed replace in Theokeflthe relation of relativeness by the
isomorphism one.

Lemma3.7 Let 2 bean L-structure with at least two elements, | a nonempty set
and U an ultrafilter over I. Then, for anya e A, |U| < ‘[a]g(nu m)‘-
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Proof: Letae A'. We fix two distinct elements, d € A and define for an € U
an elementi € Al in the following way.
a@i), ifieX
ax(i)= 14 c, if i ¢ Xanda(i) #c
d, if i ¢ Xanda(i) =c,

foranyi € I. Clearly{i € | : ax(i) = a(i)} = X € U. Therefore, since the relation
~yu in Al, defined as before, is a congruence relatioﬂﬁ’fm and the Leibniz con-
gruence ([T 2) is the greatest one, we have thgt= a (mod (J]" )). More-
over, foranyX, Y € U, if X = Y we have thadx # ay. Therefore we conclude that

|U|§‘[a]9(num)‘. 0

Theorem 3.8 Let L bearelational similarity type and 2( and 95 two L-structures
with at least two elements. Then the following are equivalent.

() 2A=9B.
(i) TT° A= TTY B for some ultrafilter U over a set of power < 2/AIFIBI+e,

Proof: (i) = (i) is clear. (i)= (ii) Suppose tha® =~ %B. By Theorem3.3]

1Y 2% ~ [TV B for some ultrafiltelU over a setl of power < 2/A+IBl+e_ Without

loss of generality we can assume that> | A| + | B] which implies that for every el-
ementa e Al the cardinality of its equivalence class modulo the Leibniz congruence
is < |U|, and similarly for everyb € B'. By Lemmd3.7]we have that for ang € A!

and for anyb € B',

© @] =1U1= | Bloqp |-

Now since(]_[U A)* = (]_[U %B)*, let h be an isomorphism between these structures.
With its help and using conditiorx we obtain enumerations without repetitions of
Al andB',a=(aj: j € J)andb = (bj : j € J), respectively, such that

(T 2= ] ®.b.

SinceL is relational, the mapping sendireg to b; is an isomorphism fronf]" 2
onto[T" 8. O

Now we prove a more general version of the previous theorem. Notice thasi&
one-element structure aft=" B, then2 = B*.

Corollary 3.9 Let L berelational and let 2( and 2B be L-structures. Then, A =~ B
if and only if one of the following three cases holds.

() TV 2 = 1Y B for some ultrafilter U over a set of power < 2/AI+IBl+o,
(i) A= B,
(i) 2A* = 8.

Proof: Each one of the conditions (i), (ii) and (iii) implies thdt== 8. Now, if

2 =~ % and both structures have at least two elements, condition (i) follows from the
preceding theorem. In the case that one of the structures is a one-element structure,
by the previous observation one of the other conditions follows. O
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CorollaryB.9allows us to obtain a new characterization of elementary classes
in equality-free logic, although restricted to relational similarity types.

Corollary 3.10 Let L beardational similarity typeand K a class of L-structures.
Then, the following are equivalent.

(i) K isaxiomatizable by a set of equality-free sentences.
(i) (a) K isclosed under ultrafilter-products and isomor phic images.
(b) For any L-structure, if some ultrafilter-power of 2 liesin K then2l € K.

(c) For anyone-element L-structure(, 2 € K iffthereisa®®B € Hgl(QL) such
that 8 € K and |B| > 2.

Proof: That (i) implies conditions (a) and (b) of (ii) is clear. It also implies condition
(c), sinceK is closed undeH gl andHs. Now assume that (ii) holds. By reasoning
as in the proof of Theoref.9but now using an ultrafilter-product instead of an ul-
traproduct, it is sufficient to show that € K under the assumption thait == 8

for someB € K. If 2l andB have at least two elements this follows from Theo-
rem[3.8] If A is a one-element structure aflis not,A = B*. SoB e Hgl(m).
Therefore, by condition (c) of the assumption, we get K. Now, if B is a one-
element structure ariif is not, there is, by (c) € K with at least two elements such
that¢ ¢ Hgl(iB). But then2l =~ ¢ and we argue as in the first case. To conclude,
note that if both structures are one-element structures, being equality-free equivalent,
they must be isomorphic. O

The following examples show that Condition (c) in CorollErg0lcan not be elimi-
nated.

Example3.11 Let L = {P}, whereP is a monadic relation symbol. L&; be the
class of all one-elemett-structures and le, be the class of all-structures having

at least two elementd<; andK; are not axiomatizable by a set of equality-free sen-
tences and they satisfy conditions (a) and (b) of Coroffafyd K; does not satisfy
the implication from left to right in condition (c) anid, does not satisfy the implica-
tion from right to left in that condition.

4 Back andforth for equality-freelogic  The characterization & = B, for 2l and

% of the same finite similarity type, in terms of the existence of a winning strategy
in an associated game is due to Ehrenfeucht ang&€raHere we obtain an analo-
gous characterization for equality-free logic. The interested reader may find a good
exposition of the Ehrenfeucht-Fsag theorem in Ebbinghaus, Flum and Thona |

Definition 4.1 Let?2 and®B be L-structures. A relatiorp C A x Bis said to bea
partial relativeness correspondence iff for any n-ary relation symboR € L and any
(ala bl)a ) <an, bn) € p1

(a,...,an) € R* iff (by,...,by € RZ.

Definition 4.2 Let?2 and®®B be L-structures2( andB are said to be-finitely rel-
atives via (lx)k<n, in symbols(ly)k<n : A ~n B, iff
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(i) everylyis a nonempty set of partial relativeness correspondences;

(if) (Forth condition) foranyk+ 1 <n,anyp € Iy, and anya € Athereisg € Ik
such thaty © p anda € dom(q);

(iii) (Back condition) foranyk+1 <n,anyp € Iy, and anyb € Bthereisg € I
such thag 2 p andb e rg(q);

(iv) for any k+1 < n, any p € lx,1, and any constant symbal € L, pU
(e, c®)} e I

(v) foranyk+1 < n, any p € lxy1, any m-ary function symbolf € L and any
(a1, b1), ..., (@m, bm) € p,

pU {(fm(al,...,am), f%(bl,...,bm))} €l

We write 2( ~ B when there i1y )k<n such that(ly)x<n : A ~n B.

Definition 4.3  For any termt of L, let S(t) be the set of subterms bthat are not
variables. Given an equality-free formula we define by inducti@mested rank of
¢, denoted byN R(¢), asfollows.

NR(Rty...th) = [Us<i<n S(t)|
NR(=¢) = NR(¢p),

NR(¢ v ¢) = max{NR(¢), NR(1)} .
NR(Ixp) = NR(p) + 1.

Given®l and®®B L-structures we write
A=, B
when®l andB satisfy exactly the same equality-free sentences of nestedsank

Lemmad4.4 For finite similarity types and finite sets V of variables there is up to
logical equivalence only a finite number of equality-free formulas in the variables of
V and of nested rank < n.

Proof: Let L be a finite similarity type an® afinite set of variables. Lefﬂ(? =V
and for anyn € w

T = TP U{c:ce LyU{fty...tc: f e Lisk-adicandy, ..., t € 7).

It is clear thatZy} is finite for everyn € w. An easy induction on the construction of
atermt in the variables ol shows that for anyl € o, if |S(t)| < nthent € 7.

It follows that for any equality-free atomic formulgt; .. .ty in the variables oV
and anyn € w, if NR(Rt;...tm) < nthenty, ..., tn € 7). Therefore there is only
afinite number of equality-free atomic formulas in the variable¥ aff nested rank
< n. Using this fact it is easy to finish the proof by induction on the nested rank.

Proposition 4.5 Let L be a finite similarity type and 2 and 8 L-structures. Then
foranyn € w,
A=, B iff A~,B.
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Proof: (=) Suppose thall =, B. Wedefine for anym < n, |, as the set of all the
finite partial relativeness correspondengesuch that for any equality-free formula
o(Y1, - .., Yx) With NR(¢) < mand any(ay, by), ... (ak, bx) € p,

Ql'zgﬂ[al,...,ak] Iﬁ%lz(p[bl,,bk]

Let us see that conditions (i) — (v) of the definition-ef hold.

(i) Since® =,B we haved € Iy,

(i) Letm+1<n, pe lnandp = {{as, by),..., (a bx)}. Suppose e
A. Sincel is finite, there is a finite seX of equality-free formulas in the vari-
ablesz, y1, ..., yx and of nested rank m, such that any equality-free formula in
the variableg, v, ..., Yk and of nested rank mis logically equivalent to one for-
mula in this set. Consider now the sbt= {yy € X : A = v[a,a1,...,&]}. Then
AE3FzAPlay,...,a] and sinceNREz/\ ®) <m-+landp € Iy, 1, by the as-
sumptionB =3z A\ ®[by, ..., by].Letb e Bbe suchtha®s = A ®[b, by, ..., by].
Thus, clearlyp U {{(a, b)} € In.

(iii) is analogous to (ii).

(iv) is similar to the proof of (v). We prove only this last case.

(V) Letm+1<n, pelnqandf e L ak-ary function symbol. For any
equality-free formulap(y, .. ., Yk+1) With NR(¢) <m,

Ql|=<p[a1,...,ak, fm(al,...,ak)] iff Ao [a,...,al.

whereg’ is obtained by substituting ip the term fy; . .. yx for the variableyy, 1.
SinceNR(¢') <m+21andp € Imy1,

AEg'[ag,....ad iff BEg'[by,....bd.

Now
B =g [by, ..., by iff %l:w[bl,...,bk, f%(bl,...,bk)],

and therefor@ U {(f%(ay, ..., a), f®(by, ..., b))} € Im. Thus we conclude that
(Im)m<n : & ~n B.

(<) Suppose thatln)m<n : 2A ~n B. First we show by induction om that

(*) f m<nandeg = Rt;...t is an atomic formula whose free variables are
amongxy, ..., Xx and whose nested rankismthen, for anyp € I, and any
(ag, b1), ..., (ak, by) € pthereigg e lgsuchthaip C gqandforanyi, 1 <i <,
(tay, ..., a], tP[by, ..., b]) €.

The casen= O isclear. Suppose inductively that conditiof) holds form. Let
¢=Rt;...tywithnestedrank m+1 <n,letpe I, 1andlet(as, by), ..., (a, bk)
e p. If NR(Rt;...t})) = 0weare done. So leNR(Rt;...t) > 1. There is a sub-
termr =r(xy, ..., Xc) of p which is either a constant or a term of the fogm, . . . X,
whereg is a j-ary function symbol ol andiy,...,ij € {1,...,k}. Lety be a new
variable that does not occur inand for everyi,1 <i <, lett/ be the term ob-
tained fromt; by substituting the variablg for the termr(xy, ..., Xx). Note that
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t/ =t/(Xs, ..., X, y) and thaty’ = Rt/...t/ has nested rank m. By conditions
(iv) and (v) of the definition of-,

pU {(r’z‘[al,...,ak],r%[bl,...,bk])} € Im.

Therefore, by inductive hypothesis, therejis 1y such that

pu{(rfar. ... ad. 1%y, ....b) | S
and foranyi, 1 <i </,
<ti/m[al’ "'9aka rm[ala ""a-k]]’ti/%[bl’ ""bk’r%[bl’ trt bk]]> € q

Then, clearlyp C q and for anyi, 1 <i < I, (t*[ay, ..., &, tP[by, ..., b]) € q.
Therefore, Conditiorix) holds.

Let m < n. We prove now by induction o that for any equality-free formula
©(Y1, ..., Yx) With nested ranks m, any p € I, and any(as, by), ..., (ax, bk) € p,

AE=elag, ..., a iff %'=(p[b1,...,bk]. (1)

If ¢ is atomic this is clear by Conditio). The cases— and v are immedi-
ate. Lety = Jyy and suppose inductively that conditidj holds fory. If A =
dyyr[ay, ..., & then there im € A such thatl = v [a, ay, ..., a]. Observe that
m> NR@3yy) > 1. NowNR(y) < m— 1. Hence by (ii) of the definition of, there
isq € Im_1 such thagg © panda € dom(q). Letb € B be such thata, b) € . By in-
ductive hypothesisB = [b, by, ..., by] and therefor& = Jyyr[by, ..., b]. The
other direction is proved analogously using condition (iii) of the definitiorngf By
Condition [IJ we conclude thagl =;, 8. O

Observe that in the previous proof when proving that, 8 implies2 = B
we do not make any use of the fact thais a finite similarity type.

Theorem 4.6 Let L beafinite similarity type and 2 and 28 L-structures, then

A="2 iff A~,B, foranyn e w.

Proof: By Propositio.3 O

There is also an infinite back and forth for equality-free logic. We omit the proofs
and limit ourselves to stating the basic facts. The reader may find it useful to consult
Barwise [[] or Ebbinghaus et alg.

Definition 4.7 Let2 and‘B be L -structures?( and®B are said to bgartially rel-
ativesvia | (written | : A ~, B) iff
(i) Iis anonempty set of partial relativeness correspondences;
(i) Foranyp e | and anya € Athereisg € | such thag 2 p anda € dom(q);
(iii) Forany p e | and anyb € Bthere isq € | such thag 2 p andb € rg(q);
(iv) Foranyp e | and any constant symbole L, pu {(c*, c®)} e I;
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(v) Foranyp € I, anyk-ary function symbolf € L and any(ay, by), ..., (ak, bk)
€ p,
pU {(fﬂ(al,...,ak), f%(bl,...,bk))} cl.

And we write2 ~p B when there id such thatl : 2 ~, B.
It is easy to see that for ary andB

A~p B iff A=, B,

where2l = | B means thal and’B satisfy the same equality-free sentencelsgf,.
It is clear thatd ~ B implies2 ~, B and that ~, B implies ~, B for each
n € w. Moreover, for countable structur@sand$B,

A~ B iff A~pB.

There is a notion ofv-saturation for equality-free logic. We say that a structire
is w-equality-free saturated if for every finite X C A, every consistent set(x) of
equality-free formulas of (X) is realized ir, that is, there is € A such that for ev-
ery p(x) € (x), Ax = ¢[a]. Obviously every structure has & -extension which
is w-equality-free saturated. By standard arguments we get that-ésuality-free
saturated structuré¥ ands

A~p B iff A="B.

Hence, as in the case of first-order logic with equality, infinite back and forth is a
useful tool to prove completeness of theori@ds a complete theory in equality-free
logic iff for any w-equality-free saturated modelsand®s of T we have ~ ‘B.
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