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A Constructive Valuation Semantics
for Classical Logic
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Abstract This paper presents a constructive interpretation for the proofs in
classical logic of�0

1-sentences and for a witness extraction procedure based on
Prawitz’s reduction rules.

1 Introduction Cut-elimination theorems play a fundamental role in proof theory.
Many relevant properties of logics can be derived from them. In particular, for in-
tuitionistic logic, cut-elimination allows one to “compute” with proofs. In fact, the
constructive contents of an intuitionistic proof can be madeexplicit by eliminat-
ing its cuts. In the natural deduction version of intuitionistic logic Prawitz [8] cut-
elimination corresponds to normalizability of proofs, that is, to the possibility of get-
ting rid of any detour by means of suitable reduction rules. (A detour is an application
of an introduction rule for a connective immediately followed by its corresponding
elimination rule.) Such reduction rules preserve the well-known functional interpre-
tation of intuitionistic connectives and proofs which Brouwer, Heyting, Kolmogorov,
and others proposed in order to allow a better understanding of the constructive fea-
tures of intuitionistic logic (see for BHK interpretation, Kolmogorov [6] and Heyting
[4]). Since irreducible proofs explicitly represent mathematical constructions, reduc-
tion rules for intuitionistic logic turn out to have acomputational meaning.

The BHK interpretation was also helpful to the development of typed functional
languages and of computer science in general, for instance, through the so-called
Curry-Howard analogy. The understanding of intuitionistic logic provided by the
BHK interpretation also enabled the development of simple and comprehensible pro-
cedures of program extraction from formal constructive proofs. Such procedures at
the very beginning of their development some thirty years ago were extremely in-
volved. By interpreting the implication as a function space constructor it was possible
to interpret a proof of the proposition (type)A → B as a recursive map from proofs
of proposition (type)A to those ofB, and the reduction rule for implication in terms
of theβ-rule forλ-calculus.
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One of the main results derived from the cut-elimination theorem for intuition-
istic logic, and hence from normalizability in natural deduction, is the consistency of
the logical system. In the natural deduction for classical logic, instead, one cannot
get any consistency from normalizability, unless the set of reduction rules for intu-
itionistic logic is suitably extended. So Prawitz added to the set of the intuitionistic
reduction rules a number of reductions that transform a classical proof into one in
which eliminations of double negations are performed only on atomic propositions
[8]. Working on theweak normalization property of this enlarged set of rules (proved
in [8]), Prawitz managed to get the consistency for classical logic as well. As for what
concerns thestrong normalization property, a sketchy proof was given by Prawitz in
[9], while a complete and detailed proof can be found in Barbanera and Berardi [1].
The use of the new reductions for classical logic was merely technical and no inter-
pretation was provided for them.

There is another interesting use of the above mentioned extended set of reduc-
tions: acomputational one. Even if it can hardly be thought of as a realistic one for
classical logic, which is typically nonconstructive, the possibility of such a use has
been known for a long time. In [5], Kreisel, by means of his no-counterexample in-
terpretation for classical proofs, showed that classical and intuitionistic provability
coincide if we consider only�0

1-sentences. Later, Friedman [3] enforced Kreisel’s re-
sult by providing a translation from classical to intuitionistic proofs of�0

1-sentences.
So the outcome of the above mentioned results is that classical logic also has com-
putational features. However, in order to reach a full understanding of it and to be
able to use such computational features in practice, one should also devise meth-
ods todirectly extract the constructive contents of proofs of�0

1-sentences, some-
thing not provided by Kreisel’s and Friedman’s results. It would be desirable for nor-
malizability for natural deduction to provide such a method for classical logic. In
fact, it is like this: in [1] i t was proved that, by normalizing classical proofs with re-
spect to Prawitz’s reductions for classical logic, one can manage to exploit Kreisel’s
no-counterexample interpretation, and extract the constructive contents, that is, wit-
nesses, from classical proofs of�0

1-sentences. By allowing free variables in proofs it
is also easy to get functions out of classical proofs of�0

2-sentences.

Theextraction by normalization method of [1], as recalled in Section3, how-
ever, cannot be counted as a real success in the improvement of the understanding of
the constructive features of classical logic, unless it can be explained in the setting
of a clear computational interpretation of classical natural deduction; in particular, of
Prawitz’s reductions for classical logic. Providing such an interpretation is what this
paper attempts. As a matter of fact, any technical mathematical result cannot really
provide any actual improvement in the understanding of a topic until it is correctly
interpreted.

In the classical case, the BHK interpretation for formulas and proofs cannot be
applied. Let us see why. By the fact that the BHK interpretation of the intuitionis-
tic falsehood (⊥) is the empty set, we get that the interpretation of¬A (≡ A → ⊥)

is empty in the case in which the interpretation ofA is inhabited. If, instead, the in-
terpretation ofA is empty, then the interpretation of¬A consists of the sole func-
tion from the empty set to the empty set. Then it follows that the interpretation of
¬¬A(≡ ¬A → ⊥) consists of at most one element. Any function from a set with
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at most one element is constant. Thus the classical axiom¬¬A → A should be in-
terpreted, from BHK’s viewpoint, as aconstant function from (the interpretation of )
¬¬A to (the interpretation of)A, that is, asan effective way to pick an element of a
nonempty A, uniformly on A. One can easily see, however, that such a choice function
can hardly be computable.

Then a constructive interpretation of classical logic necessarily must give a
meaning different from BHK’s one to the classical falsehood⊥. The connectives∧
and∀ can instead be given the BHK interpretation, while the connectives¬, →, ∨
and∃ can be defined from the previous ones, once an interpretation of⊥ is provided.

In order to find an interpretation for the classical⊥ we ask ourselves the fol-
lowing question: What is the role of⊥ in classical proofs? While intuitionistic logic
is essentially concerned with the notion of provability, classical logic deals with the
notion of truth. Hence, in a proof

A1 A2 . . . An
...
⊥

(1)

the meaning of⊥ is that it is not possible to assume consistently all the premises
A1, A2, . . . , An, that is, that any model satisfying all of such formulas cannot be a
consistent one. This remains valid even through double negation elimination. In
other words (1) can be seen as a particular way to build inconsistent models out of
models for the formulasA1, A2, . . . , An. Hence⊥ could rightly be interpreted as the
set of all inconsistent models. We can be even more general and consider models not
completely specified (partial models henceforth). From this more general point of
view, the interpretation of⊥ turns out to be the set of all inconsistentpartial models.

Once given this interpretation for⊥ we can extend it to all the formulas. A for-
mula A can be seen as the set of the partial models satisfying it and, as for⊥, a proof
of it is a way of building one of these models. Conjunction is now an operator on par-
tial models: ifv1 is an element ofA1 andv2 of A2, thenv1 + v2 (the “union” of the
models) is an element ofA1 ∧ A2. The elements of a negation¬A are now the ones
which cannot be elements ofA, that is, those that turn out to belong to the interpre-
tation of⊥ once they are put together with elements ofA. In this way the negation
turns out to have a Kripke semantics. In a sense, an element of¬A can be seen as a
function that returns an element of⊥ when it is applied to an element ofA. That is,
¬A can be also considered asA → ⊥, giving to “→” its BHK interpretation.

We shall formalize the above interpretation in a way similar to that in which
Martin-Löf formalized the computational interpretation of constructive logic into his
Type Theory [7]. So we will define a system,VS , for classical logic which is essen-
tially an elaboration of usual classical natural deduction. The rules ofVS describe,
for each connective, how tobuild anduse the elements belonging to the interpreta-
tion of formulas having the considered connective as the main one. As in Martin-
Löf’s Type Theory, our system will deal with judgments about logical formulas and
elements of their interpretation, that is, partial models. A partial model can be seen
as a set of ‘assertions’ stating the truth (t.P) or falsity (f.P) of closed atomic formu-
las. Such sets of assertions will be calledvaluations and denoted byvaluation terms:
v,v ′,.... Formally, our judgments will be expressions of the formv |= γ.A (γ beingt
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or f). A constructive interpretation, stronger than the natural “the valuation (denoted
by v) forces γ.A,” will be provided for such judgments. In particular, we shall inter-
pret

v |= t.P, for P
atomic

as it is possible to get afinite subvaluation ofv such
that the conjunction of its assertions impliest.P.

The remaining cases will be interpreted as in Kripke models, that is,

v |= t.∀x.A(x) as for anyt it is possible to get (the interpretation of)
v |= t.A(t),

v |= t.A ∧ B as (the interpretation of) [v |= t.A and v |= t.B], and
v |= f.A as it is possible to get a procedure that, whenever

given a valuationv ′ validating t.A, returns a
finite inconsistent subvaluation ofv + v ′.

Moreover, the logical rules can be interpreted in such a way that a proof in normal
form of a judgment effectively provides the constructive interpretation for the judg-
ment.

For�0
1-sentences this interpretation provides a means to get witnesses. A closed

derivation for a formula∃x.P(x) in our system becomes a derivation for the judgment
∅ |= f.∀x.¬P(x), ∅ denoting the empty valuation. Hence, a proof of such a judgment
can be interpreted as a function that takes a valuationv0 validatingt.∀x.¬P(x) and
returns an inconsistent subvaluation ofv0. If we managed to havev0 be the valuation
consisting of all possible assertionsf.P(t), we could get a finite inconsistent subval-
uation{f.P(t1), . . . , f.P(tn)}. From that, we can obtain somewitnesses for ∃x.P(x),
that is, someti’s such thatP(ti) holds.

We shall see that the witness extraction method, based on Prawitz’s reductions
and devised in [1], will provide a means to “feed” the proof of∅ |= f.∀x.¬P(x) on
the particular valuationv0, and to compute onv0 the function resulting from the in-
terpretation of the proof. Thus our system and its constructive interpretation provide
Prawitz’s reductions for classical logic with a precise computational meaning. Be-
sides, normalization can also be seen as a sort ofcompactness argument, producing
afinite inconsistent valuation out of an infinite one.

Prawitz’s usual natural deduction system for classical logic and his set of reduc-
tion rules will be recalled in Section2. The witness extraction method devised in [1]
will be described in Section3. An example of witness extraction on a simple deriva-
tion will be given in Section6. In Section4, weshall present thevaluation interpre-
tation of classical natural deduction, that is, our systemVS. In Subsection4.4 we
shall show how, in our valuations setting, each inference rule has a computational
meaning. Then each of Prawitz’s reduction rules will be shown in Subsection4.5 in
order to make explicit our interpretation ofclassical logical connectives and proofs.
The extraction procedure of [1] will then be interpreted in the context of our valuation
system in Subsection4.6.1

2 Natural deduction for classical logic and Prawitz’s reduction rules In this sec-
tion we recall the system of Natural Deduction for Classical Logic [8] and the set of
reduction rules devised by Prawitz.
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2.1 Natural deduction for classical logic

[¬A]
...

⊥
A

A ¬A

⊥

A1 A2

A1 ∧ A2

A1 ∧ A2

Ai

i = 1,2

A

∀x.A
(∗)

∀x.A

A(t)

(*) x not free in the assumptions on whichA depends.

We have used¬, ∧ and∀ as primitive logical connectives. All the other usual con-
nectives can be defined in the usual way for classical logic.

A ∨ B =Def ¬(¬A ∧ ¬B)

A → B =Def ¬(A ∧ ¬B)

∃x.A =Def ¬∀x.¬A

Wecan extend first-order classical logic by adding to it any Post system, that is, any
set of atomic axioms and rules such as

Q

Q1 Q2 . . . Qn

Qn+1

whereQ, Qi are atomic formulas. When talking of witness extraction we will assume
to be concerned with such extended systems. We now present Prawitz’s reduction
rules for classical logic [8] which we divide into two sets.

2.2 Prawitz’s reductions

2.2.1 Reductions to eliminate detours

[ A]
...

... A

⊥ ... �
...

¬A A ⊥
⊥
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...
...

...

A1 A2
... A

...
A1 ∧ A2 � Ai ∀x.A(x) � A(t)

Ai A(t)

2.2.2 Reductions for double negation eliminations

[¬A] [ A]
⊥

[¬¬A] ¬¬A
...

...
⊥ � ⊥

¬A ¬A

[ A1 ∧ A2] [ A1 ∧ A2]
[¬A1] A1 [¬A2] A2

⊥ ⊥
¬(A1 ∧ A2) ¬(A1 ∧ A2)

[ ¬(A1 ∧ A2) ] · ·
· · ·
· ⊥ ⊥
⊥ � A1 A2

A1 ∧ A2 A1 ∧ A2

[∀x.A(x)]
[¬A(y)] A(y)

⊥
¬∀x.A(x)

[¬∀x.A(x)]
...

... ⊥
⊥ � A(y)

∀x.A(x) ∀y.A(y)

It is easy to see that the reductions of the second set move the applications of the dou-
ble negation elimination rule to simpler and simpler formulas.

Theorem 2.1 ([9][1]) Proofs are strongly normalizable with respect to Prawitz’s
reductions.

We can now consider one more reduction, calledtrivial reduction. Let Q be any
atomic formula (possibly⊥), then

...

Q
...

... � Q
Q
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under the proviso that no assumption in the subproof of the innerQ is discharged in
the whole proof. The above reduction rule is trivially strongly normalizing.

Lemma 2.2 ([1]) Let us assume to have extended first-order classical logic with an
inconsistent Post system (i.e., an inconsistent set of atomic axioms and rules). Let D
be a derivation of ⊥ which is closed and normal with respect to Prawitz’s reduction
rules and the trivial reduction. Then D contains only atomic axioms and rules.

Prawitz used the normalizability of his set of rules in order to derive the consistency
property of various systems. In the next section we shall see that, by means of the
trivial reduction and Lemma2.2, normalizability can be also used for computational
purposes.

3 Witness extraction According to the BHK interpretation, an intuitionistic proof
can provide constructive evidence for the formula it proves, by means of various ex-
traction procedures. In a sense, then, a proof can be interpreted as being anexample
for the formula. This interpretation, as discussed in the introduction, is not possible
for classical proofs. Kreisel, however, proposed for classical logic what he calledno-
counterexample interpretation. In it a classical proof is interpreted as the record of an
unsuccessful attempt to describe a counterexample for the statement it proves. Even
more, it can be seen as something that is able to refute any claimed counterexam-
ple (see, for instance, [10] 8.4). For�0

1-formulas,noncounterexamples coincide with
examples (witnesses). So Kreisel’s interpretation shows that it is possible to get wit-
nesses out of classical proofs of�0

1-formulas. This no-counterexample interpretation
is exploited, as shown at the end of this section, in the witness extraction procedure
proposed in [1] for classical proofs in natural deduction form.2 This procedure will be
outlined below and it makes essential use of the normalization property of Prawitz’s
reductions.

3.1 The witness extraction procedure of [1] Let us assume to have a closed deriva-
tion D of ∃x.P(x) (¬∀x.¬P(x)) whereP is a decidable predicate. We first add the
following (nonlogical) atomic rule to our system.

(r)
P(x)

⊥
From that it is possible to get a closed proof for∀x.¬P(x).

[ P(x)]
⊥

¬P(x)

∀x.¬P(x)

It is now possible to get a closed proof for⊥, as follows.

[ P(x)]
⊥

D ¬P(x)

¬∀x.¬P(x) ∀x.¬P(x)

⊥

(2)
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Such a derivation can be put in normal form by Theorem2.1and be further normal-
ized with respect to the trivial reduction. LetD ′ be the derivation so obtained. By
Lemma2.2we get thatD ′ is formed only by atomic rules. Besides, it has necessarily
to end with an application of the new nonlogical axiom(r) that we have added. So
D ′ must have the form

...
P(t)

⊥
wheret is now necessarily a witness for∃x.P(x), sinceP(t) is derived only by us-
ing atomic axioms and rules different fromP(t)

⊥ , since the derivation is normal with
respect to the trivial reduction.

Wewish to stress that efficiency is not a concern of the above extraction proce-
dure. It was not developed in order to have a procedure more efficient, for instance,
than the “dumb” extraction algorithm (the algorithm that takes a classical proof of a
�0

1-sentence and runs through all the possible terms searching for a correct instance
of the matrix of the theorem). The interest of the procedure described above lies in-
stead in the use of Prawitz’s reductions for computational purposes and in the fact that
it exploits, in a precise way as shown below, Kreisel’s no-counterexample interpreta-
tion.

3.2 Interpretation of the procedure as no-counterexample Kreisel’s no-counter-
example interpretation of classical logic looks at a classical proof as the evidence of
the fact that no counterexample can be given for a proved statement. The above ex-
traction procedure exploits such an interpretation for�0

1-formulas. Adding to the sys-
tem the rule(r) above amounts to claiming to have an argument showing the incon-
sistency, for anyt, of assumingP(t)—it amounts to claiming to have a counterex-
ample for∃x.P(x). The derivation (2) shows that if you have a counterexample for
∃x.P(x), it contradicts what the derivationD asserts. The normalization procedure,
however,destroys the claimed counterexample by providing a witness for our existen-
tially quantified decidable predicate. The proof of∃x.P(x) behaves then, by means of
the reduction rules, as anoncounterexample. In Section6 we shall give an example
of witness extraction for a proof in classical natural deduction which uses a simple
Post system.

4 The valuation system for classical logic The extraction procedure outlined above
cannot be of much help by itself in improving our understanding of the computa-
tional features of classical logic. In order really to be of help, it should make explicit
some computational interpretation of classical formulas and proofs, in the same way
in which theβ-rule makes explicit the constructive meaning of theintuitionistic con-
nective “→” i n the BHK interpretation. The aim of the rest of the paper then is to
give a precise computational meaning to Prawitz’s reductions in the context of an in-
terpretation of classical logic. Instead of simply logical formulas we shall consider
judgments on formulas and valuations. These will be given a computational inter-
pretation that will be shown to be preserved by the logical rules of natural deduction.
Moreover, we shall see how Prawitz’s reduction rules make explicit such computa-
tional interpretation implicitly contained in derivations.
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The bases of our system of judgments are the notions of assertion and valuation.
In a sense this system, called Valuations System (VS), can be viewed as a formal
system to reason about assertions and valuations.

4.1 Assertions An assertion (on A) is an expression of the formt.A or of the form
f.A, whereA is a logical formula. In what follows,γ will be a variable ranging over
the set{t, f}, while γ is defined in the following way.

γ =
{

f if γ = t
t if γ = f

The intuitive meanings of the assertionst.A andf.A are “A is true” and “A is false,”
respectively. An assertion is incanonical form if it is not of the formt.¬A, f.¬A
and no double negation is present. We shall identify each formula with its equivalent
canonical form, obtained by removing all double negations and replacingt.¬A, f.¬A
with f.A andt.A, respectively. For instance, the canonical form oft.¬¬¬(¬¬A1 ∧
¬¬¬A2) is f.A1 ∧ ¬A2.

4.2 Valuations Our system deals with classical validity of assertions in partial
models (valuations) which can be seen as sets of assertions on atomic formulas. A
valuation is a set of assertions on atomic formulas.

To formally deal with valuations we need a syntax for them. Avaluation-term is
an expression that denotes a valuation, and it is formed by using the following rules.

1. ∅ is a valuation-term (intuitively the “empty” valuation).
2. Valuation variables (v,w, v1,w1, . . .) are valuation-terms.
3. If v andv ′ are valuation terms, thenv + v ′ is a valuation-term (intu-

itively the “union” of the valuations).
4. If {x1, . . . , xm} = FV (P) and P is atomic, then{γ.P |x1, . . . , xm} is

a valuation-term (intuitively the valuation consisting in all possible
closed instances ofγ.P). If P is closed (m = 0) we shall use the no-
tation{γ.P}.

From the syntax and the informal explanations given above, it is quite clear
what is the valuation, or the set of valuations in case of a term with valuation vari-
ables, denoted by a valuation-term. In the following we shall not distinguish between
valuation-terms and the valuations they denote. So, we can statev ⊆ v ′, for v, v ′ val-
uation terms.

A valuation (-term) isfinite if it consists of a finite number of closed atomic as-
sertions. In particular, ifP is open and the Herbrand universe of the logical language
is infinite,{γ.P | x1, . . . , xm} is not a finite valuation (-term). The finiteness of a val-
uation term will be denoted by means of the subscript “fin.”

If v is a finite valuation term, we shall denote by
∧

v the formula consisting in the
conjunction of its assertions (consideringt.P asP andf.P as¬P). In the following
we shall equate the valuation terms denoting the same valuation.

4.3 System VS SystemVS is a system about valuations, more precisely about
assertions validated by partial models represented by valuations. We have defined
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above the terms of our valuation system: the valuation-terms. The well-formed for-
mulas (judgments) of systemVS are expressions of the following form,

v |= γ.A

wherev is a valuation term andγ.A an assertion.
We now formally define theintended constructive meaning of our judgments.

The rules of systemVS are sound with respect to this intended meaning and the re-
duction rules will provide a means to make it explicit.

v |= t.⊥ ⇐⇒ there existsv ′
f in ⊆ v s.t.

∧
v ′

f in → ⊥
v |= t.P ⇐⇒ there existsv ′

f in ⊆ v s.t.
∧

v ′
f in → P

for P atomic
v |= t.∀x.A(x) ⇐⇒ for any termt, v |= t.A(t)
v |= t.A ∧ B ⇐⇒ v |= t.A andv |= t.B
v |= f.A ⇐⇒ for anyv ′ s.t. v ′ |= t.A, v + v ′ |= t.⊥,

where
∧

v ′
f in is the logical conjunction of all the formulas corresponding to the as-

sertions inv ′
f in, and

∧
v ′

f in → ⊥ and
∧

v ′
f in → P must be classically valid formulas.

Then a formulav |= γ.A has an interpretation similar to Kripke’s forcing semantics.
Wewill use the notation ‘inc(v)’ asshort for ‘v |= t.⊥’. The rules of our system

are the following.

Rules for valuations

v |= γ.A

v + v ′ |= γ.A
for anyv ′

{γ.P | x1, . . . xn} |= γ.P(t1, . . . , tn)
for any t1, . . . , tn

Logical rules

[v |= γ.A]
...

inc(v + v)

v |= γ.A
(∗)

v |= γ.A v ′ |= γ.A

inc(v + v ′)

v1 |= t.A1 v2 |= t.A2

v1 + v2 |= t.A1 ∧ A2

v |= t.A1 ∧ A2

v |= t.Ai

i = 1,2

v |= t.A

v |= t.∀x.A
(∗∗)

v |= t.∀x.A

v |= t.A(u)
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(*) It is possible to discharge only assumptions with valuation-terms
consisting of a single variable; besides, the valuation-variablev

cannot occur free in the assumptions on whichinc(v + v) de-
pends, butv |= γ.A.

(**) x is not free in the assertions of the assumptions on whichv |=
t.A depends.

In this system if we have two equal valuation-terms or two equal assertions we
can always substitute one for the other.

In the case in which we consider extensions of natural deduction with Post sys-
tems, we must extend systemVS as follows.

∅ |= t.Q

v1 |= t.Q1 . . . vn |= t.Qn∑n
i=1 vi |= t.Qn+1

Remark 4.1 Wehave given rules for conjunction and universal quantification only
for the assertions beginning witht. The rules dealing with conjunction and universal
quantification in the other case, namely

v |= f.Ai

v |= f.A1 ∧ A2

i = 1,2
v |= f.A

v |= f.∀x.A

are redundant. They correspond to rules for disjunction and existential quantification
and, since we are in a classical context, they are derivable.

[w |= t.A1 ∧ A2] [w |= t.∀m.A]
w |= t.Ai v |= f.Ai w |= t.A v |= f.A

inc(w + v) inc(w + v)

v |= f.A1 ∧ A2 v |= f.∀m.A

In the following we shall use the first two rules of the above remark as abbreviations
for their derivations.

4.4 Interpretation of the deduction rules The logical rules of systemVS clearly
are an elaboration of those of Prawitz’s natural deduction for classical logic, re-
called in Section2. The rules for valuations, instead, do not have any counterpart
in Prawitz’s system and have been introduced since they are needed if you wish to
deal with valuations. Both of the above groups of rules, however, have a precise in-
terpretation in terms of the intended meaning of the formulas in our valuation system.
Furthermore the ruleseffectively show how to get the intended meaning of the con-
clusion if we have one of the premises. For the axiom

{t.P | x1, . . . xn} |= t.P(t1, . . . , tn)

it is easy to see that ift1, . . . , tn are closed then{t.P(t1, . . . , tn)} is the finite valuation
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which satisfies the formula on the right. The most interesting rule is obviously

[v |= γ.A]
...

inc(v + v)

v |= γ.A

It is indeed two different rules, according to whatγ actually is. Ifγ ≡ t, it corre-
sponds to the introduction of the negation and expresses exactly the intended mean-
ing of v |= γ.A. If γ ≡ f, instead, the rule corresponds to the elimination of double
negation and it should justify the interpretation ofv |= t.A. If A is an atomic formula
P then the expected meaning ofv |= t.A is that there exists a finite subvaluation of
v from which P is derivable. To see how the rule justifies such an interpretation, let
us note first that the derivation above the premise of the rule is a derivation which
allows us to inferinc(v + v ′) once we have proved thatv ′ |= f.P. The meaning of
inc(v + v ′) is that there exists a finite valuation ofv + v ′, from which it is possible to
derive the falsehood. Then, from the finite valuation we could get frominc(v + v ′), it
would be possible to get the finite valuation forv |= t.P. The problem now is to find
a v ′ and a proof ofv ′ |= f.P. By using our rule for valuations it is immediate to get
v ′ |= f.P if we takev ′ ≡ {f.P | x1, . . . , xn}. So the interpretation ofv |= t.A seems to
be justified by the rule. There is however a case yet to be considered in the argument
above:A could be a nonatomic formula. This, however, is not a difficult obstacle to
overcome since we can always transform a deduction in such a way that double nega-
tion elimination is performed only on atomic formulas. This sort of transformation
is exactly the one performed by Prawitz’s reductions, which then manage to make
explicit the constructive contents of the elimination of double negation. Later on we
shall deal with the interpretation of Prawitz’s reductions.

As to what concerns the rules for introducing and eliminating∧ and∀, it is clear
how they make evident the intended meaning of the formulas in their conclusions.

Finally, the rule

v |= γ.A v ′ |= γ.A

inc(v + v ′)

expresses the condition for a valuation to be inconsistent. It corresponds to the rule
of modus ponens in intuitionistic logic, which has a (BHK) interpretation in terms
of application of a function to its argument. According to our interpretation, by the
fact thatγ.A is equivalent toγ.¬A, it can be interpreted as two different applications
according to which one of the two subproofs is seen as the function. Alternatively, it
can be seen as asymmetric form of application.

Now we state the almost immediate formal equivalence between our valuation
calculusVS and classical natural deduction.

Theorem 4.2 (Validity Theorem) If a formula D is derivable in classical logic
from assumptions G1, . . . , Gn then there exists a derivation in VS of

∑n
j=1 w j |= t.D

from assumptions w1 |= t.G1, . . . , wn |= t.Gn where w1, . . . , wn are valuation vari-
ables.

Proof: By induction on derivations. �
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4.5 Reduction rules for system VS It is quite straightforward to extend Prawitz’s
reduction rules for classical natural deduction to systemVS. The former ones, as
briefly discussed in Subsection3, enable us to extract constructive contents from
proofs of�0

1-sentences. We have seen, in the previous subsection, that the dou-
ble negation elimination rule has no explicit constructive meaning when applied to
nonatomic formulas. Prawitz’s reductions for double negation elimination enable us
to transform a proof in such a way that such rules are applied only to atomic formulas,
and hence to get proofs containing deduction rules all of which have explicit construc-
tive meaning, with respect to our interpretation of judgments.

What is stated above gives a constructive sense to the normalization process as
a whole. What is still lacking is a computational interpretation of the single steps
of the process, that is, of the single reduction rules. Then we need to show how each
reduction rule makes more and more explicit our interpretation of theclassical logical
connectives in the partial models interpretation.

Prawitz’s reductions are divided into two groups: those eliminating detours and
those simplifying the structure of formulas to which the double negation elimination
rule is applied. The former ones also maintain in theVS setting their meaning of
“simplification.” In fact, we have seen that the rule

v |= γ.A v ′ |= γ.A

inc(v + v ′)

is a sort of modus ponens. Then ifv ′ |= γ.A has been obtained by means of the rule

[v |= γ.A]
...

inc(v + v)

v |= γ.A

we can apply the reduction

[v |= γ.A]
...

... v ′ |= γ.A

inc(v + v)
... �

...
v |= γ.A v ′ |= γ.A inc(v + v ′)

inc(v + v ′)

which has a meaning similar to theβ-rule for theλ-calculus.
If we know that (the interpretation of)v1 + v2 |= t.Ai holds because we have

inferred it from the fact thatv1 |= t.A1 and v2 |= t.A2 hold, then we can avoid passing
throughv1 + v2 |= t.A1 ∧ A2 simply by extending the valuationvi to v1 + v2. This
justifies the following reduction.

...
...

...
v1 |= t.A1 v2 |= t.A2 vi |= t.Ai

v1 + v2 |= t.A1 ∧ A2 � v1 + v2 |= t.Ai

v1 + v2 |= t.Ai
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In a way similar to the previous one, a justification can also be given for the rule

v |= t.A
...

v |= t.∀x.A � v |= t.A(t)
v |= t.A(t)

The rules peculiar to classical logic, and to which no computational interpretation has
ever been given, are the ones dealing with double negation elimination. A double
negation elimination rule can be seen as a process to get the intended meaning of the
conclusion only in the case in which its formula is atomic. Then, in a proof if the
conclusion of an application of the double negation elimination rule is a compound
formula, we can “decompose” it—in the case in which it is a conjunction, using the
following rule.

v |= f.A1 v |= f.A2

v |= f.A1 ∧ A2 v |= f.A1 ∧ A2

[v |= f.A1 ∧ A2]
...

...
... inc(v + v) inc(v + v)

inc(v + v) � v |= t.A1 v |= t.A2

v |= t.A1 ∧ A2 v |= t.A1 ∧ A2

The intended meaning ofv |= t.A1 ∧ A2, that is, a pair formed by the meaning ofv |=
t.A1 and the meaning ofv |= t.A2 (see4.3), is explicit only in the case the judgment
v |= t.A1 ∧ A2 has been obtained by means of an application of the∧-introduction
rule. In the case we are considering, instead,v |= t.A1 ∧ A2 has been obtained by
means of a double negation elimination. Its meaning is then “hidden,” and must be
made explicit.

The reduction rule above, in fact, makesv |= t.A1 ∧ A2 derived from two deriva-
tions, one forv |= t.A1 and one forv |= t.A2, thus enabling us to interpret the deriva-
tion of v |= t.A1 ∧ A2 as a pair. Of course, the pair obtained is a pair of constructive
meanings only in the case in which the conjuncts are atomic. Otherwise we must per-
form other reduction steps to get to their atomic components.

An argument similar to the previous one can explain the computational meaning
of Prawitz’s reduction rule for double negation elimination on universally quantified
formulas. This reduction has the following form in the context of systemVS.

[v |= f.A]
v |= f.∀m.A

[v |= f.∀m.A]
...

... inc(v + v)

inc(v + v) � v |= t.A
v |= t.∀m.A v |= t.∀m.A

4.6 The witness extraction procedure in the VS setting It is possible to apply the
extracting procedure of [1], recalled in Section3, directly in systemVS. (An example
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can easily be obtained by rephrasing the one in Section6, as explained at the end of
it.) Using systemVS and the interpretation of its expressions, rules and reductions,
the meaning of what the procedure does is made clearer.

Let us assume to have a closed proof in classical logic of∃x.P(x)(≡ ¬∀x.
¬P(x)). By the Validity Theorem it is possible to get a derivation of∅ |= f.∀x.¬P(x)

in systemVS. According to our interpretation, the proof of this statement can be
viewed as a function that, whenever applied to a valuationv0 validatingt.∀x.¬P(x),
returns a finite subvaluation ofv0 from which falsehood can be derived, that is, an
inconsistent one. It is clear that ifv0 ≡ {f.P | x} then we would also have the possi-
bility of getting a witness for the statement∃x.P(x), since in the finite subvaluation
{f.P(t1), . . . f.P(tn)} we would get fromv0, one of theti’s is necessarily a witness.

The problem now is how to “feed”∅ |= f.∀x.¬P(x) on the valuation{f.P | x}.
This could be done in the following way, in the case in which we have a derivation
D for {f.P | x} |= t.∀x.¬P(x).

...
∅ |= f.∀x.¬P(x)

D
{f.P | x} |= t.∀x.¬P(x)

inc({f.P | x})

It is easy to see, however, that this is not possible since it would imply that it is pos-
sible to obtain∀x.¬P(x) from a finite subvaluation of{f.P | x}. We had a similar
problem in Section3 where, by interpreting the proof of∃x.P(x) as a counterexam-
ple destructor, we found it necessary to “feed” it on a counterexample. We decided
there to add the rule

(r)
P(x)

⊥
,

which can be interpreted as the claim of having a counterexample.
Here we can provide the derivation of∅ |= f.∀x.¬P(x), interpreted as a func-

tion, with the valuation{f.P | x}, by adding a rule to systemVS which corresponds
to the rule(r) above, that is, the following one.

(rV S)
v |= t.P(x)

inc(v + {f.P | x})
.

By following our interpretation forVS expressions, such a rule says that it is possible
to get a finite inconsistent valuation out of the valuationv+{f.P | x} for any valuation
v validatingt.P(x). Theapplication of ∅ |= f.∀x.¬P(x) to the valuation{f.P | x} can
now be performed inVS as follows.

[v |= t.P(x)]
inc(v + {f.P | x})

... {f.P | x} |= t.¬P(x)

∅ |= f.∀x.¬P(x) {f.P | x} |= t.∀x.¬P(x)

inc({f.P | x})
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In Section3, by means of rule(r), wemanaged to get⊥, that is,only the information
that something inconsistent had been added to the system. We knew, fromoutside the
system, that such an inconsistency depended on rule(r) and that necessarily there had
to be some inconsistentP(t1), . . . , P(tn). SystemVS, instead, is more informative
than the bare natural deduction. Here formulas have a constructive interpretation, as
seen in previous sections. In particular, in the present case we have managed to de-
rive more precise information than simply the presence of an inconsistency: we have
derivedinc({f.P | x}), that is, the information that a finite subset of{f.P | x} is incon-
sistent. The information that there are some inconsistentP(t1), . . . , P(tn) has now
beeninternalized. The reduction rules of the system enable us to get explicitly a finite
subset{f.P | x}. In fact, Lemma2.2holds clearly for systemVS as well, if rules for
valuations are not used in a derivation. So, a normal form of the above derivation is
necessarily of the shape

(rV S)

...
∅ |= t.P(t)

inc({f.P | x})

where

...
∅ |= t.P(t) is a derivation made of atomic axioms and rules only. So{f.P(t)}

is an inconsistent finite subvaluation of{f.P | x} and then the termt is a witness of
∃x.P(x), since, by Lemma2.2, ∅ |= t.P(t) is obtained using only atomic axioms and
atomic rules.

Let us note that in systemVS we did not need introducing rule(rV S), since such
a rule is derivable, as shown by the deduction below.

v |= t.P(x) {f.P | x} |= f.P(x)

inc(v + {f.P | x})

We made the choice of adding rule (rV S), however, in order to be able also to profit
from Lemma2.2for systemVS. The derivability of rule (rV S) in VS is not in contra-
diction with the fact that rule (r), which we had added to the system of natural deduc-
tion in Section3, is obviously not derivable in the latter system. Rule (rV S) is weaker
than (r). In fact, by means of it we managed to deriveinc({f.P | x}), a thing more
informative and hence weaker, than the⊥ of bare natural deduction.

5 Conclusions Wehave developed a formal systemVS for classical logic, whose
well-formed formulas arejudgments of the formv |= γ.A, informally stating that the
partial model denoted by the termv validates the assertion γ.A, whereγ is t or f.
A precise constructive interpretation has been given to such judgments, depending
on the main connective ofA. Such an interpretation is respected by the deduction
rules of the system. Moreover, a derivation which is normal with respect to Prawitz’s
reductions for classical logic can be interpreted as an effective evidence for the inter-
pretation of the judgment it proves. Then Prawitz’s reduction rules for classical logic
turn out to be given a precise computational meaning, by means of our interpreta-
tion of proofs and judgments. This computational meaning was only implicit in the
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procedure of witness extraction from classical proofs of�0
1-formulas devised in [1].

Finally, the witness extraction procedure of [1] has been viewed from the perspective
of our interpretation.

6 Appendix (A simple example of use of Prawitz’s reductions) Let us assume to
extend first order classical logic with a Post system containing the axiomP(0). If we
consider “=” as an atomic predicate,P(0) could be, for instance, the formula 0= 1
as it is used in Peano’s axiomatization of classical arithmetic. Let us now consider
the following weird proof of the statement∃x.P(x) (≡ ¬∀x.¬P(x)).

[¬P(1)] P(0)

[¬(¬P(1) ∧ P(0))] ¬P(1) ∧ P(0)

⊥
[∀x.¬P(x)] ¬P(1) ∧ P(0)

¬P(0) P(0)

[∀x.¬P(x)] ⊥
¬P(1) P(1)

⊥
¬∀x.¬P(x)

Let us denote byD the above derivation, and see now how our extraction procedure
enables us to get a witness for∃x.P(x) from D . Webegin by adding the atomic rule

P(x)

⊥

to our system, and derive⊥ from it andD .

[ P(x)]
⊥

D ¬P(x)

¬∀x.¬P(x) ∀x.¬P(x)

⊥

We now proceed to normalize the above proof according to our reduction rules. To
save space we begin by normalizing the subderivationD . In D we have double nega-
tion elimination applied to¬(¬P(1) ∧ P(0)). We can use the reduction which mod-
ifies the deduction in such a way that the double negation elimination rule is applied
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to simpler formulas, namely¬¬P(1) and¬P(0).

[¬P(1) ∧ P(0)] [¬P(1) ∧ P(0)]
[¬¬P(1)] P(1) [¬P(0)] P(0)

⊥ [¬P(1)] P(0) ⊥ [¬P(1) P(0)

¬(¬P(1) ∧ P(0)) ¬P(1) ∧ P(0) ¬(¬P(1) ∧ P(0)) ¬P(1) ∧ P(0)

⊥ ⊥
¬P(1) P(0)

[∀x.¬P(x)] ¬P(1) ∧ P(0)

¬P(0) P(0)

[∀x.¬P(x)] ⊥
¬P(1) P(1)

⊥
¬∀x.¬P(x)

Wecan now eliminate the “detour” for the conjunction.

[¬P(1) ∧ P(0)]
[¬P(0)] P(0)

⊥ [¬P(1)] P(0)

¬(¬P(1) ∧ P(0)) ¬P(1) ∧ P(0)

[∀x.¬P(x)] ⊥
¬P(0) P(0)

[∀x.¬P(x)] ⊥
¬P(1) P(1)

⊥
¬∀x.¬P(x)

Next we apply the reduction for the detour corresponding to the introduction of the
negation¬(¬P(1) ∧ P(0)) and its immediate elimination.

[¬P(1)] P(0)

¬P(1) ∧ P(0)

[¬P(0)] P(0)

[∀x.¬P(x)] ⊥
¬P(0) P(0)

[∀x.¬P(x)] ⊥
¬P(1) P(1)

⊥
¬∀x.¬P(x)

Again we can apply the reduction to eliminate the detour for the conjunction. The
resulting derivation is the normal form, with respect to Prawitz’s reduction rules, of
the subderivationD . The complete derivation then has the following shape and is not
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in normal form.

[¬P(0)] P(0)

[∀x.¬P(x)] ⊥
¬P(0) P(0)

[∀x.¬P(x)] ⊥ [ P(x)]
¬P(1) P(1) ⊥

⊥ ¬P(x)

¬∀x.¬P(x) ∀x.¬P(x)

⊥
In the above derivation, the negation¬∀x.¬P(x) is introduced and the rule for its
elimination is applied. To eliminate this detour we apply the corresponding reduction.

[ P(x)]
⊥

[ P(x)] ¬P(x) [¬P(0)] P(0)

⊥ ∀x.¬P(x) ⊥
¬P(x) ¬P(0) P(0)

∀x.¬P(x) ⊥
¬P(1) P(1)

⊥
There are now two detours for the universal quantification to eliminate.

[ P(0)] [¬P(0)] P(0)

⊥ ⊥
[ P(1)] ¬P(0) P(0)

⊥ ⊥
¬P(1) P(1)

⊥
Let us first eliminate the leftmost detour for the negation.

[ P(0)] [¬P(0)] P(0)

⊥ ⊥
¬P(0) P(0)

⊥
P(1)

⊥
Wehave still one more detour for the negation to eliminate.

[¬P(0)] P(0)

⊥
P(0)

⊥
P(1)

⊥
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At last we have a deduction which is normal with respect to Prawitz’s reductions. We
can now apply the trivial reduction:

P(0)

⊥
P(1)

⊥
One more trivial reduction can be applied, getting a deduction in normal form with
respect to both Prawitz’s reductions and the trivial one:

P(0)

⊥
The witness we needed then is 0. Due to the simplicity of our example, the derivation
for P(0) consists in an axiom. If we had a more complex Post system we could have
more complex atomic derivations for the atomic predicate displaying the witness.

It is easy to see that we could use the example presented above in the setting of
systemVS. In such a case our initial proof of¬∀x.¬P(x) could easily be elaborated
in order to get a proof inVS of ∅ |= f.∀x.¬P(x). By adding to the system the rule
(rV S ), asdescribed in Subsection4.6, we manage to obtain, in a way similar to getting
⊥ above, a derivation forinc({f.P | x}) which, according to our interpretation, can be
seen as a finite inconsistent subvaluation of{f.P | x}. This inconsistent subvaluation,
however, is only implicitly represented by the derivation. We can explicitly obtain
it only by means of a normalization process. If we follow the same reduction steps
described above, it is possible to obtain the derivation

∅ |= t.P(0)

inc({f.P | x})
which explicitly takes to the finite inconsistent subvaluation{f.P(0)} ⊆ {f.P | x}.
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NOTES

1. An incomplete and preliminary version of the present paper was presented in [2].

2. Indeed in [1] a stronger result is proved, namely that it is possible to get a witness from
proofs of�0

1-sentences in Higher-Order Classical Logic.

REFERENCES

[1] Barbanera F., and S. Berardi, “Witness Extraction in Classical Logic through Normal-
ization,” pp. 219–246 inLogical Environments, edited by G. Huet and G. Plotkin, Cam-
bridge University Press, Cambridge, 1993.MR 1255117 1, 1, 1, 1, 1, 1, 2.1, 2.2, 3, 3.1,
4.6, 5, 5, 6

http://www.ams.org/mathscinet-getitem?mr=1255117


482 FRANCO BARBANERA and STEFANO BERARDI

[2] Barbanera, F., and S. Berardi, “A constructive valuation interpretation for classical logic
and its use in witness extraction,” pp. 1–23 inProceedings of Colloquium on Trees in
Algebra and Programming (CAAP), LNCS 581, Springer-Verlag, New York, 1992.
MR 94h:03115 6

[3] Friedman, H., “Classically and intuitionistically provably recursive functions,” pp. 21–
28 inHigher Set Theory, edited by D. S. Scott and G. H. Muller, Lecture Notes in Math-
ematics, vol. 699, Springer-Verlag, New York, 1978.Zbl 0396.03045 MR 80b:03093 1

[4] Heyting, A., Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie,
Springer, Berlin, Reprinted 1974.Zbl 0278.02002 MR 49:8806 1

[5] Kreisel, G., “Mathematical significance of consistency proofs,”The Journal of Sym-
bolic Logic, vol. 23 (1958), pp. 155–182.Zbl 0088.01502 MR 22:6710 1

[6] Kolmogorov, A. N., “Zur Deutung der Intuitionistischen Logik,”Mathematische
Zeitschrift, vol. 35 (1932), pp. 58–56.Zbl 0004.00201 1
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