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Book Review

Raymond M. Smullyan and Melvin Fitting.Set Theory and the Continuum Problem.
Clarendon Press, Oxford, 1996, xiii + 288 pages.

1 This rewarding, exasperating book is largely drawn from lecture notes used by
the authors in their set theory classes. Although we receive the standard assurance
that it is a suitable text for “advanced undergraduates and graduates in mathematics
and philosophy,” this reviewer doubts that many undergraduates will be sufficiently
advanced to benefit from it. Though flawed, the book does have many virtues. Its ups
and downs might best be conveyed by some commentary on each of its twenty-two
chapters.

2 Part I: Axiomatic Set Theory

2.1 Chapter 1: General background The opening chapter provides a happy-go-
lucky introduction to size comparisons between infinite sets. The use of the first per-
son singular helps to warm an atmosphere already sweetened with cozy good-humor
(perplexing though the ‘I’ might be in a work with two authors). If this chapter is
meant to entice and entertain readers rather than to instruct them, then it succeeds
admirably.

2.2 Chapter 2: Some basics of class-set theory According to the first line of this
chapter, the authors“ . . . presume familiarity with the notions of aclass orcollection
of objects and the notion of an objectx being amember or anelement of a classA.”
Since subsequent pages characterize these very notions in detail, one wonders what
sort of familiarity is presumed. This chapter offers a theory of finite sets in the style
of von Neumann and Bernays. The presentation is clear and spritely. Particularly
noteworthy and successful is the introduction of model theoretic considerations from
the very start. Nonetheless, the reviewer allows himself one quibble, two pet peeves,
and an emendation. (1) Without any warning, the authors use ‘contains’ to express
the converse of membership. (2) In note 1 of§4, the authors claim to use extension-
ality when they actually employ Leibniz’s law. (3) According to the initial remark
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of §7, “The term ‘Cartesian product’ is named in honor of René Descartes.” What
name of the term ‘Cartesian product’ do our authors have in mind? (One might have
guessed that the Cartesian productsthemselves were named in honor of Descartes.)
(4) Exercise 5.6(d) was probably supposed to read ‘B − (A − B) = B’.

2.3 Chapter 3: The natural numbers Herein we meet the axiom of infinity and
explore a construction of the natural numbers. The authors take special pride in their
extensive use of Smullyan’s double induction principle. “It is high time,” we are told,
“that [this principle] appear in a textbook.” As in the prior chapter, the exercises seem
well chosen. (One is puzzled, though, by the placement of Exercise 8.1. Since 8.1 is
an immediate consequence of Exercises 6.1 and 7.1, one wonders what role the inter-
vening discussion of recursion is supposed to play.) Dutiful readers of Chapter 2 will
have made an effort to remember that ‘P1’ i s our authors’ name for the extensional-
ity axiom. It is not so helpful for this to reappear in Chapter 3 as a name for the first
Peano postulate. ‘P2’ i s made to suffer from a similar ambiguity.

2.4 Chapter 4: Superinduction, well ordering, and choice Choice is shown to be
equivalent to several other celebrated propositions. The results are standard, but the
proofs are unusually clear and economical. The chapter concludes with a derivation
of Cowen’s theorem (on the existence of minimally superinductive classes). Errors
abound, four of which could cause students special grief. (1) Exercise 1.2 can be done
only if proper lower sections are allowed to be empty (as the authors do allow on
p. 71 of Chapter 6). This change having been made, we can drop condition (a) from
Exercise 1.3. (2) On line 2 of Exercise 1.6, replace ‘proper’ with ‘nonempty’. (3) If
we assume the axiom of choice, Exercise 4.3 is trivial. If, as the authors apparently
intend, we do not assume it, then 4.3 is impossible. (The authors seem unaware that
4.3 is, in fact, equivalent to choice.) (4) Definition 7.1 is a disaster. The authors write

(z ∈ y ∧ z ⊆ x) ⊃ g(z) ∈ y

when, evidently, they mean

(z ∈ y ∧ g(z) ⊆ x) ⊃ g(z) ∈ y.

This might not have been so harmful if the authors had not offered the alternative
formulation

z ∈ (y ∩ P (x)) ⊃ g(z) ∈ y

taking the garbled, rather than the intended, version as their guide. Readers who ac-
cept the definition as written will be especially irritated by the “proof” of Lemma 7.4.
It consists of the single word “Obvious”—whereas 7.4 is (not so obviously) false un-
der the definition readers have innocently adopted.

2.5 Chapter 5: Ordinal numbers The authors spare reviewers the task of crafting
laudatory prose to describe this chapter. It offers, they say, “a particularly smooth
and intuitive development of the ordinals.” Indeed, we are guaranteed “a beautifully
natural and elegant treatment.” The authors cannot help but remark, “It is high time
this neat approach should be known!” Any praise this reviewer might offer would be
superfluous.
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2.6 Chapter 6: Order isomorphism and transfinite recursion None of the fore-
going required the axiom of replacement, which is used only now to prove that every
well-ordered set is isomorphic to an ordinal. Work from previous chapters yields a
swift justification of various forms of transfinite recursion. The authors assure us, “A
semester course in symbolic logic is more than enough background [for their book].”
Most novices at set theory, though, will have no idea what counts as a proof of, say,
Exercise 5.1.

2.7 Chapter 7: Rank The usual hierarchy ofR(α)’s is introduced. An admirable
feature of this chapter is the swiftness with which the authors move to model theoretic
applications. This reviewer detected five misprints, none likely to impede readers for
long. However, if the authors are going to declare a proof “obvious,” they really ought
to state the theorem correctly. (In Proposition 1.2, ‘⊆’ should be ‘∈’.) Lemma 4.4
presents a more serious problem. The authors seem to claim that

VNB � ∀M(Z M −→ R(ω · 2) ⊆ M)

whereZ M is the Zermelian part of VNB with all quantifiers relativized toM. Their
proof, however, seems to establish no more than that

VNB � ∀α(Z R(α) −→ R(ω · 2) ⊆ R(α)).

It is not so clear what more theycould prove, since Zermelo set theory does not imply
the existence ofR(ω).

2.8 Chapter 8: Foundation, ∈-induction, and rank The authors discuss the ax-
iom of foundation, but refrain from adopting it. (Perhaps by way of justification, they
mention recent applications of non-well-founded sets.) Theorem 3.6 is puzzling. It
would seem to imply∀M ⊂ WF(ZM −→ ∃αM = R(α)) whereWF = ∪{R(α) : α ∈
ON}. Yet H(�ω) ∩ WF, the set of well-founded sets hereditarily of cardinality less
than�ω, would then be a counterexample. The authors’ intentions are not clarified
by their “proof.”

2.9 Chapter 9: Cardinals This chapter offers a cornucopia of interesting and fun-
damental results about cardinals, culminating in a proof that GCH implies AC. The
exposition is lucid and well paced. (Even the misprints are easily detected and cor-
rected!) One senses with regret that the preceding chapters were just a revision away
from this high standard.

3 Part II: Consistency of the Continuum Hypothesis

3.1 Chapter 10: Mostowski-Shepherdson mappings We seem (temporarily) to
have entered a new world, less amiable on the surface, but crafted with great care
and concern for the reader. (The poltergeist haunting the typesetter has not, however,
been exorcised. It strikes at least eight times in the first twelve pages.) This chapter
offers a smooth presentation of the Mostowski collapsing theorem. It also improves
on some results from Part I.
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3.2 Chapter 11: Reflection principles Sections 1 and 2 share the clarity of the
preceding chapter, though some of the exercises are unrealistic. Seven energetic
pages lead painlessly to a powerful and highly abstract reflection theorem. So far,
so good. Unfortunately, most students will find the final three sections deeply mys-
terious. Some will be tempted to read no further. There is also a substantial problem
that students might overlook: identity is not counted as a logical notion, but neither is
it ever defined. So readers are left to guess what ‘=’ might mean. Suppose we define
identity “from above” as membership in the same sets. Then ‘A = B’ can be true in a
classK even whenA andB are different sets. (We just have to make sure thatA and
B are members of the same members ofK.) Indeed,K can even be transitive: note,
for example, that{{∅}} and{∅, {∅}} are distinct, but belong to the same members of
R(3) (namely, none). Since this would torpedo two of the proofs on p. 141, it ought
not to be what the authors intend. One might guess that they mean to define identity
“from below” as extensional equivalence. We would then want to make sure that our
models are extensional. (That is, we would want to pickK such that, for anyx, y ∈ K,
if x ∩ K andy ∩ K are the same set, thenx andy are the same set.) This would help
to make sense of some details in Chapter 12. But, then, one hardly knows what to
say about footnote 8 of Chapter 13 in which the authors insist that they really mean
to define identity from above. (By the way, they also insist that ‘(∀z)(z ∈ x ≡ z ∈ y)’
says thatx andy are members of the same sets!!!!!!!!!!)

3.3 Chapter 12: Constructible sets Elements of a model are allowed to appear in
formulas as names of themselves. This may strike students as insane, but it yields a
gloriously seductive presentation of constructibility and absoluteness. There is, how-
ever, a problem with the exposition in§2 of this chapter. Whatever the authors’ inten-
tions, their presentation could easily lead uninitiated readers to believe the following
falsehood: ifψ is �0 and VNB� ∀x1, . . . , xn(ϕ(x1, . . . , xn) ←→ ψ(x1, . . . , xn)),
thenϕ is absolute over all transitive classes. Students should be taught to check how
much of VNB a model must satisfy if it is to verifyϕ’s equivalence to a�0 formula.
(Even if one only uses equivalences that are theorems of logic or definitional truths,
this itself is worth mentioning.) There is also a surprising turnabout in this chapter:
in spite of the qualms expressed in Chapter 8, we are informed (parenthetically) that
the universe is well founded after all!

3.4 Chapter 13: L is a well-founded first-order universe In Part I, our official (but
unformalized) formal theory was VNB. What a surprise, then, to learn that the rest
of the book is devoted to models of ZF! (This chapter shows thatL is such a model.)
It would have made more sense to offer an unashamedlyinformal account in Part I.
One could then have described the universeV quasi-categorically using plural locu-
tions of English in place of the class vocabulary of VNB. (This would, by the way,
have made Cowen’s theorem unnecessary.) As noted before, the authors now define
identity as membership in the same sets. But, then, ‘x = y’ is not �0 and, indeed,
is not absolute over all transitive classes. (‘{1} = 2’ is true in R(3).) So two steps
in the proof of Theorem 2.1 are fallacious (but easily enough repaired) and the proof
of Lemma 3.2 is incomplete. On p. 211 of Chapter 17, identity is once again defined
from above. But on p. 227 of Chapter 18, the authors assure us (parenthetically) that
they have all along intended to define identity as extensional equivalence. Then, on
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p. 252, this very definition is treated as an innovation specially tailored to meet the
needs of Chapter 20.

3.5 Chapter 14: Constructibility is absolute over L In this chapter, we learn that
the axiom of constructibility is true inL, thatL is the smallest transitive model of ZF
that contains all ordinals, and thatL can be well ordered. As a preliminary to proving
(V = L)L, we face the dreary task of showing that the definable power set operation
is absolute. The authors try to relieve the tedium by omitting some details.

3.6 Chapter 15: Constructibility and the continuum hypothesis Of course, GCH
turns out to be true inL as well. So ZF + GCH is consistent. So GCH is not refutable
in ZF. At least, that is what one expects the authors to conclude. Instead, they allow
only that ZF + GCH has a model if the universeV exists. That is probably a good qual-
ification to introduce. But, up to now, the existence ofV has been taken for granted.
So readers might like some reason for this unexpected surge of agnosticism.

4 Part III: Forcing and Independence Results

4.1 Chapter 16: Forcing, the very idea This chapter introduces a technique for
translating each sentenceϕ in the usual language of set theory into a sentence [ϕ] in a
modal language. A set theoretic sentenceϕ is logically true if and only if [ϕ] is true in
every possible world of everyS4 model. So the goal is to construct anS4 model that
makes our translation of every ZF axiom true in every possible world, but makes CH
false in at least one possible world. This approach will be welcomed by scholars who
have struggled with forcing, but are comfortable with modal logic. Many students,
however, may lack both the motivation and the background to make sense of it.

4.2 Chapter 17: The construction of S4 models for ZF Given any transitive
modelM of ZFC and any preordered structure〈W,≤〉 ∈ M, welearn how to construct
anS4 model〈W,≤, MW ,�〉 whereW is the set of possible worlds,≤ is the acces-
sibility relation, MW ⊆ M is the universe, and� is the valuation function (so that
p � ϕ means thatϕ is true at possible worldp). The authors then demonstrate that if
ϕ is an axiom of ZFC, thenp � [ϕ] wheneverp ∈ W. The proof that〈W,≤, MW ,�〉
has this property is not exactly gripping, but is wonderfully clear.

4.3 Chapter 18: The axiom of constructibility is independent Let M = L. Let W
be the set of all pairs〈P, N〉 whereP andN are finite, disjoint subsets ofω. Say that
〈P1, N1〉 ≤ 〈P2, N2〉 just in caseP1 ⊆ P2 andN1 ⊆ N2. Then [ϕ] is true in every pos-
sible world of〈W,≤, MW ,�〉 wheneverϕ is an axiom of ZFC+ GCH + V �= L.
If p � [¬ϕ], then [ϕ] is not true atp. So [V = L] is not true at anyp ∈ W. But
if ZFC + GCH � V = L, then [V = L] is true at everyp ∈ W. So the axiom of con-
structibility is not a theorem of ZFC + GCH. The result, of course, is Cohen’s—as are
the essential features of the proof. But this reviewer found the modal-logical presen-
tation to be blessedly, miraculously, triumphantly comprehensible. Here is a sketch
of the proof that there is a Cohen generic real in theS4 model. We are able to define a
certain setf . People who live in a possible world〈P, N〉 think [ẑ ∈ f ] is true when-
everz ∈ P. (ẑ is the canonical representative ofz in MW .) So if z �∈ (P ∪ N), then the
inhabitants of〈P, N〉 have access to a world in which [ẑ ∈ f ] is true. (Just consider
〈P ∪ {z}, N〉.) Suppose [f is not constructible] is false somewhere. Then there is a
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constructible setc and a world〈P, N〉 in which [ f and ĉ have the same members]
is true. Supposec ⊆ P andz �∈ (P ∪ N). Then [̂z ∈ f ] is true in〈P ∪ {z}, N〉. But
〈P ∪{z}, N〉 is accessible from〈P, N〉. So [ f and ĉ have the same members] is true in
〈P ∪ {z},N〉 and, hence, so is [ẑ ∈ ĉ ]. But, sincez �∈ c , [ẑ �∈ ĉ ] is true everywhere.
So [ẑ ∈ ĉ ] is false everywhere, contrary to our earlier conclusion. A contradiction
also follows if c is not a subset ofP. So [ f is not constructible] is true everywhere.
The idea is that iff were constructible, then the inhabitants of some world would
know exactly what objectŝz are members off . This knowledge would be inherited
by the inhabitants of all accessible worlds. But, since some of those worlds disagree
with one another on this very point, we obtain a contradiction.

4.4 Chapter 19: Independence of the continuum hypothesis Let M be a transitive
model of ZFC + GCH. We learn how to define a set of worldsW that yieldsℵ2 non-
constructible subsets ofω in 〈W,≤, MW ,�〉. It then follows that the modal transla-
tion of |P (ω)| = ℵ2 is everywhere true. Indeed, letk be any cardinal with uncountable
cofinality. Then one can contrive a modal model that thinksP (ω) is of sizek. From
this, the authors conclude that, “The seemingly simple power set operation turns out
to be one of the least understood operations of set theory.” But it is not so clear that
this follows. Second order ZF characterizes power sets up to∈-isomorphism. So the
power set operation would seem to be quite well understood (indeed, as well under-
stood as a mathematician could hope). We do, of course, have a lot to learn about the
relation between power sets and the sequence of alephs. (One wonders, does the first
order indeterminacy of 2λ mean that 2 is one of the least understood objects of set
theory?)

4.5 Chapter 20: Independence of the axiom of choice A modal version of the
Fraenkel-Cohen-Scott-Solovay proof is beautifully (though sometimes rather tersely)
presented.

4.6 Chapter 21: Constructing classical models An extraordinarily wonderful
chapter! This reviewer knows no better introduction to generic extensions. It is par-
ticularly helpful that the authors manage to present denseness and genericity as natu-
ral generalizations of Cohen’s more immediately intuitive approach. The modal ma-
chinery of previous chapters is also put to excellent use.

4.7 Chapter 22: Forcing background The book concludes with a useful bit of
intellectual history.

5 Overall assessment Parts I and II are one revision away from being an exemplary
introduction to G̈odel’s inner modelL. (What a shame they were published in their
current form!) Part III offers a splendid presentation of forcing, well suited for highly
motivated students with a substantial background in modal logic. Set theory students
without such a background might want to go ahead and acquire it: for many, this could
be the quickest and least painful way to make sense of Cohen’s technique.
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