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Algebraic Methods and
Bounded Formulas

DOMENICO ZAMBELLA

Abstract We present some algebraic tools useful to the study of the ex-
pressive power of bounded formulas in second-order arithmetic (alternatively,
second-order formulas in finite models). The techniques presented here come
from Boolean circuit complexity and are adapted to the context of arithmetic.
The purpose of this article is to expose them to a public with interests ranging
from arithmetic to finite model theory. Our exposition is self-contained.

1 Introduction We present some algebraic tools useful to the study of the expres-
sive power of bounded formulas in second-order arithmetic (alternatively, second-
order formulas in finite models). The techniques presented here come from Boolean
circuit complexity and are adapted to the context of arithmetic. The purpose of this
article is to expose them to a public with interests ranging from arithmetic to finite
model theory. Our exposition is self-contained. The machinery developed in Sec-
tion 3 runs, to some extent, parallel to that of Smolensky [7]—our formulation is
more explicit. In Section 4 we also include some related techniques developed in [8].
In [7] an alternative proof of a theorem of Yao (exponential lower bound for circuits
of bounded depth computing parity) [11] is given. The techniques used by Yao had
been introduced by Ajtai [1] and, independently, by Furst, Saxe, and Sipser [3]. Sub-
sequently, these have been improved and refined by Håstad [4], Razborov [6], and
others. All these proofs have, however, a topological flavor, whereas the ideas intro-
duced in [7] are of algebraic nature. Both methods can be adapted to our context and
give interesting information on the combinatorial properties of �

p
0 formulas. How-

ever, Smolenky’s method (based on some ideas of Razborov [5]) yields a stronger
result than what is obtainable by the topological method: namely, the nondefinability
of parity is extended to a language expanded with a generalized quantifier express-
ing counting modulo a prime number > 2. Moreover, nondefinability extends to any
function that approximates parity on essentially more than half of the sets.
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2 Preliminaries The language L is that of second-order arithmetic. It consists of
two constants: 0, 1; two binary functions: +, · ; and two binary relations: <, ∈. Vari-
ables are of two sorts: first-order, x, y, z, . . . and second-order, X, Y, Z, . . . that are
meant to range over numbers and, respectively, finite sets of numbers.

The semantics of this language is the usual one but for the following interpreta-
tions: X < y (in words, X is less than y) holds when all elements of X are less than
y. Note that terms are just polynomials in first-order variables.

Bounded quantifiers are those quantifiers that appear in the context: (Qx ∈ X)ϕ,
(Qx < t)ϕ, or (QX < t)ϕ, where Q is either ∀ or ∃ and t is a term in which x does not
occur. A formula is bounded if all of its quantifiers are bounded. The class of bounded
formulas without second-order quantifiers is denoted by �

p
0 . In the following we shall

concentrate on this class. This class is the ground level of a hierarchy of formulas, �p
i ,

�
p
i that is obtained by counting the alternation of second-order quantifiers. For i > 0

these classes coincide with those of the polynomial time hierarchy.
The standard model of this language is the set of natural numbers together with

the set of its finite subsets. This model will be kept fixed throughout this note. The
language L is expanded to include constants for every element of the standard model.
We call these new constants parameters. The classes defined above are naturally ex-
tended to this expanded language (but they will keep the same name). Practically,
we shall restrict the attention to formulas with a free variable X that ranges over the
subsets of some fixed but arbitrary finite set S. The formulas may have arbitrary pa-
rameters. The size of these constants and the length of the formula are the relevant
inputs of the theorems below.

Let q > 1. We write =q for the relation “congruent modulo q”. The next the-
orem says that the formula ‖X‖ =q x is not �

p
0 definable. (With ‖X‖ we denote the

cardinality of X.) Moreover, given any set S which is large enough, no �
p
0 formula

coincides with ‖X‖ =q x on essentially more than half of the subsets X of S. In Sec-
tion 6 this theorem is generalized to a language containing a generalized quantifier
for counting modulo a prime number p that does not divide q. We say that a for-
mula ϕ(x, X) counts X modulo q if and only if for all x, ϕ(x, X) is true if and only if
‖X‖ =q x.

Theorem 2.1 Let ϕ(x, X) be a �
p
0 formula and let S be a (finite) set. The formula

ϕ(x, X) counts X modulo q for at most 2s−1
[
1 + (am/

√
s)

]
subsets X of S, where

1. s is the cardinality of S,

2. m is a constant that depends only on the syntax of ϕ(x, X) (m is proportional
to the length of ϕ(x, X)), and

3. a is any number which is larger than m and such that 2a
1
m bounds S and all the

parameters occurring ϕ(x, X).

To have a more concrete example in mind, fix S = [0, s) and suppose that s is large
enough to have that 2 · �log s�2m <

√
s and that no parameter in ϕ(x, X) does exceed

s. Take �log s�m for a and apply the theorem. We obtain that ϕ(x, X) fails to count
X modulo q for at least one subset X of S. The proof is given in Section 5. The next
sections are dedicated to some preparatory work which is of independent interest.
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3 Formulas, functions, and the Möbius inversion. Fix a commutative ring with
unity R. Formulas will be interpreted as functions that take as input tuples of num-
bers and sets and output 1R, if these make the formula true, 0R otherwise (the sub-
script R will be omitted in the sequel). We define sum and multiplication of function,
as usual, by point-wise addition and product. Multiplication with elements of R is
defined in a similar way. We shall consider also the operators of sum

∑
x<t,

∑
Y<t

and the operator of product
∏

x<t; these act on functions in the obvious way. We de-
note by µ(X) the Möbius function:

∏
x∈X(−1), that is, µ(X) is −1, if X has an odd

number of elements, 1 otherwise.
In the following, X is restricted to range over the subsets of S. The set of unary

functions from the power set of S to R, constitutes a ring and, forgetting multiplica-
tion, an R-module. This module has dimension 2s. The functions

{
E = X

}
E—that

is, the functions that map X to 1 if X = E and to 0 otherwise—for E ranging over
subsets of S, form the canonical base of this module. In fact, every function δ(X)

can be written as
∑

E δ(E)(E = X). (When the range of a subscript is omitted this is
implicitly understood to be S.) Lemma 3.6 below shows a useful way of constructing
new bases. Let ϕ(X) be an arbitrary function: we use the following abbreviation.

Xϕ(X) :≡
∑
E⊆X

µ(E) · ϕ(E).

This is called the discrete Fourier transform of ϕ(X). The following property of the
Möbius function will be used repeatedly in the algebraic manipulations of functions.

Fact 3.1
∑

E⊆X µ(E) ≡ (X = ∅).

Proof: If X 
= ∅, choose an x ∈ X,∑
E⊆X

µ(E) =
∑

E⊆X\{x}
µ(E) + µ(E ∪ {x}) =

∑
E⊆X\{x}

µ(E) − µ(E) = 0.

On the other side, if X = ∅, then
∑

Y⊆X µ(Y ) equals µ(∅) and so, it equals 1 as
required. �

Fact 3.2 X(A ⊆ X) ≡ µ(A) · (X = A).

Proof: Observe that X(A ⊆ X) is equivalent to∑
E⊆X

µ(E) · (A ⊆ E) ≡ (A ⊆ X)
∑

E⊆X\A

µ(A ∪ E)

≡ (A ⊆ X) · µ(A)
∑

E⊆X\A

µ(E)

Now apply Fact 3.1. �
In particular, we have that X(x ∈ X) ≡ −(X = {x}).
Lemma 3.3 XXϕ(X) ≡ ϕ(X).
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Proof: Observe that

XXϕ(X) ≡
∑
E⊆X

µ(E)
∑
A⊆E

µ(A) · ϕ(A) ≡
∑
E⊆X

µ(E)
∑

A

µ(A) · ϕ(A) · (A ⊆ E)

≡
∑

A

µ(A) · ϕ(A)
∑
E⊆X

µ(E) · (A ⊆ E) ≡
∑

A

µ(A) · ϕ(A) · X(A ⊆ X) ·

The lemma follows from Fact 3.2. �

If ϕ(E) = 0 for all E ⊆ X, then Eϕ(E) =
∑

Z⊆E µ(Z) · 0 = 0 for all E ⊆
X. From the lemma above it follows that the converse also holds. The functions
µ(E) · (E ⊆ X) are linearly independent and form a base; X is an invertible linear
transformation. The function Eϕ(E) gives the components of ϕ(X) with respect to
the baseµ(E) · (E ⊆ X).

We define the degree of a function ϕ(X) to be the least d such that Xϕ(X) = 0
for all X of cardinality > d. The terminology is justified by the following observa-
tion. Suppose ϕ(X) has degree d. Assign to every x ∈ S a variable Xx and write the
polynomial 2−s ∑

E
Eϕ(E)

∏
x∈E Xx in R. Then this polynomial has degree d. The

value of function ϕ(X) at X coincides with the value the polynomial assumes when
we assign to Xx value 1 or 0 according to whether x is in X or not.

Fact 3.4 X [ϕ(X) · ψ(X)] ≡ ∑
A∪B=X µ(A ∩ B) · Aϕ(A) · Bψ(B).

Proof: Expressing ϕ and ψ through their transforms, we have

ϕ(X) · ψ(X) ≡
∑

A,B⊆X

µ(A) · Aϕ(A) · µ(B) · Bψ(B)

≡
∑
Y⊆X

∑
A∪B=Y

µ(A) · Aϕ(A) · µ(B) · Bψ(B)

≡
∑
Y⊆X

µ(Y )
∑

A∪B=Y

µ(A ∩ B) · Aϕ(A) · Bψ(B).

The fact follows from Lemma 3.3. �

The fact above generalizes easily to the operator
∏

x<t. We state it in the following
fact.

Fact 3.5 X
∏

x<t ϕ(x, X) ≡ µ(X)
∑⋃

x<t Ex = X

∏
x<t µ(Ex) · Exϕ(x, Ex).

From these facts we can give an upper bound to the degree of a product from the de-
gree of the factors. For example, the degree of

∏
x<t ϕ(x) is at most the sum of the

degrees of ϕ(x) for x < t. Needless to say, the degree of
∑

x<t ϕ(x) is just the maxi-
mum of the degrees of ϕ(x) for x < t.

The following lemma shows a simple way of obtaining new bases of the module
of unary functions.

Lemma 3.6 Let δ(X) be any function. The function δ(E ∩ X) has degree ≤ ‖E‖.
Moreover, if for all X, Xδ(X) has an inverse in R then {δ(E ∩ X)

}
E is a base of the

module of the unary functions.
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Proof: To check that δ(E ∩ X) has degree ≤ ‖E‖, compute Xδ(E ∩ X) and check
that it is 0 for X 
⊆ E

Xδ(E ∩ X) ≡
∑
A⊆X

µ(A)δ(E ∩ A) ≡
∑

B⊆X\E

∑
A⊆X∩E

µ(A ∪ B) · δ(A)

≡
∑
A⊆X

µ(A)δ(E ∩ A) ≡
∑

A⊆X∩E

µ(A) · δ(A)
∑

B⊆X\E

µ(B)

≡
∑

A⊆X∩E

µ(A) · δ(A) · (X ⊆ E)

≡ (X ⊆ E)
∑
A⊆X

µ(A) · δ(A)

≡ (X ⊆ E)Xδ(X).

To check that {δ(E ∩ X)
}

E generates all the unary functions, observe that from the
equivalence above we have (note the renaming of variables)

[
Eδ(E)

]−1 ∑
A⊆E

µ(A)δ(A ∩ X) ≡ (E ⊆ X).

Since {(E ⊆ X)}E is a base, the claim follows. To check the linear independence
apply a cardinality argument. �
Let g be any element of R such that (1 − g)−1 exists in R. To prove Theorem 2.1 we
shall need the fact that the functions g‖E∩X‖ form a base. We check that the hypothesis
of the lemma is satisfied. It is easy to check that when X = ∅ then X

(
g‖X‖) is 1. If

instead X 
= ∅, pick an arbitrary c ∈ X,∑
E⊆X

µ(E) · g‖E‖ =
∑

E⊆X\{c}
µ(E) · [g‖E‖ − g‖E‖+1]

= (1 − g)
∑

E⊆X\{c}
µ(E) · g‖E‖

Iterating this argument for all elements of X we can conclude that X
(
g‖X‖) is (1 −

g)‖X‖ and our claim follows from the lemma.

4 Approximations In general, even very simple formulas may have high degree.
For instance, by Fact 3.2, the formula A ⊆ X has degree ‖A‖. Nevertheless, we shall
see that every formula ϕ in �

p
0 can be approximated by a function ψ of low degree,

namely, of degree that is polynomial in the logarithm of the parameters occurring in
ϕ. By “approximating” we mean that for all but a small fraction of the sets X the
functions ϕ(X) and ψ(X) are equivalent. The rest of this section is devoted to the
proof of this theorem. We will give two proofs: the first works only when R is a field
of characteristic > 0, the second is general. The first proof is due to Smolensky [7]
and uses combinatorial techniques of Razborov [5]. The second is of Tauri [8]; it uses
ideas of Vazirani and Vardi [10]. The first proof we give is simpler and it is sufficient
to prove Theorem 2.1 and Corollary 6.2. The second proof is included for complete-
ness and because of the general combinatorial ideas used there that make the method
interesting in itself.
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Theorem 4.1 Let ϕ(X) be a �
p
0 formula and let α be a subset of the power set of

S. There is a function ψ(X) of degree ≤ an that is equal to ϕ(X) for all but at most
2a(n−a)‖α‖ sets X ∈ α, where

1. n is proportional to the length of ϕ(X), and

2. a > n and 2a
1
n is larger than S and of all the parameters occurring in ϕ(X).

Proof: We call the function ψ an approximation of ϕ and the fraction of sets in α

such that ϕ(X) differs from ψ(X) the error probability. We will proceed by induc-
tion on the syntax of formulas. In the statement of the theorem there is no claim on
uniformity: namely, nothing is claimed on the syntax of the function ψ. Indeed the
way one constructs ψ from atomic functions by means of the operator of products and
sums is intimately connected with the syntax of ϕ. Some nonuniformity occurring in
the construction results in the presence of some extra parameters. We shall not make
this explicit.

To prove the basic step of the induction let us assume that second-order equality
does not occur in ϕ (if it does we eliminate it using extensionality). Eliminate in ϕ

all connectives but ¬, ∧, and ∃. Also, for definiteness, replace the quantifiers of the
form (∃x ∈ T ) with (∃x < t)(x ∈ T ) → , where t is an appropriate parameter. We can
assume that t < 2a, so we may assume that all quantifiers occurring in the formulas
are of the form (∃x < t).

By Fact 3.1 and Fact 3.2, the atomic formulas t = s, t < s, and t ∈ X have degree
≤ 1. The induction step for negation is trivial. In fact, negation coincides with ‘1−’,
so it is a linear operator and it does not increase the degree. Conjunction (i.e., multi-
plication of functions) is easy. Suppose that ϕ is of the form ϕ1 ∧ ϕ2 and that ϕ1, ϕ2

have approximations ψ1, ψ2 of degree < an. We claim that the product ψ1 · ψ2 is the
required approximation of ϕ. From Fact 3.4 above it follows that ψ1 · ψ2 has degree
< 2an. The error probability is at most the sum of that of the two conjuncts sepa-
rately, that is, < 2 · 2a(n−a). The claim (with n + 1 for n) follows from the induction
hypothesis.

The relevant part of the proof consists in proving the induction step for the ex-
istential quantifier. A “brute force” strategy—replace quantification with product, as
we did with conjunction—has no chance. In fact, large products make us lose any
control on the degree of the functions. We will express (though, in an approximate
form) existential quantification using sums and small products: that is, products of
the form

∏
x<ak ψ(x, X). Then, if for all x < ak the degree of ψ(x, X) is less than an

then the degree of
∏

x<ak ψ(x, X) is less than an+k.
For the expository reasons explained above, we first prove the theorem in a spe-

cial case, that is, when R is a field of nonzero characteristic p. We need also assume
that p < a. Let t < 2a. Assume that, for all x < t, the function ψ(x, X) of degree
< an is an approximation of ϕ(x, X). We can assume that these approximations have
error probability < 2a(n−a). Therefore, all but at most 2a · 2a(n−a)‖α‖ sets X ∈ α are
such that ψ(x, X) equals ϕ(x, X) for all x < t.

The following is the reason for a fixed X. Suppose that (∃x < t)ϕ(x, X) and fix
x̂ such that ϕ(x̂, X). Choose at random (with respect to the uniform distribution) a
function l from [0, t) into [0, p − 1). We show that, with probability at least 1/p, we
have that

∑
x<t l(x)ϕ(x, X) is 1. In fact, for every choice of l(x) for x 
= x̂ there is
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one choice (out of p) of l(x̂) that makes the sum equal to 1. Now let h be a function
from [0, t) × [0, pa2) into [0, p − 1) obtained by choosing independently pa2 times
a function such as l as above. The probability that

∑
x<t h(x, y)ϕ(x, X) 
= 1 for every

y < pa2 is (1 − 1/p)pa2 ≤ 2−a2
.

By counting, we conclude that for all X in α but at most
(

2−a2 + 2a(n+1−a)
)

‖α‖
the formula (∃x < t)ϕ(x, X) holds if and only if for some y < pa2,∑

x<t

h(x, y)ϕ(x, X) = 1.

It follows that for these X the function (∃x < t)ϕ(x, X) equals

1 −
∏

y<pa2

[
1 −

∑
x<t

h(x, y)ϕ(x, X)

]
. (∗)

This function has degree < an+3 and the error probability is < 2a(n+2−a). Therefore,
the claim of the lemma is established for (∃x < t)ϕ(x, X) with n + 2 for n. This
completes the proof of the special case of the theorem.

Now we resume the general proof. We need to prove the inductive step for the
existential quantifier in the case in which R has characteristic 0. The following lemma
of Valiant and Vazirani [10] gives us the technical tools we need to complete the proof
of the theorem. The idea of applying it in this context is of Tauri [8]. To better under-
stand the statement of the lemma and its role in the proof, let us make some simple
considerations.

The idea of the lemma is to hash the interval [0, t) into a + 1 subsets C0, . . . , Ca

such that, if (∃x < t)ϑ(x, X) is true, then at least one of these subsets isolates exactly
one witness, that is, (∃z ≤ a)(∃!x ∈ Cz) ϑ(x, X). We can rewrite (∃x < t)ϑ(x, X) as

1 −
∏
z<a

[
1 −

∑
x∈Cz

ϑ(x, X)

]
.

The sets Cz are a suitable parameter depending on ϕ. They need to succeed for a
‘large’ fraction of the X ∈ α.

Lemma 4.2 Fix a formula of the form (∃x < t)ϑ(x, X) where t < 2a. Let α be an
arbitrary set of subsets of S. There are some sets Cz < t, for z = 0, . . . , a such that
for all but at most (1/2)‖α‖ sets X ∈ α,

(∃x < t)ϑ(x, X) ←→ (∃z ≤ a)(∃! x ∈ Cz)ϑ(x, X). (∗)

Proof: Fix an arbitrary X̂ ∈ α such that (∃x < t)ϑ(x, X̂). We shall see that, choosing
Cz at random (with respect to the distribution specified below), we have that (∃z ≤
a)(∃! x ∈ Cz)ϑ(x, X̂) with probability > 1/2. By counting, there are sets C0, . . . , Ca

that satisfy (∗) for all but at most (1/2)‖α‖ sets X ∈ α. The lemma follows.
Fix an arbitrary injection of the interval [0, 2a) into the set of binary strings of

length a. We can view {0, 1}a as a vector space on the finite field {0, 1}. The canonical
base for this vector space is denoted with e1, . . . , ea. Below we shall identify numbers
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< 2a and vectors; to simplify notation we assume that 0 corresponds to the zero of the
vector space. The scalar product of two vectors u, v ∈ {0, 1}a is defined in the natural
way: it is 0 if the coordinates of u and v coincide on an even number of entries, 1
otherwise.

The sets Cz are constructed from a sequence of a mutually orthogonal vectors
v0, . . . , va−1. Let v0 := 0 (the zero of the vector space). If v0, . . . , vz−1 are defined,
let Cz be the set of vectors orthogonal to all v0, . . . , vz−1. Let vz be chosen at random
in Cz (with uniform distribution). Observe that C0 = {0, 1}a and Ca = {0}.

The rank of a subset of {0, 1}a is the minimal dimension of a subspace contain-
ing it. Let us write F for the set {x < t : ϑ(x, X̂)}. We shall show that whatever the
nonempty set F is, by choosing C0, . . . , Ca at random as explained above we obtain
that, with probability > 1/2, there is a z ≤ a such that Cz ∩ F has cardinality 1, that
is, (∃!x ∈ Cz)ϑ(x, X̂) for some z ≤ a.

It suffices to prove that with probability greater than 1/2 for some z ≤ a the rank
of Cz ∩ F is 1. In fact, suppose the rank of Cz ∩ F is 1. Then either the cardinality
of Cz ∩ F is 1—in this case we are finished—or 0 belongs Cz ∩ F, so since Ca = {0},
stage a will be successful.

Let z ≤ a be arbitrary and let the rank of Cz ∩ F be d > 1. We claim that
Cz+1 ∩ F 
= ∅ with probability greater than 1 − 2−d. To prove the claim, observe
that the probability distribution is invariant under orthonormal transformations. We
can assume that the vectors v1, . . . , vz are the base vectors e1, . . . , ez, that Cz ∩ F con-
tains the vectors ez+1, . . . , ez+d and these generate the subspace containing Cz ∩ F.
Now the vector vz+1 is chosen randomly among the vectors orthogonal to e1, . . . , ez,
that is, among the nonzero linear combinations of ez+1, . . . , ea. We have

Cz+1 ∩ F = Cz+1 ∩ (Cz ∩ F) ⊇ Cz+1 ∩ {ez+1, . . . , ez+d}.

Therefore, Cz+1 ∩ F is empty if and only if the (z + 1)-th, . . . , (z + d)-th coordinates
of vz+1 are all 0. This happens with probability less than 2−d. This proves the claim.

From this claim it follows easily that the probability of (∃z ≤ c)‖Cz ∩ F‖ = 1
is at least

a∏
d=2

(1 − 2−d ) >

∞∏
d=2

(1 − 2−d ) ≥
∞∏

d=2

2−21−d = 1
2

(for the last inequality we have used that 1 − x ≤ 2−2x for all positive x ≤ 1/2). The
lemma follows. �
Observe that applying the lemma a2 times and concatenating the results, we can ob-
tain that for some {Cz}z<(a+1)a2 ,

(∃x < t)ϕ(x, X) ←→ (∃z < (a + 1)a2)(∃!x ∈ Cz)ϕ(x, X)

holds for all X ∈ α but for at most 2−a2‖α‖. We shall use the lemma in this form.
Finally, we are ready to prove the inductive step for the existential quantifier. As

in the special case above, using the uniform inductive hypothesis: let t < 2a and as-
sume that, for all x < t, the function ψ(x, X) of degree < an is an approximation of
ϕ(x, X). We can assume that each approximation has error probability < 2a(n−a).
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Therefore, all but at most 2a(n+1−a)‖α‖ sets X ∈ α are such that ψ(x, X) equals
ϕ(x, X) for all x < t. The function

1 −
∏

z<(a+1)a2

[
1 −

∑
x∈Cz

ψ(x, X)

]

is the required approximation of (∃x < t)ϕ(x, X). Its degree is < an+4. The new error
probability is 2−a2 + 2a(n+1−a) < 2a(n+2−a). The claim of the lemma is established
for (∃x < t)ϕ(x, X) with n + 4 for n. This completes the proof of the induction step
for the existential quantifier.

To complete the theorem we are left only to verify the claim on the size of n.
Indeed n increases by at most 4 at the inductive steps for ∃ and ∧. Though to apply
the proof we may need to change the syntax of ϕ (i.e., to eliminate ∀, →, etc.), the
growth in size is limited by a fixed factor. The proof of Theorem 4.1 is complete. �

5 Proof of Theorem 2.1 We have now established all that is needed in order to
prove Theorem 2.1.

Proof: Let α be the set of those X ⊆ S such that the formula ϕ(x, X) counts X mod-
ulo q. Fix a ring R that has a qth root of the unity g such that 1 − g has an inverse in
R. By the observation above, g‖E∩X‖ is a base, so every function ψ(X) can be written
as

ψ(X) ≡
∑

E

g‖E∩X‖ · ∗ψ(E),

for some function ∗ψ(E). Assume s is odd (the case when s is even is similar but
requires somewhat lengthier writing). Every subset of S has either cardinality < s/2
or it is the complement of a set of cardinality < s/2, so every function ψ(X) can be
written as follows

ψ(X) ≡
∑

E :‖E‖< s
2

[
g‖E∩X‖ · ∗ψ(E) + g‖Ec∩X‖ · ∗ψ(Ec)

]

≡
∑

E : ‖E‖< s
2

g‖E∩X‖ · ∗ψ(E) + g‖X‖ ∑
E : ‖E‖< s

2

g−‖E∩X‖ · ∗ψ(Ec).

Therefore, every function is the sum of a function of degree at most s/2 and a function
which is g‖X‖ multiplied by a function of degree ≤ s/2. Since g is a q-root of unity,
the function g‖X‖ coincides in α with the linear combination

∑
x<q gx · ϕ(x, X). By

Theorem 4.1, on a set of cardinality <
(
1 − 2a(n−a)

)‖α‖ the function g‖X‖ coincides
with a function of degree an where n is fixed by the theorem. There is a submodule
of dimension >

(
1 − 2a(n−a)

)‖α‖ where every function has degree < (s/2) + an.
We can derive the claimed bound on the cardinality of α from a simple argument of
dimensionality. The functions of degree < an are

<
∑

i< s
2 +an

(
s
i

)
≤ 2s−1 +

s
2 +an∑
i= s

2

(
s
i

)
≤ 2s−1 +

(
s

s/2

)
an ≤ 2s−1

(
1 + 2an

√
s

)
.
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(For the last inequality use Robbins’s sharp form of Stirling’s formula, see [2], II.9)
Therefore, (

1 − 2a(n−a)
)‖α‖ < 2s−1

(
1 + 2an

√
s

)
,

and

‖α‖ <
(
1 + 2a(n−a)

)
2s−1

(
1 + 2an

√
s

)
.

Recall that S < 2a, so in particular s < 2a. If a > n we obtain

‖α‖ <

(
1 + 1

s

)
2s−1

(
1 + 2an

√
s

)
< 2s−1

(
1 + 5an

√
s

)
.

Assuming a > 5, we conclude that

‖α‖ < 2s−1
(

1 + an+1

√
s

)
,

Theorem 2.1 follows. �

6 Expansions of the language Given a formula τ(X) with only free variable X we
define the (bounded first-order) generalized quantifier Qτ stipulating (by induction on
the nesting generalized quantifiers) that (Qτx < t)ϕ(x) holds if and only if τ(X) holds
when X = {x < t : ϕ(x)}. In the example considered below τ(X) is X =p 0. When
p = 2, (Qτx < t)ϕ(x) spells out: there is an even number of x < t that satisfy ϕ(x).
The class �

p
0 (Qτ ) is defined as �

p
0 but it is also closed under Qτ. Theorem 4.1 can

be easily extended to the following.

Theorem 6.1 Let ϕ(X) be a �
p
0 (Qτ ) formula and let α be a subset of the power

set of S. There is a function ψ(X) of degree ≤ an, that is equal to ϕ(X) for all but at
most 2a(n−a)‖α‖ sets X ∈ α, where

1. n is proportional to the length of ϕ(X), and

2. a > n and 2a
1
n is larger than S and of all the parameters occurring in ϕ(X);

moreover, Xτ(X) 
= 0 for at most 2a subsets X of S.

Proof: We only need to prove the induction step of the proof of Theorem 4.1 for the
generalized quantifier Qτ. Consider the identity

τ(X) ≡
∑
E⊆X

µ(E) · Eτ(E) .

Substituting the set {x < t : ϕ(x)} for X, we obtain

(Qτx < t)ϕ(x, X) ≡ τ({x < t : ϕ(x, X)})
≡

∑
E<t

[
(∀x ∈ E)ϕ(x, X)

]
· µ(E) · Eτ(E).

Take as an approximation of (Qτx < t)ϕ(x, X) the linear combination∑
E<t

ψ(E, X) · µ(E) · Eτ(E), (∗)
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where ψ(E, X) is the approximation of degree < an of the formula (∀x ∈ E)ϕ(x, X)

as given by the induction hypothesis. Note that we can only claim that for each E the
function ψ(E, X) approximates (∀x ∈ E)ϕ(x, X) on some large set. This set may
depend on E, but only the sets such that Eτ(E) 
= 0 are relevant. Since Eτ(E) 
= 0 for
less than 2a sets, we can assume that (∗) coincides with (Qτx < t)ϕ(x, X) for all but
2a(n+1−a). This proves the theorem. �

Theorem 2.1 generalizes to the following.

Corollary 6.2 Let p and q be two different prime numbers. Let ϕ(x, X) be a
�

p
0 (Q‖X‖=p0) formula and let S be a set. The formula ϕ(x, X) counts X modulo q

for at most 2s−1
[
1 + (am/

√
s)

]
subsets X of S, where

1. s is the cardinality of S,

2. m is proportional to length of ϕ(x, X), and

3. a is any number which is larger than m and p and such that 2a
1
m bounds S and

all the parameters occurring ϕ(x, X).

Proof: Let F be a field of characteristic p with a qth root of the unity. The formula
‖X‖ =p 0 is equivalent to

1 − ‖X‖p−1 ≡ 1 −
(∑

x∈S

x ∈ X

)p−1

,

by Facts 3.2 and 3.4, ‖X‖p−1 has degree < p. By Theorem 6.1 the proof of Theo-
rem 2.1 remains valid (with F for R) when �

p
0 is replaced with �

p
0 (Q‖X‖=p0). �

We conclude by remarking that for the proof above it is essential that p is a prime.
It is open whether the corollary above holds for a composite numbers. Also it is not
known if we can sharp the bound in the error probability as p increases.
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